Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/share/utilities/bitMap.cpp
40949 views
1
/*
2
* Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "memory/allocation.inline.hpp"
27
#include "memory/resourceArea.hpp"
28
#include "runtime/atomic.hpp"
29
#include "utilities/bitMap.inline.hpp"
30
#include "utilities/copy.hpp"
31
#include "utilities/debug.hpp"
32
#include "utilities/population_count.hpp"
33
34
STATIC_ASSERT(sizeof(BitMap::bm_word_t) == BytesPerWord); // "Implementation assumption."
35
36
typedef BitMap::bm_word_t bm_word_t;
37
typedef BitMap::idx_t idx_t;
38
39
class ResourceBitMapAllocator : StackObj {
40
public:
41
bm_word_t* allocate(idx_t size_in_words) const {
42
return NEW_RESOURCE_ARRAY(bm_word_t, size_in_words);
43
}
44
void free(bm_word_t* map, idx_t size_in_words) const {
45
// Don't free resource allocated arrays.
46
}
47
};
48
49
class CHeapBitMapAllocator : StackObj {
50
MEMFLAGS _flags;
51
52
public:
53
CHeapBitMapAllocator(MEMFLAGS flags) : _flags(flags) {}
54
bm_word_t* allocate(size_t size_in_words) const {
55
return ArrayAllocator<bm_word_t>::allocate(size_in_words, _flags);
56
}
57
void free(bm_word_t* map, idx_t size_in_words) const {
58
ArrayAllocator<bm_word_t>::free(map, size_in_words);
59
}
60
};
61
62
class ArenaBitMapAllocator : StackObj {
63
Arena* _arena;
64
65
public:
66
ArenaBitMapAllocator(Arena* arena) : _arena(arena) {}
67
bm_word_t* allocate(idx_t size_in_words) const {
68
return (bm_word_t*)_arena->Amalloc(size_in_words * BytesPerWord);
69
}
70
void free(bm_word_t* map, idx_t size_in_words) const {
71
// ArenaBitMaps currently don't free memory.
72
}
73
};
74
75
template <class Allocator>
76
BitMap::bm_word_t* BitMap::reallocate(const Allocator& allocator, bm_word_t* old_map, idx_t old_size_in_bits, idx_t new_size_in_bits, bool clear) {
77
size_t old_size_in_words = calc_size_in_words(old_size_in_bits);
78
size_t new_size_in_words = calc_size_in_words(new_size_in_bits);
79
80
bm_word_t* map = NULL;
81
82
if (new_size_in_words > 0) {
83
map = allocator.allocate(new_size_in_words);
84
85
if (old_map != NULL) {
86
Copy::disjoint_words((HeapWord*)old_map, (HeapWord*) map,
87
MIN2(old_size_in_words, new_size_in_words));
88
}
89
90
if (clear && (new_size_in_bits > old_size_in_bits)) {
91
// If old_size_in_bits is not word-aligned, then the preceeding
92
// copy can include some trailing bits in the final copied word
93
// that also need to be cleared. See clear_range_within_word.
94
bm_word_t mask = bit_mask(old_size_in_bits) - 1;
95
map[raw_to_words_align_down(old_size_in_bits)] &= mask;
96
// Clear the remaining full words.
97
clear_range_of_words(map, old_size_in_words, new_size_in_words);
98
}
99
}
100
101
if (old_map != NULL) {
102
allocator.free(old_map, old_size_in_words);
103
}
104
105
return map;
106
}
107
108
template <class Allocator>
109
bm_word_t* BitMap::allocate(const Allocator& allocator, idx_t size_in_bits, bool clear) {
110
// Reuse reallocate to ensure that the new memory is cleared.
