Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/cpu/ppc/vm/assembler_ppc.hpp
32285 views
1
/*
2
* Copyright (c) 2002, 2018, Oracle and/or its affiliates. All rights reserved.
3
* Copyright (c) 2012, 2018, SAP SE. All rights reserved.
4
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5
*
6
* This code is free software; you can redistribute it and/or modify it
7
* under the terms of the GNU General Public License version 2 only, as
8
* published by the Free Software Foundation.
9
*
10
* This code is distributed in the hope that it will be useful, but WITHOUT
11
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13
* version 2 for more details (a copy is included in the LICENSE file that
14
* accompanied this code).
15
*
16
* You should have received a copy of the GNU General Public License version
17
* 2 along with this work; if not, write to the Free Software Foundation,
18
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19
*
20
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21
* or visit www.oracle.com if you need additional information or have any
22
* questions.
23
*
24
*/
25
26
#ifndef CPU_PPC_VM_ASSEMBLER_PPC_HPP
27
#define CPU_PPC_VM_ASSEMBLER_PPC_HPP
28
29
#include "asm/register.hpp"
30
31
// Address is an abstraction used to represent a memory location
32
// as used in assembler instructions.
33
// PPC instructions grok either baseReg + indexReg or baseReg + disp.
34
// So far we do not use this as simplification by this class is low
35
// on PPC with its simple addressing mode. Use RegisterOrConstant to
36
// represent an offset.
37
class Address VALUE_OBJ_CLASS_SPEC {
38
};
39
40
class AddressLiteral VALUE_OBJ_CLASS_SPEC {
41
private:
42
address _address;
43
RelocationHolder _rspec;
44
45
RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) {
46
switch (rtype) {
47
case relocInfo::external_word_type:
48
return external_word_Relocation::spec(addr);
49
case relocInfo::internal_word_type:
50
return internal_word_Relocation::spec(addr);
51
case relocInfo::opt_virtual_call_type:
52
return opt_virtual_call_Relocation::spec();
53
case relocInfo::static_call_type:
54
return static_call_Relocation::spec();
55
case relocInfo::runtime_call_type:
56
return runtime_call_Relocation::spec();
57
case relocInfo::none:
58
return RelocationHolder();
59
default:
60
ShouldNotReachHere();
61
return RelocationHolder();
62
}
63
}
64
65
protected:
66
// creation
67
AddressLiteral() : _address(NULL), _rspec(NULL) {}
68
69
public:
70
AddressLiteral(address addr, RelocationHolder const& rspec)
71
: _address(addr),
72
_rspec(rspec) {}
73
74
AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none)
75
: _address((address) addr),
76
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
77
78
AddressLiteral(oop* addr, relocInfo::relocType rtype = relocInfo::none)
79
: _address((address) addr),
80
_rspec(rspec_from_rtype(rtype, (address) addr)) {}
81
82
intptr_t value() const { return (intptr_t) _address; }
83
84
const RelocationHolder& rspec() const { return _rspec; }
85
};
86
87
// Argument is an abstraction used to represent an outgoing
88
// actual argument or an incoming formal parameter, whether
89
// it resides in memory or in a register, in a manner consistent
90
// with the PPC Application Binary Interface, or ABI. This is
91
// often referred to as the native or C calling convention.
92
93
class Argument VALUE_OBJ_CLASS_SPEC {
94
private:
95
int _number; // The number of the argument.
96
public:
97
enum {
98
// Only 8 registers may contain integer parameters.
99
n_register_parameters = 8,
100
// Can have up to 8 floating registers.
101
n_float_register_parameters = 8,
102
103
// PPC C calling conventions.
104
// The first eight arguments are passed in int regs if they are int.
105
n_int_register_parameters_c = 8,
106
// The first thirteen float arguments are passed in float regs.
107
n_float_register_parameters_c = 13,
108
// Only the first 8 parameters are not placed on the stack. Aix disassembly
109
// shows that xlC places all float args after argument 8 on the stack AND
110
// in a register. This is not documented, but we follow this convention, too.
111
n_regs_not_on_stack_c = 8,
112
};
113
// creation
114
Argument(int number) : _number(number) {}
115
116
int number() const { return _number; }
117
118
// Locating register-based arguments:
119
bool is_register() const { return _number < n_register_parameters; }
120
121
Register as_register() const {
122
assert(is_register(), "must be a register argument");
123
return as_Register(number() + R3_ARG1->encoding());
124
}
125
};
126
127
#if !defined(ABI_ELFv2)
128
// A ppc64 function descriptor.
129
struct FunctionDescriptor VALUE_OBJ_CLASS_SPEC {
130
private:
131
address _entry;
132
address _toc;
133
address _env;
134
135
public:
136
inline address entry() const { return _entry; }
137
inline address toc() const { return _toc; }
138
inline address env() const { return _env; }
139
140
inline void set_entry(address entry) { _entry = entry; }
141
inline void set_toc( address toc) { _toc = toc; }
142
inline void set_env( address env) { _env = env; }
143
144
inline static ByteSize entry_offset() { return byte_offset_of(FunctionDescriptor, _entry); }
145
inline static ByteSize toc_offset() { return byte_offset_of(FunctionDescriptor, _toc); }
146
inline static ByteSize env_offset() { return byte_offset_of(FunctionDescriptor, _env); }
147
148
// Friend functions can be called without loading toc and env.
149
enum {
150
friend_toc = 0xcafe,
151
friend_env = 0xc0de
152
};
153
154
inline bool is_friend_function() const {
155
return (toc() == (address) friend_toc) && (env() == (address) friend_env);
156
}
157
158
// Constructor for stack-allocated instances.
159
FunctionDescriptor() {
160
_entry = (address) 0xbad;
161
_toc = (address) 0xbad;
162
_env = (address) 0xbad;
163
}
164
};
165
#endif
166
167
class Assembler : public AbstractAssembler {
168
protected:
169
// Displacement routines
170
static void print_instruction(int inst);
171
static int patched_branch(int dest_pos, int inst, int inst_pos);
172
static int branch_destination(int inst, int pos);
173
174
friend class AbstractAssembler;
175
176
// Code patchers need various routines like inv_wdisp()
177
friend class NativeInstruction;
178
friend class NativeGeneralJump;
179
friend class Relocation;
180
181
public:
182
183
enum shifts {
184
XO_21_29_SHIFT = 2,
185
XO_21_30_SHIFT = 1,
186
XO_27_29_SHIFT = 2,
187
XO_30_31_SHIFT = 0,
188
SPR_5_9_SHIFT = 11u, // SPR_5_9 field in bits 11 -- 15
189
SPR_0_4_SHIFT = 16u, // SPR_0_4 field in bits 16 -- 20
190
RS_SHIFT = 21u, // RS field in bits 21 -- 25
191
OPCODE_SHIFT = 26u, // opcode in bits 26 -- 31
192
};
193
194
enum opcdxos_masks {
195
XL_FORM_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
196
ADDI_OPCODE_MASK = (63u << OPCODE_SHIFT),
197
ADDIS_OPCODE_MASK = (63u << OPCODE_SHIFT),
198
BXX_OPCODE_MASK = (63u << OPCODE_SHIFT),
199
BCXX_OPCODE_MASK = (63u << OPCODE_SHIFT),
200
// trap instructions
201
TDI_OPCODE_MASK = (63u << OPCODE_SHIFT),
202
TWI_OPCODE_MASK = (63u << OPCODE_SHIFT),
203
TD_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
204
TW_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
205
LD_OPCODE_MASK = (63u << OPCODE_SHIFT) | (3u << XO_30_31_SHIFT), // DS-FORM
206
STD_OPCODE_MASK = LD_OPCODE_MASK,
207
STDU_OPCODE_MASK = STD_OPCODE_MASK,
208
STDX_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
209
STDUX_OPCODE_MASK = STDX_OPCODE_MASK,
210
STW_OPCODE_MASK = (63u << OPCODE_SHIFT),
211
STWU_OPCODE_MASK = STW_OPCODE_MASK,
212
STWX_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
213
STWUX_OPCODE_MASK = STWX_OPCODE_MASK,
214
MTCTR_OPCODE_MASK = ~(31u << RS_SHIFT),
215
ORI_OPCODE_MASK = (63u << OPCODE_SHIFT),
216
ORIS_OPCODE_MASK = (63u << OPCODE_SHIFT),
217
RLDICR_OPCODE_MASK = (63u << OPCODE_SHIFT) | (7u << XO_27_29_SHIFT)
218
};
219
220
enum opcdxos {
221
ADD_OPCODE = (31u << OPCODE_SHIFT | 266u << 1),
222
ADDC_OPCODE = (31u << OPCODE_SHIFT | 10u << 1),
223
ADDI_OPCODE = (14u << OPCODE_SHIFT),
224
ADDIS_OPCODE = (15u << OPCODE_SHIFT),
225
ADDIC__OPCODE = (13u << OPCODE_SHIFT),
226
ADDE_OPCODE = (31u << OPCODE_SHIFT | 138u << 1),
227
SUBF_OPCODE = (31u << OPCODE_SHIFT | 40u << 1),
228
SUBFC_OPCODE = (31u << OPCODE_SHIFT | 8u << 1),
229
SUBFE_OPCODE = (31u << OPCODE_SHIFT | 136u << 1),
230
SUBFIC_OPCODE = (8u << OPCODE_SHIFT),
231
SUBFZE_OPCODE = (31u << OPCODE_SHIFT | 200u << 1),
232
DIVW_OPCODE = (31u << OPCODE_SHIFT | 491u << 1),
233
MULLW_OPCODE = (31u << OPCODE_SHIFT | 235u << 1),
234
MULHW_OPCODE = (31u << OPCODE_SHIFT | 75u << 1),
235
MULHWU_OPCODE = (31u << OPCODE_SHIFT | 11u << 1),
236
MULLI_OPCODE = (7u << OPCODE_SHIFT),
237
AND_OPCODE = (31u << OPCODE_SHIFT | 28u << 1),
238
ANDI_OPCODE = (28u << OPCODE_SHIFT),
239
ANDIS_OPCODE = (29u << OPCODE_SHIFT),
240
ANDC_OPCODE = (31u << OPCODE_SHIFT | 60u << 1),
241
ORC_OPCODE = (31u << OPCODE_SHIFT | 412u << 1),
242
OR_OPCODE = (31u << OPCODE_SHIFT | 444u << 1),
243
ORI_OPCODE = (24u << OPCODE_SHIFT),
244
ORIS_OPCODE = (25u << OPCODE_SHIFT),
245
XOR_OPCODE = (31u << OPCODE_SHIFT | 316u << 1),
246
XORI_OPCODE = (26u << OPCODE_SHIFT),
247
XORIS_OPCODE = (27u << OPCODE_SHIFT),
248
249
NEG_OPCODE = (31u << OPCODE_SHIFT | 104u << 1),
250
251
RLWINM_OPCODE = (21u << OPCODE_SHIFT),
252
CLRRWI_OPCODE = RLWINM_OPCODE,
253
CLRLWI_OPCODE = RLWINM_OPCODE,
254
255
RLWIMI_OPCODE = (20u << OPCODE_SHIFT),
256
257
SLW_OPCODE = (31u << OPCODE_SHIFT | 24u << 1),
258
SLWI_OPCODE = RLWINM_OPCODE,
