Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/cpu/aarch64/vm/frame_aarch64.cpp
32285 views
1
/*
2
* Copyright (c) 2013, Red Hat Inc.
3
* Copyright (c) 1997, 2019, Oracle and/or its affiliates.
4
* All rights reserved.
5
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
6
*
7
* This code is free software; you can redistribute it and/or modify it
8
* under the terms of the GNU General Public License version 2 only, as
9
* published by the Free Software Foundation.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*
25
*/
26
27
#include "precompiled.hpp"
28
#include "interpreter/interpreter.hpp"
29
#include "memory/resourceArea.hpp"
30
#include "oops/markOop.hpp"
31
#include "oops/method.hpp"
32
#include "oops/oop.inline.hpp"
33
#include "prims/methodHandles.hpp"
34
#include "runtime/frame.inline.hpp"
35
#include "runtime/handles.inline.hpp"
36
#include "runtime/javaCalls.hpp"
37
#include "runtime/monitorChunk.hpp"
38
#include "runtime/os.hpp"
39
#include "runtime/signature.hpp"
40
#include "runtime/stubCodeGenerator.hpp"
41
#include "runtime/stubRoutines.hpp"
42
#include "vmreg_aarch64.inline.hpp"
43
#ifdef COMPILER1
44
#include "c1/c1_Runtime1.hpp"
45
#include "runtime/vframeArray.hpp"
46
#endif
47
48
#ifdef ASSERT
49
void RegisterMap::check_location_valid() {
50
}
51
#endif
52
53
54
// Profiling/safepoint support
55
56
bool frame::safe_for_sender(JavaThread *thread) {
57
address sp = (address)_sp;
58
address fp = (address)_fp;
59
address unextended_sp = (address)_unextended_sp;
60
61
// consider stack guards when trying to determine "safe" stack pointers
62
static size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
63
size_t usable_stack_size = thread->stack_size() - stack_guard_size;
64
65
// sp must be within the usable part of the stack (not in guards)
66
bool sp_safe = (sp < thread->stack_base()) &&
67
(sp >= thread->stack_base() - usable_stack_size);
68
69
70
if (!sp_safe) {
71
return false;
72
}
73
74
// When we are running interpreted code the machine stack pointer, SP, is
75
// set low enough so that the Java expression stack can grow and shrink
76
// without ever exceeding the machine stack bounds. So, ESP >= SP.
77
78
// When we call out of an interpreted method, SP is incremented so that
79
// the space between SP and ESP is removed. The SP saved in the callee's
80
// frame is the SP *before* this increment. So, when we walk a stack of
81
// interpreter frames the sender's SP saved in a frame might be less than
82
// the SP at the point of call.
83
84
// So unextended sp must be within the stack but we need not to check
85
// that unextended sp >= sp
86
87
bool unextended_sp_safe = (unextended_sp < thread->stack_base());
88
89
if (!unextended_sp_safe) {
90
return false;
91
}
92
93
// an fp must be within the stack and above (but not equal) sp
94
// second evaluation on fp+ is added to handle situation where fp is -1
95
bool fp_safe = (fp < thread->stack_base() && (fp > sp) && (((fp + (return_addr_offset * sizeof(void*))) < thread->stack_base())));
96
97
// We know sp/unextended_sp are safe only fp is questionable here
98
99
// If the current frame is known to the code cache then we can attempt to
100
// to construct the sender and do some validation of it. This goes a long way
101
// toward eliminating issues when we get in frame construction code
102
103
if (_cb != NULL ) {
104
105
// First check if frame is complete and tester is reliable
106
// Unfortunately we can only check frame complete for runtime stubs and nmethod
107
// other generic buffer blobs are more problematic so we just assume they are
108
// ok. adapter blobs never have a frame complete and are never ok.
109
110
if (!_cb->is_frame_complete_at(_pc)) {
111
if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) {
112
return false;
113
}
114
}
115
116
// Could just be some random pointer within the codeBlob
117
if (!_cb->code_contains(_pc)) {
118
return false;
119
}
120
121
// Entry frame checks
122
if (is_entry_frame()) {
123
// an entry frame must have a valid fp.