111
return reallocate(allocator, NULL, 0, size_in_bits, clear);
112
}
113
114
template <class Allocator>
115
void BitMap::free(const Allocator& allocator, bm_word_t* map, idx_t size_in_bits) {
116
bm_word_t* ret = reallocate(allocator, map, size_in_bits, 0);
117
assert(ret == NULL, "Reallocate shouldn't have allocated");
118
}
119
120
template <class Allocator>
121
void BitMap::resize(const Allocator& allocator, idx_t new_size_in_bits, bool clear) {
122
bm_word_t* new_map = reallocate(allocator, map(), size(), new_size_in_bits, clear);
123
124
update(new_map, new_size_in_bits);
125
}
126
127
template <class Allocator>
128
void BitMap::initialize(const Allocator& allocator, idx_t size_in_bits, bool clear) {
129
assert(map() == NULL, "precondition");
130
assert(size() == 0, "precondition");
131
132
resize(allocator, size_in_bits, clear);
133
}
134
135
template <class Allocator>
136
void BitMap::reinitialize(const Allocator& allocator, idx_t new_size_in_bits, bool clear) {
137
// Remove previous bits - no need to clear
138
resize(allocator, 0, false /* clear */);
139
140
initialize(allocator, new_size_in_bits, clear);
141
}
142
143
ResourceBitMap::ResourceBitMap(idx_t size_in_bits, bool clear)
144
: BitMap(allocate(ResourceBitMapAllocator(), size_in_bits, clear), size_in_bits) {
145
}
146
147
void ResourceBitMap::resize(idx_t new_size_in_bits) {
148
BitMap::resize(ResourceBitMapAllocator(), new_size_in_bits, true /* clear */);
149
}
150
151
void ResourceBitMap::initialize(idx_t size_in_bits) {
152
BitMap::initialize(ResourceBitMapAllocator(), size_in_bits, true /* clear */);
153
}
154
155
void ResourceBitMap::reinitialize(idx_t size_in_bits) {
156
BitMap::reinitialize(ResourceBitMapAllocator(), size_in_bits, true /* clear */);
157
}
158
159
ArenaBitMap::ArenaBitMap(Arena* arena, idx_t size_in_bits)
160
: BitMap(allocate(ArenaBitMapAllocator(arena), size_in_bits), size_in_bits) {
161
}
162
163
CHeapBitMap::CHeapBitMap(idx_t size_in_bits, MEMFLAGS flags, bool clear)
164
: BitMap(allocate(CHeapBitMapAllocator(flags), size_in_bits, clear), size_in_bits), _flags(flags) {
165
}
166
167
CHeapBitMap::~CHeapBitMap() {
168
free(CHeapBitMapAllocator(_flags), map(), size());
169
}
170
171
void CHeapBitMap::resize(idx_t new_size_in_bits, bool clear) {
172
BitMap::resize(CHeapBitMapAllocator(_flags), new_size_in_bits, clear);
173
}
174
175
void CHeapBitMap::initialize(idx_t size_in_bits, bool clear) {
176
BitMap::initialize(CHeapBitMapAllocator(_flags), size_in_bits, clear);
177
}
178
179
void CHeapBitMap::reinitialize(idx_t size_in_bits, bool clear) {
180
BitMap::reinitialize(CHeapBitMapAllocator(_flags), size_in_bits, clear);
181
}
182
183
#ifdef ASSERT
184
void BitMap::verify_size(idx_t size_in_bits) {
185
assert(size_in_bits <= max_size_in_bits(),
186
"out of bounds: " SIZE_FORMAT, size_in_bits);
187
}
188
189
void BitMap::verify_index(idx_t bit) const {
190
assert(bit < _size,
191
"BitMap index out of bounds: " SIZE_FORMAT " >= " SIZE_FORMAT,
192
bit, _size);
193
}
194
195
void BitMap::verify_limit(idx_t bit) const {
196
assert(bit <= _size,
197
"BitMap limit out of bounds: " SIZE_FORMAT " > " SIZE_FORMAT,
198
bit, _size);
199
}
200
201
void BitMap::verify_range(idx_t beg, idx_t end) const {
202
assert(beg <= end,
203
"BitMap range error: " SIZE_FORMAT " > " SIZE_FORMAT, beg, end);
204
verify_limit(end);
205
}
206
#endif // #ifdef ASSERT
207
208
void BitMap::pretouch() {
209
os::pretouch_memory(word_addr(0), word_addr(size()));
210
}
211
212
void BitMap::set_range_within_word(idx_t beg, idx_t end) {
213
// With a valid range (beg <= end), this test ensures that end != 0, as
214
// required by inverted_bit_mask_for_range. Also avoids an unnecessary write.