259
SRW_OPCODE = (31u << OPCODE_SHIFT | 536u << 1),
260
SRWI_OPCODE = RLWINM_OPCODE,
261
SRAW_OPCODE = (31u << OPCODE_SHIFT | 792u << 1),
262
SRAWI_OPCODE = (31u << OPCODE_SHIFT | 824u << 1),
263
264
CMP_OPCODE = (31u << OPCODE_SHIFT | 0u << 1),
265
CMPI_OPCODE = (11u << OPCODE_SHIFT),
266
CMPL_OPCODE = (31u << OPCODE_SHIFT | 32u << 1),
267
CMPLI_OPCODE = (10u << OPCODE_SHIFT),
268
269
ISEL_OPCODE = (31u << OPCODE_SHIFT | 15u << 1),
270
271
// Special purpose registers
272
MTSPR_OPCODE = (31u << OPCODE_SHIFT | 467u << 1),
273
MFSPR_OPCODE = (31u << OPCODE_SHIFT | 339u << 1),
274
275
MTXER_OPCODE = (MTSPR_OPCODE | 1 << SPR_0_4_SHIFT),
276
MFXER_OPCODE = (MFSPR_OPCODE | 1 << SPR_0_4_SHIFT),
277
278
MTDSCR_OPCODE = (MTSPR_OPCODE | 3 << SPR_0_4_SHIFT),
279
MFDSCR_OPCODE = (MFSPR_OPCODE | 3 << SPR_0_4_SHIFT),
280
281
MTLR_OPCODE = (MTSPR_OPCODE | 8 << SPR_0_4_SHIFT),
282
MFLR_OPCODE = (MFSPR_OPCODE | 8 << SPR_0_4_SHIFT),
283
284
MTCTR_OPCODE = (MTSPR_OPCODE | 9 << SPR_0_4_SHIFT),
285
MFCTR_OPCODE = (MFSPR_OPCODE | 9 << SPR_0_4_SHIFT),
286
287
MTTFHAR_OPCODE = (MTSPR_OPCODE | 128 << SPR_0_4_SHIFT),
288
MFTFHAR_OPCODE = (MFSPR_OPCODE | 128 << SPR_0_4_SHIFT),
289
MTTFIAR_OPCODE = (MTSPR_OPCODE | 129 << SPR_0_4_SHIFT),
290
MFTFIAR_OPCODE = (MFSPR_OPCODE | 129 << SPR_0_4_SHIFT),
291
MTTEXASR_OPCODE = (MTSPR_OPCODE | 130 << SPR_0_4_SHIFT),
292
MFTEXASR_OPCODE = (MFSPR_OPCODE | 130 << SPR_0_4_SHIFT),
293
MTTEXASRU_OPCODE = (MTSPR_OPCODE | 131 << SPR_0_4_SHIFT),
294
MFTEXASRU_OPCODE = (MFSPR_OPCODE | 131 << SPR_0_4_SHIFT),
295
296
MTVRSAVE_OPCODE = (MTSPR_OPCODE | 256 << SPR_0_4_SHIFT),
297
MFVRSAVE_OPCODE = (MFSPR_OPCODE | 256 << SPR_0_4_SHIFT),
298
299
MFTB_OPCODE = (MFSPR_OPCODE | 268 << SPR_0_4_SHIFT),
300
301
MTCRF_OPCODE = (31u << OPCODE_SHIFT | 144u << 1),
302
MFCR_OPCODE = (31u << OPCODE_SHIFT | 19u << 1),
303
MCRF_OPCODE = (19u << OPCODE_SHIFT | 0u << 1),
304
305
// condition register logic instructions
306
CRAND_OPCODE = (19u << OPCODE_SHIFT | 257u << 1),
307
CRNAND_OPCODE = (19u << OPCODE_SHIFT | 225u << 1),
308
CROR_OPCODE = (19u << OPCODE_SHIFT | 449u << 1),
309
CRXOR_OPCODE = (19u << OPCODE_SHIFT | 193u << 1),
310
CRNOR_OPCODE = (19u << OPCODE_SHIFT | 33u << 1),
311
CREQV_OPCODE = (19u << OPCODE_SHIFT | 289u << 1),
312
CRANDC_OPCODE = (19u << OPCODE_SHIFT | 129u << 1),
313
CRORC_OPCODE = (19u << OPCODE_SHIFT | 417u << 1),
314
315
BCLR_OPCODE = (19u << OPCODE_SHIFT | 16u << 1),
316
BXX_OPCODE = (18u << OPCODE_SHIFT),
317
BCXX_OPCODE = (16u << OPCODE_SHIFT),
318
319
// CTR-related opcodes
320
BCCTR_OPCODE = (19u << OPCODE_SHIFT | 528u << 1),
321
322
LWZ_OPCODE = (32u << OPCODE_SHIFT),
323
LWZX_OPCODE = (31u << OPCODE_SHIFT | 23u << 1),
324
LWZU_OPCODE = (33u << OPCODE_SHIFT),
325
LWBRX_OPCODE = (31u << OPCODE_SHIFT | 534 << 1),
326
327
LHA_OPCODE = (42u << OPCODE_SHIFT),
328
LHAX_OPCODE = (31u << OPCODE_SHIFT | 343u << 1),
329
LHAU_OPCODE = (43u << OPCODE_SHIFT),
330
331
LHZ_OPCODE = (40u << OPCODE_SHIFT),
332
LHZX_OPCODE = (31u << OPCODE_SHIFT | 279u << 1),
333
LHZU_OPCODE = (41u << OPCODE_SHIFT),
334
LHBRX_OPCODE = (31u << OPCODE_SHIFT | 790 << 1),
335
336
LBZ_OPCODE = (34u << OPCODE_SHIFT),
337
LBZX_OPCODE = (31u << OPCODE_SHIFT | 87u << 1),
338
LBZU_OPCODE = (35u << OPCODE_SHIFT),
339
340
STW_OPCODE = (36u << OPCODE_SHIFT),
341
STWX_OPCODE = (31u << OPCODE_SHIFT | 151u << 1),
342
STWU_OPCODE = (37u << OPCODE_SHIFT),
343
STWUX_OPCODE = (31u << OPCODE_SHIFT | 183u << 1),
344
345
STH_OPCODE = (44u << OPCODE_SHIFT),
346
STHX_OPCODE = (31u << OPCODE_SHIFT | 407u << 1),
347
STHU_OPCODE = (45u << OPCODE_SHIFT),
348
349
STB_OPCODE = (38u << OPCODE_SHIFT),
350
STBX_OPCODE = (31u << OPCODE_SHIFT | 215u << 1),
351
STBU_OPCODE = (39u << OPCODE_SHIFT),
352
353
EXTSB_OPCODE = (31u << OPCODE_SHIFT | 954u << 1),
354
EXTSH_OPCODE = (31u << OPCODE_SHIFT | 922u << 1),
355
EXTSW_OPCODE = (31u << OPCODE_SHIFT | 986u << 1), // X-FORM
356
357
// 32 bit opcode encodings
358
359
LWA_OPCODE = (58u << OPCODE_SHIFT | 2u << XO_30_31_SHIFT), // DS-FORM
360
LWAX_OPCODE = (31u << OPCODE_SHIFT | 341u << XO_21_30_SHIFT), // X-FORM
361
362
CNTLZW_OPCODE = (31u << OPCODE_SHIFT | 26u << XO_21_30_SHIFT), // X-FORM
363
364
// 64 bit opcode encodings
365
366
LD_OPCODE = (58u << OPCODE_SHIFT | 0u << XO_30_31_SHIFT), // DS-FORM
367
LDU_OPCODE = (58u << OPCODE_SHIFT | 1u << XO_30_31_SHIFT), // DS-FORM
368
LDX_OPCODE = (31u << OPCODE_SHIFT | 21u << XO_21_30_SHIFT), // X-FORM
369
370
STD_OPCODE = (62u << OPCODE_SHIFT | 0u << XO_30_31_SHIFT), // DS-FORM
371
STDU_OPCODE = (62u << OPCODE_SHIFT | 1u << XO_30_31_SHIFT), // DS-FORM
372
STDUX_OPCODE = (31u << OPCODE_SHIFT | 181u << 1), // X-FORM
373
STDX_OPCODE = (31u << OPCODE_SHIFT | 149u << XO_21_30_SHIFT), // X-FORM
374
375
RLDICR_OPCODE = (30u << OPCODE_SHIFT | 1u << XO_27_29_SHIFT), // MD-FORM
376
RLDICL_OPCODE = (30u << OPCODE_SHIFT | 0u << XO_27_29_SHIFT), // MD-FORM
377
RLDIC_OPCODE = (30u << OPCODE_SHIFT | 2u << XO_27_29_SHIFT), // MD-FORM
378
RLDIMI_OPCODE = (30u << OPCODE_SHIFT | 3u << XO_27_29_SHIFT), // MD-FORM
379
380
SRADI_OPCODE = (31u << OPCODE_SHIFT | 413u << XO_21_29_SHIFT), // XS-FORM
381
382
SLD_OPCODE = (31u << OPCODE_SHIFT | 27u << 1), // X-FORM
383
SRD_OPCODE = (31u << OPCODE_SHIFT | 539u << 1), // X-FORM
384
SRAD_OPCODE = (31u << OPCODE_SHIFT | 794u << 1), // X-FORM
385
386
MULLD_OPCODE = (31u << OPCODE_SHIFT | 233u << 1), // XO-FORM
387
MULHD_OPCODE = (31u << OPCODE_SHIFT | 73u << 1), // XO-FORM
388
MULHDU_OPCODE = (31u << OPCODE_SHIFT | 9u << 1), // XO-FORM
389
DIVD_OPCODE = (31u << OPCODE_SHIFT | 489u << 1), // XO-FORM
390
391
CNTLZD_OPCODE = (31u << OPCODE_SHIFT | 58u << XO_21_30_SHIFT), // X-FORM
392
NAND_OPCODE = (31u << OPCODE_SHIFT | 476u << XO_21_30_SHIFT), // X-FORM
393
NOR_OPCODE = (31u << OPCODE_SHIFT | 124u << XO_21_30_SHIFT), // X-FORM
394
395
396
// opcodes only used for floating arithmetic
397
FADD_OPCODE = (63u << OPCODE_SHIFT | 21u << 1),
398
FADDS_OPCODE = (59u << OPCODE_SHIFT | 21u << 1),
399
FCMPU_OPCODE = (63u << OPCODE_SHIFT | 00u << 1),
400
FDIV_OPCODE = (63u << OPCODE_SHIFT | 18u << 1),
401
FDIVS_OPCODE = (59u << OPCODE_SHIFT | 18u << 1),
402
FMR_OPCODE = (63u << OPCODE_SHIFT | 72u << 1),
403
// These are special Power6 opcodes, reused for "lfdepx" and "stfdepx"
404
// on Power7. Do not use.
405
// MFFGPR_OPCODE = (31u << OPCODE_SHIFT | 607u << 1),
406
// MFTGPR_OPCODE = (31u << OPCODE_SHIFT | 735u << 1),
407
CMPB_OPCODE = (31u << OPCODE_SHIFT | 508 << 1),
408
POPCNTB_OPCODE = (31u << OPCODE_SHIFT | 122 << 1),
409
POPCNTW_OPCODE = (31u << OPCODE_SHIFT | 378 << 1),
410
POPCNTD_OPCODE = (31u << OPCODE_SHIFT | 506 << 1),
411
FABS_OPCODE = (63u << OPCODE_SHIFT | 264u << 1),
412
FNABS_OPCODE = (63u << OPCODE_SHIFT | 136u << 1),
413
FMUL_OPCODE = (63u << OPCODE_SHIFT | 25u << 1),
414
FMULS_OPCODE = (59u << OPCODE_SHIFT | 25u << 1),
415
FNEG_OPCODE = (63u << OPCODE_SHIFT | 40u << 1),
416
FSUB_OPCODE = (63u << OPCODE_SHIFT | 20u << 1),
417
FSUBS_OPCODE = (59u << OPCODE_SHIFT | 20u << 1),
418
419
// PPC64-internal FPU conversion opcodes
420
FCFID_OPCODE = (63u << OPCODE_SHIFT | 846u << 1),
421
FCFIDS_OPCODE = (59u << OPCODE_SHIFT | 846u << 1),
422
FCTID_OPCODE = (63u << OPCODE_SHIFT | 814u << 1),
423
FCTIDZ_OPCODE = (63u << OPCODE_SHIFT | 815u << 1),
424
FCTIW_OPCODE = (63u << OPCODE_SHIFT | 14u << 1),
425
FCTIWZ_OPCODE = (63u << OPCODE_SHIFT | 15u << 1),
426
FRSP_OPCODE = (63u << OPCODE_SHIFT | 12u << 1),
427
428
// WARNING: using fmadd results in a non-compliant vm. Some floating
429
// point tck tests will fail.
430
FMADD_OPCODE = (59u << OPCODE_SHIFT | 29u << 1),
431
DMADD_OPCODE = (63u << OPCODE_SHIFT | 29u << 1),
432
FMSUB_OPCODE = (59u << OPCODE_SHIFT | 28u << 1),
433
DMSUB_OPCODE = (63u << OPCODE_SHIFT | 28u << 1),
434
FNMADD_OPCODE = (59u << OPCODE_SHIFT | 31u << 1),
435
DNMADD_OPCODE = (63u << OPCODE_SHIFT | 31u << 1),
436
FNMSUB_OPCODE = (59u << OPCODE_SHIFT | 30u << 1),
437
DNMSUB_OPCODE = (63u << OPCODE_SHIFT | 30u << 1),
438
439
LFD_OPCODE = (50u << OPCODE_SHIFT | 00u << 1),
440
LFDU_OPCODE = (51u << OPCODE_SHIFT | 00u << 1),
441
LFDX_OPCODE = (31u << OPCODE_SHIFT | 599u << 1),
442
LFS_OPCODE = (48u << OPCODE_SHIFT | 00u << 1),
443
LFSU_OPCODE = (49u << OPCODE_SHIFT | 00u << 1),
444
LFSX_OPCODE = (31u << OPCODE_SHIFT | 535u << 1),
445
446
STFD_OPCODE = (54u << OPCODE_SHIFT | 00u << 1),
447
STFDU_OPCODE = (55u << OPCODE_SHIFT | 00u << 1),
448
STFDX_OPCODE = (31u << OPCODE_SHIFT | 727u << 1),
449
STFS_OPCODE = (52u << OPCODE_SHIFT | 00u << 1),
450
STFSU_OPCODE = (53u << OPCODE_SHIFT | 00u << 1),
451
STFSX_OPCODE = (31u << OPCODE_SHIFT | 663u << 1),
452
453
FSQRT_OPCODE = (63u << OPCODE_SHIFT | 22u << 1), // A-FORM
454
FSQRTS_OPCODE = (59u << OPCODE_SHIFT | 22u << 1), // A-FORM
455
456
// Vector instruction support for >= Power6
457
// Vector Storage Access
458
LVEBX_OPCODE = (31u << OPCODE_SHIFT | 7u << 1),
459
LVEHX_OPCODE = (31u << OPCODE_SHIFT | 39u << 1),
460
LVEWX_OPCODE = (31u << OPCODE_SHIFT | 71u << 1),
461
LVX_OPCODE = (31u << OPCODE_SHIFT | 103u << 1),
462
LVXL_OPCODE = (31u << OPCODE_SHIFT | 359u << 1),
463
STVEBX_OPCODE = (31u << OPCODE_SHIFT | 135u << 1),
464
STVEHX_OPCODE = (31u << OPCODE_SHIFT | 167u << 1),
465
STVEWX_OPCODE = (31u << OPCODE_SHIFT | 199u << 1),
466
STVX_OPCODE = (31u << OPCODE_SHIFT | 231u << 1),
467
STVXL_OPCODE = (31u << OPCODE_SHIFT | 487u << 1),
468
LVSL_OPCODE = (31u << OPCODE_SHIFT | 6u << 1),
469
LVSR_OPCODE = (31u << OPCODE_SHIFT | 38u << 1),
470
471
// Vector-Scalar (VSX) instruction support.
