Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/cpu/ppc/vm/interpreter_ppc.cpp
32285 views
1
/*
2
* Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3
* Copyright (c) 2012, 2017 SAP AG. All rights reserved.
4
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5
*
6
* This code is free software; you can redistribute it and/or modify it
7
* under the terms of the GNU General Public License version 2 only, as
8
* published by the Free Software Foundation.
9
*
10
* This code is distributed in the hope that it will be useful, but WITHOUT
11
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13
* version 2 for more details (a copy is included in the LICENSE file that
14
* accompanied this code).
15
*
16
* You should have received a copy of the GNU General Public License version
17
* 2 along with this work; if not, write to the Free Software Foundation,
18
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19
*
20
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21
* or visit www.oracle.com if you need additional information or have any
22
* questions.
23
*
24
*/
25
26
#include "precompiled.hpp"
27
#include "asm/macroAssembler.inline.hpp"
28
#include "interpreter/bytecodeHistogram.hpp"
29
#include "interpreter/interpreter.hpp"
30
#include "interpreter/interpreterGenerator.hpp"
31
#include "interpreter/interpreterRuntime.hpp"
32
#include "interpreter/templateTable.hpp"
33
#include "oops/arrayOop.hpp"
34
#include "oops/methodData.hpp"
35
#include "oops/method.hpp"
36
#include "oops/oop.inline.hpp"
37
#include "prims/jvmtiExport.hpp"
38
#include "prims/jvmtiThreadState.hpp"
39
#include "prims/methodHandles.hpp"
40
#include "runtime/arguments.hpp"
41
#include "runtime/deoptimization.hpp"
42
#include "runtime/frame.inline.hpp"
43
#include "runtime/sharedRuntime.hpp"
44
#include "runtime/stubRoutines.hpp"
45
#include "runtime/synchronizer.hpp"
46
#include "runtime/timer.hpp"
47
#include "runtime/vframeArray.hpp"
48
#include "utilities/debug.hpp"
49
#ifdef COMPILER1
50
#include "c1/c1_Runtime1.hpp"
51
#endif
52
53
#define __ _masm->
54
55
#ifdef PRODUCT
56
#define BLOCK_COMMENT(str) // nothing
57
#else
58
#define BLOCK_COMMENT(str) __ block_comment(str)
59
#endif
60
61
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
62
63
int AbstractInterpreter::BasicType_as_index(BasicType type) {
64
int i = 0;
65
switch (type) {
66
case T_BOOLEAN: i = 0; break;
67
case T_CHAR : i = 1; break;
68
case T_BYTE : i = 2; break;
69
case T_SHORT : i = 3; break;
70
case T_INT : i = 4; break;
71
case T_LONG : i = 5; break;
72
case T_VOID : i = 6; break;
73
case T_FLOAT : i = 7; break;
74
case T_DOUBLE : i = 8; break;
75
case T_OBJECT : i = 9; break;
76
case T_ARRAY : i = 9; break;
77
default : ShouldNotReachHere();
78
}
79
assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
80
return i;
81
}
82
83
address AbstractInterpreterGenerator::generate_slow_signature_handler() {
84
// Slow_signature handler that respects the PPC C calling conventions.
85
//
86
// We get called by the native entry code with our output register
87
// area == 8. First we call InterpreterRuntime::get_result_handler
88
// to copy the pointer to the signature string temporarily to the
89
// first C-argument and to return the result_handler in
90
// R3_RET. Since native_entry will copy the jni-pointer to the
91
// first C-argument slot later on, it is OK to occupy this slot
92
// temporarilly. Then we copy the argument list on the java
93
// expression stack into native varargs format on the native stack
94
// and load arguments into argument registers. Integer arguments in
95
// the varargs vector will be sign-extended to 8 bytes.
96
//
97
// On entry:
98
// R3_ARG1 - intptr_t* Address of java argument list in memory.
99
// R15_prev_state - BytecodeInterpreter* Address of interpreter state for
100
// this method
101
// R19_method
102
//
103
// On exit (just before return instruction):
104
// R3_RET - contains the address of the result_handler.
105
// R4_ARG2 - is not updated for static methods and contains "this" otherwise.
106
// R5_ARG3-R10_ARG8: - When the (i-2)th Java argument is not of type float or double,
107
// ARGi contains this argument. Otherwise, ARGi is not updated.
