Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/cpu/aarch64/vm/c1_LIRGenerator_aarch64.cpp
32285 views
1
/*
2
* Copyright (c) 2013, Red Hat Inc.
3
* Copyright (c) 2005, 2019, Oracle and/or its affiliates.
4
* All rights reserved.
5
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
6
*
7
* This code is free software; you can redistribute it and/or modify it
8
* under the terms of the GNU General Public License version 2 only, as
9
* published by the Free Software Foundation.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*
25
*/
26
27
#include "precompiled.hpp"
28
#include "c1/c1_Compilation.hpp"
29
#include "c1/c1_FrameMap.hpp"
30
#include "c1/c1_Instruction.hpp"
31
#include "c1/c1_LIRAssembler.hpp"
32
#include "c1/c1_LIRGenerator.hpp"
33
#include "c1/c1_Runtime1.hpp"
34
#include "c1/c1_ValueStack.hpp"
35
#include "ci/ciArray.hpp"
36
#include "ci/ciObjArrayKlass.hpp"
37
#include "ci/ciTypeArrayKlass.hpp"
38
#include "runtime/sharedRuntime.hpp"
39
#include "runtime/stubRoutines.hpp"
40
#include "vmreg_aarch64.inline.hpp"
41
42
#if INCLUDE_ALL_GCS
43
#include "gc_implementation/shenandoah/c1/shenandoahBarrierSetC1.hpp"
44
#endif
45
46
#ifdef ASSERT
47
#define __ gen()->lir(__FILE__, __LINE__)->
48
#else
49
#define __ gen()->lir()->
50
#endif
51
52
// Item will be loaded into a byte register; Intel only
53
void LIRItem::load_byte_item() {
54
load_item();
55
}
56
57
58
void LIRItem::load_nonconstant() {
59
LIR_Opr r = value()->operand();
60
if (r->is_constant()) {
61
_result = r;
62
} else {
63
load_item();
64
}
65
}
66
67
//--------------------------------------------------------------
68
// LIRGenerator
69
//--------------------------------------------------------------
70
71
72
LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::r0_oop_opr; }
73
LIR_Opr LIRGenerator::exceptionPcOpr() { return FrameMap::r3_opr; }
74
LIR_Opr LIRGenerator::divInOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; }
75
LIR_Opr LIRGenerator::divOutOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; }
76
LIR_Opr LIRGenerator::remOutOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; }
77
LIR_Opr LIRGenerator::shiftCountOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; }
78
LIR_Opr LIRGenerator::syncTempOpr() { return FrameMap::r0_opr; }
79
LIR_Opr LIRGenerator::getThreadTemp() { return LIR_OprFact::illegalOpr; }
80
81
82
LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
83
LIR_Opr opr;
84
switch (type->tag()) {
85
case intTag: opr = FrameMap::r0_opr; break;
86
case objectTag: opr = FrameMap::r0_oop_opr; break;
87
case longTag: opr = FrameMap::long0_opr; break;
88
case floatTag: opr = FrameMap::fpu0_float_opr; break;
89
case doubleTag: opr = FrameMap::fpu0_double_opr; break;
90
91
case addressTag:
92
default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
93
}
94
95
assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
96
return opr;
97
}
98
99
100
LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
101
LIR_Opr reg = new_register(T_INT);
102
set_vreg_flag(reg, LIRGenerator::byte_reg);
103
return reg;
104
}
105
106
107
//--------- loading items into registers --------------------------------
108
109
110
bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
111
if (v->type()->as_IntConstant() != NULL) {
112
return v->type()->as_IntConstant()->value() == 0L;
113
} else if (v->type()->as_LongConstant() != NULL) {
114
return v->type()->as_LongConstant()->value() == 0L;
115
} else if (v->type()->as_ObjectConstant() != NULL) {
116
return v->type()->as_ObjectConstant()->value()->is_null_object();
117
} else {
118
return false;
119
}
120
}
121
122
bool LIRGenerator::can_inline_as_constant(Value v) const {
123
// FIXME: Just a guess
124
if (v->type()->as_IntConstant() != NULL) {
125
return Assembler::operand_valid_for_add_sub_immediate(v->type()->as_IntConstant()->value());
126
} else if (v->type()->as_LongConstant() != NULL) {
127
return v->type()->as_LongConstant()->value() == 0L;
128
} else if (v->type()->as_ObjectConstant() != NULL) {
129
return v->type()->as_ObjectConstant()->value()->is_null_object();
130
} else {
131
return false;
132
}
133
}
134
135
136
bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const { return false; }
137
138
139
LIR_Opr LIRGenerator::safepoint_poll_register() {
140
return LIR_OprFact::illegalOpr;
141
}
142
143
144
LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
145
int shift, int disp, BasicType type) {
146
assert(base->is_register(), "must be");
147
148
// accumulate fixed displacements
149
if (index->is_constant()) {
150
disp += index->as_constant_ptr()->as_jint() << shift;
151
index = LIR_OprFact::illegalOpr;
152
}
153
154
if (index->is_register()) {
155
// apply the shift and accumulate the displacement
156
if (shift > 0) {
157
LIR_Opr tmp = new_pointer_register();
158
__ shift_left(index, shift, tmp);
159
index = tmp;
160
}
161
if (disp != 0) {
162
LIR_Opr tmp = new_pointer_register();
163
if (Assembler::operand_valid_for_add_sub_immediate(disp)) {
164
__ add(tmp, tmp, LIR_OprFact::intptrConst(disp));
165
index = tmp;
166
} else {
167
__ move(tmp, LIR_OprFact::intptrConst(disp));
168
__ add(tmp, index, tmp);
169
index = tmp;
170
}
171
disp = 0;
172
}
173
} else if (disp != 0 && !Address::offset_ok_for_immed(disp, shift)) {
174
// index is illegal so replace it with the displacement loaded into a register
175
index = new_pointer_register();
176
__ move(LIR_OprFact::intptrConst(disp), index);
177
disp = 0;
178
}
179
180
// at this point we either have base + index or base + displacement
181
if (disp == 0) {
182
return new LIR_Address(base, index, type);
183
} else {
184
assert(Address::offset_ok_for_immed(disp, 0), "must be");
185
return new LIR_Address(base, disp, type);
186
}
187
}
188
189
190
LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
191
BasicType type, bool needs_card_mark) {
192
int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
193
int elem_size = type2aelembytes(type);
194
int shift = exact_log2(elem_size);
195
196
LIR_Address* addr;
197
if (index_opr->is_constant()) {
198
addr = new LIR_Address(array_opr,
199
offset_in_bytes + index_opr->as_jint() * elem_size, type);
200
} else {
201
// #ifdef _LP64
202
// if (index_opr->type() == T_INT) {
203
// LIR_Opr tmp = new_register(T_LONG);
204
// __ convert(Bytecodes::_i2l, index_opr, tmp);
205
// index_opr = tmp;
206
// }
207
// #endif
208
if (offset_in_bytes) {
209
LIR_Opr tmp = new_pointer_register();
210
__ add(array_opr, LIR_OprFact::intConst(offset_in_bytes), tmp);
211
array_opr = tmp;
212
offset_in_bytes = 0;
213
}
214
addr = new LIR_Address(array_opr,
215
index_opr,
216
LIR_Address::scale(type),
217
offset_in_bytes, type);
218
}
219
if (needs_card_mark) {
220
// This store will need a precise card mark, so go ahead and
221
// compute the full adddres instead of computing once for the
222
// store and again for the card mark.
