Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/cpu/sparc/vm/assembler_sparc.hpp
32285 views
1
/*
2
* Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#ifndef CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
26
#define CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
27
28
#include "asm/register.hpp"
29
30
// The SPARC Assembler: Pure assembler doing NO optimizations on the instruction
31
// level; i.e., what you write
32
// is what you get. The Assembler is generating code into a CodeBuffer.
33
34
class Assembler : public AbstractAssembler {
35
friend class AbstractAssembler;
36
friend class AddressLiteral;
37
38
// code patchers need various routines like inv_wdisp()
39
friend class NativeInstruction;
40
friend class NativeGeneralJump;
41
friend class Relocation;
42
friend class Label;
43
44
public:
45
// op carries format info; see page 62 & 267
46
47
enum ops {
48
call_op = 1, // fmt 1
49
branch_op = 0, // also sethi (fmt2)
50
arith_op = 2, // fmt 3, arith & misc
51
ldst_op = 3 // fmt 3, load/store
52
};
53
54
enum op2s {
55
bpr_op2 = 3,
56
fb_op2 = 6,
57
fbp_op2 = 5,
58
br_op2 = 2,
59
bp_op2 = 1,
60
sethi_op2 = 4
61
};
62
63
enum op3s {
64
// selected op3s
65
add_op3 = 0x00,
66
and_op3 = 0x01,
67
or_op3 = 0x02,
68
xor_op3 = 0x03,
69
sub_op3 = 0x04,
70
andn_op3 = 0x05,
71
orn_op3 = 0x06,
72
xnor_op3 = 0x07,
73
addc_op3 = 0x08,
74
mulx_op3 = 0x09,
75
umul_op3 = 0x0a,
76
smul_op3 = 0x0b,
77
subc_op3 = 0x0c,
78
udivx_op3 = 0x0d,
79
udiv_op3 = 0x0e,
80
sdiv_op3 = 0x0f,
81
82
addcc_op3 = 0x10,
83
andcc_op3 = 0x11,
84
orcc_op3 = 0x12,
85
xorcc_op3 = 0x13,
86
subcc_op3 = 0x14,
87
andncc_op3 = 0x15,
88
orncc_op3 = 0x16,
89
xnorcc_op3 = 0x17,
90
addccc_op3 = 0x18,
91
aes4_op3 = 0x19,
92
umulcc_op3 = 0x1a,
93
smulcc_op3 = 0x1b,
94
subccc_op3 = 0x1c,
95
udivcc_op3 = 0x1e,
96
sdivcc_op3 = 0x1f,
97
98
taddcc_op3 = 0x20,
99
tsubcc_op3 = 0x21,
100
taddcctv_op3 = 0x22,
101
tsubcctv_op3 = 0x23,
102
mulscc_op3 = 0x24,
103
sll_op3 = 0x25,
104
sllx_op3 = 0x25,
105
srl_op3 = 0x26,
106
srlx_op3 = 0x26,
107
sra_op3 = 0x27,
108
srax_op3 = 0x27,
109
rdreg_op3 = 0x28,
110
membar_op3 = 0x28,
111
112
flushw_op3 = 0x2b,
113
movcc_op3 = 0x2c,
114
sdivx_op3 = 0x2d,
115
popc_op3 = 0x2e,
116
movr_op3 = 0x2f,
117
118
sir_op3 = 0x30,
119
wrreg_op3 = 0x30,
120
saved_op3 = 0x31,
121
122
fpop1_op3 = 0x34,
123
fpop2_op3 = 0x35,
124
impdep1_op3 = 0x36,
125
aes3_op3 = 0x36,
126
sha_op3 = 0x36,
127
alignaddr_op3 = 0x36,
128
faligndata_op3 = 0x36,
129
flog3_op3 = 0x36,
130
edge_op3 = 0x36,
131
fsrc_op3 = 0x36,
132
xmulx_op3 = 0x36,
133
impdep2_op3 = 0x37,
134
stpartialf_op3 = 0x37,
135
jmpl_op3 = 0x38,
136
rett_op3 = 0x39,
137
trap_op3 = 0x3a,
138
flush_op3 = 0x3b,
139
save_op3 = 0x3c,
140
restore_op3 = 0x3d,
141
done_op3 = 0x3e,
142
retry_op3 = 0x3e,
143
144
lduw_op3 = 0x00,
145
ldub_op3 = 0x01,
146
lduh_op3 = 0x02,
147
ldd_op3 = 0x03,
148
stw_op3 = 0x04,
149
stb_op3 = 0x05,
150
sth_op3 = 0x06,
151
std_op3 = 0x07,
152
ldsw_op3 = 0x08,
153
ldsb_op3 = 0x09,
154
ldsh_op3 = 0x0a,
155
ldx_op3 = 0x0b,
156
157
stx_op3 = 0x0e,
158
swap_op3 = 0x0f,
159
160
stwa_op3 = 0x14,
161
stxa_op3 = 0x1e,
162
163
ldf_op3 = 0x20,
164
ldfsr_op3 = 0x21,
165
ldqf_op3 = 0x22,
166
lddf_op3 = 0x23,
167
stf_op3 = 0x24,
168
stfsr_op3 = 0x25,
169
stqf_op3 = 0x26,
170
stdf_op3 = 0x27,
171
172
prefetch_op3 = 0x2d,
173
174
casa_op3 = 0x3c,
175
casxa_op3 = 0x3e,
176
177
mftoi_op3 = 0x36,
178
179
alt_bit_op3 = 0x10,
180
cc_bit_op3 = 0x10
181
};
182
183
enum opfs {
184
// selected opfs
185
edge8n_opf = 0x01,
186
187
fmovs_opf = 0x01,
188
fmovd_opf = 0x02,
189
190
fnegs_opf = 0x05,
191
fnegd_opf = 0x06,
192
193
alignaddr_opf = 0x18,
194
195
fadds_opf = 0x41,
196
faddd_opf = 0x42,
197
fsubs_opf = 0x45,
198
fsubd_opf = 0x46,
199
200
faligndata_opf = 0x48,
201
202
fmuls_opf = 0x49,
203
fmuld_opf = 0x4a,
204
fdivs_opf = 0x4d,
205
fdivd_opf = 0x4e,
206
207
fcmps_opf = 0x51,
208
fcmpd_opf = 0x52,
209
210
fstox_opf = 0x81,
211
fdtox_opf = 0x82,
212
fxtos_opf = 0x84,
213
fxtod_opf = 0x88,
214
fitos_opf = 0xc4,
215
fdtos_opf = 0xc6,
216
fitod_opf = 0xc8,
