Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.base/linux/native/libnet/linux_close.c
41119 views
1
/*
2
* Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
#include <assert.h>
27
#include <limits.h>
28
#include <stdio.h>
29
#include <stdlib.h>
30
#include <signal.h>
31
#include <pthread.h>
32
#include <sys/types.h>
33
#include <sys/socket.h>
34
#include <sys/time.h>
35
#include <sys/resource.h>
36
#include <sys/uio.h>
37
#include <unistd.h>
38
#include <errno.h>
39
#include <poll.h>
40
#include "jvm.h"
41
#include "net_util.h"
42
43
/*
44
* Stack allocated by thread when doing blocking operation
45
*/
46
typedef struct threadEntry {
47
pthread_t thr; /* this thread */
48
struct threadEntry *next; /* next thread */
49
int intr; /* interrupted */
50
} threadEntry_t;
51
52
/*
53
* Heap allocated during initialized - one entry per fd
54
*/
55
typedef struct {
56
pthread_mutex_t lock; /* fd lock */
57
threadEntry_t *threads; /* threads blocked on fd */
58
} fdEntry_t;
59
60
/*
61
* Signal to unblock thread
62
*/
63
#define WAKEUP_SIGNAL (SIGRTMAX - 2)
64
65
/*
66
* fdTable holds one entry per file descriptor, up to a certain
67
* maximum.
68
* Theoretically, the number of possible file descriptors can get
69
* large, though usually it does not. Entries for small value file
70
* descriptors are kept in a simple table, which covers most scenarios.
71
* Entries for large value file descriptors are kept in an overflow
72
* table, which is organized as a sparse two dimensional array whose
73
* slabs are allocated on demand. This covers all corner cases while
74
* keeping memory consumption reasonable.
75
*/
76
77
/* Base table for low value file descriptors */
78
static fdEntry_t* fdTable = NULL;
79
/* Maximum size of base table (in number of entries). */
80
static const int fdTableMaxSize = 0x1000; /* 4K */
81
/* Actual size of base table (in number of entries) */
82
static int fdTableLen = 0;
83
/* Max. theoretical number of file descriptors on system. */
84
static int fdLimit = 0;
85
86
/* Overflow table, should base table not be large enough. Organized as
87
* an array of n slabs, each holding 64k entries.
88
*/
89
static fdEntry_t** fdOverflowTable = NULL;
90
/* Number of slabs in the overflow table */
91
static int fdOverflowTableLen = 0;
92
/* Number of entries in one slab */
93
static const int fdOverflowTableSlabSize = 0x10000; /* 64k */
94
pthread_mutex_t fdOverflowTableLock = PTHREAD_MUTEX_INITIALIZER;
95
96
/*
97
* Null signal handler
98
*/
99
static void sig_wakeup(int sig) {
100
}
101
102
/*
103
* Initialization routine (executed when library is loaded)
104
* Allocate fd tables and sets up signal handler.
105
*/
106
static void __attribute((constructor)) init() {
107
struct rlimit nbr_files;
108
sigset_t sigset;
109
struct sigaction sa;
110
int i = 0;
111
112
/* Determine the maximum number of possible file descriptors. */
113
if (-1 == getrlimit(RLIMIT_NOFILE, &nbr_files)) {
114
fprintf(stderr, "library initialization failed - "
115
"unable to get max # of allocated fds\n");
116
abort();
117
}
118
if (nbr_files.rlim_max != RLIM_INFINITY) {
119
fdLimit = nbr_files.rlim_max;
120
} else {
121
/* We just do not know. */
122
fdLimit = INT_MAX;
123
}
124
125
/* Allocate table for low value file descriptors. */
126
fdTableLen = fdLimit < fdTableMaxSize ? fdLimit : fdTableMaxSize;
127
fdTable = (fdEntry_t*) calloc(fdTableLen, sizeof(fdEntry_t));
128
if (fdTable == NULL) {
129
fprintf(stderr, "library initialization failed - "
130
"unable to allocate file descriptor table - out of memory");
131
abort();
132
} else {
133
for (i = 0; i < fdTableLen; i ++) {
134
pthread_mutex_init(&fdTable[i].lock, NULL);
135
}
136
}
137
138
/* Allocate overflow table, if needed */
139
if (fdLimit > fdTableMaxSize) {
140
fdOverflowTableLen = ((fdLimit - fdTableMaxSize) / fdOverflowTableSlabSize) + 1;
141
fdOverflowTable = (fdEntry_t**) calloc(fdOverflowTableLen, sizeof(fdEntry_t*));
142
if (fdOverflowTable == NULL) {
143
fprintf(stderr, "library initialization failed - "
144
"unable to allocate file descriptor overflow table - out of memory");
145
abort();
146
}
147
}
148
149
/*
150
* Setup the signal handler
151
*/
152
sa.sa_handler = sig_wakeup;
153
sa.sa_flags = 0;
154
sigemptyset(&sa.sa_mask);
155
sigaction(WAKEUP_SIGNAL, &sa, NULL);
156
157
sigemptyset(&sigset);
158
sigaddset(&sigset, WAKEUP_SIGNAL);
159
sigprocmask(SIG_UNBLOCK, &sigset, NULL);
160
}
161
162
/*
163
* Return the fd table for this fd.