223
LIR_Opr tmp = new_pointer_register();
224
__ leal(LIR_OprFact::address(addr), tmp);
225
return new LIR_Address(tmp, type);
226
} else {
227
return addr;
228
}
229
}
230
231
LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
232
LIR_Opr r;
233
if (type == T_LONG) {
234
r = LIR_OprFact::longConst(x);
235
if (!Assembler::operand_valid_for_logical_immediate(false, x)) {
236
LIR_Opr tmp = new_register(type);
237
__ move(r, tmp);
238
return tmp;
239
}
240
} else if (type == T_INT) {
241
r = LIR_OprFact::intConst(x);
242
if (!Assembler::operand_valid_for_logical_immediate(true, x)) {
243
// This is all rather nasty. We don't know whether our constant
244
// is required for a logical or an arithmetic operation, wo we
245
// don't know what the range of valid values is!!
246
LIR_Opr tmp = new_register(type);
247
__ move(r, tmp);
248
return tmp;
249
}
250
} else {
251
ShouldNotReachHere();
252
}
253
return r;
254
}
255
256
257
258
void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
259
LIR_Opr pointer = new_pointer_register();
260
__ move(LIR_OprFact::intptrConst(counter), pointer);
261
LIR_Address* addr = new LIR_Address(pointer, type);
262
increment_counter(addr, step);
263
}
264
265
266
void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
267
LIR_Opr imm = NULL;
268
switch(addr->type()) {
269
case T_INT:
270
imm = LIR_OprFact::intConst(step);
271
break;
272
case T_LONG:
273
imm = LIR_OprFact::longConst(step);
274
break;
275
default:
276
ShouldNotReachHere();
277
}
278
LIR_Opr reg = new_register(addr->type());
279
__ load(addr, reg);
280
__ add(reg, imm, reg);
281
__ store(reg, addr);
282
}
283
284
void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
285
LIR_Opr reg = new_register(T_INT);
286
__ load(generate_address(base, disp, T_INT), reg, info);
287
__ cmp(condition, reg, LIR_OprFact::intConst(c));
288
}
289
290
void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
291
LIR_Opr reg1 = new_register(T_INT);
292
__ load(generate_address(base, disp, type), reg1, info);
293
__ cmp(condition, reg, reg1);
294
}
295
296
297
bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
298
299
if (is_power_of_2(c - 1)) {
300
__ shift_left(left, exact_log2(c - 1), tmp);
301
__ add(tmp, left, result);
302
return true;
303
} else if (is_power_of_2(c + 1)) {
304
__ shift_left(left, exact_log2(c + 1), tmp);
305
__ sub(tmp, left, result);
306
return true;
307
} else {
308
return false;
309
}
310
}
311
312
void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
313
BasicType type = item->type();
314
__ store(item, new LIR_Address(FrameMap::sp_opr, in_bytes(offset_from_sp), type));
315
}
316
317
//----------------------------------------------------------------------
318
// visitor functions
319
//----------------------------------------------------------------------
320
321
322
void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
323
assert(x->is_pinned(),"");
324
bool needs_range_check = x->compute_needs_range_check();
325
bool use_length = x->length() != NULL;
326
bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
327
bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
328
!get_jobject_constant(x->value())->is_null_object() ||
329
x->should_profile());
330
331
LIRItem array(x->array(), this);
332
LIRItem index(x->index(), this);
333
LIRItem value(x->value(), this);
334
LIRItem length(this);
335
336
array.load_item();
337
index.load_nonconstant();
338
339
if (use_length && needs_range_check) {
340
length.set_instruction(x->length());
341
length.load_item();
342
343
}
344
if (needs_store_check || x->check_boolean()) {
345
value.load_item();
346
} else {
347
value.load_for_store(x->elt_type());
348
}
349
350
set_no_result(x);
351
352
// the CodeEmitInfo must be duplicated for each different
353
// LIR-instruction because spilling can occur anywhere between two
354
// instructions and so the debug information must be different
355
CodeEmitInfo* range_check_info = state_for(x);
356
CodeEmitInfo* null_check_info = NULL;
357
if (x->needs_null_check()) {
358
null_check_info = new CodeEmitInfo(range_check_info);
359
}
360
361
// emit array address setup early so it schedules better
362
// FIXME? No harm in this on aarch64, and it might help
363
LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
364
365
if (GenerateRangeChecks && needs_range_check) {
366
if (use_length) {
367
__ cmp(lir_cond_belowEqual, length.result(), index.result());
368
__ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
369
} else {
370
array_range_check(array.result(), index.result(), null_check_info, range_check_info);
371
// range_check also does the null check
372
null_check_info = NULL;
373
}
374
}
375
376
if (GenerateArrayStoreCheck && needs_store_check) {
377
LIR_Opr tmp1 = new_register(objectType);
378
LIR_Opr tmp2 = new_register(objectType);
379
LIR_Opr tmp3 = new_register(objectType);
380
381
CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
382
__ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info, x->profiled_method(), x->profiled_bci());
383
}
384
385
if (obj_store) {
386
// Needs GC write barriers.
