Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp
32285 views
1
/*
2
* Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "c1/c1_Compilation.hpp"
27
#include "c1/c1_LIRAssembler.hpp"
28
#include "c1/c1_MacroAssembler.hpp"
29
#include "c1/c1_Runtime1.hpp"
30
#include "c1/c1_ValueStack.hpp"
31
#include "ci/ciArrayKlass.hpp"
32
#include "ci/ciInstance.hpp"
33
#include "gc_interface/collectedHeap.hpp"
34
#include "memory/barrierSet.hpp"
35
#include "memory/cardTableModRefBS.hpp"
36
#include "nativeInst_sparc.hpp"
37
#include "oops/objArrayKlass.hpp"
38
#include "runtime/sharedRuntime.hpp"
39
40
#define __ _masm->
41
42
43
//------------------------------------------------------------
44
45
46
bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
47
if (opr->is_constant()) {
48
LIR_Const* constant = opr->as_constant_ptr();
49
switch (constant->type()) {
50
case T_INT: {
51
jint value = constant->as_jint();
52
return Assembler::is_simm13(value);
53
}
54
55
default:
56
return false;
57
}
58
}
59
return false;
60
}
61
62
63
bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
64
switch (op->code()) {
65
case lir_null_check:
66
return true;
67
68
69
case lir_add:
70
case lir_ushr:
71
case lir_shr:
72
case lir_shl:
73
// integer shifts and adds are always one instruction
74
return op->result_opr()->is_single_cpu();
75
76
77
case lir_move: {
78
LIR_Op1* op1 = op->as_Op1();
79
LIR_Opr src = op1->in_opr();
80
LIR_Opr dst = op1->result_opr();
81
82
if (src == dst) {
83
NEEDS_CLEANUP;
84
// this works around a problem where moves with the same src and dst
85
// end up in the delay slot and then the assembler swallows the mov
86
// since it has no effect and then it complains because the delay slot
87
// is empty. returning false stops the optimizer from putting this in
88
// the delay slot
89
return false;
90
}
91
92
// don't put moves involving oops into the delay slot since the VerifyOops code
93
// will make it much larger than a single instruction.
94
if (VerifyOops) {
95
return false;
96
}
97
98
if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
99
((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
100
return false;
101
}
102
103
if (UseCompressedOops) {
104
if (dst->is_address() && !dst->is_stack() && (dst->type() == T_OBJECT || dst->type() == T_ARRAY)) return false;
105
if (src->is_address() && !src->is_stack() && (src->type() == T_OBJECT || src->type() == T_ARRAY)) return false;
106
}
107
108
if (UseCompressedClassPointers) {
109
if (src->is_address() && !src->is_stack() && src->type() == T_ADDRESS &&
110
src->as_address_ptr()->disp() == oopDesc::klass_offset_in_bytes()) return false;
111
}
112
113
if (dst->is_register()) {
114
if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
115
return !PatchALot;
116
} else if (src->is_single_stack()) {
117
return true;
118
}
119
}
120
121
if (src->is_register()) {
122
if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
123
return !PatchALot;
124
} else if (dst->is_single_stack()) {
125
return true;
126
}
127
}
128
129
if (dst->is_register() &&
130
((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
131
(src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
132
return true;
133
}
134
135
return false;
136
}
137
138
default:
139
return false;
140
}
141
ShouldNotReachHere();
142
}
143
144
145
LIR_Opr LIR_Assembler::receiverOpr() {
146
return FrameMap::O0_oop_opr;
147
}
148
149
150
LIR_Opr LIR_Assembler::osrBufferPointer() {
151
return FrameMap::I0_opr;
152
}
153
154
155
int LIR_Assembler::initial_frame_size_in_bytes() const {
156
return in_bytes(frame_map()->framesize_in_bytes());
157
}
158
159
160
// inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
161
// we fetch the class of the receiver (O0) and compare it with the cached class.
162
// If they do not match we jump to slow case.
163
int LIR_Assembler::check_icache() {
164
int offset = __ offset();
165
__ inline_cache_check(O0, G5_inline_cache_reg);
166
return offset;
167
}
168
169
170
void LIR_Assembler::osr_entry() {
171
// On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
172
//
173
// 1. Create a new compiled activation.
174
// 2. Initialize local variables in the compiled activation. The expression stack must be empty
175
// at the osr_bci; it is not initialized.
176
// 3. Jump to the continuation address in compiled code to resume execution.
177
178
// OSR entry point
179
offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
180
BlockBegin* osr_entry = compilation()->hir()->osr_entry();
181
ValueStack* entry_state = osr_entry->end()->state();
182
int number_of_locks = entry_state->locks_size();
183
184
// Create a frame for the compiled activation.
185
__ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
186
187
// OSR buffer is
188
//
189
// locals[nlocals-1..0]
190
// monitors[number_of_locks-1..0]
191
//
192
// locals is a direct copy of the interpreter frame so in the osr buffer
193
// so first slot in the local array is the last local from the interpreter
194
// and last slot is local[0] (receiver) from the interpreter
195
//
196
// Similarly with locks. The first lock slot in the osr buffer is the nth lock
197
// from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
198
// in the interpreter frame (the method lock if a sync method)
199
200
// Initialize monitors in the compiled activation.
201
// I0: pointer to osr buffer
202
//
203
// All other registers are dead at this point and the locals will be
204
// copied into place by code emitted in the IR.
205
206
Register OSR_buf = osrBufferPointer()->as_register();
207
{ assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
208
int monitor_offset = BytesPerWord * method()->max_locals() +
209
(2 * BytesPerWord) * (number_of_locks - 1);
210
// SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
211
// the OSR buffer using 2 word entries: first the lock and then
212
// the oop.
213
for (int i = 0; i < number_of_locks; i++) {
214
int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
215
#ifdef ASSERT
216
// verify the interpreter's monitor has a non-null object
217
{
218
Label L;
219
__ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
220
__ cmp_and_br_short(O7, G0, Assembler::notEqual, Assembler::pt, L);
221
__ stop("locked object is NULL");
222
__ bind(L);
223
}
224
#endif // ASSERT
225
// Copy the lock field into the compiled activation.