108
// F1_ARG1-F13_ARG13 - contain the first 13 arguments of type float or double.
109
110
const int LogSizeOfTwoInstructions = 3;
111
112
// FIXME: use Argument:: GL: Argument names different numbers!
113
const int max_fp_register_arguments = 13;
114
const int max_int_register_arguments = 6; // first 2 are reserved
115
116
const Register arg_java = R21_tmp1;
117
const Register arg_c = R22_tmp2;
118
const Register signature = R23_tmp3; // is string
119
const Register sig_byte = R24_tmp4;
120
const Register fpcnt = R25_tmp5;
121
const Register argcnt = R26_tmp6;
122
const Register intSlot = R27_tmp7;
123
const Register target_sp = R28_tmp8;
124
const FloatRegister floatSlot = F0;
125
126
address entry = __ function_entry();
127
128
__ save_LR_CR(R0);
129
__ save_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
130
// We use target_sp for storing arguments in the C frame.
131
__ mr(target_sp, R1_SP);
132
__ push_frame_reg_args_nonvolatiles(0, R11_scratch1);
133
134
__ mr(arg_java, R3_ARG1);
135
136
__ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_signature), R16_thread, R19_method);
137
138
// Signature is in R3_RET. Signature is callee saved.
139
__ mr(signature, R3_RET);
140
141
// Get the result handler.
142
__ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_result_handler), R16_thread, R19_method);
143
144
{
145
Label L;
146
// test if static
147
// _access_flags._flags must be at offset 0.
148
// TODO PPC port: requires change in shared code.
149
//assert(in_bytes(AccessFlags::flags_offset()) == 0,
150
// "MethodDesc._access_flags == MethodDesc._access_flags._flags");
151
// _access_flags must be a 32 bit value.
152
assert(sizeof(AccessFlags) == 4, "wrong size");
153
__ lwa(R11_scratch1/*access_flags*/, method_(access_flags));
154
// testbit with condition register.
155
__ testbitdi(CCR0, R0, R11_scratch1/*access_flags*/, JVM_ACC_STATIC_BIT);
156
__ btrue(CCR0, L);
157
// For non-static functions, pass "this" in R4_ARG2 and copy it
158
// to 2nd C-arg slot.
159
// We need to box the Java object here, so we use arg_java
160
// (address of current Java stack slot) as argument and don't
161
// dereference it as in case of ints, floats, etc.
162
__ mr(R4_ARG2, arg_java);
163
__ addi(arg_java, arg_java, -BytesPerWord);
164
__ std(R4_ARG2, _abi(carg_2), target_sp);
165
__ bind(L);
166
}
167
168
// Will be incremented directly after loop_start. argcnt=0
169
// corresponds to 3rd C argument.
170
__ li(argcnt, -1);
171
// arg_c points to 3rd C argument
172
__ addi(arg_c, target_sp, _abi(carg_3));
173
// no floating-point args parsed so far
174
__ li(fpcnt, 0);
175
176
Label move_intSlot_to_ARG, move_floatSlot_to_FARG;
177
Label loop_start, loop_end;
178
Label do_int, do_long, do_float, do_double, do_dontreachhere, do_object, do_array, do_boxed;
179
180
// signature points to '(' at entry
181
#ifdef ASSERT
182
__ lbz(sig_byte, 0, signature);
183
__ cmplwi(CCR0, sig_byte, '(');
184
__ bne(CCR0, do_dontreachhere);
185
#endif
186
187
__ bind(loop_start);
188
189
__ addi(argcnt, argcnt, 1);
190
__ lbzu(sig_byte, 1, signature);
191
192
__ cmplwi(CCR0, sig_byte, ')'); // end of signature
193
__ beq(CCR0, loop_end);
194
195
