Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/cpu/aarch32/vm/interp_masm_aarch32.cpp
32285 views
1
/*
2
* Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
3
* Copyright (c) 2014, Red Hat Inc. All rights reserved.
4
* Copyright (c) 2015, Linaro Ltd. All rights reserved.
5
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
6
*
7
* This code is free software; you can redistribute it and/or modify it
8
* under the terms of the GNU General Public License version 2 only, as
9
* published by the Free Software Foundation.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*
25
*/
26
27
#include "precompiled.hpp"
28
#include "interp_masm_aarch32.hpp"
29
#include "interpreter/interpreter.hpp"
30
#include "interpreter/interpreterRuntime.hpp"
31
#include "oops/arrayOop.hpp"
32
#include "oops/markOop.hpp"
33
#include "oops/methodData.hpp"
34
#include "oops/method.hpp"
35
#include "prims/jvmtiExport.hpp"
36
#include "prims/jvmtiRedefineClassesTrace.hpp"
37
#include "prims/jvmtiThreadState.hpp"
38
#include "runtime/basicLock.hpp"
39
#include "runtime/biasedLocking.hpp"
40
#include "runtime/sharedRuntime.hpp"
41
#include "runtime/thread.inline.hpp"
42
#include "vm_version_aarch32.hpp"
43
#include "register_aarch32.hpp"
44
45
46
// Implementation of InterpreterMacroAssembler
47
48
void InterpreterMacroAssembler::narrow(Register result) {
49
// Get method->_constMethod->_result_type
50
ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
51
ldr(rscratch1, Address(rscratch1, Method::const_offset()));
52
ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset()));
53
54
Label done;
55
56
// common case first
57
58
cmp(rscratch1, T_INT);
59
b(done, Assembler::EQ);
60
61
// mask integer result to narrower return type.
62
cmp(rscratch1, T_BOOLEAN);
63
andr(result, result, 0x1, Assembler::EQ);
64
65
cmp(rscratch1, T_BYTE);
66
sxtb(result, result, Assembler::ror(), Assembler::EQ);
67
68
cmp(rscratch1, T_CHAR);
69
uxth(result, result, Assembler::ror(), Assembler::EQ); // truncate upper 16 bits
70
71
sxth(result, result, Assembler::ror(), Assembler::NE); // sign-extend short
72
73
// Nothing to do for T_INT
74
bind(done);
75
}
76
77
#ifndef CC_INTERP
78
79
void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
80
if (JvmtiExport::can_pop_frame()) {
81
Label L;
82
// Initiate popframe handling only if it is not already being
83
// processed. If the flag has the popframe_processing bit set, it
84
// means that this code is called *during* popframe handling - we
85
// don't want to reenter.
86
// This method is only called just after the call into the vm in
87
// call_VM_base, so the arg registers are available.
88
ldr(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
89
tst(rscratch1, JavaThread::popframe_pending_bit);
90
b(L, Assembler::EQ);
91
tst(rscratch1, JavaThread::popframe_processing_bit);
92
b(L, Assembler::NE);
93
// Call Interpreter::remove_activation_preserving_args_entry() to get the
94
// address of the same-named entrypoint in the generated interpreter code.
95
call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
96
b(r0);
97
bind(L);
98
}
99
}
100
101
102
void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
103
ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset()));
104
const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset());
105
const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset());
106
const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset());
107
switch (state) {
108
case atos: ldr(r0, oop_addr);
109
mov(rscratch1, 0);
110
str(rscratch1, oop_addr);
111
verify_oop(r0, state); break;
112
case dtos:
113
if(hasFPU()) {
114
vldr_f64(d0, val_addr); break;
115
}//fall through  otherwise
116
case ltos: ldrd(r0, val_addr); break;
117
case ftos:
118
if(hasFPU()) {
119
vldr_f32(d0, val_addr); break;
120
} //fall through  otherwise
121
case btos: // fall through
122
case ztos: // fall through
123
case ctos: // fall through
124
case stos: // fall through
125
case itos: ldr(r0, val_addr); break;
126
case vtos: /* nothing to do */ break;
127
default : ShouldNotReachHere();
128
}
129
// Clean up tos value in the thread object
130
mov(rscratch1, (int) ilgl);
131
str(rscratch1, tos_addr);
132
mov(rscratch1, 0);
133
str(rscratch1, val_addr);
134
}
135
136
137
void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
138
if (JvmtiExport::can_force_early_return()) {
139
Label L;
140
ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
141
cbz(rscratch1, L); // if (thread->jvmti_thread_state() == NULL) exit;
142
143
// Initiate earlyret handling only if it is not already being processed.
144
// If the flag has the earlyret_processing bit set, it means that this code
145
// is called *during* earlyret handling - we don't want to reenter.
146
ldr(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset()));
147
cmp(rscratch1, JvmtiThreadState::earlyret_pending);
148
b(L, Assembler::NE);
149
150
// Call Interpreter::remove_activation_early_entry() to get the address of the
151
// same-named entrypoint in the generated interpreter code.
152
ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
153
ldr(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset()));
154
call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1);
155
b(r0);
156
bind(L);
157
}
158
}
159
160
void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
161
Register reg,
162
int bcp_offset) {
163
assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
164
ldrh(reg, Address(rbcp, bcp_offset));
165
rev16(reg, reg);
166
}
167
168
void InterpreterMacroAssembler::get_dispatch() {
169
mov(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()));
170
}
171
172
void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
173
int bcp_offset,
174
size_t index_size) {
175
assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
176
if (index_size == sizeof(u2)) {
177
load_unsigned_short(index, Address(rbcp, bcp_offset));
178
} else if (index_size == sizeof(u4)) {
179
// assert(EnableInvokeDynamic, "giant index used only for JSR 292");
180
ldr(index, Address(rbcp, bcp_offset));
181
// Check if the secondary index definition is still ~x, otherwise
182
// we have to change the following assembler code to calculate the
183
// plain index.
184
assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
185
inv(index, index); // convert to plain index
186
} else if (index_size == sizeof(u1)) {
187
load_unsigned_byte(index, Address(rbcp, bcp_offset));
188
} else {
189
ShouldNotReachHere();
190
}
191
}
192
193
// Return
194
// Rindex: index into constant pool
195
// Rcache: address of cache entry - ConstantPoolCache::base_offset()
196
//
197
// A caller must add ConstantPoolCache::base_offset() to Rcache to get
198
// the true address of the cache entry.
199
//
200
void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
201
Register index,
202
int bcp_offset,
203
size_t index_size) {
204
assert_different_registers(cache, index);
205
assert_different_registers(cache, rcpool);
206
get_cache_index_at_bcp(index, bcp_offset, index_size);
207
assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
208
// convert from field index to ConstantPoolCacheEntry
209
// aarch32 already has the cache in rcpool so there is no need to
210
// install it in cache. instead we pre-add the indexed offset to
211
// rcpool and return it in cache. All clients of this method need to
212
// be modified accordingly.
213
add(cache, rcpool, index, lsl( exact_log2(4) + exact_log2(wordSize)));
214
}
215
216
217
void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
218
Register index,
219
Register bytecode,
220
int byte_no,
221
int bcp_offset,
222
size_t index_size) {
223
get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
224
// We use a 32-bit load here since the layout of 64-bit words on
225
// little-endian machines allow us that.