226
__ ld_ptr(OSR_buf, slot_offset + 0, O7);
227
__ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
228
__ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
229
__ st_ptr(O7, frame_map()->address_for_monitor_object(i));
230
}
231
}
232
}
233
234
235
// Optimized Library calls
236
// This is the fast version of java.lang.String.compare; it has not
237
// OSR-entry and therefore, we generate a slow version for OSR's
238
void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
239
Register str0 = left->as_register();
240
Register str1 = right->as_register();
241
242
Label Ldone;
243
244
Register result = dst->as_register();
245
{
246
// Get a pointer to the first character of string0 in tmp0
247
// and get string0.length() in str0
248
// Get a pointer to the first character of string1 in tmp1
249
// and get string1.length() in str1
250
// Also, get string0.length()-string1.length() in
251
// o7 and get the condition code set
252
// Note: some instructions have been hoisted for better instruction scheduling
253
254
Register tmp0 = L0;
255
Register tmp1 = L1;
256
Register tmp2 = L2;
257
258
int value_offset = java_lang_String:: value_offset_in_bytes(); // char array
259
if (java_lang_String::has_offset_field()) {
260
int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
261
int count_offset = java_lang_String:: count_offset_in_bytes();
262
__ load_heap_oop(str0, value_offset, tmp0);
263
__ ld(str0, offset_offset, tmp2);
264
__ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
265
__ ld(str0, count_offset, str0);
266
__ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
267
} else {
268
__ load_heap_oop(str0, value_offset, tmp1);
269
__ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
270
__ ld(tmp1, arrayOopDesc::length_offset_in_bytes(), str0);
271
}
272
273
// str1 may be null
274
add_debug_info_for_null_check_here(info);
275
276
if (java_lang_String::has_offset_field()) {
277
int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
278
int count_offset = java_lang_String:: count_offset_in_bytes();
279
__ load_heap_oop(str1, value_offset, tmp1);
280
__ add(tmp0, tmp2, tmp0);
281
282
__ ld(str1, offset_offset, tmp2);
283
__ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
284
__ ld(str1, count_offset, str1);
285
__ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
286
__ add(tmp1, tmp2, tmp1);
287
} else {
288
__ load_heap_oop(str1, value_offset, tmp2);
289
__ add(tmp2, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
290
__ ld(tmp2, arrayOopDesc::length_offset_in_bytes(), str1);
291
}
292
__ subcc(str0, str1, O7);
293
}
294
295
{
296
// Compute the minimum of the string lengths, scale it and store it in limit
297
Register count0 = I0;
298
Register count1 = I1;
299
Register limit = L3;
300
301
Label Lskip;
302
__ sll(count0, exact_log2(sizeof(jchar)), limit); // string0 is shorter
303
__ br(Assembler::greater, true, Assembler::pt, Lskip);
304
__ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit); // string1 is shorter
305
__ bind(Lskip);
306
307
// If either string is empty (or both of them) the result is the difference in lengths
308
__ cmp(limit, 0);
309
__ br(Assembler::equal, true, Assembler::pn, Ldone);
310
__ delayed()->mov(O7, result); // result is difference in lengths
311
}
312
313
{
314
// Neither string is empty
315
Label Lloop;
316
317
Register base0 = L0;
318
Register base1 = L1;
319
Register chr0 = I0;
320
Register chr1 = I1;
321
Register limit = L3;
322
323
// Shift base0 and base1 to the end of the arrays, negate limit
324
__ add(base0, limit, base0);
325
__ add(base1, limit, base1);
326
__ neg(limit); // limit = -min{string0.length(), string1.length()}
327
328
__ lduh(base0, limit, chr0);
329
__ bind(Lloop);
330
__ lduh(base1, limit, chr1);
331
__ subcc(chr0, chr1, chr0);
332
__ br(Assembler::notZero, false, Assembler::pn, Ldone);
333
assert(chr0 == result, "result must be pre-placed");
334
__ delayed()->inccc(limit, sizeof(jchar));
335
__ br(Assembler::notZero, true, Assembler::pt, Lloop);
336
__ delayed()->lduh(base0, limit, chr0);
337
}
338
339
// If strings are equal up to min length, return the length difference.
340
__ mov(O7, result);
341
342
// Otherwise, return the difference between the first mismatched chars.
343
__ bind(Ldone);
344
}
345
346
347
// --------------------------------------------------------------------------------------------
348
349
void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
350
if (!GenerateSynchronizationCode) return;
351
352
Register obj_reg = obj_opr->as_register();
353
Register lock_reg = lock_opr->as_register();
354
355
Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
356
Register reg = mon_addr.base();
357
int offset = mon_addr.disp();
358
// compute pointer to BasicLock
359
if (mon_addr.is_simm13()) {
360
__ add(reg, offset, lock_reg);
361
}
362
else {
363
__ set(offset, lock_reg);
364
__ add(reg, lock_reg, lock_reg);
365
}
366
// unlock object
367
MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
368
// _slow_case_stubs->append(slow_case);
369
// temporary fix: must be created after exceptionhandler, therefore as call stub
370
_slow_case_stubs->append(slow_case);
371
if (UseFastLocking) {
372
// try inlined fast unlocking first, revert to slow locking if it fails
373
// note: lock_reg points to the displaced header since the displaced header offset is 0!
374
assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
375
__ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
376
} else {
377
// always do slow unlocking
378
// note: the slow unlocking code could be inlined here, however if we use
379
// slow unlocking, speed doesn't matter anyway and this solution is
380
// simpler and requires less duplicated code - additionally, the
381
// slow unlocking code is the same in either case which simplifies
382
// debugging
383
__ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
384
__ delayed()->nop();
385
}
386
// done
387
__ bind(*slow_case->continuation());
388
}
389
390
391
int LIR_Assembler::emit_exception_handler() {
392
// if the last instruction is a call (typically to do a throw which
393
// is coming at the end after block reordering) the return address
394
// must still point into the code area in order to avoid assertion
395
// failures when searching for the corresponding bci => add a nop
396
// (was bug 5/14/1999 - gri)
397
__ nop();
398
399
// generate code for exception handler
400
ciMethod* method = compilation()->method();
401
402
address handler_base = __ start_a_stub(exception_handler_size);
403
404
if (handler_base == NULL) {
405
// not enough space left for the handler
406
bailout("exception handler overflow");
407
return -1;
408
}
409
410
int offset = code_offset();
411
412
__ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type);
413
__ delayed()->nop();
414
__ should_not_reach_here();
415
guarantee(code_offset() - offset <= exception_handler_size, "overflow");
416
__ end_a_stub();
417
418
return offset;
419
}
420
421
422
// Emit the code to remove the frame from the stack in the exception
423
// unwind path.
424
int LIR_Assembler::emit_unwind_handler() {
425
#ifndef PRODUCT
426
if (CommentedAssembly) {
427
_masm->block_comment("Unwind handler");
428
}
429
#endif
430
431
int offset = code_offset();
432
433
// Fetch the exception from TLS and clear out exception related thread state
434
__ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
435
__ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
436
__ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
437
438
__ bind(_unwind_handler_entry);
439
__ verify_not_null_oop(O0);
440
if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
441
__ mov(O0, I0); // Preserve the exception
442
}
443
444
// Preform needed unlocking
445
MonitorExitStub* stub = NULL;
446
if (method()->is_synchronized()) {
447
monitor_address(0, FrameMap::I1_opr);
448
stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
449
__ unlock_object(I3, I2, I1, *stub->entry());
450
__ bind(*stub->continuation());
451
}
452
453
if (compilation()->env()->dtrace_method_probes()) {
454
__ mov(G2_thread, O0);
455
__ save_thread(I1); // need to preserve thread in G2 across
456
// runtime call
457
metadata2reg(method()->constant_encoding(), O1);
458
__ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
459
__ delayed()->nop();
460
__ restore_thread(I1);
461
}
462
463
if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
464
__ mov(I0, O0); // Restore the exception
465
}
466
467
// dispatch to the unwind logic
468
__ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
469
__ delayed()->nop();
470
471
// Emit the slow path assembly
472
if (stub != NULL) {
473
stub->emit_code(this);
474
}
475
476
return offset;
477
}
478
479
480
int LIR_Assembler::emit_deopt_handler() {
481
// if the last instruction is a call (typically to do a throw which
482
// is coming at the end after block reordering) the return address
483
// must still point into the code area in order to avoid assertion
484
// failures when searching for the corresponding bci => add a nop
485
// (was bug 5/14/1999 - gri)
486
__ nop();
487
488
// generate code for deopt handler
489
ciMethod* method = compilation()->method();
490
address handler_base = __ start_a_stub(deopt_handler_size);
491
if (handler_base == NULL) {
492
// not enough space left for the handler
493
bailout("deopt handler overflow");
494
return -1;
495
}
496
497
int offset = code_offset();
498
AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
499
__ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
500
__ delayed()->nop();
501
guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
502
__ end_a_stub();
503
504
return offset;
505
}
506
507
508
void LIR_Assembler::jobject2reg(jobject o, Register reg) {
509
if (o == NULL) {
510
__ set(NULL_WORD, reg);
511
} else {
512
#ifdef ASSERT
513
{
514