164
*/
165
static inline fdEntry_t *getFdEntry(int fd)
166
{
167
fdEntry_t* result = NULL;
168
169
if (fd < 0) {
170
return NULL;
171
}
172
173
/* This should not happen. If it does, our assumption about
174
* max. fd value was wrong. */
175
assert(fd < fdLimit);
176
177
if (fd < fdTableMaxSize) {
178
/* fd is in base table. */
179
assert(fd < fdTableLen);
180
result = &fdTable[fd];
181
} else {
182
/* fd is in overflow table. */
183
const int indexInOverflowTable = fd - fdTableMaxSize;
184
const int rootindex = indexInOverflowTable / fdOverflowTableSlabSize;
185
const int slabindex = indexInOverflowTable % fdOverflowTableSlabSize;
186
fdEntry_t* slab = NULL;
187
assert(rootindex < fdOverflowTableLen);
188
assert(slabindex < fdOverflowTableSlabSize);
189
pthread_mutex_lock(&fdOverflowTableLock);
190
/* Allocate new slab in overflow table if needed */
191
if (fdOverflowTable[rootindex] == NULL) {
192
fdEntry_t* const newSlab =
193
(fdEntry_t*)calloc(fdOverflowTableSlabSize, sizeof(fdEntry_t));
194
if (newSlab == NULL) {
195
fprintf(stderr, "Unable to allocate file descriptor overflow"
196
" table slab - out of memory");
197
pthread_mutex_unlock(&fdOverflowTableLock);
198
abort();
199
} else {
200
int i;
201
for (i = 0; i < fdOverflowTableSlabSize; i ++) {
202
pthread_mutex_init(&newSlab[i].lock, NULL);
203
}
204
fdOverflowTable[rootindex] = newSlab;
205
}
206
}
207
pthread_mutex_unlock(&fdOverflowTableLock);
208
slab = fdOverflowTable[rootindex];
209
result = &slab[slabindex];
210
}
211
212
return result;
213
214
}
215
216
/*
217
* Start a blocking operation :-
218
* Insert thread onto thread list for the fd.
219
*/
220
static inline void startOp(fdEntry_t *fdEntry, threadEntry_t *self)
221
{
222
self->thr = pthread_self();
223
self->intr = 0;
224
225
pthread_mutex_lock(&(fdEntry->lock));
226
{
227
self->next = fdEntry->threads;
228
fdEntry->threads = self;
229
}
230
pthread_mutex_unlock(&(fdEntry->lock));
231
}
232
233
/*
234
* End a blocking operation :-
235
* Remove thread from thread list for the fd
236
* If fd has been interrupted then set errno to EBADF
237
*/
238
static inline void endOp
239
(fdEntry_t *fdEntry, threadEntry_t *self)
240
{
241
int orig_errno = errno;
242
pthread_mutex_lock(&(fdEntry->lock));
243
{
244
threadEntry_t *curr, *prev=NULL;
245
curr = fdEntry->threads;
246
while (curr != NULL) {
247
if (curr == self) {
248
if (curr->intr) {
249
orig_errno = EBADF;
250
}
251
if (prev == NULL) {
252
fdEntry->threads = curr->next;
253
} else {
254
prev->next = curr->next;
255
}
256
break;
257
}
258
prev = curr;
259
curr = curr->next;
260
}
261
}
262
pthread_mutex_unlock(&(fdEntry->lock));
263
errno = orig_errno;
264
}
265
266
/*
267
* Close or dup2 a file descriptor ensuring that all threads blocked on
268
* the file descriptor are notified via a wakeup signal.
269
*
270
* fd1 < 0 => close(fd2)
271
* fd1 >= 0 => dup2(fd1, fd2)
272
*
273
* Returns -1 with errno set if operation fails.
274
*/
275
static int closefd(int fd1, int fd2) {
276
int rv, orig_errno;
277
fdEntry_t *fdEntry = getFdEntry(fd2);
278
if (fdEntry == NULL) {
279
errno = EBADF;
280
return -1;
281
}
282
283
/*
284
* Lock the fd to hold-off additional I/O on this fd.
285
*/
286
pthread_mutex_lock(&(fdEntry->lock));
287
288
{
289
/*
290
* And close/dup the file descriptor
291
* (restart if interrupted by signal)
292
*/
293
if (fd1 < 0) {
294
rv = close(fd2);
295
} else {
296
do {
297
rv = dup2(fd1, fd2);
298
} while (rv == -1 && errno == EINTR);
299
}
300
301
/*
302
* Send a wakeup signal to all threads blocked on this
303
* file descriptor.