226
// n.b. unlike x86 cache alreeady includes the index offset
227
ldr(bytecode, Address(cache,
228
ConstantPoolCache::base_offset()
229
+ ConstantPoolCacheEntry::indices_offset()));
230
const int shift_count = (1 + byte_no) * BitsPerByte;
231
//ubfx(bytecode, bytecode, shift_count, BitsPerByte);
232
assert(shift_count >= 0 && shift_count <= 24 && 0 == (shift_count & 7), "Invalid shift count");
233
uxtb(bytecode, bytecode, ror(shift_count));
234
}
235
236
void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
237
Register tmp,
238
int bcp_offset,
239
size_t index_size) {
240
assert(cache != tmp, "must use different register");
241
get_cache_index_at_bcp(tmp, bcp_offset, index_size);
242
assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
243
// convert from field index to ConstantPoolCacheEntry index
244
// and from word offset to byte offset
245
assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
246
ldr(cache, Address(rfp, frame::interpreter_frame_cache_offset * wordSize));
247
// skip past the header
248
add(cache, cache, in_bytes(ConstantPoolCache::base_offset()));
249
add(cache, cache, tmp, lsl(2 + LogBytesPerWord)); // construct pointer to cache entry
250
}
251
252
void InterpreterMacroAssembler::get_method_counters(Register method,
253
Register mcs, Label& skip) {
254
Label has_counters;
255
ldr(mcs, Address(method, Method::method_counters_offset()));
256
cbnz(mcs, has_counters);
257
call_VM(noreg, CAST_FROM_FN_PTR(address,
258
InterpreterRuntime::build_method_counters), method);
259
ldr(mcs, Address(method, Method::method_counters_offset()));
260
cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory
261
bind(has_counters);
262
}
263
264
// Load object from cpool->resolved_references(index)
265
void InterpreterMacroAssembler::load_resolved_reference_at_index(
266
Register result, Register index) {
267
assert_different_registers(result, index);
268
// convert from field index to resolved_references() index and from
269
// word index to byte offset. Since this is a java object, it can be compressed
270
Register tmp = index; // reuse
271
//lsl(tmp, tmp, LogBytesPerHeapOop);
272
//FIXME Rolled into add - does it work?
273
274
get_constant_pool(result);
275
// load pointer for resolved_references[] objArray
276
ldr(result, Address(result, ConstantPool::resolved_references_offset_in_bytes()));
277
// JNIHandles::resolve(obj);
278
ldr(result, Address(result, 0));
279
// Add in the index
280
add(result, result, tmp, lsl(LogBytesPerHeapOop));
281
load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
282
}
283
284
// Generate a subtype check: branch to ok_is_subtype if sub_klass is a
285
// subtype of super_klass.
286
//
287
// Args:
288
// r0: superklass
289
// Rsub_klass: subklass
290
//
291
// Kills:
292
// r2, r5
293
void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
294
Label& ok_is_subtype) {
295
assert(Rsub_klass != r0, "r0 holds superklass");
296
assert(Rsub_klass != r2, "r2 holds 2ndary super array length");
297
assert(Rsub_klass != r14, "r14 holds 2ndary super array scan ptr");
298
299
// Profile the not-null value's klass.
300
profile_typecheck(r2, Rsub_klass, r14); // blows r2
301
302
// Do the check.
303
check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2
304
305
// Profile the failure of the check.
306
profile_typecheck_failed(r2); // blows r2
307
}
308
309
// Java Expression Stack
310
311
void InterpreterMacroAssembler::pop_ptr(Register r) {
312
ldr(r, post(sp, wordSize));
313
}
314
315
void InterpreterMacroAssembler::pop_i(Register r) {
316
ldr(r, post(sp, wordSize));
317
}
318
319
void InterpreterMacroAssembler::pop_l(Register rLo, Register rHi) {
320
assert(rHi->encoding() == rLo->encoding() + 1, "must use two consecutive registers");
321
ldrd(rLo, post(sp, 2 * Interpreter::stackElementSize));
322
}
323
324
void InterpreterMacroAssembler::push_ptr(Register r) {
325
str(r, pre(sp, -wordSize));
326
}
327
328
void InterpreterMacroAssembler::push_i(Register r) {
329
str(r, pre(sp, -wordSize));
330
}
331
332
void InterpreterMacroAssembler::push_l(Register rLo, Register rHi) {
333
assert(r2->encoding() == r1->encoding() + 1, "must use two consecutive registers");
334
strd(rLo, pre(sp, -2 * wordSize));
335
}
336
337
void InterpreterMacroAssembler::pop_f(FloatRegister r) {
338
vldmia_f32(sp, FloatRegSet(r).bits());
339
}
340
341
void InterpreterMacroAssembler::pop_d(FloatRegister r) {
342
assert(is_even(r->encoding()), "not double!");
343
vldmia_f64(sp, DoubleFloatRegSet(r).bits());
344
}
345
346
void InterpreterMacroAssembler::push_f(FloatRegister r) {
347
vstmdb_f32(sp, FloatRegSet(r).bits());
348
}
349
350
void InterpreterMacroAssembler::push_d(FloatRegister r) {
351
assert(is_even(r->encoding()), "not double!");
352
vstmdb_f64(sp, DoubleFloatRegSet(r).bits());
353
}
354
355
void InterpreterMacroAssembler::pop(TosState state) {
356
switch (state) {
357
case atos: pop_ptr(); break;
358
case btos:
359
case ztos:
360
case ctos:
361
case stos:
362
case itos: pop_i(); break;
363
case ltos: pop_l(); break;
364
case ftos:
365
if(hasFPU()) {
366
pop_f();
367
} else {
368
pop_i();
369
}
370
break;
371
case dtos:
372
if(hasFPU()) {
373
pop_d();
374
} else {
375
pop_l();
376
}
377
break;
378
case vtos: /* nothing to do */ break;
379
default: ShouldNotReachHere();
380
}
381
verify_oop(r0, state);
382
}
383
384
void InterpreterMacroAssembler::push(TosState state) {
385
verify_oop(r0, state);
386
switch (state) {
387
case atos: push_ptr(); break;
388
case btos:
389
case ztos:
390
case ctos:
391
case stos:
392
case itos: push_i(); break;
393
case ltos: push_l(); break;
394
case ftos:
395
if(hasFPU()) {
396
push_f();
397
} else {
398
push_i();
399
}
400
break;
401
case dtos:
402
if(hasFPU()) {
403
push_d();
404
} else {
405
push_l();
406
}
407
break;
408
case vtos: /* nothing to do */ break;
409
default : ShouldNotReachHere();
410
}
411
}
412
413
// Helpers for swap and dup
414
void InterpreterMacroAssembler::load_ptr(int n, Register val) {
415
ldr(val, Address(sp, Interpreter::expr_offset_in_bytes(n)));
416
}
417
418
void InterpreterMacroAssembler::store_ptr(int n, Register val) {
419
str(val, Address(sp, Interpreter::expr_offset_in_bytes(n)));
420
}
421
422
423
void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
424
// set sender sp
425
mov(r4, sp);
426
// record last_sp
427
str(sp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
428
}
429
430
void print_method_name(Method* m, char * msg) {
431
if(MacroAssembler::enable_debug) {
432
printf("%s", msg);
433
fflush(stdout);
434
m->print_short_name();
435
printf("\n");
436
fflush(stdout);
437
}
438
}
439
440
// Jump to from_interpreted entry of a call unless single stepping is possible
441
// in this thread in which case we must call the i2i entry
442
void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
443
prepare_to_jump_from_interpreted();
444
445
if (JvmtiExport::can_post_interpreter_events()) {
446
Label run_compiled_code;
447
// JVMTI events, such as single-stepping, are implemented partly by avoiding running
448
// compiled code in threads for which the event is enabled. Check here for
449
// interp_only_mode if these events CAN be enabled.
450
// interp_only is an int, on little endian it is sufficient to test the byte only
451
// Is a cmpl faster?
452
ldr(temp, Address(rthread, JavaThread::interp_only_mode_offset()));
453
cbz(temp, run_compiled_code);
454
ldr(temp, Address(method, Method::interpreter_entry_offset()));
455
b(temp);
456
bind(run_compiled_code);
457
}
458
459
ldr(temp, Address(method, Method::from_interpreted_offset()));
460
b(temp);
461
}
462
463
// The following two routines provide a hook so that an implementation
464
// can schedule the dispatch in two parts. amd64 does not do this.