ThreadInVMfromNative tiv(JavaThread::current());
515
assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(o)), "should be real oop");
516
}
517
#endif
518
int oop_index = __ oop_recorder()->find_index(o);
519
RelocationHolder rspec = oop_Relocation::spec(oop_index);
520
__ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
521
}
522
}
523
524
525
void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
526
// Allocate a new index in table to hold the object once it's been patched
527
int oop_index = __ oop_recorder()->allocate_oop_index(NULL);
528
PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index);
529
530
AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
531
assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
532
// It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
533
// NULL will be dynamically patched later and the patched value may be large. We must
534
// therefore generate the sethi/add as a placeholders
535
__ patchable_set(addrlit, reg);
536
537
patching_epilog(patch, lir_patch_normal, reg, info);
538
}
539
540
541
void LIR_Assembler::metadata2reg(Metadata* o, Register reg) {
542
__ set_metadata_constant(o, reg);
543
}
544
545
void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) {
546
// Allocate a new index in table to hold the klass once it's been patched
547
int index = __ oop_recorder()->allocate_metadata_index(NULL);
548
PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
549
AddressLiteral addrlit(NULL, metadata_Relocation::spec(index));
550
assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc");
551
// It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
552
// NULL will be dynamically patched later and the patched value may be large. We must
553
// therefore generate the sethi/add as a placeholders
554
__ patchable_set(addrlit, reg);
555
556
patching_epilog(patch, lir_patch_normal, reg, info);
557
}
558
559
void LIR_Assembler::emit_op3(LIR_Op3* op) {
560
Register Rdividend = op->in_opr1()->as_register();
561
Register Rdivisor = noreg;
562
Register Rscratch = op->in_opr3()->as_register();
563
Register Rresult = op->result_opr()->as_register();
564
int divisor = -1;
565
566
if (op->in_opr2()->is_register()) {
567
Rdivisor = op->in_opr2()->as_register();
568
} else {
569
divisor = op->in_opr2()->as_constant_ptr()->as_jint();
570
assert(Assembler::is_simm13(divisor), "can only handle simm13");
571
}
572
573
assert(Rdividend != Rscratch, "");
574
assert(Rdivisor != Rscratch, "");
575
assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
576
577
if (Rdivisor == noreg && is_power_of_2(divisor)) {
578
// convert division by a power of two into some shifts and logical operations
579
if (op->code() == lir_idiv) {
580
if (divisor == 2) {
581
__ srl(Rdividend, 31, Rscratch);
582
} else {
583
__ sra(Rdividend, 31, Rscratch);
584
__ and3(Rscratch, divisor - 1, Rscratch);
585
}
586
__ add(Rdividend, Rscratch, Rscratch);
587
__ sra(Rscratch, log2_int(divisor), Rresult);
588
return;
589
} else {
590
if (divisor == 2) {
591
__ srl(Rdividend, 31, Rscratch);
592
} else {
593
__ sra(Rdividend, 31, Rscratch);
594
__ and3(Rscratch, divisor - 1,Rscratch);
595
}
596
__ add(Rdividend, Rscratch, Rscratch);
597
__ andn(Rscratch, divisor - 1,Rscratch);
598
__ sub(Rdividend, Rscratch, Rresult);
599
return;
600
}
601
}
602
603
__ sra(Rdividend, 31, Rscratch);
604
__ wry(Rscratch);
605
606
add_debug_info_for_div0_here(op->info());
607
608
if (Rdivisor != noreg) {
609
__ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
610
} else {
611
assert(Assembler::is_simm13(divisor), "can only handle simm13");
612
__ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
613
}
614
615
Label skip;
616
__ br(Assembler::overflowSet, true, Assembler::pn, skip);
617
__ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
618
__ bind(skip);
619
620
if (op->code() == lir_irem) {
621
if (Rdivisor != noreg) {
622
__ smul(Rscratch, Rdivisor, Rscratch);
623
} else {
624
__ smul(Rscratch, divisor, Rscratch);
625
}
626
__ sub(Rdividend, Rscratch, Rresult);
627
}
628
}
629
630
631
void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
632
#ifdef ASSERT
633
assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
634
if (op->block() != NULL) _branch_target_blocks.append(op->block());
635
if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
636
#endif
637
assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
638
639
if (op->cond() == lir_cond_always) {
640
__ br(Assembler::always, false, Assembler::pt, *(op->label()));
641
} else if (op->code() == lir_cond_float_branch) {
642
assert(op->ublock() != NULL, "must have unordered successor");
643
bool is_unordered = (op->ublock() == op->block());
644
Assembler::Condition acond;
645
switch (op->cond()) {
646
case lir_cond_equal: acond = Assembler::f_equal; break;
647
case lir_cond_notEqual: acond = Assembler::f_notEqual; break;
648
case lir_cond_less: acond = (is_unordered ? Assembler::f_unorderedOrLess : Assembler::f_less); break;
649
case lir_cond_greater: acond = (is_unordered ? Assembler::f_unorderedOrGreater : Assembler::f_greater); break;
650
case lir_cond_lessEqual: acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual : Assembler::f_lessOrEqual); break;
651
case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
652
default : ShouldNotReachHere();
653
}
654
__ fb( acond, false, Assembler::pn, *(op->label()));
655
} else {
656
assert (op->code() == lir_branch, "just checking");
657
658
Assembler::Condition acond;
659
switch (op->cond()) {
660
case lir_cond_equal: acond = Assembler::equal; break;
661
case lir_cond_notEqual: acond = Assembler::notEqual; break;
662
case lir_cond_less: acond = Assembler::less; break;
663
case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
664
case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
665
case lir_cond_greater: acond = Assembler::greater; break;
666
case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break;
667
case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break;
668
default: ShouldNotReachHere();
669
};
670
671
// sparc has different condition codes for testing 32-bit
672
// vs. 64-bit values. We could always test xcc is we could
673
// guarantee that 32-bit loads always sign extended but that isn't
674
// true and since sign extension isn't free, it would impose a
675
// slight cost.
676
#ifdef _LP64
677
if (op->type() == T_INT) {
678
__ br(acond, false, Assembler::pn, *(op->label()));
679
} else
680
#endif
681
__ brx(acond, false, Assembler::pn, *(op->label()));
682
}
683
// The peephole pass fills the delay slot
684
}
685
686
void LIR_Assembler::emit_opShenandoahWriteBarrier(LIR_OpShenandoahWriteBarrier* op) {
687
Unimplemented();
688
}
689
690
void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
691
Bytecodes::Code code = op->bytecode();
692
LIR_Opr dst = op->result_opr();
693
694
switch(code) {
695
case Bytecodes::_i2l: {
696
Register rlo = dst->as_register_lo();
697
Register rhi = dst->as_register_hi();
698
Register rval = op->in_opr()->as_register();
699
#ifdef _LP64
700
__ sra(rval, 0, rlo);
701
#else
702
__ mov(rval, rlo);
703
__ sra(rval, BitsPerInt-1, rhi);
704
#endif
705
break;
706
}
707
case Bytecodes::_i2d:
708
case Bytecodes::_i2f: {
709
bool is_double = (code == Bytecodes::_i2d);
710
FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
711
FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
712
FloatRegister rsrc = op->in_opr()->as_float_reg();
713
if (rsrc != rdst) {
714
__ fmov(FloatRegisterImpl::S, rsrc, rdst);
715
}
716
__ fitof(w, rdst, rdst);
717
break;
718
}
719
case Bytecodes::_f2i:{
720
FloatRegister rsrc = op->in_opr()->as_float_reg();
721
Address addr = frame_map()->address_for_slot(dst->single_stack_ix());
722
Label L;
723
// result must be 0 if value is NaN; test by comparing value to itself
724
__ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
725
__ fb(Assembler::f_unordered, true, Assembler::pn, L);
726
__ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
727
__ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
728
// move integer result from float register to int register
729
__ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
730
__ bind (L);
731
break;
732
}
733
case Bytecodes::_l2i: {
734
Register rlo = op->in_opr()->as_register_lo();
735
Register rhi = op->in_opr()->as_register_hi();
736
Register rdst = dst->as_register();
737
#ifdef _LP64
738
__ sra(rlo, 0, rdst);
739
#else
740
__ mov(rlo, rdst);
741
#endif
742
break;
743
}
744
case Bytecodes::_d2f:
745
case Bytecodes::_f2d: {
746
bool is_double = (code == Bytecodes::_f2d);
747
assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
748
LIR_Opr val = op->in_opr();
749
FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
750
FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
751
FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
752
FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
753
__ ftof(vw, dw, rval, rdst);
754
break;
755
}
756
case Bytecodes::_i2s:
757
case Bytecodes::_i2b: {
758
Register rval = op->in_opr()->as_register();
759
Register rdst = dst->as_register();
760
int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
761
__ sll (rval, shift, rdst);
762
__ sra (rdst, shift, rdst);
763
break;
764
}
765
case Bytecodes::_i2c: {
766
Register rval = op->in_opr()->as_register();
767
Register rdst = dst->as_register();
768
int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
769
__ sll (rval, shift, rdst);
770
__ srl (rdst, shift, rdst);
771
break;
772
}
773
774
default: ShouldNotReachHere();
775
}
776
}
777
778
779
void LIR_Assembler::align_call(LIR_Code) {
780
// do nothing since all instructions are word aligned on sparc
781
}
782
783
784
void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
785
__ call(op->addr(), rtype);
786
// The peephole pass fills the delay slot, add_call_info is done in
787
// LIR_Assembler::emit_delay.