472
LXVD2X_OPCODE = (31u << OPCODE_SHIFT | 844u << 1),
473
STXVD2X_OPCODE = (31u << OPCODE_SHIFT | 972u << 1),
474
MTVSRD_OPCODE = (31u << OPCODE_SHIFT | 179u << 1),
475
MTVSRWZ_OPCODE = (31u << OPCODE_SHIFT | 243u << 1),
476
MFVSRD_OPCODE = (31u << OPCODE_SHIFT | 51u << 1),
477
MFVSRWZ_OPCODE = (31u << OPCODE_SHIFT | 115u << 1),
478
XXPERMDI_OPCODE= (60u << OPCODE_SHIFT | 10u << 3),
479
XXMRGHW_OPCODE = (60u << OPCODE_SHIFT | 18u << 3),
480
XXMRGLW_OPCODE = (60u << OPCODE_SHIFT | 50u << 3),
481
482
// Vector Permute and Formatting
483
VPKPX_OPCODE = (4u << OPCODE_SHIFT | 782u ),
484
VPKSHSS_OPCODE = (4u << OPCODE_SHIFT | 398u ),
485
VPKSWSS_OPCODE = (4u << OPCODE_SHIFT | 462u ),
486
VPKSHUS_OPCODE = (4u << OPCODE_SHIFT | 270u ),
487
VPKSWUS_OPCODE = (4u << OPCODE_SHIFT | 334u ),
488
VPKUHUM_OPCODE = (4u << OPCODE_SHIFT | 14u ),
489
VPKUWUM_OPCODE = (4u << OPCODE_SHIFT | 78u ),
490
VPKUHUS_OPCODE = (4u << OPCODE_SHIFT | 142u ),
491
VPKUWUS_OPCODE = (4u << OPCODE_SHIFT | 206u ),
492
VUPKHPX_OPCODE = (4u << OPCODE_SHIFT | 846u ),
493
VUPKHSB_OPCODE = (4u << OPCODE_SHIFT | 526u ),
494
VUPKHSH_OPCODE = (4u << OPCODE_SHIFT | 590u ),
495
VUPKLPX_OPCODE = (4u << OPCODE_SHIFT | 974u ),
496
VUPKLSB_OPCODE = (4u << OPCODE_SHIFT | 654u ),
497
VUPKLSH_OPCODE = (4u << OPCODE_SHIFT | 718u ),
498
499
VMRGHB_OPCODE = (4u << OPCODE_SHIFT | 12u ),
500
VMRGHW_OPCODE = (4u << OPCODE_SHIFT | 140u ),
501
VMRGHH_OPCODE = (4u << OPCODE_SHIFT | 76u ),
502
VMRGLB_OPCODE = (4u << OPCODE_SHIFT | 268u ),
503
VMRGLW_OPCODE = (4u << OPCODE_SHIFT | 396u ),
504
VMRGLH_OPCODE = (4u << OPCODE_SHIFT | 332u ),
505
506
VSPLT_OPCODE = (4u << OPCODE_SHIFT | 524u ),
507
VSPLTH_OPCODE = (4u << OPCODE_SHIFT | 588u ),
508
VSPLTW_OPCODE = (4u << OPCODE_SHIFT | 652u ),
509
VSPLTISB_OPCODE= (4u << OPCODE_SHIFT | 780u ),
510
VSPLTISH_OPCODE= (4u << OPCODE_SHIFT | 844u ),
511
VSPLTISW_OPCODE= (4u << OPCODE_SHIFT | 908u ),
512
513
VPERM_OPCODE = (4u << OPCODE_SHIFT | 43u ),
514
VSEL_OPCODE = (4u << OPCODE_SHIFT | 42u ),
515
516
VSL_OPCODE = (4u << OPCODE_SHIFT | 452u ),
517
VSLDOI_OPCODE = (4u << OPCODE_SHIFT | 44u ),
518
VSLO_OPCODE = (4u << OPCODE_SHIFT | 1036u ),
519
VSR_OPCODE = (4u << OPCODE_SHIFT | 708u ),
520
VSRO_OPCODE = (4u << OPCODE_SHIFT | 1100u ),
521
522
// Vector Integer
523
VADDCUW_OPCODE = (4u << OPCODE_SHIFT | 384u ),
524
VADDSHS_OPCODE = (4u << OPCODE_SHIFT | 832u ),
525
VADDSBS_OPCODE = (4u << OPCODE_SHIFT | 768u ),
526
VADDSWS_OPCODE = (4u << OPCODE_SHIFT | 896u ),
527
VADDUBM_OPCODE = (4u << OPCODE_SHIFT | 0u ),
528
VADDUWM_OPCODE = (4u << OPCODE_SHIFT | 128u ),
529
VADDUHM_OPCODE = (4u << OPCODE_SHIFT | 64u ),
530
VADDUDM_OPCODE = (4u << OPCODE_SHIFT | 192u ),
531
VADDUBS_OPCODE = (4u << OPCODE_SHIFT | 512u ),
532
VADDUWS_OPCODE = (4u << OPCODE_SHIFT | 640u ),
533
VADDUHS_OPCODE = (4u << OPCODE_SHIFT | 576u ),
534
VSUBCUW_OPCODE = (4u << OPCODE_SHIFT | 1408u ),
535
VSUBSHS_OPCODE = (4u << OPCODE_SHIFT | 1856u ),
536
VSUBSBS_OPCODE = (4u << OPCODE_SHIFT | 1792u ),
537
VSUBSWS_OPCODE = (4u << OPCODE_SHIFT | 1920u ),
538
VSUBUBM_OPCODE = (4u << OPCODE_SHIFT | 1024u ),
539
VSUBUWM_OPCODE = (4u << OPCODE_SHIFT | 1152u ),
540
VSUBUHM_OPCODE = (4u << OPCODE_SHIFT | 1088u ),
541
VSUBUBS_OPCODE = (4u << OPCODE_SHIFT | 1536u ),
542
VSUBUWS_OPCODE = (4u << OPCODE_SHIFT | 1664u ),
543
VSUBUHS_OPCODE = (4u << OPCODE_SHIFT | 1600u ),
544
545
VMULESB_OPCODE = (4u << OPCODE_SHIFT | 776u ),
546
VMULEUB_OPCODE = (4u << OPCODE_SHIFT | 520u ),
547
VMULESH_OPCODE = (4u << OPCODE_SHIFT | 840u ),
548
VMULEUH_OPCODE = (4u << OPCODE_SHIFT | 584u ),
549
VMULOSB_OPCODE = (4u << OPCODE_SHIFT | 264u ),
550
VMULOUB_OPCODE = (4u << OPCODE_SHIFT | 8u ),
551
VMULOSH_OPCODE = (4u << OPCODE_SHIFT | 328u ),
552
VMULOUH_OPCODE = (4u << OPCODE_SHIFT | 72u ),
553
VMHADDSHS_OPCODE=(4u << OPCODE_SHIFT | 32u ),
554
VMHRADDSHS_OPCODE=(4u << OPCODE_SHIFT | 33u ),
555
VMLADDUHM_OPCODE=(4u << OPCODE_SHIFT | 34u ),
556
VMSUBUHM_OPCODE= (4u << OPCODE_SHIFT | 36u ),
557
VMSUMMBM_OPCODE= (4u << OPCODE_SHIFT | 37u ),
558
VMSUMSHM_OPCODE= (4u << OPCODE_SHIFT | 40u ),
559
VMSUMSHS_OPCODE= (4u << OPCODE_SHIFT | 41u ),
560
VMSUMUHM_OPCODE= (4u << OPCODE_SHIFT | 38u ),
561
VMSUMUHS_OPCODE= (4u << OPCODE_SHIFT | 39u ),
562
563
VSUMSWS_OPCODE = (4u << OPCODE_SHIFT | 1928u ),
564
VSUM2SWS_OPCODE= (4u << OPCODE_SHIFT | 1672u ),
565
VSUM4SBS_OPCODE= (4u << OPCODE_SHIFT | 1800u ),
566
VSUM4UBS_OPCODE= (4u << OPCODE_SHIFT | 1544u ),
567
VSUM4SHS_OPCODE= (4u << OPCODE_SHIFT | 1608u ),
568
569
VAVGSB_OPCODE = (4u << OPCODE_SHIFT | 1282u ),
570
VAVGSW_OPCODE = (4u << OPCODE_SHIFT | 1410u ),
571
VAVGSH_OPCODE = (4u << OPCODE_SHIFT | 1346u ),
572
VAVGUB_OPCODE = (4u << OPCODE_SHIFT | 1026u ),
573
VAVGUW_OPCODE = (4u << OPCODE_SHIFT | 1154u ),
574
VAVGUH_OPCODE = (4u << OPCODE_SHIFT | 1090u ),
575
576
VMAXSB_OPCODE = (4u << OPCODE_SHIFT | 258u ),
577
VMAXSW_OPCODE = (4u << OPCODE_SHIFT | 386u ),
578
VMAXSH_OPCODE = (4u << OPCODE_SHIFT | 322u ),
579
VMAXUB_OPCODE = (4u << OPCODE_SHIFT | 2u ),
580
VMAXUW_OPCODE = (4u << OPCODE_SHIFT | 130u ),
581
VMAXUH_OPCODE = (4u << OPCODE_SHIFT | 66u ),
582
VMINSB_OPCODE = (4u << OPCODE_SHIFT | 770u ),
583
VMINSW_OPCODE = (4u << OPCODE_SHIFT | 898u ),
584
VMINSH_OPCODE = (4u << OPCODE_SHIFT | 834u ),
585
VMINUB_OPCODE = (4u << OPCODE_SHIFT | 514u ),
586
VMINUW_OPCODE = (4u << OPCODE_SHIFT | 642u ),
587
VMINUH_OPCODE = (4u << OPCODE_SHIFT | 578u ),
588
589
VCMPEQUB_OPCODE= (4u << OPCODE_SHIFT | 6u ),
590
VCMPEQUH_OPCODE= (4u << OPCODE_SHIFT | 70u ),
591
VCMPEQUW_OPCODE= (4u << OPCODE_SHIFT | 134u ),
592
VCMPGTSH_OPCODE= (4u << OPCODE_SHIFT | 838u ),
593
VCMPGTSB_OPCODE= (4u << OPCODE_SHIFT | 774u ),
594
VCMPGTSW_OPCODE= (4u << OPCODE_SHIFT | 902u ),
595
VCMPGTUB_OPCODE= (4u << OPCODE_SHIFT | 518u ),
596
VCMPGTUH_OPCODE= (4u << OPCODE_SHIFT | 582u ),
597
VCMPGTUW_OPCODE= (4u << OPCODE_SHIFT | 646u ),
598
599
VAND_OPCODE = (4u << OPCODE_SHIFT | 1028u ),
600
VANDC_OPCODE = (4u << OPCODE_SHIFT | 1092u ),
601
VNOR_OPCODE = (4u << OPCODE_SHIFT | 1284u ),
602
VOR_OPCODE = (4u << OPCODE_SHIFT | 1156u ),
603
VXOR_OPCODE = (4u << OPCODE_SHIFT | 1220u ),
604
VRLD_OPCODE = (4u << OPCODE_SHIFT | 196u ),
605
VRLB_OPCODE = (4u << OPCODE_SHIFT | 4u ),
606
VRLW_OPCODE = (4u << OPCODE_SHIFT | 132u ),
607
VRLH_OPCODE = (4u << OPCODE_SHIFT | 68u ),
608
VSLB_OPCODE = (4u << OPCODE_SHIFT | 260u ),
609
VSKW_OPCODE = (4u << OPCODE_SHIFT | 388u ),
610
VSLH_OPCODE = (4u << OPCODE_SHIFT | 324u ),
611
VSRB_OPCODE = (4u << OPCODE_SHIFT | 516u ),
612
VSRW_OPCODE = (4u << OPCODE_SHIFT | 644u ),
613
VSRH_OPCODE = (4u << OPCODE_SHIFT | 580u ),
614
VSRAB_OPCODE = (4u << OPCODE_SHIFT | 772u ),
615
VSRAW_OPCODE = (4u << OPCODE_SHIFT | 900u ),
616
VSRAH_OPCODE = (4u << OPCODE_SHIFT | 836u ),
617
618
// Vector Floating-Point
619
// not implemented yet
620
621
// Vector Status and Control
622
MTVSCR_OPCODE = (4u << OPCODE_SHIFT | 1604u ),
623
MFVSCR_OPCODE = (4u << OPCODE_SHIFT | 1540u ),
624
625
// AES (introduced with Power 8)
626
VCIPHER_OPCODE = (4u << OPCODE_SHIFT | 1288u),
627
VCIPHERLAST_OPCODE = (4u << OPCODE_SHIFT | 1289u),
628
VNCIPHER_OPCODE = (4u << OPCODE_SHIFT | 1352u),
629
VNCIPHERLAST_OPCODE = (4u << OPCODE_SHIFT | 1353u),
630
VSBOX_OPCODE = (4u << OPCODE_SHIFT | 1480u),
631
632
// SHA (introduced with Power 8)
633
VSHASIGMAD_OPCODE = (4u << OPCODE_SHIFT | 1730u),
634
VSHASIGMAW_OPCODE = (4u << OPCODE_SHIFT | 1666u),
635
636
// Vector Binary Polynomial Multiplication (introduced with Power 8)
637
VPMSUMB_OPCODE = (4u << OPCODE_SHIFT | 1032u),
638
VPMSUMD_OPCODE = (4u << OPCODE_SHIFT | 1224u),
639
VPMSUMH_OPCODE = (4u << OPCODE_SHIFT | 1096u),
640
VPMSUMW_OPCODE = (4u << OPCODE_SHIFT | 1160u),
641
642
// Vector Permute and Xor (introduced with Power 8)
643
VPERMXOR_OPCODE = (4u << OPCODE_SHIFT | 45u),
644
645
// Transactional Memory instructions (introduced with Power 8)
646
TBEGIN_OPCODE = (31u << OPCODE_SHIFT | 654u << 1),
647
TEND_OPCODE = (31u << OPCODE_SHIFT | 686u << 1),
648
TABORT_OPCODE = (31u << OPCODE_SHIFT | 910u << 1),
649
TABORTWC_OPCODE = (31u << OPCODE_SHIFT | 782u << 1),
650
TABORTWCI_OPCODE = (31u << OPCODE_SHIFT | 846u << 1),
651
TABORTDC_OPCODE = (31u << OPCODE_SHIFT | 814u << 1),
652
TABORTDCI_OPCODE = (31u << OPCODE_SHIFT | 878u << 1),
653
TSR_OPCODE = (31u << OPCODE_SHIFT | 750u << 1),
654
TCHECK_OPCODE = (31u << OPCODE_SHIFT | 718u << 1),
655
656
// Icache and dcache related instructions
657
DCBA_OPCODE = (31u << OPCODE_SHIFT | 758u << 1),
658
DCBZ_OPCODE = (31u << OPCODE_SHIFT | 1014u << 1),
659
DCBST_OPCODE = (31u << OPCODE_SHIFT | 54u << 1),
660
DCBF_OPCODE = (31u << OPCODE_SHIFT | 86u << 1),
661
662
DCBT_OPCODE = (31u << OPCODE_SHIFT | 278u << 1),
663
DCBTST_OPCODE = (31u << OPCODE_SHIFT | 246u << 1),
664
ICBI_OPCODE = (31u << OPCODE_SHIFT | 982u << 1),
665
666
// Instruction synchronization
667
ISYNC_OPCODE = (19u << OPCODE_SHIFT | 150u << 1),
668
// Memory barriers
669
SYNC_OPCODE = (31u << OPCODE_SHIFT | 598u << 1),
670
EIEIO_OPCODE = (31u << OPCODE_SHIFT | 854u << 1),
671
672
// Trap instructions
673
TDI_OPCODE = (2u << OPCODE_SHIFT),
674
TWI_OPCODE = (3u << OPCODE_SHIFT),
675
TD_OPCODE = (31u << OPCODE_SHIFT | 68u << 1),
676
TW_OPCODE = (31u << OPCODE_SHIFT | 4u << 1),
677
678
// Atomics.
679
LWARX_OPCODE = (31u << OPCODE_SHIFT | 20u << 1),
680
LDARX_OPCODE = (31u << OPCODE_SHIFT | 84u << 1),
681
LQARX_OPCODE = (31u << OPCODE_SHIFT | 276u << 1),
682
STWCX_OPCODE = (31u << OPCODE_SHIFT | 150u << 1),
683
STDCX_OPCODE = (31u << OPCODE_SHIFT | 214u << 1),
684
STQCX_OPCODE = (31u << OPCODE_SHIFT | 182u << 1)
685
686
};
687
688
// Trap instructions TO bits
689
enum trap_to_bits {
690
// single bits
691
traptoLessThanSigned = 1 << 4, // 0, left end
692
traptoGreaterThanSigned = 1 << 3,
693
traptoEqual = 1 << 2,
694
traptoLessThanUnsigned = 1 << 1,
695
traptoGreaterThanUnsigned = 1 << 0, // 4, right end
696
697
// compound ones
698
traptoUnconditional = (traptoLessThanSigned |
699
traptoGreaterThanSigned |
700
traptoEqual |
701
traptoLessThanUnsigned |
702
traptoGreaterThanUnsigned)
703
};
704
705
// Branch hints BH field
706
enum branch_hint_bh {
707
// bclr cases:
708
bhintbhBCLRisReturn = 0,
709
bhintbhBCLRisNotReturnButSame = 1,
710
bhintbhBCLRisNotPredictable = 3,
711
712
// bcctr cases:
713
bhintbhBCCTRisNotReturnButSame = 0,
714
bhintbhBCCTRisNotPredictable = 3
715
};
716
717
// Branch prediction hints AT field
718
enum branch_hint_at {
719
bhintatNoHint = 0, // at=00
720
bhintatIsNotTaken = 2, // at=10
721
bhintatIsTaken = 3 // at=11
722
};
723
724
// Branch prediction hints
725
enum branch_hint_concept {
726
// Use the same encoding as branch_hint_at to simply code.
727
bhintNoHint = bhintatNoHint,
728
bhintIsNotTaken = bhintatIsNotTaken,
729
bhintIsTaken = bhintatIsTaken
730
};
731
732
// Used in BO field of branch instruction.
733
enum branch_condition {
734
bcondCRbiIs0 = 4, // bo=001at
735
bcondCRbiIs1 = 12, // bo=011at
736
bcondAlways = 20 // bo=10100
737
};
738
739
// Branch condition with combined prediction hints.