465
void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
466
}
467
468
void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
469
dispatch_next(state, step);
470
}
471
472
void InterpreterMacroAssembler::dispatch_base(TosState state,
473
address* table,
474
bool verifyoop) {
475
if (VerifyActivationFrameSize) {
476
Unimplemented();
477
}
478
if (verifyoop) {
479
verify_oop(r0, state);
480
}
481
482
/* Debugging code */
483
bytecode_seen(rscratch1, r3);
484
485
/*{
486
Label skip;
487
488
mov(r3, (address)&MacroAssembler::bytecodes_executed);
489
ldr(r2, r3);
490
add(r2, r2, 1);
491
str(r2, r3);
492
// Print out every 16384 (needs to be a power of two).
493
mov(r3, 16384 - 1);
494
tst(r2, r3);
495
b(skip, Assembler::NE);
496
reg_printf_important("Executed %d bytecodes.\n", r2);
497
bind(skip);
498
}*/
499
500
501
/*mov(r3, (address)&MacroAssembler::bytecodes_until_print);
502
ldr(r2, Address(r3));
503
cmp(r2, 0);
504
505
sub(r2, r2, 1, Assembler::NE);
506
str(r2, Address(r3), Assembler::NE);
507
508
mov(r2, 1, Assembler::EQ);
509
mov(r3, (address)&MacroAssembler::enable_debug, Assembler::EQ);
510
str(r2, Address(r3), Assembler::EQ);
511
512
mov(r3, (address)&MacroAssembler::enable_method_debug, Assembler::EQ);
513
str(r2, Address(r3), Assembler::EQ);*/
514
515
/*Label end;
516
cmp(r2, 0);
517
b(end, Assembler::NE);
518
stop("got to end of bytecodes");
519
bind(end);*/
520
521
get_bytecode(r14, rscratch1);
522
reg_printf("Dispatching bytecode %s (%d) @ BCP = %p\n", r14, rscratch1, rbcp);
523
/* End debugging code */
524
525
526
if (table == Interpreter::dispatch_table(state)) {
527
add(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state));
528
ldr(r15_pc, Address(rdispatch, rscratch2, lsl(2)));
529
} else {
530
mov(rscratch2, (address)table);
531
ldr(r15_pc, Address(rscratch2, rscratch1, lsl(2)));
532
}
533
}
534
535
void InterpreterMacroAssembler::dispatch_only(TosState state) {
536
dispatch_base(state, Interpreter::dispatch_table(state));
537
}
538
539
void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
540
dispatch_base(state, Interpreter::normal_table(state));
541
}
542
543
void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
544
dispatch_base(state, Interpreter::normal_table(state), false);
545
}
546
547
548
void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
549
// load next bytecode
550
ldrb(rscratch1, Address(pre(rbcp, step)));
551
dispatch_base(state, Interpreter::dispatch_table(state));
552
}
553
554
void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
555
// load current bytecode
556
ldrb(rscratch1, Address(rbcp, 0));
557
dispatch_base(state, table);
558
}
559
560
// remove activation
561
//
562
// Unlock the receiver if this is a synchronized method.
563
// Unlock any Java monitors from syncronized blocks.
564
// Remove the activation from the stack.
565
//
566
// If there are locked Java monitors
567
// If throw_monitor_exception
568
// throws IllegalMonitorStateException
569
// Else if install_monitor_exception
570
// installs IllegalMonitorStateException
571
// Else
572
// no error processing
573
void InterpreterMacroAssembler::remove_activation(
574
TosState state,
575
bool throw_monitor_exception,
576
bool install_monitor_exception,
577
bool notify_jvmdi) {
578
// Note: Registers r3 xmm0 may be in use for the
579
// result check if synchronized method
580
Label unlocked, unlock, no_unlock;
581
582
// get the value of _do_not_unlock_if_synchronized into r3
583
const Address do_not_unlock_if_synchronized(rthread,
584
in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
585
ldrb(r3, do_not_unlock_if_synchronized);
586
mov(rscratch1, 0);
587
strb(rscratch1, do_not_unlock_if_synchronized); // reset the flag
588
589
// get method access flags
590
ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
591
ldr(r2, Address(rscratch1, Method::access_flags_offset()));
592
tst(r2, JVM_ACC_SYNCHRONIZED);
593
b(unlocked, Assembler::EQ);
594
595
// Don't unlock anything if the _do_not_unlock_if_synchronized flag
596
// is set.
597
cbnz(r3, no_unlock);
598
599
// unlock monitor
600
push(state); // save result
601
602
// BasicObjectLock will be first in list, since this is a
603
// synchronized method. However, need to check that the object has
604
// not been unlocked by an explicit monitorexit bytecode.
605
const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset *
606
wordSize - (int) sizeof(BasicObjectLock));
607
// We use c_rarg1 so that if we go slow path it will be the correct
608
// register for unlock_object to pass to VM directly
609
lea(c_rarg1, monitor); // address of first monitor
610
611
ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
612
cbnz(r0, unlock);
613
614
pop(state);
615
if (throw_monitor_exception) {
616
// Entry already unlocked, need to throw exception
617
call_VM(noreg, CAST_FROM_FN_PTR(address,
618
InterpreterRuntime::throw_illegal_monitor_state_exception));
619
should_not_reach_here();
620
} else {
621
// Monitor already unlocked during a stack unroll. If requested,
622
// install an illegal_monitor_state_exception. Continue with
623
// stack unrolling.
624
if (install_monitor_exception) {
625
call_VM(noreg, CAST_FROM_FN_PTR(address,
626
InterpreterRuntime::new_illegal_monitor_state_exception));
627
}
628
b(unlocked);
629
}
630
631
bind(unlock);
632
unlock_object(c_rarg1);
633
pop(state);
634
635
// Check that for block-structured locking (i.e., that all locked
636
// objects has been unlocked)
637
bind(unlocked);
638
639
// r0: Might contain return value
640
// FIXME r1 : Might contain the value too
641
642
// Check that all monitors are unlocked
643
{
644
Label loop, exception, entry, restart;
645
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
646
const Address monitor_block_top(
647
rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
648
const Address monitor_block_bot(
649
rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
650
651
bind(restart);
652
// We can't use c_rarg1 as it might contain a result
653
ldr(c_rarg2, monitor_block_top); // points to current entry, starting
654
// with top-most entry
655
lea(r14, monitor_block_bot); // points to word before bottom of
656
// monitor block
657
b(entry);
658
659
// Entry already locked, need to throw exception
660
bind(exception);
661
662
if (throw_monitor_exception) {
663
// Throw exception
664
MacroAssembler::call_VM(noreg,
665
CAST_FROM_FN_PTR(address, InterpreterRuntime::
666
throw_illegal_monitor_state_exception));
667
should_not_reach_here();
668
} else {
669
// Stack unrolling. Unlock object and install illegal_monitor_exception.
670
// Unlock does not block, so don't have to worry about the frame.
671
// We don't have to preserve c_rarg1 since we are going to throw an exception.