124
125
if (!fp_safe) return false;
126
127
// Validate the JavaCallWrapper an entry frame must have
128
129
address jcw = (address)entry_frame_call_wrapper();
130
131
bool jcw_safe = (jcw < thread->stack_base()) && ( jcw > fp);
132
133
return jcw_safe;
134
135
}
136
137
intptr_t* sender_sp = NULL;
138
intptr_t* sender_unextended_sp = NULL;
139
address sender_pc = NULL;
140
intptr_t* saved_fp = NULL;
141
142
if (is_interpreted_frame()) {
143
// fp must be safe
144
if (!fp_safe) {
145
return false;
146
}
147
148
sender_pc = (address) this->fp()[return_addr_offset];
149
// for interpreted frames, the value below is the sender "raw" sp,
150
// which can be different from the sender unextended sp (the sp seen
151
// by the sender) because of current frame local variables
152
sender_sp = (intptr_t*) addr_at(sender_sp_offset);
153
sender_unextended_sp = (intptr_t*) this->fp()[interpreter_frame_sender_sp_offset];
154
saved_fp = (intptr_t*) this->fp()[link_offset];
155
156
} else {
157
// must be some sort of compiled/runtime frame
158
// fp does not have to be safe (although it could be check for c1?)
159
160
// check for a valid frame_size, otherwise we are unlikely to get a valid sender_pc
161
if (_cb->frame_size() <= 0) {
162
return false;
163
}
164
165
sender_sp = _unextended_sp + _cb->frame_size();
166
sender_unextended_sp = sender_sp;
167
sender_pc = (address) *(sender_sp-1);
168
// Note: frame::sender_sp_offset is only valid for compiled frame
169
saved_fp = (intptr_t*) *(sender_sp - frame::sender_sp_offset);
170
}
171
172
173
// If the potential sender is the interpreter then we can do some more checking
174
if (Interpreter::contains(sender_pc)) {
175
176
// fp is always saved in a recognizable place in any code we generate. However
177
// only if the sender is interpreted/call_stub (c1 too?) are we certain that the saved fp
178
// is really a frame pointer.
179
180
bool saved_fp_safe = ((address)saved_fp < thread->stack_base()) && (saved_fp > sender_sp);
181
182
if (!saved_fp_safe) {
183
return false;
184
}
185
186
// construct the potential sender
187
188
frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc);
189
190
return sender.is_interpreted_frame_valid(thread);
191
192
}
193
194
// We must always be able to find a recognizable pc
195
CodeBlob* sender_blob = CodeCache::find_blob_unsafe(sender_pc);
196
if (sender_pc == NULL || sender_blob == NULL) {
197
return false;
198
}
199
200
// Could be a zombie method
201
if (sender_blob->is_zombie() || sender_blob->is_unloaded()) {
202
return false;
203
}
204
205
// Could just be some random pointer within the codeBlob
206
if (!sender_blob->code_contains(sender_pc)) {
207
return false;
208
}
209
210
// We should never be able to see an adapter if the current frame is something from code cache
211
if (sender_blob->is_adapter_blob()) {
212
return false;
213
}
214
215
// Could be the call_stub
216
if (StubRoutines::returns_to_call_stub(sender_pc)) {
217
bool saved_fp_safe = ((address)saved_fp < thread->stack_base()) && (saved_fp > sender_sp);
218
219
if (!saved_fp_safe) {
220
return false;
221
}
222
223
// construct the potential sender
224
225
frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc);
226
227
// Validate the JavaCallWrapper an entry frame must have
228
address jcw = (address)sender.entry_frame_call_wrapper();
229
230
bool jcw_safe = (jcw < thread->stack_base()) && ( jcw > (address)sender.fp());
231
232
return jcw_safe;
233
}
234
235
if (sender_blob->is_nmethod()) {
236
nmethod* nm = sender_blob->as_nmethod_or_null();
237
if (nm != NULL) {
238
if (nm->is_deopt_mh_entry(sender_pc) || nm->is_deopt_entry(sender_pc)) {
239
return false;
240
}
241
}
242
}
243
244
// If the frame size is 0 something (or less) is bad because every nmethod has a non-zero frame size
245
// because the return address counts against the callee's frame.