215
if (beg != end) {
216
bm_word_t mask = inverted_bit_mask_for_range(beg, end);
217
*word_addr(beg) |= ~mask;
218
}
219
}
220
221
void BitMap::clear_range_within_word(idx_t beg, idx_t end) {
222
// With a valid range (beg <= end), this test ensures that end != 0, as
223
// required by inverted_bit_mask_for_range. Also avoids an unnecessary write.
224
if (beg != end) {
225
bm_word_t mask = inverted_bit_mask_for_range(beg, end);
226
*word_addr(beg) &= mask;
227
}
228
}
229
230
void BitMap::par_put_range_within_word(idx_t beg, idx_t end, bool value) {
231
assert(value == 0 || value == 1, "0 for clear, 1 for set");
232
// With a valid range (beg <= end), this test ensures that end != 0, as
233
// required by inverted_bit_mask_for_range. Also avoids an unnecessary write.
234
if (beg != end) {
235
bm_word_t* pw = word_addr(beg);
236
bm_word_t w = *pw;
237
bm_word_t mr = inverted_bit_mask_for_range(beg, end);
238
bm_word_t nw = value ? (w | ~mr) : (w & mr);
239
while (true) {
240
bm_word_t res = Atomic::cmpxchg(pw, w, nw);
241
if (res == w) break;
242
w = res;
243
nw = value ? (w | ~mr) : (w & mr);
244
}
245
}
246
}
247
248
void BitMap::set_range(idx_t beg, idx_t end) {
249
verify_range(beg, end);
250
251
idx_t beg_full_word = to_words_align_up(beg);
252
idx_t end_full_word = to_words_align_down(end);
253
254
if (beg_full_word < end_full_word) {
255
// The range includes at least one full word.
256
set_range_within_word(beg, bit_index(beg_full_word));
257
set_range_of_words(beg_full_word, end_full_word);
258
set_range_within_word(bit_index(end_full_word), end);
259
} else {
260
// The range spans at most 2 partial words.
261
idx_t boundary = MIN2(bit_index(beg_full_word), end);
262
set_range_within_word(beg, boundary);
263
set_range_within_word(boundary, end);
264
}
265
}
266
267
void BitMap::clear_range(idx_t beg, idx_t end) {
268
verify_range(beg, end);
269
270
idx_t beg_full_word = to_words_align_up(beg);
271
idx_t end_full_word = to_words_align_down(end);
272
273
if (beg_full_word < end_full_word) {
274
// The range includes at least one full word.
275
clear_range_within_word(beg, bit_index(beg_full_word));
276
clear_range_of_words(beg_full_word, end_full_word);
277
clear_range_within_word(bit_index(end_full_word), end);
278
} else {
279
// The range spans at most 2 partial words.
280
idx_t boundary = MIN2(bit_index(beg_full_word), end);
281
clear_range_within_word(beg, boundary);
282
clear_range_within_word(boundary, end);
283
}
284
}
285
286
bool BitMap::is_small_range_of_words(idx_t beg_full_word, idx_t end_full_word) {
287
// There is little point to call large version on small ranges.
288
// Need to check carefully, keeping potential idx_t over/underflow in mind,
289
// because beg_full_word > end_full_word can occur when beg and end are in
290
// the same word.
291
// The threshold should be at least one word.
292
STATIC_ASSERT(small_range_words >= 1);
293
return beg_full_word + small_range_words >= end_full_word;
294
}
295
296
void BitMap::set_large_range(idx_t beg, idx_t end) {
297
verify_range(beg, end);
298
299
idx_t beg_full_word = to_words_align_up(beg);
300
idx_t end_full_word = to_words_align_down(end);
301
302
if (is_small_range_of_words(beg_full_word, end_full_word)) {
303
set_range(beg, end);
304
return;
305
}
306
307
// The range includes at least one full word.