217
fstod_opf = 0xc9,
218
fstoi_opf = 0xd1,
219
fdtoi_opf = 0xd2,
220
221
mdtox_opf = 0x110,
222
mstouw_opf = 0x111,
223
mstosw_opf = 0x113,
224
xmulx_opf = 0x115,
225
xmulxhi_opf = 0x116,
226
mxtod_opf = 0x118,
227
mwtos_opf = 0x119,
228
229
aes_kexpand0_opf = 0x130,
230
aes_kexpand2_opf = 0x131,
231
232
sha1_opf = 0x141,
233
sha256_opf = 0x142,
234
sha512_opf = 0x143
235
};
236
237
enum op5s {
238
aes_eround01_op5 = 0x00,
239
aes_eround23_op5 = 0x01,
240
aes_dround01_op5 = 0x02,
241
aes_dround23_op5 = 0x03,
242
aes_eround01_l_op5 = 0x04,
243
aes_eround23_l_op5 = 0x05,
244
aes_dround01_l_op5 = 0x06,
245
aes_dround23_l_op5 = 0x07,
246
aes_kexpand1_op5 = 0x08
247
};
248
249
enum RCondition { rc_z = 1, rc_lez = 2, rc_lz = 3, rc_nz = 5, rc_gz = 6, rc_gez = 7, rc_last = rc_gez };
250
251
enum Condition {
252
// for FBfcc & FBPfcc instruction
253
f_never = 0,
254
f_notEqual = 1,
255
f_notZero = 1,
256
f_lessOrGreater = 2,
257
f_unorderedOrLess = 3,
258
f_less = 4,
259
f_unorderedOrGreater = 5,
260
f_greater = 6,
261
f_unordered = 7,
262
f_always = 8,
263
f_equal = 9,
264
f_zero = 9,
265
f_unorderedOrEqual = 10,
266
f_greaterOrEqual = 11,
267
f_unorderedOrGreaterOrEqual = 12,
268
f_lessOrEqual = 13,
269
f_unorderedOrLessOrEqual = 14,
270
f_ordered = 15,
271
272
// V8 coproc, pp 123 v8 manual
273
274
cp_always = 8,
275
cp_never = 0,
276
cp_3 = 7,
277
cp_2 = 6,
278
cp_2or3 = 5,
279
cp_1 = 4,
280
cp_1or3 = 3,
281
cp_1or2 = 2,
282
cp_1or2or3 = 1,
283
cp_0 = 9,
284
cp_0or3 = 10,
285
cp_0or2 = 11,
286
cp_0or2or3 = 12,
287
cp_0or1 = 13,
288
cp_0or1or3 = 14,
289
cp_0or1or2 = 15,
290
291
292
// for integers
293
294
never = 0,
295
equal = 1,
296
zero = 1,
297
lessEqual = 2,
298
less = 3,
299
lessEqualUnsigned = 4,
300
lessUnsigned = 5,
301
carrySet = 5,
302
negative = 6,
303
overflowSet = 7,
304
always = 8,
305
notEqual = 9,
306
notZero = 9,
307
greater = 10,
308
greaterEqual = 11,
309
greaterUnsigned = 12,
310
greaterEqualUnsigned = 13,
311
carryClear = 13,
312
positive = 14,
313
overflowClear = 15
314
};
315
316
enum CC {
317
icc = 0, xcc = 2,
318
// ptr_cc is the correct condition code for a pointer or intptr_t:
319
ptr_cc = NOT_LP64(icc) LP64_ONLY(xcc),
320
fcc0 = 0, fcc1 = 1, fcc2 = 2, fcc3 = 3
321
};
322
323
enum PrefetchFcn {
324
severalReads = 0, oneRead = 1, severalWritesAndPossiblyReads = 2, oneWrite = 3, page = 4
325
};
326
327
public:
328
// Helper functions for groups of instructions
329
330
enum Predict { pt = 1, pn = 0 }; // pt = predict taken
331
332
enum Membar_mask_bits { // page 184, v9
333
StoreStore = 1 << 3,
334
LoadStore = 1 << 2,
335
StoreLoad = 1 << 1,
336
LoadLoad = 1 << 0,
337
338
Sync = 1 << 6,
339
MemIssue = 1 << 5,
340
Lookaside = 1 << 4
341
};
342
343
static bool is_in_wdisp_range(address a, address b, int nbits) {
344
intptr_t d = intptr_t(b) - intptr_t(a);
345
return is_simm(d, nbits + 2);
346
}
347
348
address target_distance(Label& L) {
349
// Assembler::target(L) should be called only when
350
// a branch instruction is emitted since non-bound
351
// labels record current pc() as a branch address.
352
if (L.is_bound()) return target(L);
353
// Return current address for non-bound labels.
354
return pc();
355
}
356
357
// test if label is in simm16 range in words (wdisp16).
358
bool is_in_wdisp16_range(Label& L) {
359
return is_in_wdisp_range(target_distance(L), pc(), 16);
360
}
361
// test if the distance between two addresses fits in simm30 range in words
362
static bool is_in_wdisp30_range(address a, address b) {
363
return is_in_wdisp_range(a, b, 30);
364
}
365
366
enum ASIs { // page 72, v9
367
ASI_PRIMARY = 0x80,
368
ASI_PRIMARY_NOFAULT = 0x82,
369
ASI_PRIMARY_LITTLE = 0x88,
370
// 8x8-bit partial store
371
ASI_PST8_PRIMARY = 0xC0,
372
// Block initializing store
373
ASI_ST_BLKINIT_PRIMARY = 0xE2,
374
// Most-Recently-Used (MRU) BIS variant
375
ASI_ST_BLKINIT_MRU_PRIMARY = 0xF2
376
// add more from book as needed
377
};
378
379
protected:
380
// helpers
381
382
// x is supposed to fit in a field "nbits" wide
383
// and be sign-extended. Check the range.