246
247
if (sender_blob->frame_size() <= 0) {
248
assert(!sender_blob->is_nmethod(), "should count return address at least");
249
return false;
250
}
251
252
// We should never be able to see anything here except an nmethod. If something in the
253
// code cache (current frame) is called by an entity within the code cache that entity
254
// should not be anything but the call stub (already covered), the interpreter (already covered)
255
// or an nmethod.
256
257
if (!sender_blob->is_nmethod()) {
258
return false;
259
}
260
261
// Could put some more validation for the potential non-interpreted sender
262
// frame we'd create by calling sender if I could think of any. Wait for next crash in forte...
263
264
// One idea is seeing if the sender_pc we have is one that we'd expect to call to current cb
265
266
// We've validated the potential sender that would be created
267
return true;
268
}
269
270
// Must be native-compiled frame. Since sender will try and use fp to find
271
// linkages it must be safe
272
273
if (!fp_safe) {
274
return false;
275
}
276
277
// Will the pc we fetch be non-zero (which we'll find at the oldest frame)
278
279
if ( (address) this->fp()[return_addr_offset] == NULL) return false;
280
281
282
// could try and do some more potential verification of native frame if we could think of some...
283
284
return true;
285
286
}
287
288
void frame::patch_pc(Thread* thread, address pc) {
289
address* pc_addr = &(((address*) sp())[-1]);
290
if (TracePcPatching) {
291
tty->print_cr("patch_pc at address " INTPTR_FORMAT " [" INTPTR_FORMAT " -> " INTPTR_FORMAT "]",
292
p2i(pc_addr), p2i(*pc_addr), p2i(pc));
293
}
294
// Either the return address is the original one or we are going to
295
// patch in the same address that's already there.
296
assert(_pc == *pc_addr || pc == *pc_addr, "must be");
297
*pc_addr = pc;
298
_cb = CodeCache::find_blob(pc);
299
address original_pc = nmethod::get_deopt_original_pc(this);
300
if (original_pc != NULL) {
301
assert(original_pc == _pc, "expected original PC to be stored before patching");
302
_deopt_state = is_deoptimized;
303
// leave _pc as is
304
} else {
305
_deopt_state = not_deoptimized;
306
_pc = pc;
307
}
308
}
309
310
bool frame::is_interpreted_frame() const {
311
return Interpreter::contains(pc());
312
}
313
314
int frame::frame_size(RegisterMap* map) const {
315
frame sender = this->sender(map);
316
return sender.sp() - sp();
317
}
318
319
intptr_t* frame::entry_frame_argument_at(int offset) const {
320
// convert offset to index to deal with tsi
321
int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
322
// Entry frame's arguments are always in relation to unextended_sp()
323
return &unextended_sp()[index];
324
}
325
326
// sender_sp
327
#ifdef CC_INTERP
328
intptr_t* frame::interpreter_frame_sender_sp() const {
329
assert(is_interpreted_frame(), "interpreted frame expected");
330
// QQQ why does this specialize method exist if frame::sender_sp() does same thing?
331
// seems odd and if we always know interpreted vs. non then sender_sp() is really
332
// doing too much work.
333
return get_interpreterState()->sender_sp();
334
}
335
336
// monitor elements
337
338
BasicObjectLock* frame::interpreter_frame_monitor_begin() const {
339
return get_interpreterState()->monitor_base();
340
}
341
342
BasicObjectLock* frame::interpreter_frame_monitor_end() const {
343
return (BasicObjectLock*) get_interpreterState()->stack_base();
344
}
345
346
#else // CC_INTERP
347
348
intptr_t* frame::interpreter_frame_sender_sp() const {
349
assert(is_interpreted_frame(), "interpreted frame expected");
350
return (intptr_t*) at(interpreter_frame_sender_sp_offset);
351
}
352
353
void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) {
354
assert(is_interpreted_frame(), "interpreted frame expected");
355
ptr_at_put(interpreter_frame_sender_sp_offset, (intptr_t) sender_sp);
356
}
357
358
359
// monitor elements
360
361
BasicObjectLock* frame::interpreter_frame_monitor_begin() const {
362
return (BasicObjectLock*) addr_at(interpreter_frame_monitor_block_bottom_offset);
363
}
364
365
BasicObjectLock* frame::interpreter_frame_monitor_end() const {
366
BasicObjectLock* result = (BasicObjectLock*) *addr_at(interpreter_frame_monitor_block_top_offset);
367
// make sure the pointer points inside the frame
368
assert(sp() <= (intptr_t*) result, "monitor end should be above the stack pointer");
369
assert((intptr_t*) result < fp(), "monitor end should be strictly below the frame pointer");
370
return result;
371
}
372
373
void frame::interpreter_frame_set_monitor_end(BasicObjectLock* value) {
374
*((BasicObjectLock**)addr_at(interpreter_frame_monitor_block_top_offset)) = value;
375
}
376
377
// Used by template based interpreter deoptimization
378
void frame::interpreter_frame_set_last_sp(intptr_t* sp) {
379
*((intptr_t**)addr_at(interpreter_frame_last_sp_offset)) = sp;
380
}
381
#endif // CC_INTERP
382
383
frame frame::sender_for_entry_frame(RegisterMap* map) const {
384
assert(map != NULL, "map must be set");
385
// Java frame called from C; skip all C frames and return top C
386
// frame of that chunk as the sender
387
JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor();
388
assert(!entry_frame_is_first(), "next Java fp must be non zero");
389
assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack");
390
// Since we are walking the stack now this nested anchor is obviously walkable
391
// even if it wasn't when it was stacked.