308
set_range_within_word(beg, bit_index(beg_full_word));
309
set_large_range_of_words(beg_full_word, end_full_word);
310
set_range_within_word(bit_index(end_full_word), end);
311
}
312
313
void BitMap::clear_large_range(idx_t beg, idx_t end) {
314
verify_range(beg, end);
315
316
idx_t beg_full_word = to_words_align_up(beg);
317
idx_t end_full_word = to_words_align_down(end);
318
319
if (is_small_range_of_words(beg_full_word, end_full_word)) {
320
clear_range(beg, end);
321
return;
322
}
323
324
// The range includes at least one full word.
325
clear_range_within_word(beg, bit_index(beg_full_word));
326
clear_large_range_of_words(beg_full_word, end_full_word);
327
clear_range_within_word(bit_index(end_full_word), end);
328
}
329
330
void BitMap::at_put(idx_t offset, bool value) {
331
if (value) {
332
set_bit(offset);
333
} else {
334
clear_bit(offset);
335
}
336
}
337
338
// Return true to indicate that this thread changed
339
// the bit, false to indicate that someone else did.
340
// In either case, the requested bit is in the
341
// requested state some time during the period that
342
// this thread is executing this call. More importantly,
343
// if no other thread is executing an action to
344
// change the requested bit to a state other than
345
// the one that this thread is trying to set it to,
346
// then the the bit is in the expected state
347
// at exit from this method. However, rather than
348
// make such a strong assertion here, based on
349
// assuming such constrained use (which though true
350
// today, could change in the future to service some
351
// funky parallel algorithm), we encourage callers
352
// to do such verification, as and when appropriate.
353
bool BitMap::par_at_put(idx_t bit, bool value) {
354
return value ? par_set_bit(bit) : par_clear_bit(bit);
355
}
356
357
void BitMap::at_put_range(idx_t start_offset, idx_t end_offset, bool value) {
358
if (value) {
359
set_range(start_offset, end_offset);
360
} else {
361
clear_range(start_offset, end_offset);
362
}
363
}
364
365
void BitMap::par_at_put_range(idx_t beg, idx_t end, bool value) {
366
verify_range(beg, end);
367
368
idx_t beg_full_word = to_words_align_up(beg);
369
idx_t end_full_word = to_words_align_down(end);
370
371
if (beg_full_word < end_full_word) {
372
// The range includes at least one full word.
373
par_put_range_within_word(beg, bit_index(beg_full_word), value);
374
if (value) {
375
set_range_of_words(beg_full_word, end_full_word);
376
} else {
377
clear_range_of_words(beg_full_word, end_full_word);
378
}
379
par_put_range_within_word(bit_index(end_full_word), end, value);
380
} else {
381
// The range spans at most 2 partial words.
382
idx_t boundary = MIN2(bit_index(beg_full_word), end);
383
par_put_range_within_word(beg, boundary, value);
384
par_put_range_within_word(boundary, end, value);
385
}
386
387
}
388
389
void BitMap::at_put_large_range(idx_t beg, idx_t end, bool value) {
390
if (value) {
391
set_large_range(beg, end);
392
} else {
393
clear_large_range(beg, end);
394
}
395
}
396
397
void BitMap::par_at_put_large_range(idx_t beg, idx_t end, bool value) {
398
verify_range(beg, end);
399
400
idx_t beg_full_word = to_words_align_up(beg);
401
idx_t end_full_word = to_words_align_down(end);
402
403
if (is_small_range_of_words(beg_full_word, end_full_word)) {
404
par_at_put_range(beg, end, value);
405
return;
406
}
407
408
// The range includes at least one full word.