__ cmplwi(CCR0, sig_byte, 'B'); // byte
196
__ beq(CCR0, do_int);
197
198
__ cmplwi(CCR0, sig_byte, 'C'); // char
199
__ beq(CCR0, do_int);
200
201
__ cmplwi(CCR0, sig_byte, 'D'); // double
202
__ beq(CCR0, do_double);
203
204
__ cmplwi(CCR0, sig_byte, 'F'); // float
205
__ beq(CCR0, do_float);
206
207
__ cmplwi(CCR0, sig_byte, 'I'); // int
208
__ beq(CCR0, do_int);
209
210
__ cmplwi(CCR0, sig_byte, 'J'); // long
211
__ beq(CCR0, do_long);
212
213
__ cmplwi(CCR0, sig_byte, 'S'); // short
214
__ beq(CCR0, do_int);
215
216
__ cmplwi(CCR0, sig_byte, 'Z'); // boolean
217
__ beq(CCR0, do_int);
218
219
__ cmplwi(CCR0, sig_byte, 'L'); // object
220
__ beq(CCR0, do_object);
221
222
__ cmplwi(CCR0, sig_byte, '['); // array
223
__ beq(CCR0, do_array);
224
225
// __ cmplwi(CCR0, sig_byte, 'V'); // void cannot appear since we do not parse the return type
226
// __ beq(CCR0, do_void);
227
228
__ bind(do_dontreachhere);
229
230
__ unimplemented("ShouldNotReachHere in slow_signature_handler", 120);
231
232
__ bind(do_array);
233
234
{
235
Label start_skip, end_skip;
236
237
__ bind(start_skip);
238
__ lbzu(sig_byte, 1, signature);
239
__ cmplwi(CCR0, sig_byte, '[');
240
__ beq(CCR0, start_skip); // skip further brackets
241
__ cmplwi(CCR0, sig_byte, '9');
242
__ bgt(CCR0, end_skip); // no optional size
243
__ cmplwi(CCR0, sig_byte, '0');
244
__ bge(CCR0, start_skip); // skip optional size
245
__ bind(end_skip);
246
247
__ cmplwi(CCR0, sig_byte, 'L');
248
__ beq(CCR0, do_object); // for arrays of objects, the name of the object must be skipped
249
__ b(do_boxed); // otherwise, go directly to do_boxed
250
}
251
252
__ bind(do_object);
253
{
254
Label L;
255
__ bind(L);
256
__ lbzu(sig_byte, 1, signature);
257
__ cmplwi(CCR0, sig_byte, ';');
258
__ bne(CCR0, L);
259
}
260
// Need to box the Java object here, so we use arg_java (address of
261
// current Java stack slot) as argument and don't dereference it as
262
// in case of ints, floats, etc.
263
Label do_null;
264
__ bind(do_boxed);
265
__ ld(R0,0, arg_java);
266
__ cmpdi(CCR0, R0, 0);
267
__ li(intSlot,0);
268
__ beq(CCR0, do_null);
269
__ mr(intSlot, arg_java);
270
__ bind(do_null);
271
__ std(intSlot, 0, arg_c);
272
__ addi(arg_java, arg_java, -BytesPerWord);
273
__ addi(arg_c, arg_c, BytesPerWord);
274
__ cmplwi(CCR0, argcnt, max_int_register_arguments);
275
__ blt(CCR0, move_intSlot_to_ARG);
276
__ b(loop_start);
277
278
__ bind(do_int);
279
__ lwa(intSlot, 0, arg_java);
280
__ std(intSlot, 0, arg_c);
281
__ addi(arg_java, arg_java, -BytesPerWord);
282
__ addi(arg_c, arg_c, BytesPerWord);
283
__ cmplwi(CCR0, argcnt, max_int_register_arguments);
284
__ blt(CCR0, move_intSlot_to_ARG);
285
__ b(loop_start);
286
287
__ bind(do_long);
288
__ ld(intSlot, -BytesPerWord, arg_java);
289
__ std(intSlot, 0, arg_c);
290
__ addi(arg_java, arg_java, - 2 * BytesPerWord);
291
__ addi(arg_c, arg_c, BytesPerWord);
292
__ cmplwi(CCR0, argcnt, max_int_register_arguments);
293
__ blt(CCR0, move_intSlot_to_ARG);
294
__ b(loop_start);
295
296
__ bind(do_float);
297
__ lfs(floatSlot, 0, arg_java);
298
#if defined(LINUX)
299
// Linux uses ELF ABI. Both original ELF and ELFv2 ABIs have float
300
// in the least significant word of an argument slot.