392
if (!jfa->walkable()) {
393
// Capture _last_Java_pc (if needed) and mark anchor walkable.
394
jfa->capture_last_Java_pc();
395
}
396
map->clear();
397
assert(map->include_argument_oops(), "should be set by clear");
398
assert(jfa->last_Java_pc() != NULL, "not walkable");
399
frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc());
400
return fr;
401
}
402
403
//------------------------------------------------------------------------------
404
// frame::verify_deopt_original_pc
405
//
406
// Verifies the calculated original PC of a deoptimization PC for the
407
// given unextended SP. The unextended SP might also be the saved SP
408
// for MethodHandle call sites.
409
#ifdef ASSERT
410
void frame::verify_deopt_original_pc(nmethod* nm, intptr_t* unextended_sp, bool is_method_handle_return) {
411
frame fr;
412
413
// This is ugly but it's better than to change {get,set}_original_pc
414
// to take an SP value as argument. And it's only a debugging
415
// method anyway.
416
fr._unextended_sp = unextended_sp;
417
418
address original_pc = nm->get_original_pc(&fr);
419
assert(nm->insts_contains(original_pc), "original PC must be in nmethod");
420
assert(nm->is_method_handle_return(original_pc) == is_method_handle_return, "must be");
421
}
422
#endif
423
424
//------------------------------------------------------------------------------
425
// frame::adjust_unextended_sp
426
void frame::adjust_unextended_sp() {
427
// If we are returning to a compiled MethodHandle call site, the
428
// saved_fp will in fact be a saved value of the unextended SP. The
429
// simplest way to tell whether we are returning to such a call site
430
// is as follows:
431
432
nmethod* sender_nm = (_cb == NULL) ? NULL : _cb->as_nmethod_or_null();
433
if (sender_nm != NULL) {
434
// If the sender PC is a deoptimization point, get the original
435
// PC. For MethodHandle call site the unextended_sp is stored in
436
// saved_fp.
437
if (sender_nm->is_deopt_mh_entry(_pc)) {
438
DEBUG_ONLY(verify_deopt_mh_original_pc(sender_nm, _fp));
439
_unextended_sp = _fp;
440
}
441
else if (sender_nm->is_deopt_entry(_pc)) {
442
DEBUG_ONLY(verify_deopt_original_pc(sender_nm, _unextended_sp));
443
}
444
else if (sender_nm->is_method_handle_return(_pc)) {
445
_unextended_sp = _fp;
446
}
447
}
448
}
449
450
//------------------------------------------------------------------------------
451
// frame::update_map_with_saved_link
452
void frame::update_map_with_saved_link(RegisterMap* map, intptr_t** link_addr) {
453
// The interpreter and compiler(s) always save fp in a known
454
// location on entry. We must record where that location is
455
// so that if fp was live on callout from c2 we can find
456
// the saved copy no matter what it called.
457
458
// Since the interpreter always saves fp if we record where it is then
459
// we don't have to always save fp on entry and exit to c2 compiled
460
// code, on entry will be enough.