384
385
static void assert_signed_range(intptr_t x, int nbits) {
386
assert(nbits == 32 || (-(1 << nbits-1) <= x && x < ( 1 << nbits-1)),
387
err_msg("value out of range: x=" INTPTR_FORMAT ", nbits=%d", x, nbits));
388
}
389
390
static void assert_signed_word_disp_range(intptr_t x, int nbits) {
391
assert( (x & 3) == 0, "not word aligned");
392
assert_signed_range(x, nbits + 2);
393
}
394
395
static void assert_unsigned_const(int x, int nbits) {
396
assert( juint(x) < juint(1 << nbits), "unsigned constant out of range");
397
}
398
399
// fields: note bits numbered from LSB = 0,
400
// fields known by inclusive bit range
401
402
static int fmask(juint hi_bit, juint lo_bit) {
403
assert( hi_bit >= lo_bit && 0 <= lo_bit && hi_bit < 32, "bad bits");
404
return (1 << ( hi_bit-lo_bit + 1 )) - 1;
405
}
406
407
// inverse of u_field
408
409
static int inv_u_field(int x, int hi_bit, int lo_bit) {
410
juint r = juint(x) >> lo_bit;
411
r &= fmask( hi_bit, lo_bit);
412
return int(r);
413
}
414
415
416
// signed version: extract from field and sign-extend
417
418
static int inv_s_field(int x, int hi_bit, int lo_bit) {
419
int sign_shift = 31 - hi_bit;
420
return inv_u_field( ((x << sign_shift) >> sign_shift), hi_bit, lo_bit);
421
}
422
423
// given a field that ranges from hi_bit to lo_bit (inclusive,
424
// LSB = 0), and an unsigned value for the field,
425
// shift it into the field
426
427
#ifdef ASSERT
428
static int u_field(int x, int hi_bit, int lo_bit) {
429
assert( ( x & ~fmask(hi_bit, lo_bit)) == 0,
430
"value out of range");
431
int r = x << lo_bit;
432
assert( inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
433
return r;
434
}
435
#else
436
// make sure this is inlined as it will reduce code size significantly
437
#define u_field(x, hi_bit, lo_bit) ((x) << (lo_bit))
438
#endif
439
440
static int inv_op( int x ) { return inv_u_field(x, 31, 30); }
441
static int inv_op2( int x ) { return inv_u_field(x, 24, 22); }
442
static int inv_op3( int x ) { return inv_u_field(x, 24, 19); }
443
static int inv_cond( int x ){ return inv_u_field(x, 28, 25); }
444
445
static bool inv_immed( int x ) { return (x & Assembler::immed(true)) != 0; }
446
447
static Register inv_rd( int x ) { return as_Register(inv_u_field(x, 29, 25)); }
448
static Register inv_rs1( int x ) { return as_Register(inv_u_field(x, 18, 14)); }
449
static Register inv_rs2( int x ) { return as_Register(inv_u_field(x, 4, 0)); }
450
451
static int op( int x) { return u_field(x, 31, 30); }
452
static int rd( Register r) { return u_field(r->encoding(), 29, 25); }
453
static int fcn( int x) { return u_field(x, 29, 25); }
454
static int op3( int x) { return u_field(x, 24, 19); }
455
static int rs1( Register r) { return u_field(r->encoding(), 18, 14); }
456
static int rs2( Register r) { return u_field(r->encoding(), 4, 0); }
457
static int annul( bool a) { return u_field(a ? 1 : 0, 29, 29); }
458
static int cond( int x) { return u_field(x, 28, 25); }
459
static int cond_mov( int x) { return u_field(x, 17, 14); }
460
static int rcond( RCondition x) { return u_field(x, 12, 10); }
461
static int op2( int x) { return u_field(x, 24, 22); }
462
static int predict( bool p) { return u_field(p ? 1 : 0, 19, 19); }
463
static int branchcc( CC fcca) { return u_field(fcca, 21, 20); }
464
static int cmpcc( CC fcca) { return u_field(fcca, 26, 25); }
465
static int imm_asi( int x) { return u_field(x, 12, 5); }
466
static int immed( bool i) { return u_field(i ? 1 : 0, 13, 13); }
467
static int opf_low6( int w) { return u_field(w, 10, 5); }
468
static int opf_low5( int w) { return u_field(w, 9, 5); }
469
static int op5( int x) { return u_field(x, 8, 5); }
470
static int trapcc( CC cc) { return u_field(cc, 12, 11); }
471
static int sx( int i) { return u_field(i, 12, 12); } // shift x=1 means 64-bit
472
static int opf( int x) { return u_field(x, 13, 5); }
473
474
static bool is_cbcond( int x ) {
475
return (VM_Version::has_cbcond() && (inv_cond(x) > rc_last) &&
476
inv_op(x) == branch_op && inv_op2(x) == bpr_op2);
477
}
478
static bool is_cxb( int x ) {
479
assert(is_cbcond(x), "wrong instruction");
480
return (x & (1<<21)) != 0;
481
}
482
static int cond_cbcond( int x) { return u_field((((x & 8)<<1) + 8 + (x & 7)), 29, 25); }
483
static int inv_cond_cbcond(int x) {
484
assert(is_cbcond(x), "wrong instruction");
485
return inv_u_field(x, 27, 25) | (inv_u_field(x, 29, 29)<<3);
486
}
487
488
static int opf_cc( CC c, bool useFloat ) { return u_field((useFloat ? 0 : 4) + c, 13, 11); }
489
static int mov_cc( CC c, bool useFloat ) { return u_field(useFloat ? 0 : 1, 18, 18) | u_field(c, 12, 11); }
490
491
static int fd( FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 29, 25); };
492
static int fs1(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 18, 14); };
493
static int fs2(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 4, 0); };
494
static int fs3(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 13, 9); };
495
496
// some float instructions use this encoding on the op3 field
497
static int alt_op3(int op, FloatRegisterImpl::Width w) {
498
int r;
499
switch(w) {
500
case FloatRegisterImpl::S: r = op + 0; break;
501
case FloatRegisterImpl::D: r = op + 3; break;
502
case FloatRegisterImpl::Q: r = op + 2; break;
503
default: ShouldNotReachHere(); break;
504
}
505
return op3(r);
506
}
507
508
509
// compute inverse of simm
510
static int inv_simm(int x, int nbits) {
511
return (int)(x << (32 - nbits)) >> (32 - nbits);
512
}
513
514
static int inv_simm13( int x ) { return inv_simm(x, 13); }
515
516
// signed immediate, in low bits, nbits long
517
static int simm(int x, int nbits) {