304
*/
305
threadEntry_t *curr = fdEntry->threads;
306
while (curr != NULL) {
307
curr->intr = 1;
308
pthread_kill( curr->thr, WAKEUP_SIGNAL);
309
curr = curr->next;
310
}
311
}
312
313
/*
314
* Unlock without destroying errno
315
*/
316
orig_errno = errno;
317
pthread_mutex_unlock(&(fdEntry->lock));
318
errno = orig_errno;
319
320
return rv;
321
}
322
323
/*
324
* Wrapper for dup2 - same semantics as dup2 system call except
325
* that any threads blocked in an I/O system call on fd2 will be
326
* preempted and return -1/EBADF;
327
*/
328
int NET_Dup2(int fd, int fd2) {
329
if (fd < 0) {
330
errno = EBADF;
331
return -1;
332
}
333
return closefd(fd, fd2);
334
}
335
336
/*
337
* Wrapper for close - same semantics as close system call
338
* except that any threads blocked in an I/O on fd will be
339
* preempted and the I/O system call will return -1/EBADF.
340
*/
341
int NET_SocketClose(int fd) {
342
return closefd(-1, fd);
343
}
344
345
/************** Basic I/O operations here ***************/
346
347
/*
348
* Macro to perform a blocking IO operation. Restarts
349
* automatically if interrupted by signal (other than
350
* our wakeup signal)
351
*/
352
#define BLOCKING_IO_RETURN_INT(FD, FUNC) { \
353
int ret; \
354
threadEntry_t self; \
355
fdEntry_t *fdEntry = getFdEntry(FD); \
356
if (fdEntry == NULL) { \
357
errno = EBADF; \
358
return -1; \
359
} \
360
do { \
361
startOp(fdEntry, &self); \
362
ret = FUNC; \
363
endOp(fdEntry, &self); \
364
} while (ret == -1 && errno == EINTR); \
365
return ret; \
366
}
367
368
int NET_Read(int s, void* buf, size_t len) {
369
BLOCKING_IO_RETURN_INT( s, recv(s, buf, len, 0) );
370
}
371
372
int NET_NonBlockingRead(int s, void* buf, size_t len) {
373
BLOCKING_IO_RETURN_INT( s, recv(s, buf, len, MSG_DONTWAIT) );
374
}
375
376
int NET_RecvFrom(int s, void *buf, int len, unsigned int flags,
377
struct sockaddr *from, socklen_t *fromlen) {
378
BLOCKING_IO_RETURN_INT( s, recvfrom(s, buf, len, flags, from, fromlen) );
379
}
380
381
int NET_Send(int s, void *msg, int len, unsigned int flags) {
382
BLOCKING_IO_RETURN_INT( s, send(s, msg, len, flags) );
383
}
384
385
int NET_SendTo(int s, const void *msg, int len, unsigned int
386
flags, const struct sockaddr *to, int tolen) {
387
BLOCKING_IO_RETURN_INT( s, sendto(s, msg, len, flags, to, tolen) );
388
}
389
390
int NET_Accept(int s, struct sockaddr *addr, socklen_t *addrlen) {
391
BLOCKING_IO_RETURN_INT( s, accept(s, addr, addrlen) );
392
}
393
394
int NET_Connect(int s, struct sockaddr *addr, int addrlen) {
395
BLOCKING_IO_RETURN_INT( s, connect(s, addr, addrlen) );
396
}
397
398
int NET_Poll(struct pollfd *ufds, unsigned int nfds, int timeout) {
399
BLOCKING_IO_RETURN_INT( ufds[0].fd, poll(ufds, nfds, timeout) );
400
}
401
402
/*
403
* Wrapper for poll(s, timeout).
404
* Auto restarts with adjusted timeout if interrupted by
405
* signal other than our wakeup signal.
406
*/
407
int NET_Timeout(JNIEnv *env, int s, long timeout, jlong nanoTimeStamp) {
408
jlong prevNanoTime = nanoTimeStamp;
409
jlong nanoTimeout = (jlong)timeout * NET_NSEC_PER_MSEC;
410
fdEntry_t *fdEntry = getFdEntry(s);
411
412
/*
413
* Check that fd hasn't been closed.
414
*/
415
if (fdEntry == NULL) {
416
errno = EBADF;
417
return -1;
418
}
419
420
for(;;) {
421
struct pollfd pfd;
422
int rv;
423
threadEntry_t self;
424
425
/*
426
* Poll the fd. If interrupted by our wakeup signal
427
* errno will be set to EBADF.
428
*/
429
pfd.fd = s;
430
pfd.events = POLLIN | POLLERR;
431
432
startOp(fdEntry, &self);
433
rv = poll(&pfd, 1, nanoTimeout / NET_NSEC_PER_MSEC);
434
endOp(fdEntry, &self);
435
/*
436
* If interrupted then adjust timeout. If timeout
437
* has expired return 0 (indicating timeout expired).
438
*/
439
if (rv < 0 && errno == EINTR) {
440
if (timeout > 0) {
441
jlong newNanoTime = JVM_NanoTime(env, 0);
442
nanoTimeout -= newNanoTime - prevNanoTime;
443
if (nanoTimeout < NET_NSEC_PER_MSEC) {
444
return 0;
445
}
446
prevNanoTime = newNanoTime;
447
} else {
448
continue; // timeout is -1, so loop again.
449
}
450
} else {
451
return rv;
452
}
453
}
454
}
455
456