788
}
789
790
791
void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
792
__ ic_call(op->addr(), false);
793
// The peephole pass fills the delay slot, add_call_info is done in
794
// LIR_Assembler::emit_delay.
795
}
796
797
798
void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
799
add_debug_info_for_null_check_here(op->info());
800
__ load_klass(O0, G3_scratch);
801
if (Assembler::is_simm13(op->vtable_offset())) {
802
__ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
803
} else {
804
// This will generate 2 instructions
805
__ set(op->vtable_offset(), G5_method);
806
// ld_ptr, set_hi, set
807
__ ld_ptr(G3_scratch, G5_method, G5_method);
808
}
809
__ ld_ptr(G5_method, Method::from_compiled_offset(), G3_scratch);
810
__ callr(G3_scratch, G0);
811
// the peephole pass fills the delay slot
812
}
813
814
int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
815
int store_offset;
816
if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
817
assert(!unaligned, "can't handle this");
818
// for offsets larger than a simm13 we setup the offset in O7
819
__ set(offset, O7);
820
store_offset = store(from_reg, base, O7, type, wide);
821
} else {
822
if (type == T_ARRAY || type == T_OBJECT) {
823
__ verify_oop(from_reg->as_register());
824
}
825
store_offset = code_offset();
826
switch (type) {
827
case T_BOOLEAN: // fall through
828
case T_BYTE : __ stb(from_reg->as_register(), base, offset); break;
829
case T_CHAR : __ sth(from_reg->as_register(), base, offset); break;
830
case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
831
case T_INT : __ stw(from_reg->as_register(), base, offset); break;
832
case T_LONG :
833
#ifdef _LP64
834
if (unaligned || PatchALot) {
835
__ srax(from_reg->as_register_lo(), 32, O7);
836
__ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
837
__ stw(O7, base, offset + hi_word_offset_in_bytes);
838
} else {
839
__ stx(from_reg->as_register_lo(), base, offset);
840
}
841
#else
842
assert(Assembler::is_simm13(offset + 4), "must be");
843
__ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
844
__ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
845
#endif
846
break;
847
case T_ADDRESS:
848
case T_METADATA:
849
__ st_ptr(from_reg->as_register(), base, offset);
850
break;
851
case T_ARRAY : // fall through
852
case T_OBJECT:
853
{
854
if (UseCompressedOops && !wide) {
855
__ encode_heap_oop(from_reg->as_register(), G3_scratch);
856
store_offset = code_offset();
857
__ stw(G3_scratch, base, offset);
858
} else {
859
__ st_ptr(from_reg->as_register(), base, offset);
860
}
861
break;
862
}
863
864
case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
865
case T_DOUBLE:
866
{
867
FloatRegister reg = from_reg->as_double_reg();
868
// split unaligned stores
869
if (unaligned || PatchALot) {
870
assert(Assembler::is_simm13(offset + 4), "must be");
871
__ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
872
__ stf(FloatRegisterImpl::S, reg, base, offset);
873
} else {
874
__ stf(FloatRegisterImpl::D, reg, base, offset);
875
}
876
break;
877
}
878
default : ShouldNotReachHere();
879
}
880
}
881
return store_offset;
882
}
883
884
885
int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
886
if (type == T_ARRAY || type == T_OBJECT) {
887
__ verify_oop(from_reg->as_register());
888
}
889
int store_offset = code_offset();
890
switch (type) {
891
case T_BOOLEAN: // fall through
892
case T_BYTE : __ stb(from_reg->as_register(), base, disp); break;
893
case T_CHAR : __ sth(from_reg->as_register(), base, disp); break;
894
case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
895
case T_INT : __ stw(from_reg->as_register(), base, disp); break;
896
case T_LONG :
897
#ifdef _LP64
898
__ stx(from_reg->as_register_lo(), base, disp);
899
#else
900
assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
901
__ std(from_reg->as_register_hi(), base, disp);
902
#endif
903
break;
904
case T_ADDRESS:
905
__ st_ptr(from_reg->as_register(), base, disp);
906
break;
907
case T_ARRAY : // fall through
908
case T_OBJECT:
909
{
910
if (UseCompressedOops && !wide) {
911
__ encode_heap_oop(from_reg->as_register(), G3_scratch);
912
store_offset = code_offset();
913
__ stw(G3_scratch, base, disp);
914
} else {
915
__ st_ptr(from_reg->as_register(), base, disp);
916
}
917
break;
918
}
919
case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
920
case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
921
default : ShouldNotReachHere();
922
}
923
return store_offset;
924
}
925
926
927
int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
928
int load_offset;
929
if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
930
assert(base != O7, "destroying register");
931
assert(!unaligned, "can't handle this");
932
// for offsets larger than a simm13 we setup the offset in O7
933
__ set(offset, O7);
934
load_offset = load(base, O7, to_reg, type, wide);
935
} else {
936
load_offset = code_offset();
937
switch(type) {
938
case T_BOOLEAN: // fall through
939
case T_BYTE : __ ldsb(base, offset, to_reg->as_register()); break;
940
case T_CHAR : __ lduh(base, offset, to_reg->as_register()); break;
941
case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
942
case T_INT : __ ld(base, offset, to_reg->as_register()); break;
943
case T_LONG :
944
if (!unaligned) {
945
#ifdef _LP64
946
__ ldx(base, offset, to_reg->as_register_lo());
947
#else
948
assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
949
"must be sequential");
950
__ ldd(base, offset, to_reg->as_register_hi());
951
#endif
952
} else {
953
#ifdef _LP64
954
assert(base != to_reg->as_register_lo(), "can't handle this");
955
assert(O7 != to_reg->as_register_lo(), "can't handle this");
956
__ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
957
__ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
958
__ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
959
__ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
960
#else
961
if (base == to_reg->as_register_lo()) {
962
__ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
963
__ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
964
} else {
965
__ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
966
__ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
967
}
968
#endif
969
}
970
break;
971
case T_METADATA: __ ld_ptr(base, offset, to_reg->as_register()); break;
972
case T_ADDRESS:
973
#ifdef _LP64
974
if (offset == oopDesc::klass_offset_in_bytes() && UseCompressedClassPointers) {
975
__ lduw(base, offset, to_reg->as_register());
976
__ decode_klass_not_null(to_reg->as_register());
977
} else
978
#endif
979
{
980
__ ld_ptr(base, offset, to_reg->as_register());
981
}
982
break;
983
case T_ARRAY : // fall through
984
case T_OBJECT:
985
{
986
if (UseCompressedOops && !wide) {
987
__ lduw(base, offset, to_reg->as_register());
988
__ decode_heap_oop(to_reg->as_register());
989
} else {
990
__ ld_ptr(base, offset, to_reg->as_register());
991
}
992
break;
993
}
994
case T_FLOAT: __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
995
case T_DOUBLE:
996
{
997
FloatRegister reg = to_reg->as_double_reg();
998
// split unaligned loads
999
if (unaligned || PatchALot) {
1000
__ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
1001
__ ldf(FloatRegisterImpl::S, base, offset, reg);
1002
} else {
1003
__ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
1004
}
1005
break;
1006
}
1007
default : ShouldNotReachHere();
1008
}
1009
if (type == T_ARRAY || type == T_OBJECT) {
1010
__ verify_oop(to_reg->as_register());
1011
}
1012
}
1013
return load_offset;
1014
}
1015
1016
1017
int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
1018
int load_offset = code_offset();
1019
switch(type) {
1020
case T_BOOLEAN: // fall through
1021
case T_BYTE : __ ldsb(base, disp, to_reg->as_register()); break;
1022
case T_CHAR : __ lduh(base, disp, to_reg->as_register()); break;
1023
case T_SHORT : __ ldsh(base, disp, to_reg->as_register()); break;
1024
case T_INT : __ ld(base, disp, to_reg->as_register()); break;
1025
case T_ADDRESS: __ ld_ptr(base, disp, to_reg->as_register()); break;
1026
case T_ARRAY : // fall through
1027
case T_OBJECT:
1028
{
1029
if (UseCompressedOops && !wide) {
1030
__ lduw(base, disp, to_reg->as_register());
1031