409
par_put_range_within_word(beg, bit_index(beg_full_word), value);
410
if (value) {
411
set_large_range_of_words(beg_full_word, end_full_word);
412
} else {
413
clear_large_range_of_words(beg_full_word, end_full_word);
414
}
415
par_put_range_within_word(bit_index(end_full_word), end, value);
416
}
417
418
inline bm_word_t tail_mask(idx_t tail_bits) {
419
assert(tail_bits != 0, "precondition"); // Works, but shouldn't be called.
420
assert(tail_bits < (idx_t)BitsPerWord, "precondition");
421
return (bm_word_t(1) << tail_bits) - 1;
422
}
423
424
// Get the low tail_bits of value, which is the last partial word of a map.
425
inline bm_word_t tail_of_map(bm_word_t value, idx_t tail_bits) {
426
return value & tail_mask(tail_bits);
427
}
428
429
// Compute the new last word of a map with a non-aligned length.
430
// new_value has the new trailing bits of the map in the low tail_bits.
431
// old_value is the last word of the map, including bits beyond the end.
432
// Returns old_value with the low tail_bits replaced by the corresponding
433
// bits in new_value.
434
inline bm_word_t merge_tail_of_map(bm_word_t new_value,
435
bm_word_t old_value,
436
idx_t tail_bits) {
437
bm_word_t mask = tail_mask(tail_bits);
438
return (new_value & mask) | (old_value & ~mask);
439
}
440
441
bool BitMap::contains(const BitMap& other) const {
442
assert(size() == other.size(), "must have same size");
443
const bm_word_t* dest_map = map();
444
const bm_word_t* other_map = other.map();
445
idx_t limit = to_words_align_down(size());
446
for (idx_t index = 0; index < limit; ++index) {
447
// false if other bitmap has bits set which are clear in this bitmap.
448
if ((~dest_map[index] & other_map[index]) != 0) return false;
449
}
450
idx_t rest = bit_in_word(size());
451
// true unless there is a partial-word tail in which the other
452
// bitmap has bits set which are clear in this bitmap.
453
return (rest == 0) || tail_of_map(~dest_map[limit] & other_map[limit], rest) == 0;
454
}
455
456
bool BitMap::intersects(const BitMap& other) const {
457
assert(size() == other.size(), "must have same size");
458
const bm_word_t* dest_map = map();
459
const bm_word_t* other_map = other.map();
460
idx_t limit = to_words_align_down(size());
461
for (idx_t index = 0; index < limit; ++index) {
462
if ((dest_map[index] & other_map[index]) != 0) return true;
463
}
464
idx_t rest = bit_in_word(size());
465
// false unless there is a partial-word tail with non-empty intersection.
466
return (rest > 0) && tail_of_map(dest_map[limit] & other_map[limit], rest) != 0;
467
}
468
469
void BitMap::set_union(const BitMap& other) {
470
assert(size() == other.size(), "must have same size");
471
bm_word_t* dest_map = map();
472
const bm_word_t* other_map = other.map();
473
idx_t limit = to_words_align_down(size());
474
for (idx_t index = 0; index < limit; ++index) {
475
dest_map[index] |= other_map[index];
476
}
477
idx_t rest = bit_in_word(size());
478
if (rest > 0) {
479
bm_word_t orig = dest_map[limit];
480
dest_map[limit] = merge_tail_of_map(orig | other_map[limit], orig, rest);
481
}
482
}
483
484
void BitMap::set_difference(const BitMap& other) {
485
assert(size() == other.size(), "must have same size");
486
bm_word_t* dest_map = map();
487
const bm_word_t* other_map = other.map();
488
idx_t limit = to_words_align_down(size());
489
for (idx_t index = 0; index < limit; ++index) {
490
dest_map[index] &= ~other_map[index];
491
}
492
idx_t rest = bit_in_word(size());
493
if (rest > 0) {
494