387
pre_barrier(LIR_OprFact::address(array_addr), LIR_OprFact::illegalOpr /* pre_val */,
388
true /* do_load */, false /* patch */, NULL);
389
__ move(value.result(), array_addr, null_check_info);
390
// Seems to be a precise
391
post_barrier(LIR_OprFact::address(array_addr), value.result());
392
} else {
393
LIR_Opr result = maybe_mask_boolean(x, array.result(), value.result(), null_check_info);
394
__ move(result, array_addr, null_check_info);
395
}
396
}
397
398
void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
399
assert(x->is_pinned(),"");
400
LIRItem obj(x->obj(), this);
401
obj.load_item();
402
403
set_no_result(x);
404
405
// "lock" stores the address of the monitor stack slot, so this is not an oop
406
LIR_Opr lock = new_register(T_INT);
407
// Need a scratch register for biased locking
408
LIR_Opr scratch = LIR_OprFact::illegalOpr;
409
if (UseBiasedLocking) {
410
scratch = new_register(T_INT);
411
}
412
413
CodeEmitInfo* info_for_exception = NULL;
414
if (x->needs_null_check()) {
415
info_for_exception = state_for(x);
416
}
417
// this CodeEmitInfo must not have the xhandlers because here the
418
// object is already locked (xhandlers expect object to be unlocked)
419
CodeEmitInfo* info = state_for(x, x->state(), true);
420
monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
421
x->monitor_no(), info_for_exception, info);
422
}
423
424
425
void LIRGenerator::do_MonitorExit(MonitorExit* x) {
426
assert(x->is_pinned(),"");
427
428
LIRItem obj(x->obj(), this);
429
obj.dont_load_item();
430
431
LIR_Opr lock = new_register(T_INT);
432
LIR_Opr obj_temp = new_register(T_INT);
433
set_no_result(x);
434
monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
435
}
436
437
438
void LIRGenerator::do_NegateOp(NegateOp* x) {
439
440
LIRItem from(x->x(), this);
441
from.load_item();
442
LIR_Opr result = rlock_result(x);
443
__ negate (from.result(), result);
444
445
}
446
447
// for _fadd, _fmul, _fsub, _fdiv, _frem
448
// _dadd, _dmul, _dsub, _ddiv, _drem
449
void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
450
451
if (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem) {
452
// float remainder is implemented as a direct call into the runtime
453
LIRItem right(x->x(), this);
454
LIRItem left(x->y(), this);
455
456
BasicTypeList signature(2);
457
if (x->op() == Bytecodes::_frem) {
458
signature.append(T_FLOAT);
459
signature.append(T_FLOAT);
460
} else {
461
signature.append(T_DOUBLE);
462
signature.append(T_DOUBLE);
463
}
464
CallingConvention* cc = frame_map()->c_calling_convention(&signature);
465
466
const LIR_Opr result_reg = result_register_for(x->type());
467
left.load_item_force(cc->at(1));
468
right.load_item();
469
470
__ move(right.result(), cc->at(0));
471
472
address entry;
473
if (x->op() == Bytecodes::_frem) {
474
entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
475
} else {
476
entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
477
}
478
479
LIR_Opr result = rlock_result(x);
480
__ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
481
__ move(result_reg, result);
482
483
return;
484
}
485
486
LIRItem left(x->x(), this);
487
LIRItem right(x->y(), this);
488
LIRItem* left_arg = &left;
489
LIRItem* right_arg = &right;
490
491
// Always load right hand side.
492
right.load_item();
493
494
if (!left.is_register())
495
left.load_item();
496
497
LIR_Opr reg = rlock(x);
498
LIR_Opr tmp = LIR_OprFact::illegalOpr;
499
if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
500
tmp = new_register(T_DOUBLE);
501
}
502
503
arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp());
504
505
set_result(x, round_item(reg));
506
}
507
508
// for _ladd, _lmul, _lsub, _ldiv, _lrem
509
void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
510
511
// missing test if instr is commutative and if we should swap
512
LIRItem left(x->x(), this);
513
LIRItem right(x->y(), this);
514
515
if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
516
517
// the check for division by zero destroys the right operand
518
right.set_destroys_register();
519
520
// check for division by zero (destroys registers of right operand!)
521
CodeEmitInfo* info = state_for(x);
522
523
left.load_item();
524
right.load_item();
525
526
__ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
527
__ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
528
529
rlock_result(x);
530
switch (x->op()) {
531
case Bytecodes::_lrem:
532
__ rem (left.result(), right.result(), x->operand());
533
break;
534
case Bytecodes::_ldiv:
535
__ div (left.result(), right.result(), x->operand());
536
break;
537
default:
538
ShouldNotReachHere();
539
break;
540
}
541
542
543
} else {
544
assert (x->op() == Bytecodes::_lmul || x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub,
545
"expect lmul, ladd or lsub");
546
// add, sub, mul
547
left.load_item();
548
if (! right.is_register()) {
549
if (x->op() == Bytecodes::_lmul
550
|| ! right.is_constant()
551
|| ! Assembler::operand_valid_for_add_sub_immediate(right.get_jlong_constant())) {
552
right.load_item();
553
} else { // add, sub
554
assert (x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub, "expect ladd or lsub");
555
// don't load constants to save register
556
right.load_nonconstant();
557
}
558
}
559
rlock_result(x);
560
arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
561
}
562
}
563
564
// for: _iadd, _imul, _isub, _idiv, _irem
565
void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
566
567
// Test if instr is commutative and if we should swap
568
LIRItem left(x->x(), this);
569
LIRItem right(x->y(), this);
570
LIRItem* left_arg = &left;
571
LIRItem* right_arg = &right;
572
if (x->is_commutative() && left.is_stack() && right.is_register()) {
573
// swap them if left is real stack (or cached) and right is real register(not cached)
574
left_arg = &right;
575
right_arg = &left;
576
}
577
578
left_arg->load_item();
579
580
// do not need to load right, as we can handle stack and constants
581
if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
582
583
right_arg->load_item();
584
rlock_result(x);
585
586
CodeEmitInfo* info = state_for(x);
587
LIR_Opr tmp = new_register(T_INT);
588
__ cmp(lir_cond_equal, right_arg->result(), LIR_OprFact::longConst(0));
589
__ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
590
info = state_for(x);
591
592
if (x->op() == Bytecodes::_irem) {
593
__ irem(left_arg->result(), right_arg->result(), x->operand(), tmp, NULL);
594
} else if (x->op() == Bytecodes::_idiv) {
595
__ idiv(left_arg->result(), right_arg->result(), x->operand(), tmp, NULL);
596
}
597
598
} else if (x->op() == Bytecodes::_iadd || x->op() == Bytecodes::_isub) {
599
if (right.is_constant()
600
&& Assembler::operand_valid_for_add_sub_immediate(right.get_jint_constant())) {
601
right.load_nonconstant();
602
} else {
603
right.load_item();
604
}
605
rlock_result(x);
606
arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), LIR_OprFact::illegalOpr);
607
} else {
608
assert (x->op() == Bytecodes::_imul, "expect imul");
609
if (right.is_constant()) {
610
jint c = right.get_jint_constant();
611
if (c > 0 && c < max_jint && (is_power_of_2(c) || is_power_of_2(c - 1) || is_power_of_2(c + 1))) {
612
right_arg->dont_load_item();
613
} else {
614
// Cannot use constant op.