672
673
push(state);
674
mov(c_rarg1, c_rarg2);
675
unlock_object(c_rarg1);
676
pop(state);
677
678
if (install_monitor_exception) {
679
call_VM(noreg, CAST_FROM_FN_PTR(address,
680
InterpreterRuntime::
681
new_illegal_monitor_state_exception));
682
}
683
684
b(restart);
685
}
686
687
bind(loop);
688
// check if current entry is used
689
ldr(rscratch1, Address(c_rarg2, BasicObjectLock::obj_offset_in_bytes()));
690
cbnz(rscratch1, exception);
691
692
add(c_rarg2, c_rarg2, entry_size); // otherwise advance to next entry
693
bind(entry);
694
cmp(c_rarg2, r14); // check if bottom reached
695
b(loop, Assembler::NE); // if not at bottom then check this entry
696
}
697
698
bind(no_unlock);
699
700
// jvmti support
701
if (notify_jvmdi) {
702
notify_method_exit(state, NotifyJVMTI); // preserve TOSCA
703
} else {
704
notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
705
}
706
707
// remove activation
708
// get sender sp
709
ldr(rscratch1,
710
Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
711
// remove frame anchor
712
leave();
713
// If we're returning to interpreted code we will shortly be
714
// adjusting SP to allow some space for ESP. If we're returning to
715
// compiled code the saved sender SP was saved in sender_sp, so this
716
// restores it.
717
//bic(sp, rscratch1, 0xf); changed to not drop it as this is the sp
718
mov(sp, rscratch1);
719
}
720
721
#endif // C_INTERP
722
723
// Lock object
724
//
725
// Args:
726
// c_rarg1: BasicObjectLock to be used for locking
727
//
728
// Kills:
729
// r0
730
// c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs)
731
// rscratch1, rscratch2 (scratch regs)
732
void InterpreterMacroAssembler::lock_object(Register lock_reg)
733
{
734
reg_printf("LOCK:\n");
735
assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
736
if (UseHeavyMonitors) {
737
call_VM(noreg,
738
CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
739
lock_reg);
740
} else {
741
Label done;
742
743
const Register swap_reg = r0;
744
const Register obj_reg = c_rarg3; // Will contain the oop
745
746
const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
747
const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
748
const int mark_offset = lock_offset +
749
BasicLock::displaced_header_offset_in_bytes();
750
751
Label slow_case;
752
753
// Load object pointer into obj_reg %c_rarg3
754
ldr(obj_reg, Address(lock_reg, obj_offset));
755
756
if (UseBiasedLocking) {
757
biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch2, false, done, &slow_case);
758
}
759
760
// Load (object->mark() | 1) into swap_reg
761
ldr(rscratch1, Address(obj_reg, 0));
762
orr(swap_reg, rscratch1, 1);
763
764
// Save (object->mark() | 1) into BasicLock's displaced header
765
str(swap_reg, Address(lock_reg, mark_offset));
766
767
assert(lock_offset == 0,
768
"displached header must be first word in BasicObjectLock");
769
770
Label fail;
771
if (PrintBiasedLockingStatistics) {
772
Label fast;
773
cmpxchgptr(swap_reg, lock_reg, obj_reg, rscratch1, fast, &fail);
774
bind(fast);
775
atomic_inc(Address((address)BiasedLocking::fast_path_entry_count_addr()),
776
rscratch2, rscratch1);
777
b(done);
778
bind(fail);
779
} else {
780
cmpxchgptr(swap_reg, lock_reg, obj_reg, rscratch1, done, /*fallthrough*/NULL);
781
}
782
783
// Test if the oopMark is an obvious stack pointer, i.e.,
784
// 1) (mark & 7) == 0, and
785
// 2) rsp <= mark < mark + os::pagesize()
786
//
787
// These 3 tests can be done by evaluating the following
788
// expression: ((mark - rsp) & (7 - os::vm_page_size())),
789
// assuming both stack pointer and pagesize have their
790
// least significant 3 bits clear.
791
// NOTE: the oopMark is in swap_reg %r0 as the result of cmpxchg
792
// NOTE2: aarch32 does not like to subtract sp from rn so take a
793
// copy
794
795
796
//mov(rscratch1, sp);
797
//sub(swap_reg, swap_reg, rscratch1);
798
//ands(swap_reg, swap_reg, (unsigned long)(7 - os::vm_page_size()));
799
sub(swap_reg, swap_reg, sp);
800
mov(rscratch1, (os::vm_page_size() - 1) & ~0b11);
801
bics(swap_reg, swap_reg, rscratch1);
802
803
// Save the test result, for recursive case, the result is zero
804
str(swap_reg, Address(lock_reg, mark_offset));
805
806
if (PrintBiasedLockingStatistics) {
807
b(slow_case, Assembler::NE);
808
atomic_inc(Address((address)BiasedLocking::fast_path_entry_count_addr()),
809
rscratch2, rscratch1);
810
}
811
b(done, Assembler::EQ);
812
813
bind(slow_case);
814
815
// Call the runtime routine for slow case
816
call_VM(noreg,
817
CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
818
lock_reg);
819
820
bind(done);
821
}
822
}
823
824
825
// Unlocks an object. Used in monitorexit bytecode and
826
// remove_activation. Throws an IllegalMonitorException if object is
827
// not locked by current thread.
828
//
829
// Args:
830
// c_rarg1: BasicObjectLock for lock
831
//
832
// Kills:
833
// r0
834
// c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
835
// rscratch1, rscratch2 (scratch regs)
836
void InterpreterMacroAssembler::unlock_object(Register lock_reg)
837
{
838
assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
839
840
reg_printf("UNLOCK:\n");
841
if (UseHeavyMonitors) {
842
call_VM(noreg,
843
CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
844
lock_reg);
845
} else {
846
Label done;
847
848
//create_breakpoint();
849
const Register swap_reg = c_rarg0;
850
const Register header_reg = c_rarg2; // Will contain the old oopMark
851
const Register obj_reg = c_rarg3; // Will contain the oop
852
853
save_bcp(); // Save in case of exception
854
855
// Convert from BasicObjectLock structure to object and BasicLock
856
// structure Store the BasicLock address into %r0
857
lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
858
859
// Load oop into obj_reg(%c_rarg3)
860
ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
861
862
// Free entry
863
mov(rscratch2, 0);
864
str(rscratch2, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
865
866
if (UseBiasedLocking) {
867
biased_locking_exit(obj_reg, header_reg, done);
868
}
869
870
// Load the old header from BasicLock structure
871
ldr(header_reg, Address(swap_reg,
872
BasicLock::displaced_header_offset_in_bytes()));
873
874
// Test for recursion
875
cbz(header_reg, done);
876
877
// Atomic swap back the old header
878
cmpxchgptr(swap_reg, header_reg, obj_reg, rscratch1, done, /*fallthrough*/NULL);
879
880
// Call the runtime routine for slow case.
881
str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); // restore obj
882
call_VM(noreg,
883
CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
884
lock_reg);
885
886
bind(done);
887
888
restore_bcp();
889
}
890
}
891
892
#ifndef CC_INTERP
893
894
void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
895
Label& zero_continue) {
896
assert(ProfileInterpreter, "must be profiling interpreter");
897
ldr(mdp, Address(rfp, frame::interpreter_frame_mdx_offset * wordSize));
898
cbz(mdp, zero_continue);
899
}
900
901
// Set the method data pointer for the current bcp.
902
void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
903
assert(ProfileInterpreter, "must be profiling interpreter");
904
Label set_mdp;
905
strd(r0, r1, Address(pre(sp, -2 * wordSize)));
906
907
// Test MDO to avoid the call if it is NULL.
908
ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset())));
909
cbz(r0, set_mdp);
910
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp);
911
// r0: mdi
912
// mdo is guaranteed to be non-zero here, we checked for it before the call.
913
ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
914
lea(r1, Address(r1, in_bytes(MethodData::data_offset())));
915
add(r0, r1, r0);
916
str(r0, Address(rfp, frame::interpreter_frame_mdx_offset * wordSize));
917
bind(set_mdp);
918
ldrd(r0, r1, Address(post(sp, 2 * wordSize)));
919
}
920
921
void InterpreterMacroAssembler::verify_method_data_pointer() {
922
assert(ProfileInterpreter, "must be profiling interpreter");
923
#ifdef ASSERT
924
Label verify_continue;
925
strd(r0, r1, Address(pre(sp, -2 * wordSize)));
926
strd(r2, r3, Address(pre(sp, -2 * wordSize)));
927
test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue
928
get_method(r1);
929
930
// If the mdp is valid, it will point to a DataLayout header which is
931
// consistent with the bcp. The converse is highly probable also.