518
assert_signed_range(x, nbits);
519
return x & (( 1 << nbits ) - 1);
520
}
521
522
// compute inverse of wdisp16
523
static intptr_t inv_wdisp16(int x, intptr_t pos) {
524
int lo = x & (( 1 << 14 ) - 1);
525
int hi = (x >> 20) & 3;
526
if (hi >= 2) hi |= ~1;
527
return (((hi << 14) | lo) << 2) + pos;
528
}
529
530
// word offset, 14 bits at LSend, 2 bits at B21, B20
531
static int wdisp16(intptr_t x, intptr_t off) {
532
intptr_t xx = x - off;
533
assert_signed_word_disp_range(xx, 16);
534
int r = (xx >> 2) & ((1 << 14) - 1)
535
| ( ( (xx>>(2+14)) & 3 ) << 20 );
536
assert( inv_wdisp16(r, off) == x, "inverse is not inverse");
537
return r;
538
}
539
540
// compute inverse of wdisp10
541
static intptr_t inv_wdisp10(int x, intptr_t pos) {
542
assert(is_cbcond(x), "wrong instruction");
543
int lo = inv_u_field(x, 12, 5);
544
int hi = (x >> 19) & 3;
545
if (hi >= 2) hi |= ~1;
546
return (((hi << 8) | lo) << 2) + pos;
547
}
548
549
// word offset for cbcond, 8 bits at [B12,B5], 2 bits at [B20,B19]
550
static int wdisp10(intptr_t x, intptr_t off) {
551
assert(VM_Version::has_cbcond(), "This CPU does not have CBCOND instruction");
552
intptr_t xx = x - off;
553
assert_signed_word_disp_range(xx, 10);
554
int r = ( ( (xx >> 2 ) & ((1 << 8) - 1) ) << 5 )
555
| ( ( (xx >> (2+8)) & 3 ) << 19 );
556
// Have to fake cbcond instruction to pass assert in inv_wdisp10()
557
assert(inv_wdisp10((r | op(branch_op) | cond_cbcond(rc_last+1) | op2(bpr_op2)), off) == x, "inverse is not inverse");
558
return r;
559
}
560
561
// word displacement in low-order nbits bits
562
563
static intptr_t inv_wdisp( int x, intptr_t pos, int nbits ) {
564
int pre_sign_extend = x & (( 1 << nbits ) - 1);
565
int r = pre_sign_extend >= ( 1 << (nbits-1) )
566
? pre_sign_extend | ~(( 1 << nbits ) - 1)
567
: pre_sign_extend;
568
return (r << 2) + pos;
569
}
570
571
static int wdisp( intptr_t x, intptr_t off, int nbits ) {
572
intptr_t xx = x - off;
573
assert_signed_word_disp_range(xx, nbits);
574
int r = (xx >> 2) & (( 1 << nbits ) - 1);
575
assert( inv_wdisp( r, off, nbits ) == x, "inverse not inverse");
576
return r;
577
}
578
579
580
// Extract the top 32 bits in a 64 bit word
581
static int32_t hi32( int64_t x ) {
582
int32_t r = int32_t( (uint64_t)x >> 32 );
583
return r;
584
}
585
586
// given a sethi instruction, extract the constant, left-justified
587
static int inv_hi22( int x ) {
588
return x << 10;
589
}
590
591
// create an imm22 field, given a 32-bit left-justified constant
592
static int hi22( int x ) {
593
int r = int( juint(x) >> 10 );
594
assert( (r & ~((1 << 22) - 1)) == 0, "just checkin'");
595
return r;
596
}
597
598
// create a low10 __value__ (not a field) for a given a 32-bit constant
599
static int low10( int x ) {
600
return x & ((1 << 10) - 1);
601
}
602
603
// AES crypto instructions supported only on certain processors
604
static void aes_only() { assert( VM_Version::has_aes(), "This instruction only works on SPARC with AES instructions support"); }
605
606
// SHA crypto instructions supported only on certain processors
607
static void sha1_only() { assert( VM_Version::has_sha1(), "This instruction only works on SPARC with SHA1"); }
608
static void sha256_only() { assert( VM_Version::has_sha256(), "This instruction only works on SPARC with SHA256"); }
609
static void sha512_only() { assert( VM_Version::has_sha512(), "This instruction only works on SPARC with SHA512"); }
610
611
// instruction only in VIS1
612
static void vis1_only() { assert( VM_Version::has_vis1(), "This instruction only works on SPARC with VIS1"); }
613
614
// instruction only in VIS2
615
static void vis2_only() { assert( VM_Version::has_vis2(), "This instruction only works on SPARC with VIS2"); }
616
617
// instruction only in VIS3
618
static void vis3_only() { assert( VM_Version::has_vis3(), "This instruction only works on SPARC with VIS3"); }
619
620
// instruction only in v9
621
static void v9_only() { } // do nothing
622
623
// instruction deprecated in v9
624
static void v9_dep() { } // do nothing for now
625
626
// v8 has no CC field
627
static void v8_no_cc(CC cc) { if (cc) v9_only(); }
628
629
protected:
630
// Simple delay-slot scheme:
631
// In order to check the programmer, the assembler keeps track of deley slots.
632
// It forbids CTIs in delay slots (conservative, but should be OK).
633
// Also, when putting an instruction into a delay slot, you must say
634
// asm->delayed()->add(...), in order to check that you don't omit
635
// delay-slot instructions.
636
// To implement this, we use a simple FSA
637
638
#ifdef ASSERT
639
#define CHECK_DELAY
640
#endif
641
#ifdef CHECK_DELAY
642
enum Delay_state { no_delay, at_delay_slot, filling_delay_slot } delay_state;
643
#endif
644
645
public:
646
// Tells assembler next instruction must NOT be in delay slot.
647
// Use at start of multinstruction macros.
648
void assert_not_delayed() {
649
// This is a separate overloading to avoid creation of string constants
650
// in non-asserted code--with some compilers this pollutes the object code.
651
#ifdef CHECK_DELAY
652
assert_not_delayed("next instruction should not be a delay slot");
653
#endif
654
}
655
void assert_not_delayed(const char* msg) {
656
#ifdef CHECK_DELAY
657
assert(delay_state == no_delay, msg);
658
#endif
659
}
660
661
protected:
662
// Insert a nop if the previous is cbcond
663
void insert_nop_after_cbcond() {
664
if (UseCBCond && cbcond_before()) {
665
nop();
666
}
667
}
668
// Delay slot helpers
669
// cti is called when emitting control-transfer instruction,
670
// BEFORE doing the emitting.
671
// Only effective when assertion-checking is enabled.