301
#if defined(VM_LITTLE_ENDIAN)
302
__ stfs(floatSlot, 0, arg_c);
303
#else
304
__ stfs(floatSlot, 4, arg_c);
305
#endif
306
#elif defined(AIX)
307
// Although AIX runs on big endian CPU, float is in most significant
308
// word of an argument slot.
309
__ stfs(floatSlot, 0, arg_c);
310
#else
311
#error "unknown OS"
312
#endif
313
__ addi(arg_java, arg_java, -BytesPerWord);
314
__ addi(arg_c, arg_c, BytesPerWord);
315
__ cmplwi(CCR0, fpcnt, max_fp_register_arguments);
316
__ blt(CCR0, move_floatSlot_to_FARG);
317
__ b(loop_start);
318
319
__ bind(do_double);
320
__ lfd(floatSlot, - BytesPerWord, arg_java);
321
__ stfd(floatSlot, 0, arg_c);
322
__ addi(arg_java, arg_java, - 2 * BytesPerWord);
323
__ addi(arg_c, arg_c, BytesPerWord);
324
__ cmplwi(CCR0, fpcnt, max_fp_register_arguments);
325
__ blt(CCR0, move_floatSlot_to_FARG);
326
__ b(loop_start);
327
328
__ bind(loop_end);
329
330
__ pop_frame();
331
__ restore_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
332
__ restore_LR_CR(R0);
333
334
__ blr();
335
336
Label move_int_arg, move_float_arg;
337
__ bind(move_int_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
338
__ mr(R5_ARG3, intSlot); __ b(loop_start);
339
__ mr(R6_ARG4, intSlot); __ b(loop_start);
340
__ mr(R7_ARG5, intSlot); __ b(loop_start);
341
__ mr(R8_ARG6, intSlot); __ b(loop_start);
342
__ mr(R9_ARG7, intSlot); __ b(loop_start);
343
__ mr(R10_ARG8, intSlot); __ b(loop_start);
344
345
__ bind(move_float_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
346
__ fmr(F1_ARG1, floatSlot); __ b(loop_start);
347
__ fmr(F2_ARG2, floatSlot); __ b(loop_start);
348
__ fmr(F3_ARG3, floatSlot); __ b(loop_start);
349
__ fmr(F4_ARG4, floatSlot); __ b(loop_start);
350
__ fmr(F5_ARG5, floatSlot); __ b(loop_start);
351
__ fmr(F6_ARG6, floatSlot); __ b(loop_start);
352
__ fmr(F7_ARG7, floatSlot); __ b(loop_start);
353
__ fmr(F8_ARG8, floatSlot); __ b(loop_start);
354
__ fmr(F9_ARG9, floatSlot); __ b(loop_start);
355
__ fmr(F10_ARG10, floatSlot); __ b(loop_start);
356
__ fmr(F11_ARG11, floatSlot); __ b(loop_start);
357
__ fmr(F12_ARG12, floatSlot); __ b(loop_start);
358
__ fmr(F13_ARG13, floatSlot); __ b(loop_start);
359
360
__ bind(move_intSlot_to_ARG);
361
__ sldi(R0, argcnt, LogSizeOfTwoInstructions);
362
__ load_const(R11_scratch1, move_int_arg); // Label must be bound here.
363
__ add(R11_scratch1, R0, R11_scratch1);
364
__ mtctr(R11_scratch1/*branch_target*/);
365
__ bctr();
366
__ bind(move_floatSlot_to_FARG);
367
__ sldi(R0, fpcnt, LogSizeOfTwoInstructions);
368
__ addi(fpcnt, fpcnt, 1);
369
__ load_const(R11_scratch1, move_float_arg); // Label must be bound here.
370
__ add(R11_scratch1, R0, R11_scratch1);
371
__ mtctr(R11_scratch1/*branch_target*/);
372
__ bctr();
373
374
return entry;
375
}
376
377
address AbstractInterpreterGenerator::generate_result_handler_for(BasicType type) {
378
//
379
// Registers alive
380
// R3_RET
381
// LR
382
//
383
// Registers updated
384
// R3_RET
385
//
386
387
Label done;
388
address entry = __ pc();
389
390
switch (type) {
391
case T_BOOLEAN:
392
// convert !=0 to 1
393
__ neg(R0, R3_RET);
394
__ orr(R0, R3_RET, R0);
395
__ srwi(R3_RET, R0, 31);
396
break;
397
case T_BYTE:
398
// sign extend 8 bits
399
__ extsb(R3_RET, R3_RET);
400
break;
401
case T_CHAR:
402
// zero extend 16 bits
403
__ clrldi(R3_RET, R3_RET, 48);
404
break;
405
case T_SHORT:
406
// sign extend 16 bits
407
__ extsh(R3_RET, R3_RET);
408
break;
409
case T_INT:
410
// sign extend 32 bits
411
__ extsw(R3_RET, R3_RET);
412
break;
413
case T_LONG:
414
break;
415
case T_OBJECT:
416
// JNIHandles::resolve result.