740
enum branch_condition_with_hint {
741
bcondCRbiIs0_bhintNoHint = bcondCRbiIs0 | bhintatNoHint,
742
bcondCRbiIs0_bhintIsNotTaken = bcondCRbiIs0 | bhintatIsNotTaken,
743
bcondCRbiIs0_bhintIsTaken = bcondCRbiIs0 | bhintatIsTaken,
744
bcondCRbiIs1_bhintNoHint = bcondCRbiIs1 | bhintatNoHint,
745
bcondCRbiIs1_bhintIsNotTaken = bcondCRbiIs1 | bhintatIsNotTaken,
746
bcondCRbiIs1_bhintIsTaken = bcondCRbiIs1 | bhintatIsTaken,
747
};
748
749
// Elemental Memory Barriers (>=Power 8)
750
enum Elemental_Membar_mask_bits {
751
StoreStore = 1 << 0,
752
StoreLoad = 1 << 1,
753
LoadStore = 1 << 2,
754
LoadLoad = 1 << 3
755
};
756
757
// Branch prediction hints.
758
inline static int add_bhint_to_boint(const int bhint, const int boint) {
759
switch (boint) {
760
case bcondCRbiIs0:
761
case bcondCRbiIs1:
762
// branch_hint and branch_hint_at have same encodings
763
assert( (int)bhintNoHint == (int)bhintatNoHint
764
&& (int)bhintIsNotTaken == (int)bhintatIsNotTaken
765
&& (int)bhintIsTaken == (int)bhintatIsTaken,
766
"wrong encodings");
767
assert((bhint & 0x03) == bhint, "wrong encodings");
768
return (boint & ~0x03) | bhint;
769
case bcondAlways:
770
// no branch_hint
771
return boint;
772
default:
773
ShouldNotReachHere();
774
return 0;
775
}
776
}
777
778
// Extract bcond from boint.
779
inline static int inv_boint_bcond(const int boint) {
780
int r_bcond = boint & ~0x03;
781
assert(r_bcond == bcondCRbiIs0 ||
782
r_bcond == bcondCRbiIs1 ||
783
r_bcond == bcondAlways,
784
"bad branch condition");
785
return r_bcond;
786
}
787
788
// Extract bhint from boint.
789
inline static int inv_boint_bhint(const int boint) {
790
int r_bhint = boint & 0x03;
791
assert(r_bhint == bhintatNoHint ||
792
r_bhint == bhintatIsNotTaken ||
793
r_bhint == bhintatIsTaken,
794
"bad branch hint");
795
return r_bhint;
796
}
797
798
// Calculate opposite of given bcond.
799
inline static int opposite_bcond(const int bcond) {
800
switch (bcond) {
801
case bcondCRbiIs0:
802
return bcondCRbiIs1;
803
case bcondCRbiIs1:
804
return bcondCRbiIs0;
805
default:
806
ShouldNotReachHere();
807
return 0;
808
}
809
}
810
811
// Calculate opposite of given bhint.
812
inline static int opposite_bhint(const int bhint) {
813
switch (bhint) {
814
case bhintatNoHint:
815
return bhintatNoHint;
816
case bhintatIsNotTaken:
817
return bhintatIsTaken;
818
case bhintatIsTaken:
819
return bhintatIsNotTaken;
820
default:
821
ShouldNotReachHere();
822
return 0;
823
}
824
}
825
826
// PPC branch instructions
827
enum ppcops {
828
b_op = 18,
829
bc_op = 16,
830
bcr_op = 19
831
};
832
833
enum Condition {
834
negative = 0,
835
less = 0,
836
positive = 1,
837
greater = 1,
838
zero = 2,
839
equal = 2,
840
summary_overflow = 3,
841
};
842
843
public:
844
// Helper functions for groups of instructions
845
846
enum Predict { pt = 1, pn = 0 }; // pt = predict taken
847
848
// instruction must start at passed address
849
static int instr_len(unsigned char *instr) { return BytesPerInstWord; }
850
851
// instruction must be left-justified in argument
852
static int instr_len(unsigned long instr) { return BytesPerInstWord; }
853
854
// longest instructions
855
static int instr_maxlen() { return BytesPerInstWord; }
856
857
// Test if x is within signed immediate range for nbits.
858
static bool is_simm(int x, unsigned int nbits) {
859
assert(0 < nbits && nbits < 32, "out of bounds");
860
const int min = -( ((int)1) << nbits-1 );
861
const int maxplus1 = ( ((int)1) << nbits-1 );
862
return min <= x && x < maxplus1;
863
}
864
865
static bool is_simm(jlong x, unsigned int nbits) {
866
assert(0 < nbits && nbits < 64, "out of bounds");
867
const jlong min = -( ((jlong)1) << nbits-1 );
868
const jlong maxplus1 = ( ((jlong)1) << nbits-1 );
869
return min <= x && x < maxplus1;
870
}
871
872
// Test if x is within unsigned immediate range for nbits
873
static bool is_uimm(int x, unsigned int nbits) {
874
assert(0 < nbits && nbits < 32, "out of bounds");
875
const int maxplus1 = ( ((int)1) << nbits );
876
return 0 <= x && x < maxplus1;
877
}
878
879
static bool is_uimm(jlong x, unsigned int nbits) {
880
assert(0 < nbits && nbits < 64, "out of bounds");
881
const jlong maxplus1 = ( ((jlong)1) << nbits );
882
return 0 <= x && x < maxplus1;
883
}
884
885
protected:
886
// helpers
887
888
// X is supposed to fit in a field "nbits" wide
889
// and be sign-extended. Check the range.
890
static void assert_signed_range(intptr_t x, int nbits) {
891
assert(nbits == 32 || (-(1 << nbits-1) <= x && x < (1 << nbits-1)),
892
"value out of range");
893
}
894
895
static void assert_signed_word_disp_range(intptr_t x, int nbits) {
896
assert((x & 3) == 0, "not word aligned");
897
assert_signed_range(x, nbits + 2);
898
}
899
900
static void assert_unsigned_const(int x, int nbits) {
901
assert(juint(x) < juint(1 << nbits), "unsigned constant out of range");
902
}
903
904
static int fmask(juint hi_bit, juint lo_bit) {
905
assert(hi_bit >= lo_bit && hi_bit < 32, "bad bits");
906
return (1 << ( hi_bit-lo_bit + 1 )) - 1;
907
}
908
909
// inverse of u_field
910
static int inv_u_field(int x, int hi_bit, int lo_bit) {
911
juint r = juint(x) >> lo_bit;
912
r &= fmask(hi_bit, lo_bit);
913
return int(r);
914
}
915
916
// signed version: extract from field and sign-extend
917
static int inv_s_field_ppc(int x, int hi_bit, int lo_bit) {
918
x = x << (31-hi_bit);
919
x = x >> (31-hi_bit+lo_bit);
920
return x;
921
}
922
923
static int u_field(int x, int hi_bit, int lo_bit) {
924
assert((x & ~fmask(hi_bit, lo_bit)) == 0, "value out of range");
925
int r = x << lo_bit;
926
assert(inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
927
return r;
928
}
929
930
// Same as u_field for signed values
931
static int s_field(int x, int hi_bit, int lo_bit) {
932
int nbits = hi_bit - lo_bit + 1;
933
assert(nbits == 32 || (-(1 << nbits-1) <= x && x < (1 << nbits-1)),
934
"value out of range");
935
x &= fmask(hi_bit, lo_bit);
936
int r = x << lo_bit;
937
return r;
938
}
939
940
// inv_op for ppc instructions
941
static int inv_op_ppc(int x) { return inv_u_field(x, 31, 26); }
942
943
// Determine target address from li, bd field of branch instruction.
944
static intptr_t inv_li_field(int x) {
945
intptr_t r = inv_s_field_ppc(x, 25, 2);
946
r = (r << 2);
947
return r;
948
}
949
static intptr_t inv_bd_field(int x, intptr_t pos) {
950
intptr_t r = inv_s_field_ppc(x, 15, 2);
951
r = (r << 2) + pos;
952
return r;
953
}
954
955
#define inv_opp_u_field(x, hi_bit, lo_bit) inv_u_field(x, 31-(lo_bit), 31-(hi_bit))
956
#define inv_opp_s_field(x, hi_bit, lo_bit) inv_s_field_ppc(x, 31-(lo_bit), 31-(hi_bit))
957
// Extract instruction fields from instruction words.
958
public:
959
static int inv_ra_field(int x) { return inv_opp_u_field(x, 15, 11); }
960
static int inv_rb_field(int x) { return inv_opp_u_field(x, 20, 16); }
961
static int inv_rt_field(int x) { return inv_opp_u_field(x, 10, 6); }
962
static int inv_rta_field(int x) { return inv_opp_u_field(x, 15, 11); }
963
static int inv_rs_field(int x) { return inv_opp_u_field(x, 10, 6); }
964
// Ds uses opp_s_field(x, 31, 16), but lowest 2 bits must be 0.
965
// Inv_ds_field uses range (x, 29, 16) but shifts by 2 to ensure that lowest bits are 0.
966
static int inv_ds_field(int x) { return inv_opp_s_field(x, 29, 16) << 2; }
967
static int inv_d1_field(int x) { return inv_opp_s_field(x, 31, 16); }
968
static int inv_si_field(int x) { return inv_opp_s_field(x, 31, 16); }
969
static int inv_to_field(int x) { return inv_opp_u_field(x, 10, 6); }
970
static int inv_lk_field(int x) { return inv_opp_u_field(x, 31, 31); }
971
static int inv_bo_field(int x) { return inv_opp_u_field(x, 10, 6); }
972
static int inv_bi_field(int x) { return inv_opp_u_field(x, 15, 11); }
973
974
#define opp_u_field(x, hi_bit, lo_bit) u_field(x, 31-(lo_bit), 31-(hi_bit))
975
#define opp_s_field(x, hi_bit, lo_bit) s_field(x, 31-(lo_bit), 31-(hi_bit))
976
977
// instruction fields
978
static int aa( int x) { return opp_u_field(x, 30, 30); }
979
static int ba( int x) { return opp_u_field(x, 15, 11); }
980
static int bb( int x) { return opp_u_field(x, 20, 16); }
981
static int bc( int x) { return opp_u_field(x, 25, 21); }
982
static int bd( int x) { return opp_s_field(x, 29, 16); }
983
static int bf( ConditionRegister cr) { return bf(cr->encoding()); }
984
static int bf( int x) { return opp_u_field(x, 8, 6); }
985
static int bfa(ConditionRegister cr) { return bfa(cr->encoding()); }
986
static int bfa( int x) { return opp_u_field(x, 13, 11); }
987
static int bh( int x) { return opp_u_field(x, 20, 19); }
988
static int bi( int x) { return opp_u_field(x, 15, 11); }
989
static int bi0(ConditionRegister cr, Condition c) { return (cr->encoding() << 2) | c; }
990
static int bo( int x) { return opp_u_field(x, 10, 6); }
991
static int bt( int x) { return opp_u_field(x, 10, 6); }
992
static int d1( int x) { return opp_s_field(x, 31, 16); }
993
static int ds( int x) { assert((x & 0x3) == 0, "unaligned offset"); return opp_s_field(x, 31, 16); }
994
static int eh( int x) { return opp_u_field(x, 31, 31); }
995
static int flm( int x) { return opp_u_field(x, 14, 7); }
996
static int fra( FloatRegister r) { return fra(r->encoding());}
997
static int frb( FloatRegister r) { return frb(r->encoding());}
998
static int frc( FloatRegister r) { return frc(r->encoding());}
999
static int frs( FloatRegister r) { return frs(r->encoding());}
1000
static int frt( FloatRegister r) { return frt(r->encoding());}
1001
static int fra( int x) { return opp_u_field(x, 15, 11); }
1002
static int frb( int x) { return opp_u_field(x, 20, 16); }
1003
static int frc( int x) { return opp_u_field(x, 25, 21); }
1004
static int frs( int x) { return opp_u_field(x, 10, 6); }
1005
static int frt( int x) { return opp_u_field(x, 10, 6); }
1006
static int fxm( int x) { return opp_u_field(x, 19, 12); }
1007
static int l10( int x) { return opp_u_field(x, 10, 10); }
1008
static int l15( int x) { return opp_u_field(x, 15, 15); }
1009
static int l910( int x) { return opp_u_field(x, 10, 9); }
1010
static int e1215( int x) { return opp_u_field(x, 15, 12); }
1011
static int lev( int x) { return opp_u_field(x, 26, 20); }
1012
static int li( int x) { return opp_s_field(x, 29, 6); }
1013
static int lk( int x) { return opp_u_field(x, 31, 31); }
1014
static int mb2125( int x) { return opp_u_field(x, 25, 21); }
1015
static int me2630( int x) { return opp_u_field(x, 30, 26); }
1016
static int mb2126( int x) { return opp_u_field(((x & 0x1f) << 1) | ((x & 0x20) >> 5), 26, 21); }
1017
static int me2126( int x) { return mb2126(x); }
1018
static int nb( int x) { return opp_u_field(x, 20, 16); }
1019
//static int opcd( int x) { return opp_u_field(x, 5, 0); } // is contained in our opcodes
1020
static int oe( int x) { return opp_u_field(x, 21, 21); }
1021
static int ra( Register r) { return ra(r->encoding()); }
1022
static int ra( int x) { return opp_u_field(x, 15, 11); }
1023
static int rb( Register r) { return rb(r->encoding()); }
1024
static int rb( int x) { return opp_u_field(x, 20, 16); }
1025
static int rc( int x) { return opp_u_field(x, 31, 31); }
1026
static int rs( Register r) { return rs(r->encoding()); }
1027
static int rs( int x) { return opp_u_field(x, 10, 6); }
1028
// we don't want to use R0 in memory accesses, because it has value `0' then
1029
static int ra0mem( Register r) { assert(r != R0, "cannot use register R0 in memory access"); return ra(r); }
1030
static int ra0mem( int x) { assert(x != 0, "cannot use register 0 in memory access"); return ra(x); }
1031
1032
// register r is target
1033
static int rt( Register r) { return rs(r); }
1034
static int rt( int x) { return rs(x); }
1035
static int rta( Register r) { return ra(r); }
1036
static int rta0mem( Register r) { rta(r); return ra0mem(r); }
1037
1038
static int sh1620( int x) { return opp_u_field(x, 20, 16); }
1039
static int sh30( int x) { return opp_u_field(x, 30, 30); }
1040
static int sh162030( int x) { return sh1620(x & 0x1f) | sh30((x & 0x20) >> 5); }
1041
static int si( int x) { return opp_s_field(x, 31, 16); }
1042
static int spr( int x) { return opp_u_field(x, 20, 11); }
1043
static int sr( int x) { return opp_u_field(x, 15, 12); }
1044
static int tbr( int x) { return opp_u_field(x, 20, 11); }
1045
static int th( int x) { return opp_u_field(x, 10, 7); }
1046
static int thct( int x) { assert((x&8) == 0, "must be valid cache specification"); return th(x); }
1047
static int thds( int x) { assert((x&8) == 8, "must be valid stream specification"); return th(x); }
1048
static int to( int x) { return opp_u_field(x, 10, 6); }
1049
static int u( int x) { return opp_u_field(x, 19, 16); }
1050
static int ui( int x) { return opp_u_field(x, 31, 16); }
1051
1052
// Support vector instructions for >= Power6.