672
void cti() {
673
// A cbcond instruction immediately followed by a CTI
674
// instruction introduces pipeline stalls, we need to avoid that.
675
no_cbcond_before();
676
#ifdef CHECK_DELAY
677
assert_not_delayed("cti should not be in delay slot");
678
#endif
679
}
680
681
// called when emitting cti with a delay slot, AFTER emitting
682
void has_delay_slot() {
683
#ifdef CHECK_DELAY
684
assert_not_delayed("just checking");
685
delay_state = at_delay_slot;
686
#endif
687
}
688
689
// cbcond instruction should not be generated one after an other
690
bool cbcond_before() {
691
if (offset() == 0) return false; // it is first instruction
692
int x = *(int*)(intptr_t(pc()) - 4); // previous instruction
693
return is_cbcond(x);
694
}
695
696
void no_cbcond_before() {
697
assert(offset() == 0 || !cbcond_before(), "cbcond should not follow an other cbcond");
698
}
699
public:
700
701
bool use_cbcond(Label& L) {
702
if (!UseCBCond || cbcond_before()) return false;
703
intptr_t x = intptr_t(target_distance(L)) - intptr_t(pc());
704
assert( (x & 3) == 0, "not word aligned");
705
return is_simm12(x);
706
}
707
708
// Tells assembler you know that next instruction is delayed
709
Assembler* delayed() {
710
#ifdef CHECK_DELAY
711
assert ( delay_state == at_delay_slot, "delayed instruction is not in delay slot");
712
delay_state = filling_delay_slot;
713
#endif
714
return this;
715
}
716
717
void flush() {
718
#ifdef CHECK_DELAY
719
assert ( delay_state == no_delay, "ending code with a delay slot");
720
#endif
721
AbstractAssembler::flush();
722
}
723
724
inline void emit_int32(int); // shadows AbstractAssembler::emit_int32
725
inline void emit_data(int x) { emit_int32(x); }
726
inline void emit_data(int, RelocationHolder const&);
727
inline void emit_data(int, relocInfo::relocType rtype);
728
// helper for above fcns
729
inline void check_delay();
730
731
732
public:
733
// instructions, refer to page numbers in the SPARC Architecture Manual, V9
734
735
// pp 135 (addc was addx in v8)
736
737
inline void add(Register s1, Register s2, Register d );
738
inline void add(Register s1, int simm13a, Register d );
739
740
void addcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(add_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
741
void addcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(add_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
742
void addc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 ) | rs1(s1) | rs2(s2) ); }
743
void addc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
744
void addccc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
745
void addccc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
746
747
748
// 4-operand AES instructions
749
750
void aes_eround01( FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_eround01_op5) | fs2(s2, FloatRegisterImpl::D) ); }
751
void aes_eround23( FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_eround23_op5) | fs2(s2, FloatRegisterImpl::D) ); }
752
void aes_dround01( FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_dround01_op5) | fs2(s2, FloatRegisterImpl::D) ); }
753
void aes_dround23( FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_dround23_op5) | fs2(s2, FloatRegisterImpl::D) ); }
754
void aes_eround01_l( FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_eround01_l_op5) | fs2(s2, FloatRegisterImpl::D) ); }
755
void aes_eround23_l( FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_eround23_l_op5) | fs2(s2, FloatRegisterImpl::D) ); }
756
void aes_dround01_l( FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_dround01_l_op5) | fs2(s2, FloatRegisterImpl::D) ); }
757
void aes_dround23_l( FloatRegister s1, FloatRegister s2, FloatRegister s3, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | fs3(s3, FloatRegisterImpl::D) | op5(aes_dround23_l_op5) | fs2(s2, FloatRegisterImpl::D) ); }
758
void aes_kexpand1( FloatRegister s1, FloatRegister s2, int imm5a, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes4_op3) | fs1(s1, FloatRegisterImpl::D) | u_field(imm5a, 13, 9) | op5(aes_kexpand1_op5) | fs2(s2, FloatRegisterImpl::D) ); }
759
760
761
// 3-operand AES instructions
762
763
void aes_kexpand0( FloatRegister s1, FloatRegister s2, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes3_op3) | fs1(s1, FloatRegisterImpl::D) | opf(aes_kexpand0_opf) | fs2(s2, FloatRegisterImpl::D) ); }
764
void aes_kexpand2( FloatRegister s1, FloatRegister s2, FloatRegister d ) { aes_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(aes3_op3) | fs1(s1, FloatRegisterImpl::D) | opf(aes_kexpand2_opf) | fs2(s2, FloatRegisterImpl::D) ); }
765
766
// pp 136
767
768
inline void bpr(RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none);
769
inline void bpr(RCondition c, bool a, Predict p, Register s1, Label& L);
770
771
// compare and branch
772
inline void cbcond(Condition c, CC cc, Register s1, Register s2, Label& L);
773
inline void cbcond(Condition c, CC cc, Register s1, int simm5, Label& L);
774
775
protected: // use MacroAssembler::br instead
776
777
// pp 138
778
779
inline void fb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
780
inline void fb( Condition c, bool a, Label& L );
781
782
// pp 141
783
784
inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
785
inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
786
787
// pp 144
788
789
inline void br( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
790
inline void br( Condition c, bool a, Label& L );
791
792
// pp 146
793
794
inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
795
inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
796
797
// pp 149
798
799
inline void call( address d, relocInfo::relocType rt = relocInfo::runtime_call_type );
800
inline void call( Label& L, relocInfo::relocType rt = relocInfo::runtime_call_type );
801
802
public:
803
804
// pp 150
805
806
// These instructions compare the contents of s2 with the contents of
807
// memory at address in s1. If the values are equal, the contents of memory
808
// at address s1 is swapped with the data in d. If the values are not equal,
809
// the the contents of memory at s1 is loaded into d, without the swap.