bm_word_t orig = dest_map[limit];
495
dest_map[limit] = merge_tail_of_map(orig & ~other_map[limit], orig, rest);
496
}
497
}
498
499
void BitMap::set_intersection(const BitMap& other) {
500
assert(size() == other.size(), "must have same size");
501
bm_word_t* dest_map = map();
502
const bm_word_t* other_map = other.map();
503
idx_t limit = to_words_align_down(size());
504
for (idx_t index = 0; index < limit; ++index) {
505
dest_map[index] &= other_map[index];
506
}
507
idx_t rest = bit_in_word(size());
508
if (rest > 0) {
509
bm_word_t orig = dest_map[limit];
510
dest_map[limit] = merge_tail_of_map(orig & other_map[limit], orig, rest);
511
}
512
}
513
514
bool BitMap::set_union_with_result(const BitMap& other) {
515
assert(size() == other.size(), "must have same size");
516
bool changed = false;
517
bm_word_t* dest_map = map();
518
const bm_word_t* other_map = other.map();
519
idx_t limit = to_words_align_down(size());
520
for (idx_t index = 0; index < limit; ++index) {
521
bm_word_t orig = dest_map[index];
522
bm_word_t temp = orig | other_map[index];
523
changed = changed || (temp != orig);
524
dest_map[index] = temp;
525
}
526
idx_t rest = bit_in_word(size());
527
if (rest > 0) {
528
bm_word_t orig = dest_map[limit];
529
bm_word_t temp = merge_tail_of_map(orig | other_map[limit], orig, rest);
530
changed = changed || (temp != orig);
531
dest_map[limit] = temp;
532
}
533
return changed;
534
}
535
536
bool BitMap::set_difference_with_result(const BitMap& other) {
537
assert(size() == other.size(), "must have same size");
538
bool changed = false;
539
bm_word_t* dest_map = map();
540
const bm_word_t* other_map = other.map();
541
idx_t limit = to_words_align_down(size());
542
for (idx_t index = 0; index < limit; ++index) {
543
bm_word_t orig = dest_map[index];
544
bm_word_t temp = orig & ~other_map[index];
545
changed = changed || (temp != orig);
546
dest_map[index] = temp;
547
}
548
idx_t rest = bit_in_word(size());
549
if (rest > 0) {
550
bm_word_t orig = dest_map[limit];
551
bm_word_t temp = merge_tail_of_map(orig & ~other_map[limit], orig, rest);
552
changed = changed || (temp != orig);
553
dest_map[limit] = temp;
554
}
555
return changed;
556
}
557
558
bool BitMap::set_intersection_with_result(const BitMap& other) {
559
assert(size() == other.size(), "must have same size");
560
bool changed = false;
561
bm_word_t* dest_map = map();
562
const bm_word_t* other_map = other.map();
563
idx_t limit = to_words_align_down(size());
564
for (idx_t index = 0; index < limit; ++index) {
565
bm_word_t orig = dest_map[index];
566
bm_word_t temp = orig & other_map[index];
567
changed = changed || (temp != orig);
568
dest_map[index] = temp;
569
}
570
idx_t rest = bit_in_word(size());
571
if (rest > 0) {
572
bm_word_t orig = dest_map[limit];
573
bm_word_t temp = merge_tail_of_map(orig & other_map[limit], orig, rest);
574
changed = changed || (temp != orig);
575
dest_map[limit] = temp;
576
}
577
return changed;
578
}
579
580
void BitMap::set_from(const BitMap& other) {
581
assert(size() == other.size(), "must have same size");
582
bm_word_t* dest_map = map();
583
const bm_word_t* other_map = other.map();
584
idx_t copy_words = to_words_align_down(size());
585
Copy::disjoint_words((HeapWord*)other_map, (HeapWord*)dest_map, copy_words);
586
idx_t rest = bit_in_word(size());
587
if (rest > 0) {
588
dest_map[copy_words] = merge_tail_of_map(other_map[copy_words],
589
dest_map[copy_words],
590
rest);
591
}
592
}
593
594
bool BitMap::is_same(const BitMap& other) const {