417
__ resolve_jobject(R3_RET, R11_scratch1, R12_scratch2, /* needs_frame */ true); // kills R31
418
break;
419
case T_FLOAT:
420
break;
421
case T_DOUBLE:
422
break;
423
case T_VOID:
424
break;
425
default: ShouldNotReachHere();
426
}
427
428
__ BIND(done);
429
__ blr();
430
431
return entry;
432
}
433
434
// Abstract method entry.
435
//
436
address InterpreterGenerator::generate_abstract_entry(void) {
437
address entry = __ pc();
438
439
//
440
// Registers alive
441
// R16_thread - JavaThread*
442
// R19_method - callee's method (method to be invoked)
443
// R1_SP - SP prepared such that caller's outgoing args are near top
444
// LR - return address to caller
445
//
446
// Stack layout at this point:
447
//
448
// 0 [TOP_IJAVA_FRAME_ABI] <-- R1_SP
449
// alignment (optional)
450
// [outgoing Java arguments]
451
// ...
452
// PARENT [PARENT_IJAVA_FRAME_ABI]
453
// ...
454
//
455
456
// Can't use call_VM here because we have not set up a new
457
// interpreter state. Make the call to the vm and make it look like
458
// our caller set up the JavaFrameAnchor.
459
__ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
460
461
// Push a new C frame and save LR.
462
__ save_LR_CR(R0);
463
__ push_frame_reg_args(0, R11_scratch1);
464
465
// This is not a leaf but we have a JavaFrameAnchor now and we will
466
// check (create) exceptions afterward so this is ok.
467
__ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError),
468
R16_thread);
469
470
// Pop the C frame and restore LR.
471
__ pop_frame();
472
__ restore_LR_CR(R0);
473
474
// Reset JavaFrameAnchor from call_VM_leaf above.
475
__ reset_last_Java_frame();
476
477
#ifdef CC_INTERP
478
// Return to frame manager, it will handle the pending exception.
479
__ blr();
480
#else
481
// We don't know our caller, so jump to the general forward exception stub,
482
// which will also pop our full frame off. Satisfy the interface of
483
// SharedRuntime::generate_forward_exception()
484
__ load_const_optimized(R11_scratch1, StubRoutines::forward_exception_entry(), R0);
485
__ mtctr(R11_scratch1);
486
__ bctr();
487
#endif
488
489
return entry;
490
}
491
492
// Call an accessor method (assuming it is resolved, otherwise drop into
493
// vanilla (slow path) entry.
494
address InterpreterGenerator::generate_accessor_entry(void) {
495
if (!UseFastAccessorMethods && (!FLAG_IS_ERGO(UseFastAccessorMethods))) {
496
return NULL;
497
}
498
499
Label Lslow_path, Lacquire;
500
501
const Register
502
Rclass_or_obj = R3_ARG1,
503
Rconst_method = R4_ARG2,
504
Rcodes = Rconst_method,
505
Rcpool_cache = R5_ARG3,
506
Rscratch = R11_scratch1,
507
Rjvmti_mode = Rscratch,
508
Roffset = R12_scratch2,
509
Rflags = R6_ARG4,
510
Rbtable = R7_ARG5;
511
512
static address branch_table[number_of_states];
513
514
address entry = __ pc();
515
516
// Check for safepoint:
517
// Ditch this, real man don't need safepoint checks.
518
519
// Also check for JVMTI mode
520
// Check for null obj, take slow path if so.