461
map->set_location(rfp->as_VMReg(), (address) link_addr);
462
// this is weird "H" ought to be at a higher address however the
463
// oopMaps seems to have the "H" regs at the same address and the
464
// vanilla register.
465
// XXXX make this go away
466
if (true) {
467
map->set_location(rfp->as_VMReg()->next(), (address) link_addr);
468
}
469
}
470
471
472
//------------------------------------------------------------------------------
473
// frame::sender_for_interpreter_frame
474
frame frame::sender_for_interpreter_frame(RegisterMap* map) const {
475
// SP is the raw SP from the sender after adapter or interpreter
476
// extension.
477
intptr_t* sender_sp = this->sender_sp();
478
479
// This is the sp before any possible extension (adapter/locals).
480
intptr_t* unextended_sp = interpreter_frame_sender_sp();
481
482
#ifdef COMPILER2
483
if (map->update_map()) {
484
update_map_with_saved_link(map, (intptr_t**) addr_at(link_offset));
485
}
486
#endif // COMPILER2
487
488
return frame(sender_sp, unextended_sp, link(), sender_pc());
489
}
490
491
492
//------------------------------------------------------------------------------
493
// frame::sender_for_compiled_frame
494
frame frame::sender_for_compiled_frame(RegisterMap* map) const {
495
// we cannot rely upon the last fp having been saved to the thread
496
// in C2 code but it will have been pushed onto the stack. so we
497
// have to find it relative to the unextended sp
498
499
assert(_cb->frame_size() >= 0, "must have non-zero frame size");
500
intptr_t* l_sender_sp = unextended_sp() + _cb->frame_size();
501
intptr_t* unextended_sp = l_sender_sp;
502
503
// the return_address is always the word on the stack
504
address sender_pc = (address) *(l_sender_sp-1);
505
506
intptr_t** saved_fp_addr = (intptr_t**) (l_sender_sp - frame::sender_sp_offset);
507
508
// assert (sender_sp() == l_sender_sp, "should be");
509
// assert (*saved_fp_addr == link(), "should be");
510
511
if (map->update_map()) {
512
// Tell GC to use argument oopmaps for some runtime stubs that need it.
513
// For C1, the runtime stub might not have oop maps, so set this flag
514
// outside of update_register_map.
515
map->set_include_argument_oops(_cb->caller_must_gc_arguments(map->thread()));
516
if (_cb->oop_maps() != NULL) {
517
OopMapSet::update_register_map(this, map);
518
}
519
520
// Since the prolog does the save and restore of EBP there is no oopmap
521
// for it so we must fill in its location as if there was an oopmap entry
522
// since if our caller was compiled code there could be live jvm state in it.
523
update_map_with_saved_link(map, saved_fp_addr);
524
}
525
526
return frame(l_sender_sp, unextended_sp, *saved_fp_addr, sender_pc);
527
}
528
529
//------------------------------------------------------------------------------
530
// frame::sender
531
frame frame::sender(RegisterMap* map) const {
532
// Default is we done have to follow them. The sender_for_xxx will
533
// update it accordingly
534
map->set_include_argument_oops(false);
535
536
if (is_entry_frame())
537
return sender_for_entry_frame(map);
538
if (is_interpreted_frame())
539
return sender_for_interpreter_frame(map);
540
assert(_cb == CodeCache::find_blob(pc()),"Must be the same");
541
542
// This test looks odd: why is it not is_compiled_frame() ? That's
543
// because stubs also have OOP maps.
544
if (_cb != NULL) {
545
return sender_for_compiled_frame(map);
546
}
547
548
// Must be native-compiled frame, i.e. the marshaling code for native
549
// methods that exists in the core system.