__ decode_heap_oop(to_reg->as_register());
1032
} else {
1033
__ ld_ptr(base, disp, to_reg->as_register());
1034
}
1035
break;
1036
}
1037
case T_FLOAT: __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
1038
case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
1039
case T_LONG :
1040
#ifdef _LP64
1041
__ ldx(base, disp, to_reg->as_register_lo());
1042
#else
1043
assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
1044
"must be sequential");
1045
__ ldd(base, disp, to_reg->as_register_hi());
1046
#endif
1047
break;
1048
default : ShouldNotReachHere();
1049
}
1050
if (type == T_ARRAY || type == T_OBJECT) {
1051
__ verify_oop(to_reg->as_register());
1052
}
1053
return load_offset;
1054
}
1055
1056
void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
1057
LIR_Const* c = src->as_constant_ptr();
1058
switch (c->type()) {
1059
case T_INT:
1060
case T_FLOAT: {
1061
Register src_reg = O7;
1062
int value = c->as_jint_bits();
1063
if (value == 0) {
1064
src_reg = G0;
1065
} else {
1066
__ set(value, O7);
1067
}
1068
Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1069
__ stw(src_reg, addr.base(), addr.disp());
1070
break;
1071
}
1072
case T_ADDRESS: {
1073
Register src_reg = O7;
1074
int value = c->as_jint_bits();
1075
if (value == 0) {
1076
src_reg = G0;
1077
} else {
1078
__ set(value, O7);
1079
}
1080
Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1081
__ st_ptr(src_reg, addr.base(), addr.disp());
1082
break;
1083
}
1084
case T_OBJECT: {
1085
Register src_reg = O7;
1086
jobject2reg(c->as_jobject(), src_reg);
1087
Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1088
__ st_ptr(src_reg, addr.base(), addr.disp());
1089
break;
1090
}
1091
case T_LONG:
1092
case T_DOUBLE: {
1093
Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
1094
1095
Register tmp = O7;
1096
int value_lo = c->as_jint_lo_bits();
1097
if (value_lo == 0) {
1098
tmp = G0;
1099
} else {
1100
__ set(value_lo, O7);
1101
}
1102
__ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
1103
int value_hi = c->as_jint_hi_bits();
1104
if (value_hi == 0) {
1105
tmp = G0;
1106
} else {
1107
__ set(value_hi, O7);
1108
}
1109
__ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
1110
break;
1111
}
1112
default:
1113
Unimplemented();
1114
}
1115
}
1116
1117
1118
void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
1119
LIR_Const* c = src->as_constant_ptr();
1120
LIR_Address* addr = dest->as_address_ptr();
1121
Register base = addr->base()->as_pointer_register();
1122
int offset = -1;
1123
1124
switch (c->type()) {
1125
case T_INT:
1126
case T_FLOAT:
1127
case T_ADDRESS: {
1128
LIR_Opr tmp = FrameMap::O7_opr;
1129
int value = c->as_jint_bits();
1130
if (value == 0) {
1131
tmp = FrameMap::G0_opr;
1132
} else if (Assembler::is_simm13(value)) {
1133
__ set(value, O7);
1134
}
1135
if (addr->index()->is_valid()) {
1136
assert(addr->disp() == 0, "must be zero");
1137
offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
1138
} else {
1139
assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1140
offset = store(tmp, base, addr->disp(), type, wide, false);
1141
}
1142
break;
1143
}
1144
case T_LONG:
1145
case T_DOUBLE: {
1146
assert(!addr->index()->is_valid(), "can't handle reg reg address here");
1147
assert(Assembler::is_simm13(addr->disp()) &&
1148
Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
1149
1150
LIR_Opr tmp = FrameMap::O7_opr;
1151
int value_lo = c->as_jint_lo_bits();
1152
if (value_lo == 0) {
1153
tmp = FrameMap::G0_opr;
1154
} else {
1155
__ set(value_lo, O7);
1156
}
1157
offset = store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT, wide, false);
1158
int value_hi = c->as_jint_hi_bits();
1159
if (value_hi == 0) {
1160
tmp = FrameMap::G0_opr;
1161
} else {
1162
__ set(value_hi, O7);
1163
}
1164
store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
1165
break;
1166
}
1167
case T_OBJECT: {
1168
jobject obj = c->as_jobject();
1169
LIR_Opr tmp;
1170
if (obj == NULL) {
1171
tmp = FrameMap::G0_opr;
1172
} else {
1173
tmp = FrameMap::O7_opr;
1174
jobject2reg(c->as_jobject(), O7);
1175
}
1176
// handle either reg+reg or reg+disp address
1177
if (addr->index()->is_valid()) {
1178
assert(addr->disp() == 0, "must be zero");
1179
offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
1180
} else {
1181
assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1182
offset = store(tmp, base, addr->disp(), type, wide, false);
1183
}
1184
1185
break;
1186
}
1187
default:
1188
Unimplemented();
1189
}
1190
if (info != NULL) {
1191
assert(offset != -1, "offset should've been set");
1192
add_debug_info_for_null_check(offset, info);
1193
}
1194
}
1195
1196
1197
void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
1198
LIR_Const* c = src->as_constant_ptr();
1199
LIR_Opr to_reg = dest;
1200
1201
switch (c->type()) {
1202
case T_INT:
1203
case T_ADDRESS:
1204
{
1205
jint con = c->as_jint();
1206
if (to_reg->is_single_cpu()) {
1207
assert(patch_code == lir_patch_none, "no patching handled here");
1208
__ set(con, to_reg->as_register());
1209
} else {
1210
ShouldNotReachHere();
1211
assert(to_reg->is_single_fpu(), "wrong register kind");
1212
1213
__ set(con, O7);
1214
Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
1215
__ st(O7, temp_slot);
1216
__ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
1217
}
1218
}
1219
break;
1220
1221
case T_LONG:
1222
{
1223
jlong con = c->as_jlong();
1224
1225
if (to_reg->is_double_cpu()) {
1226
#ifdef _LP64
1227
__ set(con, to_reg->as_register_lo());
1228
#else
1229
__ set(low(con), to_reg->as_register_lo());
1230
__ set(high(con), to_reg->as_register_hi());
1231
#endif
1232
#ifdef _LP64
1233
} else if (to_reg->is_single_cpu()) {
1234
__ set(con, to_reg->as_register());
1235
#endif
1236
} else {
1237
ShouldNotReachHere();
1238
assert(to_reg->is_double_fpu(), "wrong register kind");
1239
Address temp_slot_lo(SP, ((frame::register_save_words ) * wordSize) + STACK_BIAS);
1240
Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
1241
__ set(low(con), O7);
1242
__ st(O7, temp_slot_lo);
1243
__ set(high(con), O7);
1244
__ st(O7, temp_slot_hi);
1245
__ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
1246
}
1247
}
1248
break;
1249
1250
case T_OBJECT:
1251
{
1252
if (patch_code == lir_patch_none) {
1253
jobject2reg(c->as_jobject(), to_reg->as_register());
1254
} else {
1255
jobject2reg_with_patching(to_reg->as_register(), info);
1256
}
1257
}
1258
break;
1259
1260
case T_METADATA:
1261
{
1262
if (patch_code == lir_patch_none) {
1263
metadata2reg(c->as_metadata(), to_reg->as_register());
1264
} else {
1265
klass2reg_with_patching(to_reg->as_register(), info);
1266
}
1267
}
1268
break;
1269
1270
case T_FLOAT:
1271
{
1272
address const_addr = __ float_constant(c->as_jfloat());
1273
if (const_addr == NULL) {
1274
bailout("const section overflow");
1275
break;
1276
}
1277
RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1278
AddressLiteral const_addrlit(const_addr, rspec);
1279
if (to_reg->is_single_fpu()) {
1280
__ patchable_sethi(const_addrlit, O7);
1281
__ relocate(rspec);
1282
__ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
1283
1284
} else {
1285
assert(to_reg->is_single_cpu(), "Must be a cpu register.");
1286
1287
__ set(const_addrlit, O7);
1288
__ ld(O7, 0, to_reg->as_register());
1289
}
1290
}
1291
break;
1292
1293
case T_DOUBLE:
1294
{
1295
address const_addr = __ double_constant(c->as_jdouble());
1296
if (const_addr == NULL) {
1297
bailout("const section overflow");
1298
break;
1299
}
1300
RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1301
1302
if (to_reg->is_double_fpu()) {
1303
AddressLiteral const_addrlit(const_addr, rspec);
1304
__ patchable_sethi(const_addrlit, O7);
1305
__ relocate(rspec);
1306
__ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
1307
} else {
1308
assert(to_reg->is_double_cpu(), "Must be a long register.");
1309
#ifdef _LP64
1310
__ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
1311
#else
1312
__ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
1313
__ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
1314
#endif
1315
}
1316
1317
}
1318
break;
1319
1320
default:
1321
ShouldNotReachHere();
1322
}
1323
}
1324
1325
Address LIR_Assembler::as_Address(LIR_Address* addr) {
1326