932
ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset())));
933
ldr(rscratch1, Address(r1, Method::const_offset()));
934
add(r2, r2, rscratch1);
935
lea(r2, Address(r2, ConstMethod::codes_offset()));
936
cmp(r2, rbcp);
937
b(verify_continue, Assembler::EQ);
938
// r1: method
939
// rbcp: bcp // rbcp == 22
940
// r3: mdp
941
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
942
r1, rbcp, r3);
943
bind(verify_continue);
944
ldrd(r2, r3, Address(post(sp, 2 * wordSize)));
945
ldrd(r0, r1, Address(post(sp, 2 * wordSize)));
946
#endif // ASSERT
947
}
948
949
950
void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
951
int constant,
952
Register value) {
953
assert(ProfileInterpreter, "must be profiling interpreter");
954
Address data(mdp_in, constant);
955
str(value, data);
956
}
957
958
959
void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
960
int constant,
961
bool decrement) {
962
increment_mdp_data_at(mdp_in, noreg, constant, decrement);
963
}
964
965
void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
966
Register reg,
967
int constant,
968
bool decrement) {
969
assert(ProfileInterpreter, "must be profiling interpreter");
970
// %%% this does 64bit counters at best it is wasting space
971
// at worst it is a rare bug when counters overflow
972
973
assert_different_registers(rscratch2, rscratch1, mdp_in, reg);
974
975
Address addr1(mdp_in, constant);
976
Address addr2(rscratch2, reg, lsl(0));
977
Address &addr = addr1;
978
if (reg != noreg) {
979
lea(rscratch2, addr1);
980
addr = addr2;
981
}
982
983
if (decrement) {
984
// Decrement the register. Set condition codes.
985
// Intel does this
986
// addptr(data, (int32_t) -DataLayout::counter_increment);
987
// If the decrement causes the counter to overflow, stay negative
988
// Label L;
989
// jcc(Assembler::negative, L);
990
// addptr(data, (int32_t) DataLayout::counter_increment);
991
// so we do this
992
ldr(rscratch1, addr);
993
subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment);
994
Label L;
995
b(L, Assembler::LO); // skip store if counter underflow
996
str(rscratch1, addr);
997
bind(L);
998
} else {
999
assert(DataLayout::counter_increment == 1,
1000
"flow-free idiom only works with 1");
1001
// Intel does this
1002
// Increment the register. Set carry flag.
1003
// addptr(data, DataLayout::counter_increment);
1004
// If the increment causes the counter to overflow, pull back by 1.
1005
// sbbptr(data, (int32_t)0);
1006
// so we do this
1007
ldr(rscratch1, addr);
1008
adds(rscratch1, rscratch1, DataLayout::counter_increment);
1009
Label L;
1010
b(L, Assembler::CS); // skip store if counter overflow
1011
str(rscratch1, addr);
1012
bind(L);
1013
}
1014
}
1015
1016
void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
1017
int flag_byte_constant) {
1018
assert(ProfileInterpreter, "must be profiling interpreter");
1019
int header_offset = in_bytes(DataLayout::header_offset());
1020
int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
1021
// Set the flag
1022
ldr(rscratch1, Address(mdp_in, header_offset));
1023
orr(rscratch1, rscratch1, header_bits);
1024
str(rscratch1, Address(mdp_in, header_offset));
1025
}
1026
1027
1028
void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1029
int offset,
1030
Register value,
1031
Register test_value_out,
1032
Label& not_equal_continue) {
1033
assert(ProfileInterpreter, "must be profiling interpreter");
1034
if (test_value_out == noreg) {
1035
ldr(rscratch1, Address(mdp_in, offset));
1036
cmp(value, rscratch1);
1037
} else {
1038
// Put the test value into a register, so caller can use it:
1039
ldr(test_value_out, Address(mdp_in, offset));
1040
cmp(value, test_value_out);
1041
}
1042
b(not_equal_continue, Assembler::NE);
1043
}
1044
1045
1046
void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1047
int offset_of_disp) {
1048
assert(ProfileInterpreter, "must be profiling interpreter");
1049
ldr(rscratch1, Address(mdp_in, offset_of_disp));
1050
add(mdp_in, mdp_in, rscratch1);
1051
str(mdp_in, Address(rfp, frame::interpreter_frame_mdx_offset * wordSize));
1052
}
1053
1054
1055
void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1056
Register reg,
1057
int offset_of_disp) {
1058
assert(ProfileInterpreter, "must be profiling interpreter");
1059
lea(rscratch1, Address(mdp_in, offset_of_disp));
1060
ldr(rscratch1, Address(rscratch1, reg, lsl()));
1061
add(mdp_in, mdp_in, rscratch1);
1062
str(mdp_in, Address(rfp, frame::interpreter_frame_mdx_offset * wordSize));
1063
}
1064
1065
1066
void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1067
int constant) {
1068
assert(ProfileInterpreter, "must be profiling interpreter");
1069
add(mdp_in, mdp_in, (unsigned) constant);
1070
str(mdp_in, Address(rfp, frame::interpreter_frame_mdx_offset * wordSize));
1071
}
1072
1073
1074
void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1075
assert(ProfileInterpreter, "must be profiling interpreter");
1076
// save/restore across call_VM
1077
mov(rscratch1, 0);
1078
strd(rscratch1, return_bci, Address(pre(sp, -2 * wordSize)));
1079
call_VM(noreg,
1080
CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1081
return_bci);
1082
ldrd(rscratch1, return_bci, Address(post(sp, 2 * wordSize)));
1083
}
1084
1085
1086
void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
1087
Register bumped_count) {
1088
if (ProfileInterpreter) {
1089
Label profile_continue;
1090
1091
// If no method data exists, go to profile_continue.
1092
// Otherwise, assign to mdp
1093
test_method_data_pointer(mdp, profile_continue);
1094
1095
// We are taking a branch. Increment the taken count.
1096
// We inline increment_mdp_data_at to return bumped_count in a register
1097
//increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1098
Address data(mdp, in_bytes(JumpData::taken_offset()));
1099
ldr(bumped_count, data);
1100
assert(DataLayout::counter_increment == 1,
1101
"flow-free idiom only works with 1");
1102
// Intel does this to catch overflow
1103
// addptr(bumped_count, DataLayout::counter_increment);
1104
// sbbptr(bumped_count, 0);
1105
// so we do this
1106
adds(bumped_count, bumped_count, DataLayout::counter_increment);
1107
Label L;
1108
b(L, Assembler::CS); // skip store if counter overflow
1109
str(bumped_count, data);
1110
bind(L);
1111
// The method data pointer needs to be updated to reflect the new target.
1112
update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1113
bind(profile_continue);
1114
}
1115
}
1116
1117
1118
void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1119
if (ProfileInterpreter) {
1120
Label profile_continue;
1121
1122
// If no method data exists, go to profile_continue.
1123
test_method_data_pointer(mdp, profile_continue);
1124
1125
// We are taking a branch. Increment the not taken count.
1126
increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1127
1128
// The method data pointer needs to be updated to correspond to
1129
// the next bytecode
1130
update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1131
bind(profile_continue);
1132
}
1133
}
1134
1135
1136
void InterpreterMacroAssembler::profile_call(Register mdp) {
1137
if (ProfileInterpreter) {
1138
Label profile_continue;
1139
1140
// If no method data exists, go to profile_continue.