550
return frame(sender_sp(), link(), sender_pc());
551
}
552
553
bool frame::interpreter_frame_equals_unpacked_fp(intptr_t* fp) {
554
assert(is_interpreted_frame(), "must be interpreter frame");
555
Method* method = interpreter_frame_method();
556
// When unpacking an optimized frame the frame pointer is
557
// adjusted with:
558
int diff = (method->max_locals() - method->size_of_parameters()) *
559
Interpreter::stackElementWords;
560
return _fp == (fp - diff);
561
}
562
563
void frame::pd_gc_epilog() {
564
// nothing done here now
565
}
566
567
bool frame::is_interpreted_frame_valid(JavaThread* thread) const {
568
// QQQ
569
#ifdef CC_INTERP
570
#else
571
assert(is_interpreted_frame(), "Not an interpreted frame");
572
// These are reasonable sanity checks
573
if (fp() == 0 || (intptr_t(fp()) & (wordSize-1)) != 0) {
574
return false;
575
}
576
if (sp() == 0 || (intptr_t(sp()) & (wordSize-1)) != 0) {
577
return false;
578
}
579
if (fp() + interpreter_frame_initial_sp_offset < sp()) {
580
return false;
581
}
582
// These are hacks to keep us out of trouble.
583
// The problem with these is that they mask other problems
584
if (fp() <= sp()) { // this attempts to deal with unsigned comparison above
585
return false;
586
}
587
588
// do some validation of frame elements
589
590
// first the method
591
592
Method* m = *interpreter_frame_method_addr();
593
594
// validate the method we'd find in this potential sender
595
if (!m->is_valid_method()) return false;
596
597
// stack frames shouldn't be much larger than max_stack elements
598
// this test requires the use of unextended_sp which is the sp as seen by
599
// the current frame, and not sp which is the "raw" pc which could point
600
// further because of local variables of the callee method inserted after
601
// method arguments
602
if (fp() - unextended_sp() > 1024 + m->max_stack()*Interpreter::stackElementSize) {
603
return false;
604
}
605
606
// validate bci/bcx
607
608
intptr_t bcx = interpreter_frame_bcx();
609
if (m->validate_bci_from_bcx(bcx) < 0) {
610
return false;
611
}
612
613
// validate constantPoolCache*
614
ConstantPoolCache* cp = *interpreter_frame_cache_addr();
615
if (cp == NULL || !cp->is_metaspace_object()) return false;
616
617
// validate locals
618
619
address locals = (address) *interpreter_frame_locals_addr();
620
621
if (locals > thread->stack_base() || locals < (address) fp()) return false;
622
623
// We'd have to be pretty unlucky to be mislead at this point
624
625
#endif // CC_INTERP
626
return true;
627
}
628
629
BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) {
630
#ifdef CC_INTERP
631
// Needed for JVMTI. The result should always be in the
632
// interpreterState object
633
interpreterState istate = get_interpreterState();
634
#endif // CC_INTERP
635
assert(is_interpreted_frame(), "interpreted frame expected");
636
Method* method = interpreter_frame_method();
637
BasicType type = method->result_type();
638
639
intptr_t* tos_addr;
640
if (method->is_native()) {
641
// TODO : ensure AARCH64 does the same as Intel here i.e. push v0 then r0
642
// Prior to calling into the runtime to report the method_exit the possible
643
// return value is pushed to the native stack. If the result is a jfloat/jdouble
644
// then ST0 is saved before EAX/EDX. See the note in generate_native_result
645
tos_addr = (intptr_t*)sp();
646
if (type == T_FLOAT || type == T_DOUBLE) {
647
// This is times two because we do a push(ltos) after pushing XMM0
648
// and that takes two interpreter stack slots.