Register reg = addr->base()->as_pointer_register();
1327
LIR_Opr index = addr->index();
1328
if (index->is_illegal()) {
1329
return Address(reg, addr->disp());
1330
} else {
1331
assert (addr->disp() == 0, "unsupported address mode");
1332
return Address(reg, index->as_pointer_register());
1333
}
1334
}
1335
1336
1337
void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1338
switch (type) {
1339
case T_INT:
1340
case T_FLOAT: {
1341
Register tmp = O7;
1342
Address from = frame_map()->address_for_slot(src->single_stack_ix());
1343
Address to = frame_map()->address_for_slot(dest->single_stack_ix());
1344
__ lduw(from.base(), from.disp(), tmp);
1345
__ stw(tmp, to.base(), to.disp());
1346
break;
1347
}
1348
case T_OBJECT: {
1349
Register tmp = O7;
1350
Address from = frame_map()->address_for_slot(src->single_stack_ix());
1351
Address to = frame_map()->address_for_slot(dest->single_stack_ix());
1352
__ ld_ptr(from.base(), from.disp(), tmp);
1353
__ st_ptr(tmp, to.base(), to.disp());
1354
break;
1355
}
1356
case T_LONG:
1357
case T_DOUBLE: {
1358
Register tmp = O7;
1359
Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
1360
Address to = frame_map()->address_for_double_slot(dest->double_stack_ix());
1361
__ lduw(from.base(), from.disp(), tmp);
1362
__ stw(tmp, to.base(), to.disp());
1363
__ lduw(from.base(), from.disp() + 4, tmp);
1364
__ stw(tmp, to.base(), to.disp() + 4);
1365
break;
1366
}
1367
1368
default:
1369
ShouldNotReachHere();
1370
}
1371
}
1372
1373
1374
Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
1375
Address base = as_Address(addr);
1376
return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
1377
}
1378
1379
1380
Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
1381
Address base = as_Address(addr);
1382
return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
1383
}
1384
1385
1386
void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
1387
LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
1388
1389
assert(type != T_METADATA, "load of metadata ptr not supported");
1390
LIR_Address* addr = src_opr->as_address_ptr();
1391
LIR_Opr to_reg = dest;
1392
1393
Register src = addr->base()->as_pointer_register();
1394
Register disp_reg = noreg;
1395
int disp_value = addr->disp();
1396
bool needs_patching = (patch_code != lir_patch_none);
1397
1398
if (addr->base()->type() == T_OBJECT) {
1399
__ verify_oop(src);
1400
}
1401
1402
PatchingStub* patch = NULL;
1403
if (needs_patching) {
1404
patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1405
assert(!to_reg->is_double_cpu() ||
1406
patch_code == lir_patch_none ||
1407
patch_code == lir_patch_normal, "patching doesn't match register");
1408
}
1409
1410
if (addr->index()->is_illegal()) {
1411
if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1412
if (needs_patching) {
1413
__ patchable_set(0, O7);
1414
} else {
1415
__ set(disp_value, O7);
1416
}
1417
disp_reg = O7;
1418
}
1419
} else if (unaligned || PatchALot) {
1420
__ add(src, addr->index()->as_register(), O7);
1421
src = O7;
1422
} else {
1423
disp_reg = addr->index()->as_pointer_register();
1424
assert(disp_value == 0, "can't handle 3 operand addresses");
1425
}
1426
1427
// remember the offset of the load. The patching_epilog must be done
1428
// before the call to add_debug_info, otherwise the PcDescs don't get
1429
// entered in increasing order.
1430
int offset = code_offset();
1431
1432
assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1433
if (disp_reg == noreg) {
1434
offset = load(src, disp_value, to_reg, type, wide, unaligned);
1435
} else {
1436
assert(!unaligned, "can't handle this");
1437
offset = load(src, disp_reg, to_reg, type, wide);
1438
}
1439
1440
if (patch != NULL) {
1441
patching_epilog(patch, patch_code, src, info);
1442
}
1443
if (info != NULL) add_debug_info_for_null_check(offset, info);
1444
}
1445
1446
1447
void LIR_Assembler::prefetchr(LIR_Opr src) {
1448
LIR_Address* addr = src->as_address_ptr();
1449
Address from_addr = as_Address(addr);
1450
1451
if (VM_Version::has_v9()) {
1452
__ prefetch(from_addr, Assembler::severalReads);
1453
}
1454
}
1455
1456
1457
void LIR_Assembler::prefetchw(LIR_Opr src) {
1458
LIR_Address* addr = src->as_address_ptr();
1459
Address from_addr = as_Address(addr);
1460
1461
if (VM_Version::has_v9()) {
1462
__ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
1463
}
1464
}
1465
1466
1467
void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1468
Address addr;
1469
if (src->is_single_word()) {
1470
addr = frame_map()->address_for_slot(src->single_stack_ix());
1471
} else if (src->is_double_word()) {
1472
addr = frame_map()->address_for_double_slot(src->double_stack_ix());
1473
}
1474
1475
bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1476
load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
1477
}
1478
1479
1480
void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
1481
Address addr;
1482
if (dest->is_single_word()) {
1483
addr = frame_map()->address_for_slot(dest->single_stack_ix());
1484
} else if (dest->is_double_word()) {
1485
addr = frame_map()->address_for_slot(dest->double_stack_ix());
1486
}
1487
bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1488
store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
1489
}
1490
1491
1492
void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
1493
if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
1494
if (from_reg->is_double_fpu()) {
1495
// double to double moves
1496
assert(to_reg->is_double_fpu(), "should match");
1497
__ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
1498
} else {
1499
// float to float moves
1500
assert(to_reg->is_single_fpu(), "should match");
1501
__ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
1502
}
1503
} else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
1504
if (from_reg->is_double_cpu()) {
1505
#ifdef _LP64
1506
__ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
1507
#else
1508
assert(to_reg->is_double_cpu() &&
1509
from_reg->as_register_hi() != to_reg->as_register_lo() &&
1510
from_reg->as_register_lo() != to_reg->as_register_hi(),
1511
"should both be long and not overlap");
1512
// long to long moves
1513
__ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
1514
__ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
1515
#endif
1516
#ifdef _LP64
1517
} else if (to_reg->is_double_cpu()) {
1518
// int to int moves
1519
__ mov(from_reg->as_register(), to_reg->as_register_lo());
1520
#endif
1521
} else {
1522
// int to int moves
1523
__ mov(from_reg->as_register(), to_reg->as_register());
1524
}
1525
} else {
1526
ShouldNotReachHere();
1527
}
1528
if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
1529
__ verify_oop(to_reg->as_register());
1530
}
1531
}
1532
1533
1534
void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
1535
LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
1536
bool wide, bool unaligned) {
1537
assert(type != T_METADATA, "store of metadata ptr not supported");
1538
LIR_Address* addr = dest->as_address_ptr();
1539
1540
Register src = addr->base()->as_pointer_register();
1541
Register disp_reg = noreg;
1542
int disp_value = addr->disp();
1543
bool needs_patching = (patch_code != lir_patch_none);
1544
1545
if (addr->base()->is_oop_register()) {
1546
__ verify_oop(src);
1547
}
1548
1549
PatchingStub* patch = NULL;
1550
if (needs_patching) {
1551
patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1552
assert(!from_reg->is_double_cpu() ||
1553
patch_code == lir_patch_none ||
1554
patch_code == lir_patch_normal, "patching doesn't match register");
1555
}
1556
1557
if (addr->index()->is_illegal()) {
1558
if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1559
if (needs_patching) {
1560
__ patchable_set(0, O7);
1561
} else {
1562
__ set(disp_value, O7);
1563
}
1564
disp_reg = O7;
1565
}
1566
} else if (unaligned || PatchALot) {
1567
__ add(src, addr->index()->as_register(), O7);
1568
src = O7;
1569
} else {
1570
disp_reg = addr->index()->as_pointer_register();
1571
assert(disp_value == 0, "can't handle 3 operand addresses");
1572
}
1573
1574
// remember the offset of the store. The patching_epilog must be done
1575
// before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
1576
// entered in increasing order.