1141
test_method_data_pointer(mdp, profile_continue);
1142
1143
// We are making a call. Increment the count.
1144
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1145
1146
// The method data pointer needs to be updated to reflect the new target.
1147
update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1148
bind(profile_continue);
1149
}
1150
}
1151
1152
void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1153
if (ProfileInterpreter) {
1154
Label profile_continue;
1155
1156
// If no method data exists, go to profile_continue.
1157
test_method_data_pointer(mdp, profile_continue);
1158
1159
// We are making a call. Increment the count.
1160
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1161
1162
// The method data pointer needs to be updated to reflect the new target.
1163
update_mdp_by_constant(mdp,
1164
in_bytes(VirtualCallData::
1165
virtual_call_data_size()));
1166
bind(profile_continue);
1167
}
1168
}
1169
1170
1171
void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1172
Register mdp,
1173
Register reg2,
1174
bool receiver_can_be_null) {
1175
if (ProfileInterpreter) {
1176
Label profile_continue;
1177
1178
// If no method data exists, go to profile_continue.
1179
test_method_data_pointer(mdp, profile_continue);
1180
1181
Label skip_receiver_profile;
1182
if (receiver_can_be_null) {
1183
Label not_null;
1184
// We are making a call. Increment the count for null receiver.
1185
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1186
b(skip_receiver_profile);
1187
bind(not_null);
1188
}
1189
1190
// Record the receiver type.
1191
record_klass_in_profile(receiver, mdp, reg2, true);
1192
bind(skip_receiver_profile);
1193
1194
// The method data pointer needs to be updated to reflect the new target.
1195
update_mdp_by_constant(mdp,
1196
in_bytes(VirtualCallData::
1197
virtual_call_data_size()));
1198
bind(profile_continue);
1199
}
1200
}
1201
1202
// This routine creates a state machine for updating the multi-row
1203
// type profile at a virtual call site (or other type-sensitive bytecode).
1204
// The machine visits each row (of receiver/count) until the receiver type
1205
// is found, or until it runs out of rows. At the same time, it remembers
1206
// the location of the first empty row. (An empty row records null for its
1207
// receiver, and can be allocated for a newly-observed receiver type.)
1208
// Because there are two degrees of freedom in the state, a simple linear
1209
// search will not work; it must be a decision tree. Hence this helper
1210
// function is recursive, to generate the required tree structured code.
1211
// It's the interpreter, so we are trading off code space for speed.
1212
// See below for example code.
1213
void InterpreterMacroAssembler::record_klass_in_profile_helper(
1214
Register receiver, Register mdp,
1215
Register reg2, int start_row,
1216
Label& done, bool is_virtual_call) {
1217
if (TypeProfileWidth == 0) {
1218
if (is_virtual_call) {
1219
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1220
}
1221
return;
1222
}
1223
1224
int last_row = VirtualCallData::row_limit() - 1;
1225
assert(start_row <= last_row, "must be work left to do");
1226
// Test this row for both the receiver and for null.
1227
// Take any of three different outcomes:
1228
// 1. found receiver => increment count and goto done
1229
// 2. found null => keep looking for case 1, maybe allocate this cell
1230
// 3. found something else => keep looking for cases 1 and 2
1231
// Case 3 is handled by a recursive call.
1232
for (int row = start_row; row <= last_row; row++) {
1233
Label next_test;
1234
bool test_for_null_also = (row == start_row);
1235
1236
// See if the receiver is receiver[n].
1237
int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1238
test_mdp_data_at(mdp, recvr_offset, receiver,
1239
(test_for_null_also ? reg2 : noreg),
1240
next_test);
1241
// (Reg2 now contains the receiver from the CallData.)
1242
1243
// The receiver is receiver[n]. Increment count[n].
1244
int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1245
increment_mdp_data_at(mdp, count_offset);
1246
b(done);
1247
bind(next_test);
1248
1249
if (test_for_null_also) {
1250
Label found_null;
1251
// Failed the equality check on receiver[n]... Test for null.
1252
if (start_row == last_row) {
1253
// The only thing left to do is handle the null case.
1254
if (is_virtual_call) {
1255
cbz(reg2, found_null);
1256
// Receiver did not match any saved receiver and there is no empty row for it.
1257
// Increment total counter to indicate polymorphic case.
1258
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1259
b(done);
1260
bind(found_null);
1261
} else {
1262
cbz(reg2, done);
1263
}
1264
break;
1265
}
1266
// Since null is rare, make it be the branch-taken case.
1267
cbz(reg2,found_null);
1268
1269
// Put all the "Case 3" tests here.
1270
record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call);
1271
1272
// Found a null. Keep searching for a matching receiver,
1273
// but remember that this is an empty (unused) slot.
1274
bind(found_null);
1275
}
1276
}
1277
1278
// In the fall-through case, we found no matching receiver, but we
1279
// observed the receiver[start_row] is NULL.
1280
1281
// Fill in the receiver field and increment the count.
1282
int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1283
set_mdp_data_at(mdp, recvr_offset, receiver);
1284
int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1285
mov(reg2, DataLayout::counter_increment);
1286
set_mdp_data_at(mdp, count_offset, reg2);
1287
if (start_row > 0) {
1288
b(done);
1289
}
1290
}
1291
1292
// Example state machine code for three profile rows:
1293
// // main copy of decision tree, rooted at row[1]
1294
// if (row[0].rec == rec) { row[0].incr(); goto done; }
1295
// if (row[0].rec != NULL) {
1296
// // inner copy of decision tree, rooted at row[1]
1297
// if (row[1].rec == rec) { row[1].incr(); goto done; }
1298
// if (row[1].rec != NULL) {
1299
// // degenerate decision tree, rooted at row[2]
1300
// if (row[2].rec == rec) { row[2].incr(); goto done; }
1301
// if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
1302
// row[2].init(rec); goto done;
1303
// } else {
1304
// // remember row[1] is empty
1305
// if (row[2].rec == rec) { row[2].incr(); goto done; }
1306
// row[1].init(rec); goto done;
1307
// }
1308
// } else {
1309
// // remember row[0] is empty
1310
// if (row[1].rec == rec) { row[1].incr(); goto done; }
1311
// if (row[2].rec == rec) { row[2].incr(); goto done; }
1312
// row[0].init(rec); goto done;
1313
// }
1314
// done:
1315
1316
void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1317
Register mdp, Register reg2,
1318
bool is_virtual_call) {
1319
assert(ProfileInterpreter, "must be profiling");
1320
Label done;
1321
1322
record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1323
1324
bind (done);
1325
}
1326
1327
void InterpreterMacroAssembler::profile_ret(Register return_bci,
1328
Register mdp) {
1329
if (ProfileInterpreter) {
1330
Label profile_continue;
1331
uint row;
1332
1333
// If no method data exists, go to profile_continue.
1334
test_method_data_pointer(mdp, profile_continue);
1335
1336
// Update the total ret count.
1337
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1338
1339
for (row = 0; row < RetData::row_limit(); row++) {
1340
Label next_test;
1341
1342
// See if return_bci is equal to bci[n]:
1343
test_mdp_data_at(mdp,
1344
in_bytes(RetData::bci_offset(row)),
1345
return_bci, noreg,
1346
next_test);
1347
1348
// return_bci is equal to bci[n]. Increment the count.
1349
increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1350
1351
// The method data pointer needs to be updated to reflect the new target.
1352
update_mdp_by_offset(mdp,
1353
in_bytes(RetData::bci_displacement_offset(row)));
1354
b(profile_continue);
1355
bind(next_test);
1356
}
1357
1358
update_mdp_for_ret(return_bci);
1359
1360
bind(profile_continue);
1361
}
1362
}
1363
1364
void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1365
if (ProfileInterpreter) {
1366
Label profile_continue;
1367
1368
// If no method data exists, go to profile_continue.