521
__ ld(Rclass_or_obj, Interpreter::stackElementSize, CC_INTERP_ONLY(R17_tos) NOT_CC_INTERP(R15_esp));
522
__ lwz(Rjvmti_mode, thread_(interp_only_mode));
523
__ cmpdi(CCR1, Rclass_or_obj, 0);
524
__ cmpwi(CCR0, Rjvmti_mode, 0);
525
__ crorc(/*CCR0 eq*/2, /*CCR1 eq*/4+2, /*CCR0 eq*/2);
526
__ beq(CCR0, Lslow_path); // this==null or jvmti_mode!=0
527
528
// Do 2 things in parallel:
529
// 1. Load the index out of the first instruction word, which looks like this:
530
// <0x2a><0xb4><index (2 byte, native endianess)>.
531
// 2. Load constant pool cache base.
532
__ ld(Rconst_method, in_bytes(Method::const_offset()), R19_method);
533
__ ld(Rcpool_cache, in_bytes(ConstMethod::constants_offset()), Rconst_method);
534
535
__ lhz(Rcodes, in_bytes(ConstMethod::codes_offset()) + 2, Rconst_method); // Lower half of 32 bit field.
536
__ ld(Rcpool_cache, ConstantPool::cache_offset_in_bytes(), Rcpool_cache);
537
538
// Get the const pool entry by means of <index>.
539
const int codes_shift = exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord);
540
__ slwi(Rscratch, Rcodes, codes_shift); // (codes&0xFFFF)<<codes_shift
541
__ add(Rcpool_cache, Rscratch, Rcpool_cache);
542
543
// Check if cpool cache entry is resolved.
544
// We are resolved if the indices offset contains the current bytecode.
545
ByteSize cp_base_offset = ConstantPoolCache::base_offset();
546
// Big Endian:
547
__ lbz(Rscratch, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::indices_offset()) + 7 - 2, Rcpool_cache);
548
__ cmpwi(CCR0, Rscratch, Bytecodes::_getfield);
549
__ bne(CCR0, Lslow_path);
550
__ isync(); // Order succeeding loads wrt. load of _indices field from cpool_cache.
551
552
// Finally, start loading the value: Get cp cache entry into regs.
553
__ ld(Rflags, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::flags_offset()), Rcpool_cache);
554
__ ld(Roffset, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::f2_offset()), Rcpool_cache);
555
556
// Following code is from templateTable::getfield_or_static
557
// Load pointer to branch table
558
__ load_const_optimized(Rbtable, (address)branch_table, Rscratch);
559
560
// Get volatile flag
561
__ rldicl(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // extract volatile bit
562
// note: sync is needed before volatile load on PPC64
563
564
// Check field type
565
__ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
566
567
#ifdef ASSERT
568
Label LFlagInvalid;
569
__ cmpldi(CCR0, Rflags, number_of_states);
570
__ bge(CCR0, LFlagInvalid);
571
572
__ ld(R9_ARG7, 0, R1_SP);
573
__ ld(R10_ARG8, 0, R21_sender_SP);
574
__ cmpd(CCR0, R9_ARG7, R10_ARG8);
575
__ asm_assert_eq("backlink", 0x543);
576
#endif // ASSERT
577
__ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
578
579
// Load from branch table and dispatch (volatile case: one instruction ahead)