649
tos_addr += 2 * Interpreter::stackElementWords;
650
}
651
} else {
652
tos_addr = (intptr_t*)interpreter_frame_tos_address();
653
}
654
655
switch (type) {
656
case T_OBJECT :
657
case T_ARRAY : {
658
oop obj;
659
if (method->is_native()) {
660
#ifdef CC_INTERP
661
obj = istate->_oop_temp;
662
#else
663
obj = cast_to_oop(at(interpreter_frame_oop_temp_offset));
664
#endif // CC_INTERP
665
} else {
666
oop* obj_p = (oop*)tos_addr;
667
obj = (obj_p == NULL) ? (oop)NULL : *obj_p;
668
}
669
assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check");
670
*oop_result = obj;
671
break;
672
}
673
case T_BOOLEAN : value_result->z = *(jboolean*)tos_addr; break;
674
case T_BYTE : value_result->b = *(jbyte*)tos_addr; break;
675
case T_CHAR : value_result->c = *(jchar*)tos_addr; break;
676
case T_SHORT : value_result->s = *(jshort*)tos_addr; break;
677
case T_INT : value_result->i = *(jint*)tos_addr; break;
678
case T_LONG : value_result->j = *(jlong*)tos_addr; break;
679
case T_FLOAT : {
680
value_result->f = *(jfloat*)tos_addr;
681
break;
682
}
683
case T_DOUBLE : value_result->d = *(jdouble*)tos_addr; break;
684
case T_VOID : /* Nothing to do */ break;
685
default : ShouldNotReachHere();
686
}
687
688
return type;
689
}
690
691
692
intptr_t* frame::interpreter_frame_tos_at(jint offset) const {
693
int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
694
return &interpreter_frame_tos_address()[index];
695
}
696
697
#ifndef PRODUCT
698
699
#define DESCRIBE_FP_OFFSET(name) \
700
values.describe(frame_no, fp() + frame::name##_offset, #name)
701
702
void frame::describe_pd(FrameValues& values, int frame_no) {
703
if (is_interpreted_frame()) {
704
DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp);
705
DESCRIBE_FP_OFFSET(interpreter_frame_last_sp);
706
DESCRIBE_FP_OFFSET(interpreter_frame_method);
707
DESCRIBE_FP_OFFSET(interpreter_frame_mdx);
708
DESCRIBE_FP_OFFSET(interpreter_frame_cache);
709
DESCRIBE_FP_OFFSET(interpreter_frame_locals);
710
DESCRIBE_FP_OFFSET(interpreter_frame_bcx);
711
DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp);
712
}
713
}
714
#endif
715
716
intptr_t *frame::initial_deoptimization_info() {
717
// Not used on aarch64, but we must return something.
718
return NULL;
719
}
720
721
intptr_t* frame::real_fp() const {
722
if (_cb != NULL) {
723
// use the frame size if valid
724
int size = _cb->frame_size();
725
if (size > 0) {
726
return unextended_sp() + size;
727
}
728
}
729
// else rely on fp()
730
assert(! is_compiled_frame(), "unknown compiled frame size");
731
return fp();
732
}
733
734
#undef DESCRIBE_FP_OFFSET
735
736
#define DESCRIBE_FP_OFFSET(name) \
737
{ \
738
unsigned long *p = (unsigned long *)fp; \
739
printf("0x%016lx 0x%016lx %s\n", (unsigned long)(p + frame::name##_offset), \
740
p[frame::name##_offset], #name); \
741
}
742
743
static __thread unsigned long nextfp;
744
static __thread unsigned long nextpc;
745
static __thread unsigned long nextsp;
746
static __thread RegisterMap *reg_map;
747
748
static void printbc(Method *m, intptr_t bcx) {
749
const char *name;
750
char buf[16];
751
if (m->validate_bci_from_bcx(bcx) < 0
752
|| !m->contains((address)bcx)) {
753
name = "???";
754
snprintf(buf, sizeof buf, "(bad)");
755
} else {
756
int bci = m->bci_from((address)bcx);
757
snprintf(buf, sizeof buf, "%d", bci);
758
name = Bytecodes::name(m->code_at(bci));
759
}
760
ResourceMark rm;
761
printf("%s : %s ==> %s\n", m->name_and_sig_as_C_string(), buf, name);
762
}
763
764
void internal_pf(unsigned long sp, unsigned long fp, unsigned long pc, unsigned long bcx) {
765
if (! fp)
766
return;
767
768
DESCRIBE_FP_OFFSET(return_addr);
769
DESCRIBE_FP_OFFSET(link);
770
DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp);
771
DESCRIBE_FP_OFFSET(interpreter_frame_last_sp);
772
DESCRIBE_FP_OFFSET(interpreter_frame_method);
773
DESCRIBE_FP_OFFSET(interpreter_frame_mdx);
774
DESCRIBE_FP_OFFSET(interpreter_frame_cache);
775
DESCRIBE_FP_OFFSET(interpreter_frame_locals);
776
DESCRIBE_FP_OFFSET(interpreter_frame_bcx);
777
DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp);
778
unsigned long *p = (unsigned long *)fp;
779
780
// We want to see all frames, native and Java. For compiled and
781
// interpreted frames we have special information that allows us to
782
// unwind them; for everything else we assume that the native frame
783
// pointer chain is intact.