1053
static int vra( int x) { return opp_u_field(x, 15, 11); }
1054
static int vrb( int x) { return opp_u_field(x, 20, 16); }
1055
static int vrc( int x) { return opp_u_field(x, 25, 21); }
1056
static int vrs( int x) { return opp_u_field(x, 10, 6); }
1057
static int vrt( int x) { return opp_u_field(x, 10, 6); }
1058
1059
static int vra( VectorRegister r) { return vra(r->encoding());}
1060
static int vrb( VectorRegister r) { return vrb(r->encoding());}
1061
static int vrc( VectorRegister r) { return vrc(r->encoding());}
1062
static int vrs( VectorRegister r) { return vrs(r->encoding());}
1063
static int vrt( VectorRegister r) { return vrt(r->encoding());}
1064
1065
// Only used on SHA sigma instructions (VX-form)
1066
static int vst( int x) { return opp_u_field(x, 16, 16); }
1067
static int vsix( int x) { return opp_u_field(x, 20, 17); }
1068
1069
// Support Vector-Scalar (VSX) instructions.
1070
static int vsra( int x) { return opp_u_field(x & 0x1F, 15, 11) | opp_u_field((x & 0x20) >> 5, 29, 29); }
1071
static int vsrb( int x) { return opp_u_field(x & 0x1F, 20, 16) | opp_u_field((x & 0x20) >> 5, 30, 30); }
1072
static int vsrs( int x) { return opp_u_field(x & 0x1F, 10, 6) | opp_u_field((x & 0x20) >> 5, 31, 31); }
1073
static int vsrt( int x) { return vsrs(x); }
1074
static int vsdm( int x) { return opp_u_field(x, 23, 22); }
1075
1076
static int vsra( VectorSRegister r) { return vsra(r->encoding());}
1077
static int vsrb( VectorSRegister r) { return vsrb(r->encoding());}
1078
static int vsrs( VectorSRegister r) { return vsrs(r->encoding());}
1079
static int vsrt( VectorSRegister r) { return vsrt(r->encoding());}
1080
1081
static int vsplt_uim( int x) { return opp_u_field(x, 15, 12); } // for vsplt* instructions
1082
static int vsplti_sim(int x) { return opp_u_field(x, 15, 11); } // for vsplti* instructions
1083
static int vsldoi_shb(int x) { return opp_u_field(x, 25, 22); } // for vsldoi instruction
1084
static int vcmp_rc( int x) { return opp_u_field(x, 21, 21); } // for vcmp* instructions
1085
1086
//static int xo1( int x) { return opp_u_field(x, 29, 21); }// is contained in our opcodes
1087
//static int xo2( int x) { return opp_u_field(x, 30, 21); }// is contained in our opcodes
1088
//static int xo3( int x) { return opp_u_field(x, 30, 22); }// is contained in our opcodes
1089
//static int xo4( int x) { return opp_u_field(x, 30, 26); }// is contained in our opcodes
1090
//static int xo5( int x) { return opp_u_field(x, 29, 27); }// is contained in our opcodes
1091
//static int xo6( int x) { return opp_u_field(x, 30, 27); }// is contained in our opcodes
1092
//static int xo7( int x) { return opp_u_field(x, 31, 30); }// is contained in our opcodes
1093
1094
protected:
1095
// Compute relative address for branch.
1096
static intptr_t disp(intptr_t x, intptr_t off) {
1097
int xx = x - off;
1098
xx = xx >> 2;
1099
return xx;
1100
}
1101
1102
public:
1103
// signed immediate, in low bits, nbits long
1104
static int simm(int x, int nbits) {
1105
assert_signed_range(x, nbits);
1106
return x & ((1 << nbits) - 1);
1107
}
1108
1109
// unsigned immediate, in low bits, nbits long
1110
static int uimm(int x, int nbits) {
1111
assert_unsigned_const(x, nbits);
1112
return x & ((1 << nbits) - 1);
1113
}
1114
1115
static void set_imm(int* instr, short s) {
1116
// imm is always in the lower 16 bits of the instruction,
1117
// so this is endian-neutral. Same for the get_imm below.
1118
uint32_t w = *(uint32_t *)instr;
1119
*instr = (int)((w & ~0x0000FFFF) | (s & 0x0000FFFF));
1120
}
1121
1122
static int get_imm(address a, int instruction_number) {
1123
return (short)((int *)a)[instruction_number];
1124
}
1125
1126
static inline int hi16_signed( int x) { return (int)(int16_t)(x >> 16); }
1127
static inline int lo16_unsigned(int x) { return x & 0xffff; }
1128
1129
protected:
1130
1131
// Extract the top 32 bits in a 64 bit word.
1132
static int32_t hi32(int64_t x) {
1133
int32_t r = int32_t((uint64_t)x >> 32);
1134
return r;
1135
}
1136
1137
public:
1138
1139
static inline unsigned int align_addr(unsigned int addr, unsigned int a) {
1140
return ((addr + (a - 1)) & ~(a - 1));
1141
}
1142
1143
static inline bool is_aligned(unsigned int addr, unsigned int a) {
1144
return (0 == addr % a);
1145
}
1146
1147
void flush() {
1148
AbstractAssembler::flush();
1149
}
1150
1151
inline void emit_int32(int); // shadows AbstractAssembler::emit_int32
1152
inline void emit_data(int);
1153
inline void emit_data(int, RelocationHolder const&);
1154
inline void emit_data(int, relocInfo::relocType rtype);
1155
1156
// Emit an address.
1157
inline address emit_addr(const address addr = NULL);
1158
1159
#if !defined(ABI_ELFv2)
1160
// Emit a function descriptor with the specified entry point, TOC,
1161
// and ENV. If the entry point is NULL, the descriptor will point
1162
// just past the descriptor.
1163
// Use values from friend functions as defaults.
1164
inline address emit_fd(address entry = NULL,
1165
address toc = (address) FunctionDescriptor::friend_toc,
1166
address env = (address) FunctionDescriptor::friend_env);
1167
#endif
1168
1169
/////////////////////////////////////////////////////////////////////////////////////
1170
// PPC instructions
1171
/////////////////////////////////////////////////////////////////////////////////////
1172
1173
// Memory instructions use r0 as hard coded 0, e.g. to simulate loading
1174
// immediates. The normal instruction encoders enforce that r0 is not
1175
// passed to them. Use either extended mnemonics encoders or the special ra0
1176
// versions.
1177
1178
// Issue an illegal instruction.
1179
inline void illtrap();
1180
static inline bool is_illtrap(int x);
1181
1182
// PPC 1, section 3.3.8, Fixed-Point Arithmetic Instructions
1183
inline void addi( Register d, Register a, int si16);
1184
inline void addis(Register d, Register a, int si16);
1185
private:
1186
inline void addi_r0ok( Register d, Register a, int si16);
1187
inline void addis_r0ok(Register d, Register a, int si16);
1188
public:
1189
inline void addic_( Register d, Register a, int si16);
1190
inline void subfic( Register d, Register a, int si16);
1191
inline void add( Register d, Register a, Register b);
1192
inline void add_( Register d, Register a, Register b);
1193
inline void subf( Register d, Register a, Register b); // d = b - a "Sub_from", as in ppc spec.
1194
inline void sub( Register d, Register a, Register b); // d = a - b Swap operands of subf for readability.
1195
inline void subf_( Register d, Register a, Register b);
1196
inline void addc( Register d, Register a, Register b);
1197
inline void addc_( Register d, Register a, Register b);
1198
inline void subfc( Register d, Register a, Register b);
1199
inline void subfc_( Register d, Register a, Register b);
1200
inline void adde( Register d, Register a, Register b);
1201
inline void adde_( Register d, Register a, Register b);
1202
inline void subfe( Register d, Register a, Register b);
1203
inline void subfe_( Register d, Register a, Register b);
1204
inline void neg( Register d, Register a);
1205
inline void neg_( Register d, Register a);
1206
inline void mulli( Register d, Register a, int si16);
1207
inline void mulld( Register d, Register a, Register b);
1208
inline void mulld_( Register d, Register a, Register b);
1209
inline void mullw( Register d, Register a, Register b);
1210
inline void mullw_( Register d, Register a, Register b);
1211
inline void mulhw( Register d, Register a, Register b);
1212
inline void mulhw_( Register d, Register a, Register b);
1213
inline void mulhwu( Register d, Register a, Register b);
1214
inline void mulhwu_(Register d, Register a, Register b);
1215
inline void mulhd( Register d, Register a, Register b);
1216
inline void mulhd_( Register d, Register a, Register b);
1217
inline void mulhdu( Register d, Register a, Register b);
1218
inline void mulhdu_(Register d, Register a, Register b);
1219
inline void divd( Register d, Register a, Register b);
1220
inline void divd_( Register d, Register a, Register b);
1221
inline void divw( Register d, Register a, Register b);
1222
inline void divw_( Register d, Register a, Register b);
1223
1224
// extended mnemonics
1225
inline void li( Register d, int si16);
1226
inline void lis( Register d, int si16);
1227
inline void addir(Register d, int si16, Register a);
1228
1229
static bool is_addi(int x) {
1230
return ADDI_OPCODE == (x & ADDI_OPCODE_MASK);
1231
}
1232
static bool is_addis(int x) {
1233
return ADDIS_OPCODE == (x & ADDIS_OPCODE_MASK);
1234
}
1235
static bool is_bxx(int x) {
1236
return BXX_OPCODE == (x & BXX_OPCODE_MASK);
1237
}
1238
static bool is_b(int x) {
1239
return BXX_OPCODE == (x & BXX_OPCODE_MASK) && inv_lk_field(x) == 0;
1240
}
1241
static bool is_bl(int x) {
1242
return BXX_OPCODE == (x & BXX_OPCODE_MASK) && inv_lk_field(x) == 1;
1243
}
1244
static bool is_bcxx(int x) {
1245
return BCXX_OPCODE == (x & BCXX_OPCODE_MASK);
1246
}
1247
static bool is_bxx_or_bcxx(int x) {
1248
return is_bxx(x) || is_bcxx(x);
1249
}
1250
static bool is_bctrl(int x) {
1251
return x == 0x4e800421;
1252
}
1253
static bool is_bctr(int x) {
1254
return x == 0x4e800420;
1255
}
1256
static bool is_bclr(int x) {
1257
return BCLR_OPCODE == (x & XL_FORM_OPCODE_MASK);
1258
}
1259
static bool is_li(int x) {
1260
return is_addi(x) && inv_ra_field(x)==0;
1261
}
1262
static bool is_lis(int x) {
1263
return is_addis(x) && inv_ra_field(x)==0;
1264
}
1265
static bool is_mtctr(int x) {
1266
return MTCTR_OPCODE == (x & MTCTR_OPCODE_MASK);
1267
}
1268
static bool is_ld(int x) {
1269
return LD_OPCODE == (x & LD_OPCODE_MASK);
1270
}
1271
static bool is_std(int x) {
1272
return STD_OPCODE == (x & STD_OPCODE_MASK);
1273
}
1274
static bool is_stdu(int x) {
1275
return STDU_OPCODE == (x & STDU_OPCODE_MASK);
1276
}
1277
static bool is_stdx(int x) {
1278
return STDX_OPCODE == (x & STDX_OPCODE_MASK);
1279
}
1280
static bool is_stdux(int x) {
1281
return STDUX_OPCODE == (x & STDUX_OPCODE_MASK);
1282
}
1283
static bool is_stwx(int x) {
1284
return STWX_OPCODE == (x & STWX_OPCODE_MASK);
1285
}
1286
static bool is_stwux(int x) {
1287
return STWUX_OPCODE == (x & STWUX_OPCODE_MASK);
1288
}
1289
static bool is_stw(int x) {
1290
return STW_OPCODE == (x & STW_OPCODE_MASK);
1291
}
1292
static bool is_stwu(int x) {
1293
return STWU_OPCODE == (x & STWU_OPCODE_MASK);
1294
}
1295
static bool is_ori(int x) {
1296
return ORI_OPCODE == (x & ORI_OPCODE_MASK);
1297
};
1298
static bool is_oris(int x) {
1299
return ORIS_OPCODE == (x & ORIS_OPCODE_MASK);
1300
};
1301
static bool is_rldicr(int x) {
1302
return (RLDICR_OPCODE == (x & RLDICR_OPCODE_MASK));
1303
};
1304
static bool is_nop(int x) {
1305
return x == 0x60000000;
1306
}
1307
// endgroup opcode for Power6
1308
static bool is_endgroup(int x) {
1309
return is_ori(x) && inv_ra_field(x) == 1 && inv_rs_field(x) == 1 && inv_d1_field(x) == 0;
1310
}
1311
1312
1313
private:
1314
// PPC 1, section 3.3.9, Fixed-Point Compare Instructions
1315
inline void cmpi( ConditionRegister bf, int l, Register a, int si16);
1316
inline void cmp( ConditionRegister bf, int l, Register a, Register b);
1317
inline void cmpli(ConditionRegister bf, int l, Register a, int ui16);
1318
inline void cmpl( ConditionRegister bf, int l, Register a, Register b);
1319
1320
public:
1321
// extended mnemonics of Compare Instructions
1322
inline void cmpwi( ConditionRegister crx, Register a, int si16);
1323
inline void cmpdi( ConditionRegister crx, Register a, int si16);
1324
inline void cmpw( ConditionRegister crx, Register a, Register b);
1325
inline void cmpd( ConditionRegister crx, Register a, Register b);
1326
inline void cmplwi(ConditionRegister crx, Register a, int ui16);
1327
inline void cmpldi(ConditionRegister crx, Register a, int ui16);
1328
inline void cmplw( ConditionRegister crx, Register a, Register b);
1329
inline void cmpld( ConditionRegister crx, Register a, Register b);
1330
1331
inline void isel( Register d, Register a, Register b, int bc);
1332
// Convenient version which takes: Condition register, Condition code and invert flag. Omit b to keep old value.
1333
inline void isel( Register d, ConditionRegister cr, Condition cc, bool inv, Register a, Register b = noreg);
1334
// Set d = 0 if (cr.cc) equals 1, otherwise b.
1335
inline void isel_0( Register d, ConditionRegister cr, Condition cc, Register b = noreg);
1336
1337
// PPC 1, section 3.3.11, Fixed-Point Logical Instructions
1338
void andi( Register a, Register s, int ui16); // optimized version
1339
inline void andi_( Register a, Register s, int ui16);
1340
inline void andis_( Register a, Register s, int ui16);
1341
inline void ori( Register a, Register s, int ui16);
1342
inline void oris( Register a, Register s, int ui16);
1343
inline void xori( Register a, Register s, int ui16);
1344
inline void xoris( Register a, Register s, int ui16);
1345
inline void andr( Register a, Register s, Register b); // suffixed by 'r' as 'and' is C++ keyword
1346
inline void and_( Register a, Register s, Register b);
1347
// Turn or0(rx,rx,rx) into a nop and avoid that we accidently emit a
1348
// SMT-priority change instruction (see SMT instructions below).