1369
test_method_data_pointer(mdp, profile_continue);
1370
1371
set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1372
1373
// The method data pointer needs to be updated.
1374
int mdp_delta = in_bytes(BitData::bit_data_size());
1375
if (TypeProfileCasts) {
1376
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1377
}
1378
update_mdp_by_constant(mdp, mdp_delta);
1379
1380
bind(profile_continue);
1381
}
1382
}
1383
1384
void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1385
if (ProfileInterpreter && TypeProfileCasts) {
1386
Label profile_continue;
1387
1388
// If no method data exists, go to profile_continue.
1389
test_method_data_pointer(mdp, profile_continue);
1390
1391
int count_offset = in_bytes(CounterData::count_offset());
1392
// Back up the address, since we have already bumped the mdp.
1393
count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1394
1395
// *Decrement* the counter. We expect to see zero or small negatives.
1396
increment_mdp_data_at(mdp, count_offset, true);
1397
1398
bind (profile_continue);
1399
}
1400
}
1401
1402
void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1403
if (ProfileInterpreter) {
1404
Label profile_continue;
1405
1406
// If no method data exists, go to profile_continue.
1407
test_method_data_pointer(mdp, profile_continue);
1408
1409
// The method data pointer needs to be updated.
1410
int mdp_delta = in_bytes(BitData::bit_data_size());
1411
if (TypeProfileCasts) {
1412
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1413
1414
// Record the object type.
1415
record_klass_in_profile(klass, mdp, reg2, false);
1416
}
1417
update_mdp_by_constant(mdp, mdp_delta);
1418
1419
bind(profile_continue);
1420
}
1421
}
1422
1423
void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1424
if (ProfileInterpreter) {
1425
Label profile_continue;
1426
1427
// If no method data exists, go to profile_continue.
1428
test_method_data_pointer(mdp, profile_continue);
1429
1430
// Update the default case count
1431
increment_mdp_data_at(mdp,
1432
in_bytes(MultiBranchData::default_count_offset()));
1433
1434
// The method data pointer needs to be updated.
1435
update_mdp_by_offset(mdp,
1436
in_bytes(MultiBranchData::
1437
default_displacement_offset()));
1438
1439
bind(profile_continue);
1440
}
1441
}
1442
1443
void InterpreterMacroAssembler::profile_switch_case(Register index,
1444
Register mdp,
1445
Register reg2) {
1446
if (ProfileInterpreter) {
1447
Label profile_continue;
1448
1449
// If no method data exists, go to profile_continue.
1450
test_method_data_pointer(mdp, profile_continue);
1451
1452
// Build the base (index * per_case_size_in_bytes()) +
1453
// case_array_offset_in_bytes()
1454
mov(reg2, in_bytes(MultiBranchData::per_case_size()));
1455
mov(rscratch1, in_bytes(MultiBranchData::case_array_offset()));
1456
Assembler::mla(index, index, reg2, rscratch1);
1457
1458
// Update the case count
1459
increment_mdp_data_at(mdp,
1460
index,
1461
in_bytes(MultiBranchData::relative_count_offset()));
1462
1463
// The method data pointer needs to be updated.
1464
update_mdp_by_offset(mdp,
1465
index,
1466
in_bytes(MultiBranchData::
1467
relative_displacement_offset()));
1468
1469
bind(profile_continue);
1470
}
1471
}
1472
1473
void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
1474
if (state == atos) {
1475
MacroAssembler::verify_oop(reg);
1476
}
1477
}
1478
1479
void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; }
1480
#endif // !CC_INTERP
1481
1482
1483
void InterpreterMacroAssembler::notify_method_entry() {
1484
// Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1485
// track stack depth. If it is possible to enter interp_only_mode we add
1486
// the code to check if the event should be sent.
1487
if (JvmtiExport::can_post_interpreter_events()) {
1488
Label L;
1489
ldr(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1490
cbz(r3, L);
1491
call_VM(noreg, CAST_FROM_FN_PTR(address,
1492
InterpreterRuntime::post_method_entry));
1493
bind(L);
1494
}
1495
1496
#ifdef DTRACE_ENABLED
1497
{
1498
SkipIfEqual skip(this, &DTraceMethodProbes, false);
1499
get_method(c_rarg1);
1500
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1501
rthread, c_rarg1);
1502
}
1503
#endif
1504
1505
// RedefineClasses() tracing support for obsolete method entry
1506
if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
1507
get_method(c_rarg1);
1508
call_VM_leaf(
1509
CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1510
rthread, c_rarg1);
1511
}
1512
1513
}
1514
1515
1516
void InterpreterMacroAssembler::notify_method_exit(
1517
TosState state, NotifyMethodExitMode mode) {
1518
// Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1519
// track stack depth. If it is possible to enter interp_only_mode we add
1520
// the code to check if the event should be sent.
1521
if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1522
Label L;
1523
// Note: frame::interpreter_frame_result has a dependency on how the
1524
// method result is saved across the call to post_method_exit. If this
1525
// is changed then the interpreter_frame_result implementation will
1526
// need to be updated too.
1527
1528
// For c++ interpreter the result is always stored at a known location in the frame
1529
// template interpreter will leave it on the top of the stack.
1530
NOT_CC_INTERP(push(state);)
1531
ldr(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1532
cbz(r3, L);
1533
call_VM(noreg,
1534
CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1535
bind(L);
1536
NOT_CC_INTERP(pop(state));
1537
}
1538
1539
#ifdef DTRACE_ENABLED
1540
{
1541
SkipIfEqual skip(this, &DTraceMethodProbes, false);
1542
NOT_CC_INTERP(push(state));
1543
get_method(c_rarg1);
1544
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1545
rthread, c_rarg1);
1546
NOT_CC_INTERP(pop(state));
1547
}
1548
#endif
1549
}
1550
1551
1552
// Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1553
void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1554
int increment, int mask,
1555
Register scratch, Register scratch2, bool preloaded,
1556
Condition cond, Label* where) {
1557
if (!preloaded) {
1558
ldr(scratch, counter_addr);
1559
}
1560
add(scratch, scratch, increment);
1561
str(scratch, counter_addr);
1562
if (Assembler::is_valid_for_imm12(mask))
1563
ands(scratch, scratch, mask);
1564
else {
1565
mov(scratch2, mask);
1566
ands(scratch, scratch, scratch2);
1567
}
1568
b(*where, cond);
1569
}
1570
1571
void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
1572
int number_of_arguments,
1573
Label *retaddr) {
1574
// interpreter specific
1575
//
1576
// Note: No need to save/restore rbcp & rlocals pointer since these
1577
// are callee saved registers and no blocking/ GC can happen
1578
// in leaf calls.
1579
#ifdef ASSERT
1580
{
1581
Label L;
1582
ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1583
cbz(rscratch1, L);
1584
stop("InterpreterMacroAssembler::call_VM_leaf_base:"
1585
" last_sp != NULL");
1586
bind(L);
1587
}
1588
#endif /* ASSERT */
1589
// super call
1590
MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, retaddr);
1591
}
1592
1593
void InterpreterMacroAssembler::call_VM_base(Register oop_result,
1594
Register java_thread,
1595
Register last_java_sp,
1596
address entry_point,
1597
int number_of_arguments,
1598
bool check_exceptions) {
1599
// interpreter specific
1600
//
1601
// Note: Could avoid restoring locals ptr (callee saved) - however doesn't
1602
// really make a difference for these runtime calls, since they are
1603
// slow anyway. Btw., bcp must be saved/restored since it may change
1604
// due to GC.