615
right_arg->load_item();
616
}
617
} else {
618
right.load_item();
619
}
620
rlock_result(x);
621
arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), new_register(T_INT));
622
}
623
}
624
625
void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
626
// when an operand with use count 1 is the left operand, then it is
627
// likely that no move for 2-operand-LIR-form is necessary
628
if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
629
x->swap_operands();
630
}
631
632
ValueTag tag = x->type()->tag();
633
assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
634
switch (tag) {
635
case floatTag:
636
case doubleTag: do_ArithmeticOp_FPU(x); return;
637
case longTag: do_ArithmeticOp_Long(x); return;
638
case intTag: do_ArithmeticOp_Int(x); return;
639
}
640
ShouldNotReachHere();
641
}
642
643
// _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
644
void LIRGenerator::do_ShiftOp(ShiftOp* x) {
645
646
LIRItem left(x->x(), this);
647
LIRItem right(x->y(), this);
648
649
left.load_item();
650
651
rlock_result(x);
652
if (right.is_constant()) {
653
right.dont_load_item();
654
655
switch (x->op()) {
656
case Bytecodes::_ishl: {
657
int c = right.get_jint_constant() & 0x1f;
658
__ shift_left(left.result(), c, x->operand());
659
break;
660
}
661
case Bytecodes::_ishr: {
662
int c = right.get_jint_constant() & 0x1f;
663
__ shift_right(left.result(), c, x->operand());
664
break;
665
}
666
case Bytecodes::_iushr: {
667
int c = right.get_jint_constant() & 0x1f;
668
__ unsigned_shift_right(left.result(), c, x->operand());
669
break;
670
}
671
case Bytecodes::_lshl: {
672
int c = right.get_jint_constant() & 0x3f;
673
__ shift_left(left.result(), c, x->operand());
674
break;
675
}
676
case Bytecodes::_lshr: {
677
int c = right.get_jint_constant() & 0x3f;
678
__ shift_right(left.result(), c, x->operand());
679
break;
680
}
681
case Bytecodes::_lushr: {
682
int c = right.get_jint_constant() & 0x3f;
683
__ unsigned_shift_right(left.result(), c, x->operand());
684
break;
685
}
686
default:
687
ShouldNotReachHere();
688
}
689
} else {
690
right.load_item();
691
LIR_Opr tmp = new_register(T_INT);
692
switch (x->op()) {
693
case Bytecodes::_ishl: {
694
__ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
695
__ shift_left(left.result(), tmp, x->operand(), tmp);
696
break;
697
}
698
case Bytecodes::_ishr: {
699
__ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
700
__ shift_right(left.result(), tmp, x->operand(), tmp);
701
break;
702
}
703
case Bytecodes::_iushr: {
704
__ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
705
__ unsigned_shift_right(left.result(), tmp, x->operand(), tmp);
706
break;
707
}
708
case Bytecodes::_lshl: {
709
__ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
710
__ shift_left(left.result(), tmp, x->operand(), tmp);
711
break;
712
}
713
case Bytecodes::_lshr: {
714
__ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
715
__ shift_right(left.result(), tmp, x->operand(), tmp);
716
break;
717
}
718
case Bytecodes::_lushr: {
719
__ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
720
__ unsigned_shift_right(left.result(), tmp, x->operand(), tmp);
721
break;
722
}
723
default:
724
ShouldNotReachHere();
725
}
726
}
727
}
728
729
// _iand, _land, _ior, _lor, _ixor, _lxor
730
void LIRGenerator::do_LogicOp(LogicOp* x) {
731
732
LIRItem left(x->x(), this);
733
LIRItem right(x->y(), this);
734
735
left.load_item();
736
737
rlock_result(x);
738
if (right.is_constant()
739
&& ((right.type()->tag() == intTag
740
&& Assembler::operand_valid_for_logical_immediate(true, right.get_jint_constant()))
741
|| (right.type()->tag() == longTag
742
&& Assembler::operand_valid_for_logical_immediate(false, right.get_jlong_constant())))) {
743
right.dont_load_item();
744
} else {
745
right.load_item();
746
}
747
switch (x->op()) {
748
case Bytecodes::_iand:
749
case Bytecodes::_land:
750
__ logical_and(left.result(), right.result(), x->operand()); break;
751
case Bytecodes::_ior:
752
case Bytecodes::_lor:
753
__ logical_or (left.result(), right.result(), x->operand()); break;
754
case Bytecodes::_ixor:
755
case Bytecodes::_lxor:
756
__ logical_xor(left.result(), right.result(), x->operand()); break;
757
default: Unimplemented();
758
}
759
}
760
761
// _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
762
void LIRGenerator::do_CompareOp(CompareOp* x) {
763
LIRItem left(x->x(), this);
764
LIRItem right(x->y(), this);
765
ValueTag tag = x->x()->type()->tag();
766
if (tag == longTag) {
767
left.set_destroys_register();
768
}
769
left.load_item();
770
right.load_item();
771
LIR_Opr reg = rlock_result(x);
772
773
if (x->x()->type()->is_float_kind()) {
774
Bytecodes::Code code = x->op();
775
__ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
776
} else if (x->x()->type()->tag() == longTag) {
777
__ lcmp2int(left.result(), right.result(), reg);
778
} else {
779
Unimplemented();
780
}
781
}
782
783
void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
784
assert(x->number_of_arguments() == 4, "wrong type");
785
LIRItem obj (x->argument_at(0), this); // object
786