810
811
void casa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(casa_op3 ) | rs1(s1) | (ia == -1 ? immed(true) : imm_asi(ia)) | rs2(s2)); }
812
void casxa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(casxa_op3) | rs1(s1) | (ia == -1 ? immed(true) : imm_asi(ia)) | rs2(s2)); }
813
814
// pp 152
815
816
void udiv( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 ) | rs1(s1) | rs2(s2)); }
817
void udiv( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
818
void sdiv( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 ) | rs1(s1) | rs2(s2)); }
819
void sdiv( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
820
void udivcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
821
void udivcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
822
void sdivcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
823
void sdivcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
824
825
// pp 155
826
827
void done() { v9_only(); cti(); emit_int32( op(arith_op) | fcn(0) | op3(done_op3) ); }
828
void retry() { v9_only(); cti(); emit_int32( op(arith_op) | fcn(1) | op3(retry_op3) ); }
829
830
// pp 156
831
832
void fadd( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x40 + w) | fs2(s2, w)); }
833
void fsub( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x44 + w) | fs2(s2, w)); }
834
835
// pp 157
836
837
void fcmp( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { emit_int32( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x50 + w) | fs2(s2, w)); }
838
void fcmpe( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { emit_int32( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x54 + w) | fs2(s2, w)); }
839
840
// pp 159
841
842
void ftox( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(fpop1_op3) | opf(0x80 + w) | fs2(s, w)); }
843
void ftoi( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::S) | op3(fpop1_op3) | opf(0xd0 + w) | fs2(s, w)); }
844
845
// pp 160
846
847
void ftof( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | opf(0xc0 + sw + dw*4) | fs2(s, sw)); }
848
849
// pp 161
850
851
void fxtof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only(); emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w*4) | fs2(s, FloatRegisterImpl::D)); }
852
void fitof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xc0 + w*4) | fs2(s, FloatRegisterImpl::S)); }
853
854
// pp 162
855
856
void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x00 + w) | fs2(s, w)); }
857
858
void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(s, w)); }
859
860
void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(s, w)); }
861
862
// pp 163
863
864
void fmul( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x48 + w) | fs2(s2, w)); }
865
void fmul( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | fs1(s1, sw) | opf(0x60 + sw + dw*4) | fs2(s2, sw)); }
866
void fdiv( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x4c + w) | fs2(s2, w)); }
867
868
// FXORs/FXORd instructions
869
870
void fxor( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { vis1_only(); emit_int32( op(arith_op) | fd(d, w) | op3(flog3_op3) | fs1(s1, w) | opf(0x6E - w) | fs2(s2, w)); }
871
872
// pp 164
873
874
void fsqrt( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x28 + w) | fs2(s, w)); }
875
876
// pp 165
877
878
inline void flush( Register s1, Register s2 );
879
inline void flush( Register s1, int simm13a);
880
881
// pp 167
882
883
void flushw() { v9_only(); emit_int32( op(arith_op) | op3(flushw_op3) ); }
884
885
// pp 168
886
887
void illtrap( int const22a) { if (const22a != 0) v9_only(); emit_int32( op(branch_op) | u_field(const22a, 21, 0) ); }
888
// v8 unimp == illtrap(0)
889
890
// pp 169
891
892
void impdep1( int id1, int const19a ) { v9_only(); emit_int32( op(arith_op) | fcn(id1) | op3(impdep1_op3) | u_field(const19a, 18, 0)); }
893
void impdep2( int id1, int const19a ) { v9_only(); emit_int32( op(arith_op) | fcn(id1) | op3(impdep2_op3) | u_field(const19a, 18, 0)); }
894
895
// pp 170
896
897
void jmpl( Register s1, Register s2, Register d );
898
void jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec = RelocationHolder() );
899
900
// 171
901
902
inline void ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d);
903
inline void ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec = RelocationHolder());
904
905
906
inline void ldfsr( Register s1, Register s2 );
907
inline void ldfsr( Register s1, int simm13a);
908
inline void ldxfsr( Register s1, Register s2 );
909
inline void ldxfsr( Register s1, int simm13a);
910
911
// 173
912
913
void ldfa( FloatRegisterImpl::Width w, Register s1, Register s2, int ia, FloatRegister d ) { v9_only(); emit_int32( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
914
void ldfa( FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d ) { v9_only(); emit_int32( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
915
916
// pp 175, lduw is ld on v8
917
918
inline void ldsb( Register s1, Register s2, Register d );
919
inline void ldsb( Register s1, int simm13a, Register d);
920
inline void ldsh( Register s1, Register s2, Register d );
921
inline void ldsh( Register s1, int simm13a, Register d);
922
inline void ldsw( Register s1, Register s2, Register d );
923
inline void ldsw( Register s1, int simm13a, Register d);
924
inline void ldub( Register s1, Register s2, Register d );
925
inline void ldub( Register s1, int simm13a, Register d);
926
inline void lduh( Register s1, Register s2, Register d );
927
inline void lduh( Register s1, int simm13a, Register d);
928
inline void lduw( Register s1, Register s2, Register d );
929
inline void lduw( Register s1, int simm13a, Register d);
930
inline void ldx( Register s1, Register s2, Register d );
931
inline void ldx( Register s1, int simm13a, Register d);
932
inline void ldd( Register s1, Register s2, Register d );
933
inline void ldd( Register s1, int simm13a, Register d);
934
935
// pp 177
936
937
void ldsba( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
938
void ldsba( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
939
void ldsha( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
940
void ldsha( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
941
void ldswa( Register s1, Register s2, int ia, Register d ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
942
void ldswa( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
943
void lduba( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
944
void lduba( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
945
void lduha( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
946
void lduha( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
947
void lduwa( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
948
void lduwa( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
949
void ldxa( Register s1, Register s2, int ia, Register d ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(ldx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
950
void ldxa( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(ldx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
951
952
// pp 181
953
954
void and3( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3 ) | rs1(s1) | rs2(s2) ); }
955
void and3( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
956
void andcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
957
void andcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
958
void andn( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 ) | rs1(s1) | rs2(s2) ); }
959
void andn( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
960
void andncc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
961
void andncc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
962
void or3( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3 ) | rs1(s1) | rs2(s2) ); }
963
void or3( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