1577
int offset;
1578
1579
assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1580
if (disp_reg == noreg) {
1581
offset = store(from_reg, src, disp_value, type, wide, unaligned);
1582
} else {
1583
assert(!unaligned, "can't handle this");
1584
offset = store(from_reg, src, disp_reg, type, wide);
1585
}
1586
1587
if (patch != NULL) {
1588
patching_epilog(patch, patch_code, src, info);
1589
}
1590
1591
if (info != NULL) add_debug_info_for_null_check(offset, info);
1592
}
1593
1594
1595
void LIR_Assembler::return_op(LIR_Opr result) {
1596
// the poll may need a register so just pick one that isn't the return register
1597
#if defined(TIERED) && !defined(_LP64)
1598
if (result->type_field() == LIR_OprDesc::long_type) {
1599
// Must move the result to G1
1600
// Must leave proper result in O0,O1 and G1 (TIERED only)
1601
__ sllx(I0, 32, G1); // Shift bits into high G1
1602
__ srl (I1, 0, I1); // Zero extend O1 (harmless?)
1603
__ or3 (I1, G1, G1); // OR 64 bits into G1
1604
#ifdef ASSERT
1605
// mangle it so any problems will show up
1606
__ set(0xdeadbeef, I0);
1607
__ set(0xdeadbeef, I1);
1608
#endif
1609
}
1610
#endif // TIERED
1611
__ set((intptr_t)os::get_polling_page(), L0);
1612
__ relocate(relocInfo::poll_return_type);
1613
__ ld_ptr(L0, 0, G0);
1614
__ ret();
1615
__ delayed()->restore();
1616
}
1617
1618
1619
int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
1620
__ set((intptr_t)os::get_polling_page(), tmp->as_register());
1621
if (info != NULL) {
1622
add_debug_info_for_branch(info);
1623
} else {
1624
__ relocate(relocInfo::poll_type);
1625
}
1626
1627
int offset = __ offset();
1628
__ ld_ptr(tmp->as_register(), 0, G0);
1629
1630
return offset;
1631
}
1632
1633
1634
void LIR_Assembler::emit_static_call_stub() {
1635
address call_pc = __ pc();
1636
address stub = __ start_a_stub(call_stub_size);
1637
if (stub == NULL) {
1638
bailout("static call stub overflow");
1639
return;
1640
}
1641
1642
int start = __ offset();
1643
__ relocate(static_stub_Relocation::spec(call_pc));
1644
1645
__ set_metadata(NULL, G5);
1646
// must be set to -1 at code generation time
1647
AddressLiteral addrlit(-1);
1648
__ jump_to(addrlit, G3);
1649
__ delayed()->nop();
1650
1651
assert(__ offset() - start <= call_stub_size, "stub too big");
1652
__ end_a_stub();
1653
}
1654
1655
1656
void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1657
if (opr1->is_single_fpu()) {
1658
__ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
1659
} else if (opr1->is_double_fpu()) {
1660
__ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
1661
} else if (opr1->is_single_cpu()) {
1662
if (opr2->is_constant()) {
1663
switch (opr2->as_constant_ptr()->type()) {
1664
case T_INT:
1665
{ jint con = opr2->as_constant_ptr()->as_jint();
1666
if (Assembler::is_simm13(con)) {
1667
__ cmp(opr1->as_register(), con);
1668
} else {
1669
__ set(con, O7);
1670
__ cmp(opr1->as_register(), O7);
1671
}
1672
}
1673
break;
1674
1675
case T_OBJECT:
1676
// there are only equal/notequal comparisions on objects
1677
{ jobject con = opr2->as_constant_ptr()->as_jobject();
1678
if (con == NULL) {
1679
__ cmp(opr1->as_register(), 0);
1680
} else {
1681
jobject2reg(con, O7);
1682
__ cmp(opr1->as_register(), O7);
1683
}
1684
}
1685
break;
1686
1687
default:
1688
ShouldNotReachHere();
1689
break;
1690
}
1691
} else {
1692
if (opr2->is_address()) {
1693
LIR_Address * addr = opr2->as_address_ptr();
1694
BasicType type = addr->type();
1695
if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1696
else __ ld(as_Address(addr), O7);
1697
__ cmp(opr1->as_register(), O7);
1698
} else {
1699
__ cmp(opr1->as_register(), opr2->as_register());
1700
}
1701
}
1702
} else if (opr1->is_double_cpu()) {
1703
Register xlo = opr1->as_register_lo();
1704
Register xhi = opr1->as_register_hi();
1705
if (opr2->is_constant() && opr2->as_jlong() == 0) {
1706
assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
1707
#ifdef _LP64
1708
__ orcc(xhi, G0, G0);
1709
#else
1710
__ orcc(xhi, xlo, G0);
1711
#endif
1712
} else if (opr2->is_register()) {
1713
Register ylo = opr2->as_register_lo();
1714
Register yhi = opr2->as_register_hi();
1715
#ifdef _LP64
1716
__ cmp(xlo, ylo);
1717
#else
1718
__ subcc(xlo, ylo, xlo);
1719
__ subccc(xhi, yhi, xhi);
1720
if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
1721
__ orcc(xhi, xlo, G0);
1722
}
1723
#endif
1724
} else {
1725
ShouldNotReachHere();
1726
}
1727
} else if (opr1->is_address()) {
1728
LIR_Address * addr = opr1->as_address_ptr();
1729
BasicType type = addr->type();
1730
assert (opr2->is_constant(), "Checking");
1731
if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1732
else __ ld(as_Address(addr), O7);
1733
__ cmp(O7, opr2->as_constant_ptr()->as_jint());
1734
} else {
1735
ShouldNotReachHere();
1736
}
1737
}
1738
1739
1740
void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
1741
if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1742
bool is_unordered_less = (code == lir_ucmp_fd2i);
1743
if (left->is_single_fpu()) {
1744
__ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
1745
} else if (left->is_double_fpu()) {
1746
__ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
1747
} else {
1748
ShouldNotReachHere();
1749
}
1750
} else if (code == lir_cmp_l2i) {
1751
#ifdef _LP64
1752
__ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
1753
#else
1754
__ lcmp(left->as_register_hi(), left->as_register_lo(),
1755
right->as_register_hi(), right->as_register_lo(),
1756
dst->as_register());
1757
#endif
1758
} else {
1759
ShouldNotReachHere();
1760
}
1761
}
1762
1763
1764
void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1765
Assembler::Condition acond;
1766
switch (condition) {
1767
case lir_cond_equal: acond = Assembler::equal; break;
1768
case lir_cond_notEqual: acond = Assembler::notEqual; break;
1769
case lir_cond_less: acond = Assembler::less; break;
1770
case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
1771
case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
1772
case lir_cond_greater: acond = Assembler::greater; break;
1773
case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break;
1774
case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break;
1775
default: ShouldNotReachHere();
1776
};
1777
1778
if (opr1->is_constant() && opr1->type() == T_INT) {
1779
Register dest = result->as_register();
1780
// load up first part of constant before branch
1781
// and do the rest in the delay slot.