1349
inline void or_unchecked(Register a, Register s, Register b);
1350
inline void orr( Register a, Register s, Register b); // suffixed by 'r' as 'or' is C++ keyword
1351
inline void or_( Register a, Register s, Register b);
1352
inline void xorr( Register a, Register s, Register b); // suffixed by 'r' as 'xor' is C++ keyword
1353
inline void xor_( Register a, Register s, Register b);
1354
inline void nand( Register a, Register s, Register b);
1355
inline void nand_( Register a, Register s, Register b);
1356
inline void nor( Register a, Register s, Register b);
1357
inline void nor_( Register a, Register s, Register b);
1358
inline void andc( Register a, Register s, Register b);
1359
inline void andc_( Register a, Register s, Register b);
1360
inline void orc( Register a, Register s, Register b);
1361
inline void orc_( Register a, Register s, Register b);
1362
inline void extsb( Register a, Register s);
1363
inline void extsh( Register a, Register s);
1364
inline void extsw( Register a, Register s);
1365
1366
// extended mnemonics
1367
inline void nop();
1368
// NOP for FP and BR units (different versions to allow them to be in one group)
1369
inline void fpnop0();
1370
inline void fpnop1();
1371
inline void brnop0();
1372
inline void brnop1();
1373
inline void brnop2();
1374
1375
inline void mr( Register d, Register s);
1376
inline void ori_opt( Register d, int ui16);
1377
inline void oris_opt(Register d, int ui16);
1378
1379
// endgroup opcode for Power6
1380
inline void endgroup();
1381
1382
// count instructions
1383
inline void cntlzw( Register a, Register s);
1384
inline void cntlzw_( Register a, Register s);
1385
inline void cntlzd( Register a, Register s);
1386
inline void cntlzd_( Register a, Register s);
1387
1388
// PPC 1, section 3.3.12, Fixed-Point Rotate and Shift Instructions
1389
inline void sld( Register a, Register s, Register b);
1390
inline void sld_( Register a, Register s, Register b);
1391
inline void slw( Register a, Register s, Register b);
1392
inline void slw_( Register a, Register s, Register b);
1393
inline void srd( Register a, Register s, Register b);
1394
inline void srd_( Register a, Register s, Register b);
1395
inline void srw( Register a, Register s, Register b);
1396
inline void srw_( Register a, Register s, Register b);
1397
inline void srad( Register a, Register s, Register b);
1398
inline void srad_( Register a, Register s, Register b);
1399
inline void sraw( Register a, Register s, Register b);
1400
inline void sraw_( Register a, Register s, Register b);
1401
inline void sradi( Register a, Register s, int sh6);
1402
inline void sradi_( Register a, Register s, int sh6);
1403
inline void srawi( Register a, Register s, int sh5);
1404
inline void srawi_( Register a, Register s, int sh5);
1405
1406
// extended mnemonics for Shift Instructions
1407
inline void sldi( Register a, Register s, int sh6);
1408
inline void sldi_( Register a, Register s, int sh6);
1409
inline void slwi( Register a, Register s, int sh5);
1410
inline void slwi_( Register a, Register s, int sh5);
1411
inline void srdi( Register a, Register s, int sh6);
1412
inline void srdi_( Register a, Register s, int sh6);
1413
inline void srwi( Register a, Register s, int sh5);
1414
inline void srwi_( Register a, Register s, int sh5);
1415
1416
inline void clrrdi( Register a, Register s, int ui6);
1417
inline void clrrdi_( Register a, Register s, int ui6);
1418
inline void clrldi( Register a, Register s, int ui6);
1419
inline void clrldi_( Register a, Register s, int ui6);
1420
inline void clrlsldi(Register a, Register s, int clrl6, int shl6);
1421
inline void clrlsldi_(Register a, Register s, int clrl6, int shl6);
1422
inline void extrdi( Register a, Register s, int n, int b);
1423
// testbit with condition register
1424
inline void testbitdi(ConditionRegister cr, Register a, Register s, int ui6);
1425
1426
// rotate instructions
1427
inline void rotldi( Register a, Register s, int n);
1428
inline void rotrdi( Register a, Register s, int n);
1429
inline void rotlwi( Register a, Register s, int n);
1430
inline void rotrwi( Register a, Register s, int n);
1431
1432
// Rotate Instructions
1433
inline void rldic( Register a, Register s, int sh6, int mb6);
1434
inline void rldic_( Register a, Register s, int sh6, int mb6);
1435
inline void rldicr( Register a, Register s, int sh6, int mb6);
1436
inline void rldicr_( Register a, Register s, int sh6, int mb6);
1437
inline void rldicl( Register a, Register s, int sh6, int mb6);
1438
inline void rldicl_( Register a, Register s, int sh6, int mb6);
1439
inline void rlwinm( Register a, Register s, int sh5, int mb5, int me5);
1440
inline void rlwinm_( Register a, Register s, int sh5, int mb5, int me5);
1441
inline void rldimi( Register a, Register s, int sh6, int mb6);
1442
inline void rldimi_( Register a, Register s, int sh6, int mb6);
1443
inline void rlwimi( Register a, Register s, int sh5, int mb5, int me5);
1444
inline void insrdi( Register a, Register s, int n, int b);
1445
inline void insrwi( Register a, Register s, int n, int b);
1446
1447
// PPC 1, section 3.3.2 Fixed-Point Load Instructions
1448
// 4 bytes
1449
inline void lwzx( Register d, Register s1, Register s2);
1450
inline void lwz( Register d, int si16, Register s1);
1451
inline void lwzu( Register d, int si16, Register s1);
1452
1453
// 4 bytes
1454
inline void lwax( Register d, Register s1, Register s2);
1455
inline void lwa( Register d, int si16, Register s1);
1456
1457
// 4 bytes reversed
1458
inline void lwbrx( Register d, Register s1, Register s2);
1459
1460
// 2 bytes
1461
inline void lhzx( Register d, Register s1, Register s2);
1462
inline void lhz( Register d, int si16, Register s1);
1463
inline void lhzu( Register d, int si16, Register s1);
1464
1465
// 2 bytes reversed
1466
inline void lhbrx( Register d, Register s1, Register s2);
1467
1468
// 2 bytes
1469
inline void lhax( Register d, Register s1, Register s2);
1470
inline void lha( Register d, int si16, Register s1);
1471
inline void lhau( Register d, int si16, Register s1);
1472
1473
// 1 byte
1474
inline void lbzx( Register d, Register s1, Register s2);
1475
inline void lbz( Register d, int si16, Register s1);
1476
inline void lbzu( Register d, int si16, Register s1);
1477
1478
// 8 bytes
1479
inline void ldx( Register d, Register s1, Register s2);
1480
inline void ld( Register d, int si16, Register s1);
1481
inline void ldu( Register d, int si16, Register s1);
1482
1483
// PPC 1, section 3.3.3 Fixed-Point Store Instructions
1484
inline void stwx( Register d, Register s1, Register s2);
1485
inline void stw( Register d, int si16, Register s1);
1486
inline void stwu( Register d, int si16, Register s1);
1487
1488
inline void sthx( Register d, Register s1, Register s2);
1489
inline void sth( Register d, int si16, Register s1);
1490
inline void sthu( Register d, int si16, Register s1);
1491
1492
inline void stbx( Register d, Register s1, Register s2);
1493
inline void stb( Register d, int si16, Register s1);
1494
inline void stbu( Register d, int si16, Register s1);
1495
1496
inline void stdx( Register d, Register s1, Register s2);
1497
inline void std( Register d, int si16, Register s1);
1498
inline void stdu( Register d, int si16, Register s1);
1499
inline void stdux(Register s, Register a, Register b);
1500
1501
// PPC 1, section 3.3.13 Move To/From System Register Instructions
1502
inline void mtlr( Register s1);
1503
inline void mflr( Register d);
1504
inline void mtctr(Register s1);
1505
inline void mfctr(Register d);
1506
inline void mtcrf(int fxm, Register s);
1507
inline void mfcr( Register d);
1508
inline void mcrf( ConditionRegister crd, ConditionRegister cra);
1509
inline void mtcr( Register s);
1510
1511
// Special purpose registers
1512
// Exception Register
1513
inline void mtxer(Register s1);
1514
inline void mfxer(Register d);
1515
// Vector Register Save Register
1516
inline void mtvrsave(Register s1);
1517
inline void mfvrsave(Register d);
1518
// Timebase
1519
inline void mftb(Register d);
1520
// Introduced with Power 8:
1521
// Data Stream Control Register
1522
inline void mtdscr(Register s1);
1523
inline void mfdscr(Register d );
1524
// Transactional Memory Registers
1525
inline void mftfhar(Register d);
1526
inline void mftfiar(Register d);
1527
inline void mftexasr(Register d);
1528
inline void mftexasru(Register d);
1529
1530
// PPC 1, section 2.4.1 Branch Instructions
1531
inline void b( address a, relocInfo::relocType rt = relocInfo::none);
1532
inline void b( Label& L);
1533
inline void bl( address a, relocInfo::relocType rt = relocInfo::none);
1534
inline void bl( Label& L);
1535
inline void bc( int boint, int biint, address a, relocInfo::relocType rt = relocInfo::none);
1536
inline void bc( int boint, int biint, Label& L);
1537
inline void bcl(int boint, int biint, address a, relocInfo::relocType rt = relocInfo::none);
1538
inline void bcl(int boint, int biint, Label& L);
1539
1540
inline void bclr( int boint, int biint, int bhint, relocInfo::relocType rt = relocInfo::none);
1541
inline void bclrl( int boint, int biint, int bhint, relocInfo::relocType rt = relocInfo::none);
1542
inline void bcctr( int boint, int biint, int bhint = bhintbhBCCTRisNotReturnButSame,
1543
relocInfo::relocType rt = relocInfo::none);
1544
inline void bcctrl(int boint, int biint, int bhint = bhintbhBCLRisReturn,
1545
relocInfo::relocType rt = relocInfo::none);
1546
1547
// helper function for b, bcxx
1548
inline bool is_within_range_of_b(address a, address pc);
1549
inline bool is_within_range_of_bcxx(address a, address pc);
1550
1551
// get the destination of a bxx branch (b, bl, ba, bla)
1552
static inline address bxx_destination(address baddr);
1553
static inline address bxx_destination(int instr, address pc);
1554
static inline intptr_t bxx_destination_offset(int instr, intptr_t bxx_pos);
1555
1556
// extended mnemonics for branch instructions
1557
inline void blt(ConditionRegister crx, Label& L);
1558
inline void bgt(ConditionRegister crx, Label& L);
1559
inline void beq(ConditionRegister crx, Label& L);
1560
inline void bso(ConditionRegister crx, Label& L);
1561
inline void bge(ConditionRegister crx, Label& L);
1562
inline void ble(ConditionRegister crx, Label& L);
1563
inline void bne(ConditionRegister crx, Label& L);
1564
inline void bns(ConditionRegister crx, Label& L);
1565
1566
// Branch instructions with static prediction hints.
1567
inline void blt_predict_taken( ConditionRegister crx, Label& L);
1568
inline void bgt_predict_taken( ConditionRegister crx, Label& L);
1569
inline void beq_predict_taken( ConditionRegister crx, Label& L);
1570
inline void bso_predict_taken( ConditionRegister crx, Label& L);
1571
inline void bge_predict_taken( ConditionRegister crx, Label& L);
1572
inline void ble_predict_taken( ConditionRegister crx, Label& L);
1573
inline void bne_predict_taken( ConditionRegister crx, Label& L);
1574
inline void bns_predict_taken( ConditionRegister crx, Label& L);
1575
inline void blt_predict_not_taken(ConditionRegister crx, Label& L);
1576
inline void bgt_predict_not_taken(ConditionRegister crx, Label& L);
1577
inline void beq_predict_not_taken(ConditionRegister crx, Label& L);
1578
inline void bso_predict_not_taken(ConditionRegister crx, Label& L);
1579
inline void bge_predict_not_taken(ConditionRegister crx, Label& L);
1580
inline void ble_predict_not_taken(ConditionRegister crx, Label& L);
1581
inline void bne_predict_not_taken(ConditionRegister crx, Label& L);
1582
inline void bns_predict_not_taken(ConditionRegister crx, Label& L);
1583
1584
// for use in conjunction with testbitdi:
1585
inline void btrue( ConditionRegister crx, Label& L);
1586
inline void bfalse(ConditionRegister crx, Label& L);
1587
1588
inline void bltl(ConditionRegister crx, Label& L);
1589
inline void bgtl(ConditionRegister crx, Label& L);
1590
inline void beql(ConditionRegister crx, Label& L);
1591
inline void bsol(ConditionRegister crx, Label& L);
1592
inline void bgel(ConditionRegister crx, Label& L);
1593
inline void blel(ConditionRegister crx, Label& L);
1594
inline void bnel(ConditionRegister crx, Label& L);
1595
inline void bnsl(ConditionRegister crx, Label& L);
1596
1597
// extended mnemonics for Branch Instructions via LR
1598
// We use `blr' for returns.
1599
inline void blr(relocInfo::relocType rt = relocInfo::none);
1600
1601
// extended mnemonics for Branch Instructions with CTR
1602
// bdnz means `decrement CTR and jump to L if CTR is not zero'
1603
inline void bdnz(Label& L);
1604
// Decrement and branch if result is zero.
1605
inline void bdz(Label& L);
1606
// we use `bctr[l]' for jumps/calls in function descriptor glue
1607
// code, e.g. calls to runtime functions
1608
inline void bctr( relocInfo::relocType rt = relocInfo::none);
1609
inline void bctrl(relocInfo::relocType rt = relocInfo::none);
1610
// conditional jumps/branches via CTR
1611
inline void beqctr( ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
1612
inline void beqctrl(ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
1613
inline void bnectr( ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
1614
inline void bnectrl(ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
1615
1616
// condition register logic instructions
1617
inline void crand( int d, int s1, int s2);
1618
inline void crnand(int d, int s1, int s2);
1619
inline void cror( int d, int s1, int s2);
1620
inline void crxor( int d, int s1, int s2);
1621
inline void crnor( int d, int s1, int s2);
1622
inline void creqv( int d, int s1, int s2);
1623
inline void crandc(int d, int s1, int s2);
1624
inline void crorc( int d, int s1, int s2);
1625
1626
// icache and dcache related instructions
1627
inline void icbi( Register s1, Register s2);
1628
//inline void dcba(Register s1, Register s2); // Instruction for embedded processor only.
1629
inline void dcbz( Register s1, Register s2);
1630
inline void dcbst( Register s1, Register s2);
1631
inline void dcbf( Register s1, Register s2);
1632
1633
enum ct_cache_specification {
1634
ct_primary_cache = 0,
1635
ct_secondary_cache = 2
1636
};
1637
// dcache read hint
1638
inline void dcbt( Register s1, Register s2);
1639
inline void dcbtct( Register s1, Register s2, int ct);
1640
inline void dcbtds( Register s1, Register s2, int ds);
1641
// dcache write hint
1642
inline void dcbtst( Register s1, Register s2);
1643
inline void dcbtstct(Register s1, Register s2, int ct);
1644
1645
// machine barrier instructions:
1646
//
1647
// - sync two-way memory barrier, aka fence
1648
// - lwsync orders Store|Store,
1649
// Load|Store,
1650
// Load|Load,
1651
// but not Store|Load
1652
// - eieio orders memory accesses for device memory (only)
1653
// - isync invalidates speculatively executed instructions
1654
// From the Power ISA 2.06 documentation:
1655
// "[...] an isync instruction prevents the execution of
1656
// instructions following the isync until instructions
1657
// preceding the isync have completed, [...]"
1658
// From IBM's AIX assembler reference:
1659
// "The isync [...] instructions causes the processor to
1660
// refetch any instructions that might have been fetched
1661
// prior to the isync instruction. The instruction isync
1662
// causes the processor to wait for all previous instructions
1663
// to complete. Then any instructions already fetched are
1664
// discarded and instruction processing continues in the
1665
// environment established by the previous instructions."