784
frame this_frame((intptr_t*)sp, (intptr_t*)fp, (address)pc);
785
if (this_frame.is_compiled_frame() ||
786
this_frame.is_interpreted_frame()) {
787
frame sender = this_frame.sender(reg_map);
788
nextfp = (unsigned long)sender.fp();
789
nextpc = (unsigned long)sender.pc();
790
nextsp = (unsigned long)sender.unextended_sp();
791
} else {
792
nextfp = p[frame::link_offset];
793
nextpc = p[frame::return_addr_offset];
794
nextsp = (unsigned long)&p[frame::sender_sp_offset];
795
}
796
797
if (bcx == -1ul)
798
bcx = p[frame::interpreter_frame_bcx_offset];
799
800
if (Interpreter::contains((address)pc)) {
801
Method* m = (Method*)p[frame::interpreter_frame_method_offset];
802
if(m && m->is_method()) {
803
printbc(m, bcx);
804
} else
805
printf("not a Method\n");
806
} else {
807
CodeBlob *cb = CodeCache::find_blob((address)pc);
808
if (cb != NULL) {
809
if (cb->is_nmethod()) {
810
ResourceMark rm;
811
nmethod* nm = (nmethod*)cb;
812
printf("nmethod %s\n", nm->method()->name_and_sig_as_C_string());
813
} else if (cb->name()) {
814
printf("CodeBlob %s\n", cb->name());
815
}
816
}
817
}
818
}
819
820
extern "C" void npf() {
821
CodeBlob *cb = CodeCache::find_blob((address)nextpc);
822
// C2 does not always chain the frame pointers when it can, instead
823
// preferring to use fixed offsets from SP, so a simple leave() does
824
// not work. Instead, it adds the frame size to SP then pops FP and
825
// LR. We have to do the same thing to get a good call chain.
826
if (cb && cb->frame_size())
827
nextfp = nextsp + wordSize * (cb->frame_size() - 2);
828
internal_pf (nextsp, nextfp, nextpc, -1);
829
}
830
831
extern "C" void pf(unsigned long sp, unsigned long fp, unsigned long pc,
832
unsigned long bcx, unsigned long thread) {
833
if (!reg_map) {
834
reg_map = NEW_C_HEAP_OBJ(RegisterMap, mtNone);
835
::new (reg_map) RegisterMap((JavaThread*)thread, false);
836
} else {
837
*reg_map = RegisterMap((JavaThread*)thread, false);
838
}
839
840
{
841
CodeBlob *cb = CodeCache::find_blob((address)pc);
842
if (cb && cb->frame_size())
843
fp = sp + wordSize * (cb->frame_size() - 2);
844
}
845
internal_pf(sp, fp, pc, bcx);
846
}
847
848
// support for printing out where we are in a Java method
849
// needs to be passed current fp and bcp register values
850
// prints method name, bc index and bytecode name
851
extern "C" void pm(unsigned long fp, unsigned long bcx) {
852
DESCRIBE_FP_OFFSET(interpreter_frame_method);
853
unsigned long *p = (unsigned long *)fp;
854
Method* m = (Method*)p[frame::interpreter_frame_method_offset];
855
printbc(m, bcx);
856
}
857
858
#ifndef PRODUCT
859
// This is a generic constructor which is only used by pns() in debug.cpp.
860
frame::frame(void* sp, void* fp, void* pc) {
861
init((intptr_t*)sp, (intptr_t*)fp, (address)pc);
862
}
863
#endif
864
865
void JavaFrameAnchor::make_walkable(JavaThread* thread) {
866
// last frame set?
867
if (last_Java_sp() == NULL) return;
868
// already walkable?
869
if (walkable()) return;
870
assert(Thread::current() == (Thread*)thread, "not current thread");
871
assert(last_Java_sp() != NULL, "not called from Java code?");
872
assert(last_Java_pc() == NULL, "already walkable");
873
capture_last_Java_pc();
874
assert(walkable(), "something went wrong");
875
}
876
877
void JavaFrameAnchor::capture_last_Java_pc() {
878
assert(_last_Java_sp != NULL, "no last frame set");
879
assert(_last_Java_pc == NULL, "already walkable");
880
_last_Java_pc = (address)_last_Java_sp[-1];
881
}
882
883