LIRItem offset(x->argument_at(1), this); // offset of field
787
LIRItem cmp (x->argument_at(2), this); // value to compare with field
788
LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp
789
790
assert(obj.type()->tag() == objectTag, "invalid type");
791
792
// In 64bit the type can be long, sparc doesn't have this assert
793
// assert(offset.type()->tag() == intTag, "invalid type");
794
795
assert(cmp.type()->tag() == type->tag(), "invalid type");
796
assert(val.type()->tag() == type->tag(), "invalid type");
797
798
// get address of field
799
obj.load_item();
800
offset.load_nonconstant();
801
val.load_item();
802
cmp.load_item();
803
804
LIR_Address* a;
805
if(offset.result()->is_constant()) {
806
jlong c = offset.result()->as_jlong();
807
if ((jlong)((jint)c) == c) {
808
a = new LIR_Address(obj.result(),
809
(jint)c,
810
as_BasicType(type));
811
} else {
812
LIR_Opr tmp = new_register(T_LONG);
813
__ move(offset.result(), tmp);
814
a = new LIR_Address(obj.result(),
815
tmp,
816
as_BasicType(type));
817
}
818
} else {
819
a = new LIR_Address(obj.result(),
820
offset.result(),
821
LIR_Address::times_1,
822
0,
823
as_BasicType(type));
824
}
825
LIR_Opr addr = new_pointer_register();
826
__ leal(LIR_OprFact::address(a), addr);
827
828
if (type == objectType) { // Write-barrier needed for Object fields.
829
// Do the pre-write barrier, if any.
830
pre_barrier(addr, LIR_OprFact::illegalOpr /* pre_val */,
831
true /* do_load */, false /* patch */, NULL);
832
}
833
834
LIR_Opr result = rlock_result(x);
835
836
LIR_Opr ill = LIR_OprFact::illegalOpr; // for convenience
837
838
if (type == objectType) {
839
__ cas_obj(addr, cmp.result(), val.result(), new_register(T_INT), new_register(T_INT),
840
result);
841
} else if (type == intType)
842
__ cas_int(addr, cmp.result(), val.result(), ill, ill, result);
843
else if (type == longType)
844
__ cas_long(addr, cmp.result(), val.result(), ill, ill, result);
845
else {
846
ShouldNotReachHere();
847
}
848
849
if (type == objectType) { // Write-barrier needed for Object fields.
850
// Seems to be precise
851
post_barrier(addr, val.result());
852
}
853
}
854
855
void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
856
switch (x->id()) {
857
case vmIntrinsics::_dabs:
858
case vmIntrinsics::_dsqrt: {
859
assert(x->number_of_arguments() == 1, "wrong type");
860
LIRItem value(x->argument_at(0), this);
861
value.load_item();
862
LIR_Opr dst = rlock_result(x);
863
864
switch (x->id()) {
865
case vmIntrinsics::_dsqrt: {
866
__ sqrt(value.result(), dst, LIR_OprFact::illegalOpr);
867
break;
868
}
869
case vmIntrinsics::_dabs: {
870
__ abs(value.result(), dst, LIR_OprFact::illegalOpr);
871
break;
872
}
873
}
874
break;
875
}
876
case vmIntrinsics::_dlog10: // fall through
877
case vmIntrinsics::_dlog: // fall through
878
case vmIntrinsics::_dsin: // fall through
879
case vmIntrinsics::_dtan: // fall through
880
case vmIntrinsics::_dcos: // fall through
881
case vmIntrinsics::_dexp: {
882
assert(x->number_of_arguments() == 1, "wrong type");
883
884
address runtime_entry = NULL;
885
switch (x->id()) {
886
case vmIntrinsics::_dsin:
887
runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
888
break;
889
case vmIntrinsics::_dcos:
890
runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
891
break;
892
case vmIntrinsics::_dtan:
893
runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
894
break;
895
case vmIntrinsics::_dlog:
896
runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
897
break;
898
case vmIntrinsics::_dlog10:
899
runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
900
break;
901
case vmIntrinsics::_dexp:
902
runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
903
break;
904
default:
905
ShouldNotReachHere();
906
}
907
908
LIR_Opr result = call_runtime(x->argument_at(0), runtime_entry, x->type(), NULL);
909
set_result(x, result);
910
break;
911
}
912
case vmIntrinsics::_dpow: {
913
assert(x->number_of_arguments() == 2, "wrong type");
914
address runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
915
LIR_Opr result = call_runtime(x->argument_at(0), x->argument_at(1), runtime_entry, x->type(), NULL);
916
set_result(x, result);
917
break;
918
}
919
}
920
}
921
922
923
void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
924
assert(x->number_of_arguments() == 5, "wrong type");
925
926
// Make all state_for calls early since they can emit code
927
CodeEmitInfo* info = state_for(x, x->state());
928
929
LIRItem src(x->argument_at(0), this);
930
LIRItem src_pos(x->argument_at(1), this);
931
LIRItem dst(x->argument_at(2), this);
932
LIRItem dst_pos(x->argument_at(3), this);
933
LIRItem length(x->argument_at(4), this);
934
935
// operands for arraycopy must use fixed registers, otherwise
936
// LinearScan will fail allocation (because arraycopy always needs a
937
// call)
938
939
// The java calling convention will give us enough registers
940
// so that on the stub side the args will be perfect already.
941
// On the other slow/special case side we call C and the arg
942
// positions are not similar enough to pick one as the best.