580
__ sldi(Rflags, Rflags, LogBytesPerWord);
581
__ cmpwi(CCR6, Rscratch, 1); // volatile?
582
if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
583
__ sldi(Rscratch, Rscratch, exact_log2(BytesPerInstWord)); // volatile ? size of 1 instruction : 0
584
}
585
__ ldx(Rbtable, Rbtable, Rflags);
586
587
if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
588
__ subf(Rbtable, Rscratch, Rbtable); // point to volatile/non-volatile entry point
589
}
590
__ mtctr(Rbtable);
591
__ bctr();
592
593
#ifdef ASSERT
594
__ bind(LFlagInvalid);
595
__ stop("got invalid flag", 0x6541);
596
597
bool all_uninitialized = true,
598
all_initialized = true;
599
for (int i = 0; i<number_of_states; ++i) {
600
all_uninitialized = all_uninitialized && (branch_table[i] == NULL);
601
all_initialized = all_initialized && (branch_table[i] != NULL);
602
}
603
assert(all_uninitialized != all_initialized, "consistency"); // either or
604
605
__ fence(); // volatile entry point (one instruction before non-volatile_entry point)
606
if (branch_table[vtos] == 0) branch_table[vtos] = __ pc(); // non-volatile_entry point
607
if (branch_table[dtos] == 0) branch_table[dtos] = __ pc(); // non-volatile_entry point
608
if (branch_table[ftos] == 0) branch_table[ftos] = __ pc(); // non-volatile_entry point
609
__ stop("unexpected type", 0x6551);
610
#endif
611
612
if (branch_table[itos] == 0) { // generate only once
613
__ align(32, 28, 28); // align load
614
__ fence(); // volatile entry point (one instruction before non-volatile_entry point)
615
branch_table[itos] = __ pc(); // non-volatile_entry point
616
__ lwax(R3_RET, Rclass_or_obj, Roffset);
617
__ beq(CCR6, Lacquire);
618
__ blr();
619
}
620
621
if (branch_table[ltos] == 0) { // generate only once
622
__ align(32, 28, 28); // align load
623
__ fence(); // volatile entry point (one instruction before non-volatile_entry point)
624
branch_table[ltos] = __ pc(); // non-volatile_entry point
625
__ ldx(R3_RET, Rclass_or_obj, Roffset);
626
__ beq(CCR6, Lacquire);
627
__ blr();
628
}
629
630
if (branch_table[btos] == 0) { // generate only once
631
__ align(32, 28, 28); // align load
632
__ fence(); // volatile entry point (one instruction before non-volatile_entry point)
633
branch_table[btos] = __ pc(); // non-volatile_entry point
634
__ lbzx(R3_RET, Rclass_or_obj, Roffset);
635
__ extsb(R3_RET, R3_RET);
636
__ beq(CCR6, Lacquire);
637
__ blr();
638
}
639
640
if (branch_table[ztos] == 0) { // generate only once
641
__ align(32, 28, 28); // align load
642
__ fence(); // volatile entry point (one instruction before non-volatile_entry point)
643
branch_table[ztos] = __ pc(); // non-volatile_entry point
644
__ lbzx(R3_RET, Rclass_or_obj, Roffset);
645
__ extsb(R3_RET, R3_RET);
646
__ beq(CCR6, Lacquire);
647
__ blr();
648
}
649
650
if (branch_table[ctos] == 0) { // generate only once
651
__ align(32, 28, 28); // align load
652
__ fence(); // volatile entry point (one instruction before non-volatile_entry point)
653
branch_table[ctos] = __ pc(); // non-volatile_entry point
654
__ lhzx(R3_RET, Rclass_or_obj, Roffset);
655
__ beq(CCR6, Lacquire);
656
__ blr();
657
}
658
659
if (branch_table[stos] == 0) { // generate only once
660
__ align(32, 28, 28); // align load
661
__ fence(); // volatile entry point (one instruction before non-volatile_entry point)
662
branch_table[stos] = __ pc(); // non-volatile_entry point
663
__ lhax(R3_RET, Rclass_or_obj, Roffset);
664
__ beq(CCR6, Lacquire);
665
__ blr();
666
}
667
668
if (branch_table[atos] == 0) { // generate only once
669
__ align(32, 28, 28); // align load
670
__ fence(); // volatile entry point (one instruction before non-volatile_entry point)
671
branch_table[atos] = __ pc(); // non-volatile_entry point
672
__ load_heap_oop(R3_RET, (RegisterOrConstant)Roffset, Rclass_or_obj);
673
__ verify_oop(R3_RET);
674
//__ dcbt(R3_RET); // prefetch
675
__ beq(CCR6, Lacquire);
676
__ blr();
677
}
678
679
__ align(32, 12);
680
__ bind(Lacquire);
681
__ twi_0(R3_RET);
682
__ isync(); // acquire
683
__ blr();
684
685
#ifdef ASSERT
686
for (int i = 0; i<number_of_states; ++i) {
687
assert(branch_table[i], "accessor_entry initialization");
688
//tty->print_cr("accessor_entry: branch_table[%d] = 0x%llx (opcode 0x%llx)", i, branch_table[i], *((unsigned int*)branch_table[i]));
689
}
690
#endif
691
692
__ bind(Lslow_path);
693
__ branch_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), Rscratch);
694
__ flush();
695
696
return entry;
697
}
698
699
// Interpreter intrinsic for WeakReference.get().