1666
//
1667
// semantic barrier instructions:
1668
// (as defined in orderAccess.hpp)
1669
//
1670
// - release orders Store|Store, (maps to lwsync)
1671
// Load|Store
1672
// - acquire orders Load|Store, (maps to lwsync)
1673
// Load|Load
1674
// - fence orders Store|Store, (maps to sync)
1675
// Load|Store,
1676
// Load|Load,
1677
// Store|Load
1678
//
1679
private:
1680
inline void sync(int l);
1681
public:
1682
inline void sync();
1683
inline void lwsync();
1684
inline void ptesync();
1685
inline void eieio();
1686
inline void isync();
1687
inline void elemental_membar(int e); // Elemental Memory Barriers (>=Power 8)
1688
1689
// atomics
1690
inline void lwarx_unchecked(Register d, Register a, Register b, int eh1 = 0);
1691
inline void ldarx_unchecked(Register d, Register a, Register b, int eh1 = 0);
1692
inline void lqarx_unchecked(Register d, Register a, Register b, int eh1 = 0);
1693
inline bool lxarx_hint_exclusive_access();
1694
inline void lwarx( Register d, Register a, Register b, bool hint_exclusive_access = false);
1695
inline void ldarx( Register d, Register a, Register b, bool hint_exclusive_access = false);
1696
inline void lqarx( Register d, Register a, Register b, bool hint_exclusive_access = false);
1697
inline void stwcx_( Register s, Register a, Register b);
1698
inline void stdcx_( Register s, Register a, Register b);
1699
inline void stqcx_( Register s, Register a, Register b);
1700
1701
// Instructions for adjusting thread priority for simultaneous
1702
// multithreading (SMT) on Power5.
1703
private:
1704
inline void smt_prio_very_low();
1705
inline void smt_prio_medium_high();
1706
inline void smt_prio_high();
1707
1708
public:
1709
inline void smt_prio_low();
1710
inline void smt_prio_medium_low();
1711
inline void smt_prio_medium();
1712
1713
// trap instructions
1714
inline void twi_0(Register a); // for load with acquire semantics use load+twi_0+isync (trap can't occur)
1715
// NOT FOR DIRECT USE!!
1716
protected:
1717
inline void tdi_unchecked(int tobits, Register a, int si16);
1718
inline void twi_unchecked(int tobits, Register a, int si16);
1719
inline void tdi( int tobits, Register a, int si16); // asserts UseSIGTRAP
1720
inline void twi( int tobits, Register a, int si16); // asserts UseSIGTRAP
1721
inline void td( int tobits, Register a, Register b); // asserts UseSIGTRAP
1722
inline void tw( int tobits, Register a, Register b); // asserts UseSIGTRAP
1723
1724
static bool is_tdi(int x, int tobits, int ra, int si16) {
1725
return (TDI_OPCODE == (x & TDI_OPCODE_MASK))
1726
&& (tobits == inv_to_field(x))
1727
&& (ra == -1/*any reg*/ || ra == inv_ra_field(x))
1728
&& (si16 == inv_si_field(x));
1729
}
1730
1731
static bool is_twi(int x, int tobits, int ra, int si16) {
1732
return (TWI_OPCODE == (x & TWI_OPCODE_MASK))
1733
&& (tobits == inv_to_field(x))
1734
&& (ra == -1/*any reg*/ || ra == inv_ra_field(x))
1735
&& (si16 == inv_si_field(x));
1736
}
1737
1738
static bool is_twi(int x, int tobits, int ra) {
1739
return (TWI_OPCODE == (x & TWI_OPCODE_MASK))
1740
&& (tobits == inv_to_field(x))
1741
&& (ra == -1/*any reg*/ || ra == inv_ra_field(x));
1742
}
1743
1744
static bool is_td(int x, int tobits, int ra, int rb) {
1745
return (TD_OPCODE == (x & TD_OPCODE_MASK))
1746
&& (tobits == inv_to_field(x))
1747
&& (ra == -1/*any reg*/ || ra == inv_ra_field(x))
1748
&& (rb == -1/*any reg*/ || rb == inv_rb_field(x));
1749
}
1750
1751
static bool is_tw(int x, int tobits, int ra, int rb) {
1752
return (TW_OPCODE == (x & TW_OPCODE_MASK))
1753
&& (tobits == inv_to_field(x))
1754
&& (ra == -1/*any reg*/ || ra == inv_ra_field(x))
1755
&& (rb == -1/*any reg*/ || rb == inv_rb_field(x));
1756
}
1757
1758
public:
1759
// PPC floating point instructions
1760
// PPC 1, section 4.6.2 Floating-Point Load Instructions
1761
inline void lfs( FloatRegister d, int si16, Register a);
1762
inline void lfsu( FloatRegister d, int si16, Register a);
1763
inline void lfsx( FloatRegister d, Register a, Register b);
1764
inline void lfd( FloatRegister d, int si16, Register a);
1765
inline void lfdu( FloatRegister d, int si16, Register a);
1766
inline void lfdx( FloatRegister d, Register a, Register b);
1767
1768
// PPC 1, section 4.6.3 Floating-Point Store Instructions
1769
inline void stfs( FloatRegister s, int si16, Register a);
1770
inline void stfsu( FloatRegister s, int si16, Register a);
1771
inline void stfsx( FloatRegister s, Register a, Register b);
1772
inline void stfd( FloatRegister s, int si16, Register a);
1773
inline void stfdu( FloatRegister s, int si16, Register a);
1774
inline void stfdx( FloatRegister s, Register a, Register b);
1775
1776
// PPC 1, section 4.6.4 Floating-Point Move Instructions
1777
inline void fmr( FloatRegister d, FloatRegister b);
1778
inline void fmr_( FloatRegister d, FloatRegister b);
1779
1780
// inline void mffgpr( FloatRegister d, Register b);
1781
// inline void mftgpr( Register d, FloatRegister b);
1782
inline void cmpb( Register a, Register s, Register b);
1783
inline void popcntb(Register a, Register s);
1784
inline void popcntw(Register a, Register s);
1785
inline void popcntd(Register a, Register s);
1786
1787
inline void fneg( FloatRegister d, FloatRegister b);
1788
inline void fneg_( FloatRegister d, FloatRegister b);
1789
inline void fabs( FloatRegister d, FloatRegister b);
1790
inline void fabs_( FloatRegister d, FloatRegister b);
1791
inline void fnabs( FloatRegister d, FloatRegister b);
1792
inline void fnabs_(FloatRegister d, FloatRegister b);
1793
1794
// PPC 1, section 4.6.5.1 Floating-Point Elementary Arithmetic Instructions
1795
inline void fadd( FloatRegister d, FloatRegister a, FloatRegister b);
1796
inline void fadd_( FloatRegister d, FloatRegister a, FloatRegister b);
1797
inline void fadds( FloatRegister d, FloatRegister a, FloatRegister b);
1798
inline void fadds_(FloatRegister d, FloatRegister a, FloatRegister b);
1799
inline void fsub( FloatRegister d, FloatRegister a, FloatRegister b);
1800
inline void fsub_( FloatRegister d, FloatRegister a, FloatRegister b);
1801
inline void fsubs( FloatRegister d, FloatRegister a, FloatRegister b);
1802
inline void fsubs_(FloatRegister d, FloatRegister a, FloatRegister b);
1803
inline void fmul( FloatRegister d, FloatRegister a, FloatRegister c);
1804
inline void fmul_( FloatRegister d, FloatRegister a, FloatRegister c);
1805
inline void fmuls( FloatRegister d, FloatRegister a, FloatRegister c);
1806
inline void fmuls_(FloatRegister d, FloatRegister a, FloatRegister c);
1807
inline void fdiv( FloatRegister d, FloatRegister a, FloatRegister b);
1808
inline void fdiv_( FloatRegister d, FloatRegister a, FloatRegister b);
1809
inline void fdivs( FloatRegister d, FloatRegister a, FloatRegister b);
1810
inline void fdivs_(FloatRegister d, FloatRegister a, FloatRegister b);
1811
1812
// PPC 1, section 4.6.6 Floating-Point Rounding and Conversion Instructions
1813
inline void frsp( FloatRegister d, FloatRegister b);
1814
inline void fctid( FloatRegister d, FloatRegister b);
1815
inline void fctidz(FloatRegister d, FloatRegister b);
1816
inline void fctiw( FloatRegister d, FloatRegister b);
1817
inline void fctiwz(FloatRegister d, FloatRegister b);
1818
inline void fcfid( FloatRegister d, FloatRegister b);
1819
inline void fcfids(FloatRegister d, FloatRegister b);
1820
1821
// PPC 1, section 4.6.7 Floating-Point Compare Instructions
1822
inline void fcmpu( ConditionRegister crx, FloatRegister a, FloatRegister b);
1823
1824
inline void fsqrt( FloatRegister d, FloatRegister b);
1825
inline void fsqrts(FloatRegister d, FloatRegister b);
1826
1827
// Vector instructions for >= Power6.
1828
inline void lvebx( VectorRegister d, Register s1, Register s2);
1829
inline void lvehx( VectorRegister d, Register s1, Register s2);
1830
inline void lvewx( VectorRegister d, Register s1, Register s2);
1831
inline void lvx( VectorRegister d, Register s1, Register s2);
1832
inline void lvxl( VectorRegister d, Register s1, Register s2);
1833
inline void stvebx( VectorRegister d, Register s1, Register s2);
1834
inline void stvehx( VectorRegister d, Register s1, Register s2);
1835
inline void stvewx( VectorRegister d, Register s1, Register s2);
1836
inline void stvx( VectorRegister d, Register s1, Register s2);
1837
inline void stvxl( VectorRegister d, Register s1, Register s2);
1838
inline void lvsl( VectorRegister d, Register s1, Register s2);
1839
inline void lvsr( VectorRegister d, Register s1, Register s2);
1840
inline void vpkpx( VectorRegister d, VectorRegister a, VectorRegister b);
1841
inline void vpkshss( VectorRegister d, VectorRegister a, VectorRegister b);
1842
inline void vpkswss( VectorRegister d, VectorRegister a, VectorRegister b);
1843
inline void vpkshus( VectorRegister d, VectorRegister a, VectorRegister b);
1844
inline void vpkswus( VectorRegister d, VectorRegister a, VectorRegister b);
1845
inline void vpkuhum( VectorRegister d, VectorRegister a, VectorRegister b);
1846
inline void vpkuwum( VectorRegister d, VectorRegister a, VectorRegister b);
1847
inline void vpkuhus( VectorRegister d, VectorRegister a, VectorRegister b);
1848
inline void vpkuwus( VectorRegister d, VectorRegister a, VectorRegister b);
1849
inline void vupkhpx( VectorRegister d, VectorRegister b);
1850
inline void vupkhsb( VectorRegister d, VectorRegister b);
1851
inline void vupkhsh( VectorRegister d, VectorRegister b);
1852
inline void vupklpx( VectorRegister d, VectorRegister b);
1853
inline void vupklsb( VectorRegister d, VectorRegister b);
1854
inline void vupklsh( VectorRegister d, VectorRegister b);
1855
inline void vmrghb( VectorRegister d, VectorRegister a, VectorRegister b);
1856
inline void vmrghw( VectorRegister d, VectorRegister a, VectorRegister b);
1857
inline void vmrghh( VectorRegister d, VectorRegister a, VectorRegister b);
1858
inline void vmrglb( VectorRegister d, VectorRegister a, VectorRegister b);
1859
inline void vmrglw( VectorRegister d, VectorRegister a, VectorRegister b);
1860
inline void vmrglh( VectorRegister d, VectorRegister a, VectorRegister b);
1861
inline void vsplt( VectorRegister d, int ui4, VectorRegister b);
1862
inline void vsplth( VectorRegister d, int ui3, VectorRegister b);
1863
inline void vspltw( VectorRegister d, int ui2, VectorRegister b);
1864
inline void vspltisb( VectorRegister d, int si5);
1865
inline void vspltish( VectorRegister d, int si5);
1866
inline void vspltisw( VectorRegister d, int si5);
1867
inline void vperm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1868
inline void vsel( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1869
inline void vsl( VectorRegister d, VectorRegister a, VectorRegister b);
1870
inline void vsldoi( VectorRegister d, VectorRegister a, VectorRegister b, int ui4);
1871
inline void vslo( VectorRegister d, VectorRegister a, VectorRegister b);
1872
inline void vsr( VectorRegister d, VectorRegister a, VectorRegister b);
1873
inline void vsro( VectorRegister d, VectorRegister a, VectorRegister b);
1874
inline void vaddcuw( VectorRegister d, VectorRegister a, VectorRegister b);
1875
inline void vaddshs( VectorRegister d, VectorRegister a, VectorRegister b);
1876
inline void vaddsbs( VectorRegister d, VectorRegister a, VectorRegister b);
1877
inline void vaddsws( VectorRegister d, VectorRegister a, VectorRegister b);
1878
inline void vaddubm( VectorRegister d, VectorRegister a, VectorRegister b);
1879
inline void vadduwm( VectorRegister d, VectorRegister a, VectorRegister b);
1880
inline void vadduhm( VectorRegister d, VectorRegister a, VectorRegister b);
1881
inline void vaddudm( VectorRegister d, VectorRegister a, VectorRegister b);
1882
inline void vaddubs( VectorRegister d, VectorRegister a, VectorRegister b);
1883
inline void vadduws( VectorRegister d, VectorRegister a, VectorRegister b);
1884
inline void vadduhs( VectorRegister d, VectorRegister a, VectorRegister b);
1885
inline void vsubcuw( VectorRegister d, VectorRegister a, VectorRegister b);
1886
inline void vsubshs( VectorRegister d, VectorRegister a, VectorRegister b);
1887
inline void vsubsbs( VectorRegister d, VectorRegister a, VectorRegister b);
1888
inline void vsubsws( VectorRegister d, VectorRegister a, VectorRegister b);
1889
inline void vsububm( VectorRegister d, VectorRegister a, VectorRegister b);
1890
inline void vsubuwm( VectorRegister d, VectorRegister a, VectorRegister b);
1891
inline void vsubuhm( VectorRegister d, VectorRegister a, VectorRegister b);
1892
inline void vsububs( VectorRegister d, VectorRegister a, VectorRegister b);
1893
inline void vsubuws( VectorRegister d, VectorRegister a, VectorRegister b);
1894
inline void vsubuhs( VectorRegister d, VectorRegister a, VectorRegister b);
1895
inline void vmulesb( VectorRegister d, VectorRegister a, VectorRegister b);
1896
inline void vmuleub( VectorRegister d, VectorRegister a, VectorRegister b);
1897
inline void vmulesh( VectorRegister d, VectorRegister a, VectorRegister b);
1898
inline void vmuleuh( VectorRegister d, VectorRegister a, VectorRegister b);
1899
inline void vmulosb( VectorRegister d, VectorRegister a, VectorRegister b);
1900
inline void vmuloub( VectorRegister d, VectorRegister a, VectorRegister b);
1901
inline void vmulosh( VectorRegister d, VectorRegister a, VectorRegister b);
1902
inline void vmulouh( VectorRegister d, VectorRegister a, VectorRegister b);
1903
inline void vmhaddshs(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1904
inline void vmhraddshs(VectorRegister d,VectorRegister a, VectorRegister b, VectorRegister c);
1905
inline void vmladduhm(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1906
inline void vmsubuhm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1907
inline void vmsummbm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1908
inline void vmsumshm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1909
inline void vmsumshs( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1910
inline void vmsumuhm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1911
inline void vmsumuhs( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1912
inline void vsumsws( VectorRegister d, VectorRegister a, VectorRegister b);
1913
inline void vsum2sws( VectorRegister d, VectorRegister a, VectorRegister b);
1914