943
// Also because the java calling convention is a "shifted" version
944
// of the C convention we can process the java args trivially into C
945
// args without worry of overwriting during the xfer
946
947
src.load_item_force (FrameMap::as_oop_opr(j_rarg0));
948
src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
949
dst.load_item_force (FrameMap::as_oop_opr(j_rarg2));
950
dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
951
length.load_item_force (FrameMap::as_opr(j_rarg4));
952
953
LIR_Opr tmp = FrameMap::as_opr(j_rarg5);
954
955
set_no_result(x);
956
957
int flags;
958
ciArrayKlass* expected_type;
959
arraycopy_helper(x, &flags, &expected_type);
960
961
__ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
962
}
963
964
void LIRGenerator::do_update_CRC32(Intrinsic* x) {
965
assert(UseCRC32Intrinsics, "why are we here?");
966
// Make all state_for calls early since they can emit code
967
LIR_Opr result = rlock_result(x);
968
int flags = 0;
969
switch (x->id()) {
970
case vmIntrinsics::_updateCRC32: {
971
LIRItem crc(x->argument_at(0), this);
972
LIRItem val(x->argument_at(1), this);
973
// val is destroyed by update_crc32
974
val.set_destroys_register();
975
crc.load_item();
976
val.load_item();
977
__ update_crc32(crc.result(), val.result(), result);
978
break;
979
}
980
case vmIntrinsics::_updateBytesCRC32:
981
case vmIntrinsics::_updateByteBufferCRC32: {
982
bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32);
983
984
LIRItem crc(x->argument_at(0), this);
985
LIRItem buf(x->argument_at(1), this);
986
LIRItem off(x->argument_at(2), this);
987
LIRItem len(x->argument_at(3), this);
988
buf.load_item();
989
off.load_nonconstant();
990
991
LIR_Opr index = off.result();
992
int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
993
if(off.result()->is_constant()) {
994
index = LIR_OprFact::illegalOpr;
995
offset += off.result()->as_jint();
996
}
997
LIR_Opr base_op = buf.result();
998
999
if (index->is_valid()) {
1000
LIR_Opr tmp = new_register(T_LONG);
1001
__ convert(Bytecodes::_i2l, index, tmp);
1002
index = tmp;
1003
}
1004
1005
if (offset) {
1006
LIR_Opr tmp = new_pointer_register();
1007
__ add(base_op, LIR_OprFact::intConst(offset), tmp);
1008
base_op = tmp;
1009
offset = 0;
1010
}
1011
1012
LIR_Address* a = new LIR_Address(base_op,
1013
index,
1014
LIR_Address::times_1,
1015
offset,
1016
T_BYTE);
1017
BasicTypeList signature(3);
1018
signature.append(T_INT);
1019
signature.append(T_ADDRESS);
1020
signature.append(T_INT);
1021
CallingConvention* cc = frame_map()->c_calling_convention(&signature);
1022
const LIR_Opr result_reg = result_register_for(x->type());
1023
1024
LIR_Opr addr = new_pointer_register();
1025
__ leal(LIR_OprFact::address(a), addr);
1026
1027
crc.load_item_force(cc->at(0));
1028
__ move(addr, cc->at(1));
1029
len.load_item_force(cc->at(2));
1030
1031
__ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args());
1032
__ move(result_reg, result);
1033
1034
break;
1035
}
1036
default: {
1037
ShouldNotReachHere();
1038
}
1039
}
1040
}
1041
1042
// _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
1043
// _i2b, _i2c, _i2s
1044
void LIRGenerator::do_Convert(Convert* x) {
1045
bool needs_stub;
1046
1047
switch (x->op()) {
1048
case Bytecodes::_i2l:
1049
case Bytecodes::_l2i:
1050
case Bytecodes::_i2b:
1051
case Bytecodes::_i2c:
1052
case Bytecodes::_i2s:
1053
case Bytecodes::_f2d:
1054
case Bytecodes::_d2f:
1055
case Bytecodes::_i2f:
1056
case Bytecodes::_i2d:
1057
case Bytecodes::_l2f:
1058
case Bytecodes::_l2d: needs_stub = false;
1059
break;
1060
case Bytecodes::_f2l:
1061
case Bytecodes::_d2l:
1062
case Bytecodes::_f2i:
1063
case Bytecodes::_d2i: needs_stub = true;
1064
break;
1065
default: ShouldNotReachHere();
1066
}
1067
1068
LIRItem value(x->value(), this);
1069
value.load_item();
1070
LIR_Opr input = value.result();
1071
LIR_Opr result = rlock(x);
1072
1073
// arguments of lir_convert
1074
LIR_Opr conv_input = input;
1075
LIR_Opr conv_result = result;
1076
ConversionStub* stub = NULL;
1077
1078
if (needs_stub) {
1079
stub = new ConversionStub(x->op(), conv_input, conv_result);
1080
}
1081
1082
__ convert(x->op(), conv_input, conv_result, stub, new_register(T_INT));
1083
1084
assert(result->is_virtual(), "result must be virtual register");
1085
set_result(x, result);
1086
}
1087
1088
void LIRGenerator::do_NewInstance(NewInstance* x) {
1089
#ifndef PRODUCT
1090
if (PrintNotLoaded && !x->klass()->is_loaded()) {
1091
tty->print_cr(" ###class not loaded at new bci %d", x->printable_bci());
1092
}
1093
#endif
1094
CodeEmitInfo* info = state_for(x, x->state());
1095
LIR_Opr reg = result_register_for(x->type());
1096
new_instance(reg, x->klass(), x->is_unresolved(),
1097
FrameMap::r2_oop_opr,
1098
FrameMap::r5_oop_opr,
1099
FrameMap::r4_oop_opr,
1100
LIR_OprFact::illegalOpr,
1101
FrameMap::r3_metadata_opr, info);
1102
LIR_Opr result = rlock_result(x);
1103
__ move(reg, result);
1104
}
1105
1106
void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
1107
CodeEmitInfo* info = state_for(x, x->state());
1108
1109
LIRItem length(x->length(), this);
1110
length.load_item_force(FrameMap::r19_opr);
1111
1112
LIR_Opr reg = result_register_for(x->type());
1113
LIR_Opr tmp1 = FrameMap::r2_oop_opr;
1114
LIR_Opr tmp2 = FrameMap::r4_oop_opr;
1115
LIR_Opr tmp3 = FrameMap::r5_oop_opr;
1116
LIR_Opr tmp4 = reg;
1117
LIR_Opr klass_reg = FrameMap::r3_metadata_opr;
1118
LIR_Opr len = length.result();
1119
BasicType elem_type = x->elt_type();
1120
1121
__ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
1122
1123
CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
1124
__ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
1125
1126
LIR_Opr result = rlock_result(x);
1127
__ move(reg, result);
1128
}
1129
1130
void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1131
LIRItem length(x->length(), this);
1132
// in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
1133
// and therefore provide the state before the parameters have been consumed
1134
CodeEmitInfo* patching_info = NULL;
1135
if (!x->klass()->is_loaded() || PatchALot) {
1136
patching_info = state_for(x, x->state_before());
1137
}
1138
1139
CodeEmitInfo* info = state_for(x, x->state());
1140
1141
LIR_Opr reg = result_register_for(x->type());
1142
LIR_Opr tmp1 = FrameMap::r2_oop_opr;
1143
LIR_Opr tmp2 = FrameMap::r4_oop_opr;
1144
LIR_Opr tmp3 = FrameMap::r5_oop_opr;
1145
LIR_Opr tmp4 = reg;
1146