964
void orcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
965
void orcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
966
void orn( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | rs2(s2) ); }
967
void orn( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
968
void orncc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
969
void orncc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
970
void xor3( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3 ) | rs1(s1) | rs2(s2) ); }
971
void xor3( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
972
void xorcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
973
void xorcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
974
void xnor( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 ) | rs1(s1) | rs2(s2) ); }
975
void xnor( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
976
void xnorcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
977
void xnorcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
978
979
// pp 183
980
981
void membar( Membar_mask_bits const7a ) { v9_only(); emit_int32( op(arith_op) | op3(membar_op3) | rs1(O7) | immed(true) | u_field( int(const7a), 6, 0)); }
982
983
// pp 185
984
985
void fmov( FloatRegisterImpl::Width w, Condition c, bool floatCC, CC cca, FloatRegister s2, FloatRegister d ) { v9_only(); emit_int32( op(arith_op) | fd(d, w) | op3(fpop2_op3) | cond_mov(c) | opf_cc(cca, floatCC) | opf_low6(w) | fs2(s2, w)); }
986
987
// pp 189
988
989
void fmov( FloatRegisterImpl::Width w, RCondition c, Register s1, FloatRegister s2, FloatRegister d ) { v9_only(); emit_int32( op(arith_op) | fd(d, w) | op3(fpop2_op3) | rs1(s1) | rcond(c) | opf_low5(4 + w) | fs2(s2, w)); }
990
991
// pp 191
992
993
void movcc( Condition c, bool floatCC, CC cca, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | rs2(s2) ); }
994
void movcc( Condition c, bool floatCC, CC cca, int simm11a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | immed(true) | simm(simm11a, 11) ); }
995
996
// pp 195
997
998
void movr( RCondition c, Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | rs2(s2) ); }
999
void movr( RCondition c, Register s1, int simm10a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | immed(true) | simm(simm10a, 10) ); }
1000
1001
// pp 196
1002
1003
void mulx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | rs2(s2) ); }
1004
void mulx( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1005
void sdivx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | rs2(s2) ); }
1006
void sdivx( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1007
void udivx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | rs2(s2) ); }
1008
void udivx( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1009
1010
// pp 197
1011
1012
void umul( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 ) | rs1(s1) | rs2(s2) ); }
1013
void umul( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1014
void smul( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 ) | rs1(s1) | rs2(s2) ); }
1015
void smul( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1016
void umulcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1017
void umulcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1018
void smulcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1019
void smulcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1020
1021
// pp 201
1022
1023
void nop() { emit_int32( op(branch_op) | op2(sethi_op2) ); }
1024
1025
1026
// pp 202
1027
1028
void popc( Register s, Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(popc_op3) | rs2(s)); }
1029
void popc( int simm13a, Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(popc_op3) | immed(true) | simm(simm13a, 13)); }
1030
1031
// pp 203
1032
1033
void prefetch( Register s1, Register s2, PrefetchFcn f) { v9_only(); emit_int32( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); }
1034
void prefetch( Register s1, int simm13a, PrefetchFcn f) { v9_only(); emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
1035
1036
void prefetcha( Register s1, Register s2, int ia, PrefetchFcn f ) { v9_only(); emit_int32( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1037
void prefetcha( Register s1, int simm13a, PrefetchFcn f ) { v9_only(); emit_int32( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1038
1039
// pp 208
1040
1041
// not implementing read privileged register
1042
1043
inline void rdy( Register d) { v9_dep(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(0, 18, 14)); }
1044
inline void rdccr( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(2, 18, 14)); }
1045
inline void rdasi( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(3, 18, 14)); }
1046
inline void rdtick( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(4, 18, 14)); } // Spoon!
1047
inline void rdpc( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(5, 18, 14)); }
1048
inline void rdfprs( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(6, 18, 14)); }
1049
1050
// pp 213
1051
1052
inline void rett( Register s1, Register s2);
1053
inline void rett( Register s1, int simm13a, relocInfo::relocType rt = relocInfo::none);
1054
1055
// pp 214
1056
1057
void save( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | rs2(s2) ); }
1058
void save( Register s1, int simm13a, Register d ) {
1059
// make sure frame is at least large enough for the register save area
1060
assert(-simm13a >= 16 * wordSize, "frame too small");
1061
emit_int32( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) );
1062
}
1063
1064
void restore( Register s1 = G0, Register s2 = G0, Register d = G0 ) { emit_int32( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | rs2(s2) ); }
1065
void restore( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1066
1067
// pp 216
1068
1069
void saved() { v9_only(); emit_int32( op(arith_op) | fcn(0) | op3(saved_op3)); }
1070
void restored() { v9_only(); emit_int32( op(arith_op) | fcn(1) | op3(saved_op3)); }
1071
1072
// pp 217
1073
1074
inline void sethi( int imm22a, Register d, RelocationHolder const& rspec = RelocationHolder() );
1075
// pp 218
1076
1077
void sll( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
1078
void sll( Register s1, int imm5a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
1079
void srl( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
1080
void srl( Register s1, int imm5a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
1081
void sra( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
1082
void sra( Register s1, int imm5a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
1083
1084
void sllx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
1085
void sllx( Register s1, int imm6a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
1086
void srlx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
1087
void srlx( Register s1, int imm6a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
1088
void srax( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
1089
void srax( Register s1, int imm6a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
1090
1091
// pp 220
1092
1093
void sir( int simm13a ) { emit_int32( op(arith_op) | fcn(15) | op3(sir_op3) | immed(true) | simm(simm13a, 13)); }
1094
1095
// pp 221
1096
1097
void stbar() { emit_int32( op(arith_op) | op3(membar_op3) | u_field(15, 18, 14)); }
1098
1099
// pp 222
1100
1101
inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2);
1102
inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a);
1103
1104
inline void stfsr( Register s1, Register s2 );
1105
inline void stfsr( Register s1, int simm13a);
1106
inline void stxfsr( Register s1, Register s2 );
1107
inline void stxfsr( Register s1, int simm13a);
1108
1109
// pp 224
1110
1111
void stfa( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2, int ia ) { v9_only(); emit_int32( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1112