700
// 1. Don't push a full blown frame and go on dispatching, but fetch the value
701
// into R8 and return quickly
702
// 2. If G1 is active we *must* execute this intrinsic for corrrectness:
703
// It contains a GC barrier which puts the reference into the satb buffer
704
// to indicate that someone holds a strong reference to the object the
705
// weak ref points to!
706
address InterpreterGenerator::generate_Reference_get_entry(void) {
707
// Code: _aload_0, _getfield, _areturn
708
// parameter size = 1
709
//
710
// The code that gets generated by this routine is split into 2 parts:
711
// 1. the "intrinsified" code for G1 (or any SATB based GC),
712
// 2. the slow path - which is an expansion of the regular method entry.
713
//
714
// Notes:
715
// * In the G1 code we do not check whether we need to block for
716
// a safepoint. If G1 is enabled then we must execute the specialized
717
// code for Reference.get (except when the Reference object is null)
718
// so that we can log the value in the referent field with an SATB
719
// update buffer.
720
// If the code for the getfield template is modified so that the
721
// G1 pre-barrier code is executed when the current method is
722
// Reference.get() then going through the normal method entry
723
// will be fine.
724
// * The G1 code can, however, check the receiver object (the instance
725
// of java.lang.Reference) and jump to the slow path if null. If the
726
// Reference object is null then we obviously cannot fetch the referent
727
// and so we don't need to call the G1 pre-barrier. Thus we can use the
728
// regular method entry code to generate the NPE.
729
//
730
// This code is based on generate_accessor_enty.
731
732
address entry = __ pc();
733
734
const int referent_offset = java_lang_ref_Reference::referent_offset;
735
guarantee(referent_offset > 0, "referent offset not initialized");
736
737
if (UseG1GC) {
738
Label slow_path;
739
740
// Debugging not possible, so can't use __ skip_if_jvmti_mode(slow_path, GR31_SCRATCH);
741
742
// In the G1 code we don't check if we need to reach a safepoint. We
743
// continue and the thread will safepoint at the next bytecode dispatch.
744
745
// If the receiver is null then it is OK to jump to the slow path.
746
__ ld(R3_RET, Interpreter::stackElementSize, CC_INTERP_ONLY(R17_tos) NOT_CC_INTERP(R15_esp)); // get receiver
747
748
// Check if receiver == NULL and go the slow path.
749
__ cmpdi(CCR0, R3_RET, 0);
750
__ beq(CCR0, slow_path);
751
752
// Load the value of the referent field.
753
__ load_heap_oop(R3_RET, referent_offset, R3_RET);
754
755
// Generate the G1 pre-barrier code to log the value of
756
// the referent field in an SATB buffer. Note with
757
// these parameters the pre-barrier does not generate
758
// the load of the previous value.
759
760
// Restore caller sp for c2i case.
761
#ifdef ASSERT
762
__ ld(R9_ARG7, 0, R1_SP);
763
__ ld(R10_ARG8, 0, R21_sender_SP);
764
__ cmpd(CCR0, R9_ARG7, R10_ARG8);
765
__ asm_assert_eq("backlink", 0x544);
766
#endif // ASSERT
767
__ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
768
769
__ g1_write_barrier_pre(noreg, // obj
770
noreg, // offset
771
R3_RET, // pre_val
772
R11_scratch1, // tmp
773
R12_scratch2, // tmp
774
true); // needs_frame
775
776
__ blr();
777
778
// Generate regular method entry.
779
__ bind(slow_path);
780
__ branch_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), R11_scratch1);
781
__ flush();
782
783
return entry;
784
} else {
785
return generate_accessor_entry();
786
}
787
}
788
789
void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
790
// This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
791
// the days we had adapter frames. When we deoptimize a situation where a
792
// compiled caller calls a compiled caller will have registers it expects
793
// to survive the call to the callee. If we deoptimize the callee the only
794
// way we can restore these registers is to have the oldest interpreter
795
// frame that we create restore these values. That is what this routine
796
// will accomplish.
797
798
// At the moment we have modified c2 to not have any callee save registers
799
// so this problem does not exist and this routine is just a place holder.
800
801
assert(f->is_interpreted_frame(), "must be interpreted");
802
}
803
804