LIR_Opr klass_reg = FrameMap::r3_metadata_opr;
1147
1148
length.load_item_force(FrameMap::r19_opr);
1149
LIR_Opr len = length.result();
1150
1151
CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
1152
ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass());
1153
if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1154
BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1155
}
1156
klass2reg_with_patching(klass_reg, obj, patching_info);
1157
__ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
1158
1159
LIR_Opr result = rlock_result(x);
1160
__ move(reg, result);
1161
}
1162
1163
1164
void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1165
Values* dims = x->dims();
1166
int i = dims->length();
1167
LIRItemList* items = new LIRItemList(dims->length(), NULL);
1168
while (i-- > 0) {
1169
LIRItem* size = new LIRItem(dims->at(i), this);
1170
items->at_put(i, size);
1171
}
1172
1173
// Evaluate state_for early since it may emit code.
1174
CodeEmitInfo* patching_info = NULL;
1175
if (!x->klass()->is_loaded() || PatchALot) {
1176
patching_info = state_for(x, x->state_before());
1177
1178
// Cannot re-use same xhandlers for multiple CodeEmitInfos, so
1179
// clone all handlers (NOTE: Usually this is handled transparently
1180
// by the CodeEmitInfo cloning logic in CodeStub constructors but
1181
// is done explicitly here because a stub isn't being used).
1182
x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1183
}
1184
CodeEmitInfo* info = state_for(x, x->state());
1185
1186
i = dims->length();
1187
while (i-- > 0) {
1188
LIRItem* size = items->at(i);
1189
size->load_item();
1190
1191
store_stack_parameter(size->result(), in_ByteSize(i*4));
1192
}
1193
1194
LIR_Opr klass_reg = FrameMap::r0_metadata_opr;
1195
klass2reg_with_patching(klass_reg, x->klass(), patching_info);
1196
1197
LIR_Opr rank = FrameMap::r19_opr;
1198
__ move(LIR_OprFact::intConst(x->rank()), rank);
1199
LIR_Opr varargs = FrameMap::r2_opr;
1200
__ move(FrameMap::sp_opr, varargs);
1201
LIR_OprList* args = new LIR_OprList(3);
1202
args->append(klass_reg);
1203
args->append(rank);
1204
args->append(varargs);
1205
LIR_Opr reg = result_register_for(x->type());
1206
__ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1207
LIR_OprFact::illegalOpr,
1208
reg, args, info);
1209
1210
LIR_Opr result = rlock_result(x);
1211
__ move(reg, result);
1212
}
1213
1214
void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1215
// nothing to do for now
1216
}
1217
1218
void LIRGenerator::do_CheckCast(CheckCast* x) {
1219
LIRItem obj(x->obj(), this);
1220
1221
CodeEmitInfo* patching_info = NULL;
1222
if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
1223
// must do this before locking the destination register as an oop register,
1224
// and before the obj is loaded (the latter is for deoptimization)
1225
patching_info = state_for(x, x->state_before());
1226
}
1227
obj.load_item();
1228
1229
// info for exceptions
1230
CodeEmitInfo* info_for_exception =
1231
(x->needs_exception_state() ? state_for(x) :
1232
state_for(x, x->state_before(), true /*ignore_xhandler*/));
1233
1234
CodeStub* stub;
1235
if (x->is_incompatible_class_change_check()) {
1236
assert(patching_info == NULL, "can't patch this");
1237
stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1238
} else if (x->is_invokespecial_receiver_check()) {
1239
assert(patching_info == NULL, "can't patch this");
1240
stub = new DeoptimizeStub(info_for_exception);
1241
} else {
1242
stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1243
}
1244
LIR_Opr reg = rlock_result(x);
1245
LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1246
if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1247
tmp3 = new_register(objectType);
1248
}
1249
__ checkcast(reg, obj.result(), x->klass(),
1250
new_register(objectType), new_register(objectType), tmp3,
1251
x->direct_compare(), info_for_exception, patching_info, stub,
1252
x->profiled_method(), x->profiled_bci());
1253
}
1254
1255
void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1256
LIRItem obj(x->obj(), this);
1257
1258
// result and test object may not be in same register
1259
LIR_Opr reg = rlock_result(x);
1260
CodeEmitInfo* patching_info = NULL;
1261
if ((!x->klass()->is_loaded() || PatchALot)) {
1262
// must do this before locking the destination register as an oop register
1263
patching_info = state_for(x, x->state_before());
1264
}
1265
obj.load_item();
1266
LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1267
if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1268
tmp3 = new_register(objectType);
1269
}
1270
__ instanceof(reg, obj.result(), x->klass(),
1271
new_register(objectType), new_register(objectType), tmp3,
1272
x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
1273
}
1274
1275
void LIRGenerator::do_If(If* x) {
1276
assert(x->number_of_sux() == 2, "inconsistency");
1277
ValueTag tag = x->x()->type()->tag();
1278
bool is_safepoint = x->is_safepoint();
1279
1280
If::Condition cond = x->cond();
1281
1282
LIRItem xitem(x->x(), this);
1283
LIRItem yitem(x->y(), this);
1284
LIRItem* xin = &xitem;
1285
LIRItem* yin = &yitem;
1286
1287
if (tag == longTag) {
1288
// for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1289
// mirror for other conditions
1290
if (cond == If::gtr || cond == If::leq) {
1291
cond = Instruction::mirror(cond);
1292
xin = &yitem;
1293
yin = &xitem;
1294
}
1295
xin->set_destroys_register();
1296
}
1297
xin->load_item();
1298
1299
if (tag == longTag) {
1300
if (yin->is_constant()
1301
&& Assembler::operand_valid_for_add_sub_immediate(yin->get_jlong_constant())) {
1302
yin->dont_load_item();
1303
} else {
1304
yin->load_item();
1305
}
1306
} else if (tag == intTag) {
1307
if (yin->is_constant()
1308
&& Assembler::operand_valid_for_add_sub_immediate(yin->get_jint_constant())) {
1309
yin->dont_load_item();
1310
} else {
1311
yin->load_item();
1312
}
1313
} else {
1314
yin->load_item();
1315
}
1316
1317
// add safepoint before generating condition code so it can be recomputed
1318
if (x->is_safepoint()) {
1319
// increment backedge counter if needed
1320
increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
1321
__ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
1322
}
1323
set_no_result(x);
1324
1325
LIR_Opr left = xin->result();
1326
LIR_Opr right = yin->result();
1327
1328
__ cmp(lir_cond(cond), left, right);
1329
// Generate branch profiling. Profiling code doesn't kill flags.