void stfa( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a ) { v9_only(); emit_int32( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1113
1114
// p 226
1115
1116
inline void stb( Register d, Register s1, Register s2 );
1117
inline void stb( Register d, Register s1, int simm13a);
1118
inline void sth( Register d, Register s1, Register s2 );
1119
inline void sth( Register d, Register s1, int simm13a);
1120
inline void stw( Register d, Register s1, Register s2 );
1121
inline void stw( Register d, Register s1, int simm13a);
1122
inline void stx( Register d, Register s1, Register s2 );
1123
inline void stx( Register d, Register s1, int simm13a);
1124
inline void std( Register d, Register s1, Register s2 );
1125
inline void std( Register d, Register s1, int simm13a);
1126
1127
// pp 177
1128
1129
void stba( Register d, Register s1, Register s2, int ia ) { emit_int32( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1130
void stba( Register d, Register s1, int simm13a ) { emit_int32( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1131
void stha( Register d, Register s1, Register s2, int ia ) { emit_int32( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1132
void stha( Register d, Register s1, int simm13a ) { emit_int32( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1133
void stwa( Register d, Register s1, Register s2, int ia ) { emit_int32( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1134
void stwa( Register d, Register s1, int simm13a ) { emit_int32( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1135
void stxa( Register d, Register s1, Register s2, int ia ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1136
void stxa( Register d, Register s1, int simm13a ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1137
void stda( Register d, Register s1, Register s2, int ia ) { emit_int32( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1138
void stda( Register d, Register s1, int simm13a ) { emit_int32( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1139
1140
// pp 230
1141
1142
void sub( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 ) | rs1(s1) | rs2(s2) ); }
1143
void sub( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1144
1145
void subcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | rs2(s2) ); }
1146
void subcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1147
void subc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 ) | rs1(s1) | rs2(s2) ); }
1148
void subc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1149
void subccc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1150
void subccc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1151
1152
// pp 231
1153
1154
inline void swap( Register s1, Register s2, Register d );
1155
inline void swap( Register s1, int simm13a, Register d);
1156
1157
// pp 232
1158
1159
void swapa( Register s1, Register s2, int ia, Register d ) { v9_dep(); emit_int32( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1160
void swapa( Register s1, int simm13a, Register d ) { v9_dep(); emit_int32( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1161
1162
// pp 234, note op in book is wrong, see pp 268
1163
1164
void taddcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(taddcc_op3 ) | rs1(s1) | rs2(s2) ); }
1165
void taddcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(taddcc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1166
1167
// pp 235
1168
1169
void tsubcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(tsubcc_op3 ) | rs1(s1) | rs2(s2) ); }
1170
void tsubcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(tsubcc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1171
1172
// pp 237
1173
1174
void trap( Condition c, CC cc, Register s1, Register s2 ) { emit_int32( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | rs2(s2)); }
1175
void trap( Condition c, CC cc, Register s1, int trapa ) { emit_int32( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | immed(true) | u_field(trapa, 6, 0)); }
1176
// simple uncond. trap
1177
void trap( int trapa ) { trap( always, icc, G0, trapa ); }
1178
1179
// pp 239 omit write priv register for now
1180
1181
inline void wry( Register d) { v9_dep(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(0, 29, 25)); }
1182
inline void wrccr(Register s) { v9_only(); emit_int32( op(arith_op) | rs1(s) | op3(wrreg_op3) | u_field(2, 29, 25)); }
1183
inline void wrccr(Register s, int simm13a) { v9_only(); emit_int32( op(arith_op) |
1184
rs1(s) |
1185
op3(wrreg_op3) |
1186
u_field(2, 29, 25) |
1187
immed(true) |
1188
simm(simm13a, 13)); }
1189
inline void wrasi(Register d) { v9_only(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(3, 29, 25)); }
1190
// wrasi(d, imm) stores (d xor imm) to asi
1191
inline void wrasi(Register d, int simm13a) { v9_only(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) |
1192
u_field(3, 29, 25) | immed(true) | simm(simm13a, 13)); }
1193
inline void wrfprs( Register d) { v9_only(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(6, 29, 25)); }
1194
1195
// VIS1 instructions
1196
1197
void alignaddr( Register s1, Register s2, Register d ) { vis1_only(); emit_int32( op(arith_op) | rd(d) | op3(alignaddr_op3) | rs1(s1) | opf(alignaddr_opf) | rs2(s2)); }
1198
1199
void faligndata( FloatRegister s1, FloatRegister s2, FloatRegister d ) { vis1_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(faligndata_op3) | fs1(s1, FloatRegisterImpl::D) | opf(faligndata_opf) | fs2(s2, FloatRegisterImpl::D)); }
1200
1201
void fsrc2( FloatRegisterImpl::Width w, FloatRegister s2, FloatRegister d ) { vis1_only(); emit_int32( op(arith_op) | fd(d, w) | op3(fsrc_op3) | opf(0x7A - w) | fs2(s2, w)); }
1202
1203
void stpartialf( Register s1, Register s2, FloatRegister d, int ia = -1 ) { vis1_only(); emit_int32( op(ldst_op) | fd(d, FloatRegisterImpl::D) | op3(stpartialf_op3) | rs1(s1) | imm_asi(ia) | rs2(s2)); }
1204
1205
// VIS2 instructions
1206
1207
void edge8n( Register s1, Register s2, Register d ) { vis2_only(); emit_int32( op(arith_op) | rd(d) | op3(edge_op3) | rs1(s1) | opf(edge8n_opf) | rs2(s2)); }
1208
1209
// VIS3 instructions
1210
1211
void movstosw( FloatRegister s, Register d ) { vis3_only(); emit_int32( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mstosw_opf) | fs2(s, FloatRegisterImpl::S)); }
1212
void movstouw( FloatRegister s, Register d ) { vis3_only(); emit_int32( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mstouw_opf) | fs2(s, FloatRegisterImpl::S)); }
1213
void movdtox( FloatRegister s, Register d ) { vis3_only(); emit_int32( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mdtox_opf) | fs2(s, FloatRegisterImpl::D)); }
1214
1215
void movwtos( Register s, FloatRegister d ) { vis3_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::S) | op3(mftoi_op3) | opf(mwtos_opf) | rs2(s)); }
1216
void movxtod( Register s, FloatRegister d ) { vis3_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(mftoi_op3) | opf(mxtod_opf) | rs2(s)); }
1217
1218
void xmulx(Register s1, Register s2, Register d) { vis3_only(); emit_int32( op(arith_op) | rd(d) | op3(xmulx_op3) | rs1(s1) | opf(xmulx_opf) | rs2(s2)); }
1219
void xmulxhi(Register s1, Register s2, Register d) { vis3_only(); emit_int32( op(arith_op) | rd(d) | op3(xmulx_op3) | rs1(s1) | opf(xmulxhi_opf) | rs2(s2)); }
1220
1221
// Crypto SHA instructions
1222
1223
void sha1() { sha1_only(); emit_int32( op(arith_op) | op3(sha_op3) | opf(sha1_opf)); }
1224
void sha256() { sha256_only(); emit_int32( op(arith_op) | op3(sha_op3) | opf(sha256_opf)); }
1225
void sha512() { sha512_only(); emit_int32( op(arith_op) | op3(sha_op3) | opf(sha512_opf)); }
1226
1227
// Creation
1228
Assembler(CodeBuffer* code) : AbstractAssembler(code) {
1229
#ifdef CHECK_DELAY
1230
delay_state = no_delay;
1231
#endif
1232
}
1233
};
1234
1235
#endif // CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
1236
1237