1605
// assert(java_thread == noreg , "not expecting a precomputed java thread");
1606
save_bcp();
1607
#ifdef ASSERT
1608
{
1609
Label L;
1610
ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1611
cbz(rscratch1, L);
1612
stop("InterpreterMacroAssembler::call_VM_leaf_base:"
1613
" last_sp != NULL");
1614
bind(L);
1615
}
1616
#endif /* ASSERT */
1617
// super call
1618
MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
1619
entry_point, number_of_arguments,
1620
check_exceptions);
1621
// interpreter specific
1622
restore_bcp();
1623
//restore_locals();
1624
}
1625
1626
void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
1627
Label update, next, none;
1628
1629
verify_oop(obj);
1630
1631
cbnz(obj, update);
1632
orptr(mdo_addr, TypeEntries::null_seen);
1633
b(next);
1634
1635
bind(update);
1636
load_klass(obj, obj);
1637
1638
ldr(rscratch1, mdo_addr);
1639
eor(obj, obj, rscratch1);
1640
bics(rscratch1, obj, ~TypeEntries::type_klass_mask);
1641
b(next, Assembler::EQ); // klass seen before, nothing to
1642
// do. The unknown bit may have been
1643
// set already but no need to check.
1644
1645
tst(obj, TypeEntries::type_unknown);
1646
b(next, Assembler::NE); // already unknown. Nothing to do anymore.
1647
1648
ldr(rscratch1, mdo_addr);
1649
cbz(rscratch1, none);
1650
cmp(rscratch1, TypeEntries::null_seen);
1651
b(none, Assembler::EQ);
1652
// There is a chance that the checks above (re-reading profiling
1653
// data from memory) fail if another thread has just set the
1654
// profiling to this obj's klass
1655
ldr(rscratch1, mdo_addr);
1656
eor(obj, obj, rscratch1);
1657
bics(rscratch1, obj, ~TypeEntries::type_klass_mask);
1658
b(next, Assembler::EQ);
1659
1660
// different than before. Cannot keep accurate profile.
1661
orptr(mdo_addr, TypeEntries::type_unknown);
1662
b(next);
1663
1664
bind(none);
1665
// first time here. Set profile type.
1666
str(obj, mdo_addr);
1667
1668
bind(next);
1669
}
1670
1671
void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
1672
if (!ProfileInterpreter) {
1673
return;
1674
}
1675
1676
if (MethodData::profile_arguments() || MethodData::profile_return()) {
1677
Label profile_continue;
1678
1679
test_method_data_pointer(mdp, profile_continue);
1680
1681
int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1682
1683
ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start));
1684
cmp(rscratch1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
1685
b(profile_continue, Assembler::NE);
1686
1687
if (MethodData::profile_arguments()) {
1688
Label done;
1689
int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1690
add(mdp, mdp, off_to_args);
1691
1692
for (int i = 0; i < TypeProfileArgsLimit; i++) {
1693
if (i > 0 || MethodData::profile_return()) {
1694
// If return value type is profiled we may have no argument to profile
1695
ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
1696
sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count());
1697
cmp(tmp, TypeStackSlotEntries::per_arg_count());
1698
b(done, Assembler::LT);
1699
}
1700
ldr(tmp, Address(callee, Method::const_offset()));
1701
load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
1702
// stack offset o (zero based) from the start of the argument
1703
// list, for n arguments translates into offset n - o - 1 from
1704
// the end of the argument list
1705
ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args));
1706
sub(tmp, tmp, rscratch1);
1707
sub(tmp, tmp, 1);
1708
Address arg_addr = argument_address(tmp);
1709
ldr(tmp, arg_addr);
1710
1711
Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
1712
profile_obj_type(tmp, mdo_arg_addr);
1713
1714
int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1715
add(mdp, mdp, to_add);
1716
off_to_args += to_add;
1717
}
1718
1719
if (MethodData::profile_return()) {
1720
ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
1721
sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1722
}
1723
1724
bind(done);
1725
1726
if (MethodData::profile_return()) {
1727
// We're right after the type profile for the last
1728
// argument. tmp is the number of cells left in the
1729
// CallTypeData/VirtualCallTypeData to reach its end. Non null
1730
// if there's a return to profile.
1731
assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1732
add(mdp, mdp, tmp, lsl(exact_log2(DataLayout::cell_size)));
1733
}
1734
str(mdp, Address(rfp, frame::interpreter_frame_mdx_offset * wordSize));
1735
} else {
1736
assert(MethodData::profile_return(), "either profile call args or call ret");
1737
update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
1738
}
1739
1740
// mdp points right after the end of the
1741
// CallTypeData/VirtualCallTypeData, right after the cells for the
1742
// return value type if there's one
1743
1744
bind(profile_continue);
1745
}
1746
}
1747
1748
void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
1749
assert_different_registers(mdp, ret, tmp, rbcp);
1750
if (ProfileInterpreter && MethodData::profile_return()) {
1751
Label profile_continue, done;
1752
1753
test_method_data_pointer(mdp, profile_continue);
1754
1755
if (MethodData::profile_return_jsr292_only()) {
1756
// If we don't profile all invoke bytecodes we must make sure
1757
// it's a bytecode we indeed profile. We can't go back to the
1758
// begining of the ProfileData we intend to update to check its
1759
// type because we're right after it and we don't known its
1760
// length
1761
Label do_profile;
1762
ldrb(rscratch1, Address(rbcp, 0));
1763
cmp(rscratch1, Bytecodes::_invokedynamic);
1764
b(do_profile, Assembler::EQ);
1765
cmp(rscratch1, Bytecodes::_invokehandle);
1766
b(do_profile, Assembler::EQ);
1767
get_method(tmp);
1768
ldrb(rscratch1, Address(tmp, Method::intrinsic_id_offset_in_bytes()));
1769
cmp(rscratch1, vmIntrinsics::_compiledLambdaForm);
1770
b(profile_continue, Assembler::NE);
1771
1772
bind(do_profile);
1773
}
1774
1775
Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
1776
mov(tmp, ret);
1777
profile_obj_type(tmp, mdo_ret_addr);
1778
1779
bind(profile_continue);
1780
}
1781
}
1782
1783
void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
1784
if (ProfileInterpreter && MethodData::profile_parameters()) {
1785
Label profile_continue, done;
1786
1787
test_method_data_pointer(mdp, profile_continue);
1788
1789
// Load the offset of the area within the MDO used for
1790
// parameters. If it's negative we're not profiling any parameters
1791
ldr(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
1792
cmp(tmp1, 0u);
1793
b(profile_continue, Assembler::LT);
1794
1795
// Compute a pointer to the area for parameters from the offset
1796
// and move the pointer to the slot for the last
1797
// parameters. Collect profiling from last parameter down.
1798
// mdo start + parameters offset + array length - 1
1799
add(mdp, mdp, tmp1);
1800
ldr(tmp1, Address(mdp, ArrayData::array_len_offset()));
1801
sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1802
1803
Label loop;
1804
bind(loop);
1805
1806
int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
1807
int type_base = in_bytes(ParametersTypeData::type_offset(0));
1808
int per_arg_scale = exact_log2(DataLayout::cell_size);
1809
add(rscratch1, mdp, off_base);
1810
add(rscratch2, mdp, type_base);
1811
1812
Address arg_off(rscratch1, tmp1, lsl(per_arg_scale));
1813
Address arg_type(rscratch2, tmp1, lsl(per_arg_scale));
1814
1815
// load offset on the stack from the slot for this parameter
1816
ldr(tmp2, arg_off);
1817
neg(tmp2, tmp2);
1818
// read the parameter from the local area
1819
ldr(tmp2, Address(rlocals, tmp2, lsl(Interpreter::logStackElementSize)));
1820
1821
// profile the parameter
1822
profile_obj_type(tmp2, arg_type);
1823
1824
// go to next parameter
1825
subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1826
b(loop, Assembler::GE);
1827
1828
bind(profile_continue);
1829
}
1830
}
1831
1832