1330
profile_branch(x, cond);
1331
move_to_phi(x->state());
1332
if (x->x()->type()->is_float_kind()) {
1333
__ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1334
} else {
1335
__ branch(lir_cond(cond), right->type(), x->tsux());
1336
}
1337
assert(x->default_sux() == x->fsux(), "wrong destination above");
1338
__ jump(x->default_sux());
1339
}
1340
1341
LIR_Opr LIRGenerator::getThreadPointer() {
1342
return FrameMap::as_pointer_opr(rthread);
1343
}
1344
1345
void LIRGenerator::trace_block_entry(BlockBegin* block) { Unimplemented(); }
1346
1347
void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1348
CodeEmitInfo* info) {
1349
__ volatile_store_mem_reg(value, address, info);
1350
}
1351
1352
void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1353
CodeEmitInfo* info) {
1354
1355
// 8179954: We need to make sure that the code generated for
1356
// volatile accesses forms a sequentially-consistent set of
1357
// operations when combined with STLR and LDAR. Without a leading
1358
// membar it's possible for a simple Dekker test to fail if loads
1359
// use LD;DMB but stores use STLR. This can happen if C2 compiles
1360
// the stores in one method and C1 compiles the loads in another.
1361
if (! UseBarriersForVolatile) {
1362
__ membar();
1363
}
1364
1365
__ volatile_load_mem_reg(address, result, info);
1366
}
1367
1368
void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
1369
BasicType type, bool is_volatile) {
1370
LIR_Address* addr = new LIR_Address(src, offset, type);
1371
__ load(addr, dst);
1372
}
1373
1374
1375
void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
1376
BasicType type, bool is_volatile) {
1377
LIR_Address* addr = new LIR_Address(src, offset, type);
1378
bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1379
if (is_obj) {
1380
// Do the pre-write barrier, if any.
1381
pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
1382
true /* do_load */, false /* patch */, NULL);
1383
__ move(data, addr);
1384
assert(src->is_register(), "must be register");
1385
// Seems to be a precise address
1386
post_barrier(LIR_OprFact::address(addr), data);
1387
} else {
1388
__ move(data, addr);
1389
}
1390
}
1391
1392
void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
1393
BasicType type = x->basic_type();
1394
LIRItem src(x->object(), this);
1395
LIRItem off(x->offset(), this);
1396
LIRItem value(x->value(), this);
1397
1398
src.load_item();
1399
off.load_nonconstant();
1400
1401
// We can cope with a constant increment in an xadd
1402
if (! (x->is_add()
1403
&& value.is_constant()
1404
&& can_inline_as_constant(x->value()))) {
1405
value.load_item();
1406
}
1407
1408
LIR_Opr dst = rlock_result(x, type);
1409
LIR_Opr data = value.result();
1410
bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1411
LIR_Opr offset = off.result();
1412
1413
if (data == dst) {
1414
LIR_Opr tmp = new_register(data->type());
1415
__ move(data, tmp);
1416
data = tmp;
1417
}
1418
1419
LIR_Address* addr;
1420
if (offset->is_constant()) {
1421
jlong l = offset->as_jlong();
1422
assert((jlong)((jint)l) == l, "offset too large for constant");
1423
jint c = (jint)l;
1424
addr = new LIR_Address(src.result(), c, type);
1425
} else {
1426
addr = new LIR_Address(src.result(), offset, type);
1427
}
1428
1429
LIR_Opr tmp = new_register(T_INT);
1430
LIR_Opr ptr = LIR_OprFact::illegalOpr;
1431
1432
if (x->is_add()) {
1433
__ xadd(LIR_OprFact::address(addr), data, dst, tmp);
1434
} else {
1435
if (is_obj) {
1436
// Do the pre-write barrier, if any.
1437
ptr = new_pointer_register();
1438
__ add(src.result(), off.result(), ptr);
1439
pre_barrier(ptr, LIR_OprFact::illegalOpr /* pre_val */,
1440
true /* do_load */, false /* patch */, NULL);
1441
}
1442
__ xchg(LIR_OprFact::address(addr), data, dst, tmp);
1443
#if INCLUDE_ALL_GCS
1444
if (UseShenandoahGC && is_obj) {
1445
LIR_Opr tmp = ShenandoahBarrierSet::barrier_set()->bsc1()->load_reference_barrier(this, dst, LIR_OprFact::addressConst(0));
1446
__ move(tmp, dst);
1447
}
1448
#endif
1449
if (is_obj) {
1450
post_barrier(ptr, data);
1451
}
1452
}
1453
}
1454
1455