595
assert(size() == other.size(), "must have same size");
596
const bm_word_t* dest_map = map();
597
const bm_word_t* other_map = other.map();
598
idx_t limit = to_words_align_down(size());
599
for (idx_t index = 0; index < limit; ++index) {
600
if (dest_map[index] != other_map[index]) return false;
601
}
602
idx_t rest = bit_in_word(size());
603
return (rest == 0) || (tail_of_map(dest_map[limit] ^ other_map[limit], rest) == 0);
604
}
605
606
bool BitMap::is_full() const {
607
const bm_word_t* words = map();
608
idx_t limit = to_words_align_down(size());
609
for (idx_t index = 0; index < limit; ++index) {
610
if (~words[index] != 0) return false;
611
}
612
idx_t rest = bit_in_word(size());
613
return (rest == 0) || (tail_of_map(~words[limit], rest) == 0);
614
}
615
616
bool BitMap::is_empty() const {
617
const bm_word_t* words = map();
618
idx_t limit = to_words_align_down(size());
619
for (idx_t index = 0; index < limit; ++index) {
620
if (words[index] != 0) return false;
621
}
622
idx_t rest = bit_in_word(size());
623
return (rest == 0) || (tail_of_map(words[limit], rest) == 0);
624
}
625
626
void BitMap::clear_large() {
627
clear_large_range_of_words(0, size_in_words());
628
}
629
630
BitMap::idx_t BitMap::count_one_bits_in_range_of_words(idx_t beg_full_word, idx_t end_full_word) const {
631
idx_t sum = 0;
632
for (idx_t i = beg_full_word; i < end_full_word; i++) {
633
bm_word_t w = map()[i];
634
sum += population_count(w);
635
}
636
return sum;
637
}
638
639
BitMap::idx_t BitMap::count_one_bits_within_word(idx_t beg, idx_t end) const {
640
if (beg != end) {
641
assert(end > beg, "must be");
642
bm_word_t mask = ~inverted_bit_mask_for_range(beg, end);
643
bm_word_t w = *word_addr(beg);
644
w &= mask;
645
return population_count(w);
646
}
647
return 0;
648
}
649
650
BitMap::idx_t BitMap::count_one_bits() const {
651
return count_one_bits(0, size());
652
}
653
654
// Returns the number of bits set within [beg, end).
655
BitMap::idx_t BitMap::count_one_bits(idx_t beg, idx_t end) const {
656
verify_range(beg, end);
657
658
idx_t beg_full_word = to_words_align_up(beg);
659
idx_t end_full_word = to_words_align_down(end);
660
661
idx_t sum = 0;
662
663
if (beg_full_word < end_full_word) {
664
// The range includes at least one full word.
665
sum += count_one_bits_within_word(beg, bit_index(beg_full_word));
666
sum += count_one_bits_in_range_of_words(beg_full_word, end_full_word);
667
sum += count_one_bits_within_word(bit_index(end_full_word), end);
668
} else {
669
// The range spans at most 2 partial words.
670
idx_t boundary = MIN2(bit_index(beg_full_word), end);
671
sum += count_one_bits_within_word(beg, boundary);
672
sum += count_one_bits_within_word(boundary, end);
673
}
674
675
assert(sum <= (beg - end), "must be");
676
677
return sum;
678
679
}
680
681
void BitMap::print_on_error(outputStream* st, const char* prefix) const {
682
st->print_cr("%s[" PTR_FORMAT ", " PTR_FORMAT ")",
683
prefix, p2i(map()), p2i((char*)map() + (size() >> LogBitsPerByte)));
684
}
685
686
void BitMap::write_to(bm_word_t* buffer, size_t buffer_size_in_bytes) const {
687
assert(buffer_size_in_bytes == size_in_bytes(), "must be");
688
memcpy(buffer, _map, size_in_bytes());
689
}
690
691
#ifndef PRODUCT
692
693
void BitMap::print_on(outputStream* st) const {
694
tty->print("Bitmap(" SIZE_FORMAT "):", size());
695
for (idx_t index = 0; index < size(); index++) {
696
tty->print("%c", at(index) ? '1' : '0');
697
}
698
tty->cr();
699
}
700
701
#endif
702
703