inline void vsum4sbs( VectorRegister d, VectorRegister a, VectorRegister b);
1915
inline void vsum4ubs( VectorRegister d, VectorRegister a, VectorRegister b);
1916
inline void vsum4shs( VectorRegister d, VectorRegister a, VectorRegister b);
1917
inline void vavgsb( VectorRegister d, VectorRegister a, VectorRegister b);
1918
inline void vavgsw( VectorRegister d, VectorRegister a, VectorRegister b);
1919
inline void vavgsh( VectorRegister d, VectorRegister a, VectorRegister b);
1920
inline void vavgub( VectorRegister d, VectorRegister a, VectorRegister b);
1921
inline void vavguw( VectorRegister d, VectorRegister a, VectorRegister b);
1922
inline void vavguh( VectorRegister d, VectorRegister a, VectorRegister b);
1923
inline void vmaxsb( VectorRegister d, VectorRegister a, VectorRegister b);
1924
inline void vmaxsw( VectorRegister d, VectorRegister a, VectorRegister b);
1925
inline void vmaxsh( VectorRegister d, VectorRegister a, VectorRegister b);
1926
inline void vmaxub( VectorRegister d, VectorRegister a, VectorRegister b);
1927
inline void vmaxuw( VectorRegister d, VectorRegister a, VectorRegister b);
1928
inline void vmaxuh( VectorRegister d, VectorRegister a, VectorRegister b);
1929
inline void vminsb( VectorRegister d, VectorRegister a, VectorRegister b);
1930
inline void vminsw( VectorRegister d, VectorRegister a, VectorRegister b);
1931
inline void vminsh( VectorRegister d, VectorRegister a, VectorRegister b);
1932
inline void vminub( VectorRegister d, VectorRegister a, VectorRegister b);
1933
inline void vminuw( VectorRegister d, VectorRegister a, VectorRegister b);
1934
inline void vminuh( VectorRegister d, VectorRegister a, VectorRegister b);
1935
inline void vcmpequb( VectorRegister d, VectorRegister a, VectorRegister b);
1936
inline void vcmpequh( VectorRegister d, VectorRegister a, VectorRegister b);
1937
inline void vcmpequw( VectorRegister d, VectorRegister a, VectorRegister b);
1938
inline void vcmpgtsh( VectorRegister d, VectorRegister a, VectorRegister b);
1939
inline void vcmpgtsb( VectorRegister d, VectorRegister a, VectorRegister b);
1940
inline void vcmpgtsw( VectorRegister d, VectorRegister a, VectorRegister b);
1941
inline void vcmpgtub( VectorRegister d, VectorRegister a, VectorRegister b);
1942
inline void vcmpgtuh( VectorRegister d, VectorRegister a, VectorRegister b);
1943
inline void vcmpgtuw( VectorRegister d, VectorRegister a, VectorRegister b);
1944
inline void vcmpequb_(VectorRegister d, VectorRegister a, VectorRegister b);
1945
inline void vcmpequh_(VectorRegister d, VectorRegister a, VectorRegister b);
1946
inline void vcmpequw_(VectorRegister d, VectorRegister a, VectorRegister b);
1947
inline void vcmpgtsh_(VectorRegister d, VectorRegister a, VectorRegister b);
1948
inline void vcmpgtsb_(VectorRegister d, VectorRegister a, VectorRegister b);
1949
inline void vcmpgtsw_(VectorRegister d, VectorRegister a, VectorRegister b);
1950
inline void vcmpgtub_(VectorRegister d, VectorRegister a, VectorRegister b);
1951
inline void vcmpgtuh_(VectorRegister d, VectorRegister a, VectorRegister b);
1952
inline void vcmpgtuw_(VectorRegister d, VectorRegister a, VectorRegister b);
1953
inline void vand( VectorRegister d, VectorRegister a, VectorRegister b);
1954
inline void vandc( VectorRegister d, VectorRegister a, VectorRegister b);
1955
inline void vnor( VectorRegister d, VectorRegister a, VectorRegister b);
1956
inline void vor( VectorRegister d, VectorRegister a, VectorRegister b);
1957
inline void vmr( VectorRegister d, VectorRegister a);
1958
inline void vxor( VectorRegister d, VectorRegister a, VectorRegister b);
1959
inline void vrld( VectorRegister d, VectorRegister a, VectorRegister b);
1960
inline void vrlb( VectorRegister d, VectorRegister a, VectorRegister b);
1961
inline void vrlw( VectorRegister d, VectorRegister a, VectorRegister b);
1962
inline void vrlh( VectorRegister d, VectorRegister a, VectorRegister b);
1963
inline void vslb( VectorRegister d, VectorRegister a, VectorRegister b);
1964
inline void vskw( VectorRegister d, VectorRegister a, VectorRegister b);
1965
inline void vslh( VectorRegister d, VectorRegister a, VectorRegister b);
1966
inline void vsrb( VectorRegister d, VectorRegister a, VectorRegister b);
1967
inline void vsrw( VectorRegister d, VectorRegister a, VectorRegister b);
1968
inline void vsrh( VectorRegister d, VectorRegister a, VectorRegister b);
1969
inline void vsrab( VectorRegister d, VectorRegister a, VectorRegister b);
1970
inline void vsraw( VectorRegister d, VectorRegister a, VectorRegister b);
1971
inline void vsrah( VectorRegister d, VectorRegister a, VectorRegister b);
1972
// Vector Floating-Point not implemented yet
1973
inline void mtvscr( VectorRegister b);
1974
inline void mfvscr( VectorRegister d);
1975
1976
// Vector-Scalar (VSX) instructions.
1977
inline void lxvd2x( VectorSRegister d, Register a);
1978
inline void lxvd2x( VectorSRegister d, Register a, Register b);
1979
inline void stxvd2x( VectorSRegister d, Register a);
1980
inline void stxvd2x( VectorSRegister d, Register a, Register b);
1981
inline void mtvrwz( VectorRegister d, Register a);
1982
inline void mfvrwz( Register a, VectorRegister d);
1983
inline void mtvrd( VectorRegister d, Register a);
1984
inline void mfvrd( Register a, VectorRegister d);
1985
inline void xxpermdi( VectorSRegister d, VectorSRegister a, VectorSRegister b, int dm);
1986
inline void xxmrghw( VectorSRegister d, VectorSRegister a, VectorSRegister b);
1987
inline void xxmrglw( VectorSRegister d, VectorSRegister a, VectorSRegister b);
1988
1989
// VSX Extended Mnemonics
1990
inline void xxspltd( VectorSRegister d, VectorSRegister a, int x);
1991
inline void xxmrghd( VectorSRegister d, VectorSRegister a, VectorSRegister b);
1992
inline void xxmrgld( VectorSRegister d, VectorSRegister a, VectorSRegister b);
1993
inline void xxswapd( VectorSRegister d, VectorSRegister a);
1994
1995
// AES (introduced with Power 8)
1996
inline void vcipher( VectorRegister d, VectorRegister a, VectorRegister b);
1997
inline void vcipherlast( VectorRegister d, VectorRegister a, VectorRegister b);
1998
inline void vncipher( VectorRegister d, VectorRegister a, VectorRegister b);
1999
inline void vncipherlast(VectorRegister d, VectorRegister a, VectorRegister b);
2000
inline void vsbox( VectorRegister d, VectorRegister a);
2001
2002
// SHA (introduced with Power 8)
2003
inline void vshasigmad(VectorRegister d, VectorRegister a, bool st, int six);
2004
inline void vshasigmaw(VectorRegister d, VectorRegister a, bool st, int six);
2005
2006
// Vector Binary Polynomial Multiplication (introduced with Power 8)
2007
inline void vpmsumb( VectorRegister d, VectorRegister a, VectorRegister b);
2008
inline void vpmsumd( VectorRegister d, VectorRegister a, VectorRegister b);
2009
inline void vpmsumh( VectorRegister d, VectorRegister a, VectorRegister b);
2010
inline void vpmsumw( VectorRegister d, VectorRegister a, VectorRegister b);
2011
2012
// Vector Permute and Xor (introduced with Power 8)
2013
inline void vpermxor( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2014
2015
// Transactional Memory instructions (introduced with Power 8)
2016
inline void tbegin_(); // R=0
2017
inline void tbeginrot_(); // R=1 Rollback-Only Transaction
2018
inline void tend_(); // A=0
2019
inline void tendall_(); // A=1
2020
inline void tabort_(Register a);
2021
inline void tabortwc_(int t, Register a, Register b);
2022
inline void tabortwci_(int t, Register a, int si);
2023
inline void tabortdc_(int t, Register a, Register b);
2024
inline void tabortdci_(int t, Register a, int si);
2025
inline void tsuspend_(); // tsr with L=0
2026
inline void tresume_(); // tsr with L=1
2027
inline void tcheck(int f);
2028
2029
// The following encoders use r0 as second operand. These instructions
2030
// read r0 as '0'.
2031
inline void lwzx( Register d, Register s2);
2032
inline void lwz( Register d, int si16);
2033
inline void lwax( Register d, Register s2);
2034
inline void lwa( Register d, int si16);
2035
inline void lwbrx(Register d, Register s2);
2036
inline void lhzx( Register d, Register s2);
2037
inline void lhz( Register d, int si16);
2038
inline void lhax( Register d, Register s2);
2039
inline void lha( Register d, int si16);
2040
inline void lhbrx(Register d, Register s2);
2041
inline void lbzx( Register d, Register s2);
2042
inline void lbz( Register d, int si16);
2043
inline void ldx( Register d, Register s2);
2044
inline void ld( Register d, int si16);
2045
inline void stwx( Register d, Register s2);
2046
inline void stw( Register d, int si16);
2047
inline void sthx( Register d, Register s2);
2048
inline void sth( Register d, int si16);
2049
inline void stbx( Register d, Register s2);
2050
inline void stb( Register d, int si16);
2051
inline void stdx( Register d, Register s2);
2052
inline void std( Register d, int si16);
2053
2054
// PPC 2, section 3.2.1 Instruction Cache Instructions
2055
inline void icbi( Register s2);
2056
// PPC 2, section 3.2.2 Data Cache Instructions
2057
//inlinevoid dcba( Register s2); // Instruction for embedded processor only.
2058
inline void dcbz( Register s2);
2059
inline void dcbst( Register s2);
2060
inline void dcbf( Register s2);
2061
// dcache read hint
2062
inline void dcbt( Register s2);
2063
inline void dcbtct( Register s2, int ct);
2064
inline void dcbtds( Register s2, int ds);
2065
// dcache write hint
2066
inline void dcbtst( Register s2);
2067
inline void dcbtstct(Register s2, int ct);
2068
2069
// Atomics: use ra0mem to disallow R0 as base.
2070
inline void lwarx_unchecked(Register d, Register b, int eh1);
2071
inline void ldarx_unchecked(Register d, Register b, int eh1);
2072
inline void lqarx_unchecked(Register d, Register b, int eh1);
2073
inline void lwarx( Register d, Register b, bool hint_exclusive_access);
2074
inline void ldarx( Register d, Register b, bool hint_exclusive_access);
2075
inline void lqarx( Register d, Register b, bool hint_exclusive_access);
2076
inline void stwcx_(Register s, Register b);
2077
inline void stdcx_(Register s, Register b);
2078
inline void stqcx_(Register s, Register b);
2079
inline void lfs( FloatRegister d, int si16);
2080
inline void lfsx( FloatRegister d, Register b);
2081
inline void lfd( FloatRegister d, int si16);
2082
inline void lfdx( FloatRegister d, Register b);
2083
inline void stfs( FloatRegister s, int si16);
2084
inline void stfsx( FloatRegister s, Register b);
2085
inline void stfd( FloatRegister s, int si16);
2086
inline void stfdx( FloatRegister s, Register b);
2087
inline void lvebx( VectorRegister d, Register s2);
2088
inline void lvehx( VectorRegister d, Register s2);
2089
inline void lvewx( VectorRegister d, Register s2);
2090
inline void lvx( VectorRegister d, Register s2);
2091
inline void lvxl( VectorRegister d, Register s2);
2092
inline void stvebx(VectorRegister d, Register s2);
2093
inline void stvehx(VectorRegister d, Register s2);
2094
inline void stvewx(VectorRegister d, Register s2);
2095
inline void stvx( VectorRegister d, Register s2);
2096
inline void stvxl( VectorRegister d, Register s2);
2097
inline void lvsl( VectorRegister d, Register s2);
2098
inline void lvsr( VectorRegister d, Register s2);
2099
2100
// Endianess specific concatenation of 2 loaded vectors.
2101
inline void load_perm(VectorRegister perm, Register addr);
2102
inline void vec_perm(VectorRegister first_dest, VectorRegister second, VectorRegister perm);
2103
inline void vec_perm(VectorRegister dest, VectorRegister first, VectorRegister second, VectorRegister perm);
2104
2105
// RegisterOrConstant versions.
2106
// These emitters choose between the versions using two registers and
2107
// those with register and immediate, depending on the content of roc.
2108
// If the constant is not encodable as immediate, instructions to
2109
// load the constant are emitted beforehand. Store instructions need a
2110
// tmp reg if the constant is not encodable as immediate.
2111
// Size unpredictable.
2112
void ld( Register d, RegisterOrConstant roc, Register s1 = noreg);
2113
void lwa( Register d, RegisterOrConstant roc, Register s1 = noreg);
2114
void lwz( Register d, RegisterOrConstant roc, Register s1 = noreg);
2115
void lha( Register d, RegisterOrConstant roc, Register s1 = noreg);
2116
void lhz( Register d, RegisterOrConstant roc, Register s1 = noreg);
2117
void lbz( Register d, RegisterOrConstant roc, Register s1 = noreg);
2118
void std( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
2119
void stw( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
2120
void sth( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
2121
void stb( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
2122
void add( Register d, RegisterOrConstant roc, Register s1);
2123
void subf(Register d, RegisterOrConstant roc, Register s1);
2124
void cmpd(ConditionRegister d, RegisterOrConstant roc, Register s1);
2125
2126
2127
// Emit several instructions to load a 64 bit constant. This issues a fixed
2128
// instruction pattern so that the constant can be patched later on.
2129
enum {
2130
load_const_size = 5 * BytesPerInstWord
2131
};
2132
void load_const(Register d, long a, Register tmp = noreg);
2133
inline void load_const(Register d, void* a, Register tmp = noreg);
2134
inline void load_const(Register d, Label& L, Register tmp = noreg);
2135
inline void load_const(Register d, AddressLiteral& a, Register tmp = noreg);
2136
2137
// Load a 64 bit constant, optimized, not identifyable.
2138
// Tmp can be used to increase ILP. Set return_simm16_rest = true to get a
2139
// 16 bit immediate offset. This is useful if the offset can be encoded in
2140
// a succeeding instruction.
2141
int load_const_optimized(Register d, long a, Register tmp = noreg, bool return_simm16_rest = false);
2142
inline int load_const_optimized(Register d, void* a, Register tmp = noreg, bool return_simm16_rest = false) {
2143
return load_const_optimized(d, (long)(unsigned long)a, tmp, return_simm16_rest);
2144
}
2145
2146
// Creation
2147
Assembler(CodeBuffer* code) : AbstractAssembler(code) {
2148
#ifdef CHECK_DELAY
2149
delay_state = no_delay;
2150
#endif
2151
}
2152
2153
// Testing
2154
#ifndef PRODUCT
2155
void test_asm();
2156
#endif
2157
};
2158
2159
2160
#endif // CPU_PPC_VM_ASSEMBLER_PPC_HPP
2161
2162