1782
if (!Assembler::is_simm13(opr1->as_jint())) {
1783
__ sethi(opr1->as_jint(), dest);
1784
}
1785
} else if (opr1->is_constant()) {
1786
const2reg(opr1, result, lir_patch_none, NULL);
1787
} else if (opr1->is_register()) {
1788
reg2reg(opr1, result);
1789
} else if (opr1->is_stack()) {
1790
stack2reg(opr1, result, result->type());
1791
} else {
1792
ShouldNotReachHere();
1793
}
1794
Label skip;
1795
#ifdef _LP64
1796
if (type == T_INT) {
1797
__ br(acond, false, Assembler::pt, skip);
1798
} else
1799
#endif
1800
__ brx(acond, false, Assembler::pt, skip); // checks icc on 32bit and xcc on 64bit
1801
if (opr1->is_constant() && opr1->type() == T_INT) {
1802
Register dest = result->as_register();
1803
if (Assembler::is_simm13(opr1->as_jint())) {
1804
__ delayed()->or3(G0, opr1->as_jint(), dest);
1805
} else {
1806
// the sethi has been done above, so just put in the low 10 bits
1807
__ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
1808
}
1809
} else {
1810
// can't do anything useful in the delay slot
1811
__ delayed()->nop();
1812
}
1813
if (opr2->is_constant()) {
1814
const2reg(opr2, result, lir_patch_none, NULL);
1815
} else if (opr2->is_register()) {
1816
reg2reg(opr2, result);
1817
} else if (opr2->is_stack()) {
1818
stack2reg(opr2, result, result->type());
1819
} else {
1820
ShouldNotReachHere();
1821
}
1822
__ bind(skip);
1823
}
1824
1825
1826
void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1827
assert(info == NULL, "unused on this code path");
1828
assert(left->is_register(), "wrong items state");
1829
assert(dest->is_register(), "wrong items state");
1830
1831
if (right->is_register()) {
1832
if (dest->is_float_kind()) {
1833
1834
FloatRegister lreg, rreg, res;
1835
FloatRegisterImpl::Width w;
1836
if (right->is_single_fpu()) {
1837
w = FloatRegisterImpl::S;
1838
lreg = left->as_float_reg();
1839
rreg = right->as_float_reg();
1840
res = dest->as_float_reg();
1841
} else {
1842
w = FloatRegisterImpl::D;
1843
lreg = left->as_double_reg();
1844
rreg = right->as_double_reg();
1845
res = dest->as_double_reg();
1846
}
1847
1848
switch (code) {
1849
case lir_add: __ fadd(w, lreg, rreg, res); break;
1850
case lir_sub: __ fsub(w, lreg, rreg, res); break;
1851
case lir_mul: // fall through
1852
case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
1853
case lir_div: // fall through
1854
case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
1855
default: ShouldNotReachHere();
1856
}
1857
1858
} else if (dest->is_double_cpu()) {
1859
#ifdef _LP64
1860
Register dst_lo = dest->as_register_lo();
1861
Register op1_lo = left->as_pointer_register();
1862
Register op2_lo = right->as_pointer_register();
1863
1864
switch (code) {
1865
case lir_add:
1866
__ add(op1_lo, op2_lo, dst_lo);
1867
break;
1868
1869
case lir_sub:
1870
__ sub(op1_lo, op2_lo, dst_lo);
1871
break;
1872
1873
default: ShouldNotReachHere();
1874
}
1875
#else
1876
Register op1_lo = left->as_register_lo();
1877
Register op1_hi = left->as_register_hi();
1878
Register op2_lo = right->as_register_lo();
1879
Register op2_hi = right->as_register_hi();
1880
Register dst_lo = dest->as_register_lo();
1881
Register dst_hi = dest->as_register_hi();
1882
1883
switch (code) {
1884
case lir_add:
1885
__ addcc(op1_lo, op2_lo, dst_lo);
1886
__ addc (op1_hi, op2_hi, dst_hi);
1887
break;
1888
1889
case lir_sub:
1890
__ subcc(op1_lo, op2_lo, dst_lo);
1891
__ subc (op1_hi, op2_hi, dst_hi);
1892
break;
1893
1894
default: ShouldNotReachHere();
1895
}
1896
#endif
1897
} else {
1898
assert (right->is_single_cpu(), "Just Checking");
1899
1900
Register lreg = left->as_register();
1901
Register res = dest->as_register();
1902
Register rreg = right->as_register();
1903
switch (code) {
1904
case lir_add: __ add (lreg, rreg, res); break;
1905
case lir_sub: __ sub (lreg, rreg, res); break;
1906
case lir_mul: __ mulx (lreg, rreg, res); break;
1907
default: ShouldNotReachHere();
1908
}
1909
}
1910
} else {
1911
assert (right->is_constant(), "must be constant");
1912
1913
if (dest->is_single_cpu()) {
1914
Register lreg = left->as_register();
1915
Register res = dest->as_register();
1916
int simm13 = right->as_constant_ptr()->as_jint();
1917
1918
switch (code) {
1919
case lir_add: __ add (lreg, simm13, res); break;
1920
case lir_sub: __ sub (lreg, simm13, res); break;
1921
case lir_mul: __ mulx (lreg, simm13, res); break;
1922
default: ShouldNotReachHere();
1923
}
1924
} else {
1925
Register lreg = left->as_pointer_register();
1926
Register res = dest->as_register_lo();
1927
long con = right->as_constant_ptr()->as_jlong();
1928
assert(Assembler::is_simm13(con), "must be simm13");
1929
1930
switch (code) {
1931
case lir_add: __ add (lreg, (int)con, res); break;
1932
case lir_sub: __ sub (lreg, (int)con, res); break;
1933
case lir_mul: __ mulx (lreg, (int)con, res); break;
1934
default: ShouldNotReachHere();
1935
}
1936
}
1937
}
1938
}
1939
1940
1941
void LIR_Assembler::fpop() {
1942
// do nothing
1943
}
1944
1945
1946
void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
1947
switch (code) {
1948
case lir_sin:
1949
case lir_tan:
1950
case lir_cos: {
1951
assert(thread->is_valid(), "preserve the thread object for performance reasons");
1952
assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
1953
break;
1954
}
1955
case lir_sqrt: {
1956
assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
1957
FloatRegister src_reg = value->as_double_reg();
1958
FloatRegister dst_reg = dest->as_double_reg();
1959
__ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
1960
break;
1961
}
1962
case lir_abs: {
1963
assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
1964
FloatRegister src_reg = value->as_double_reg();
1965
FloatRegister dst_reg = dest->as_double_reg();
1966
__ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
1967
break;
1968
}
1969
default: {
1970
ShouldNotReachHere();
1971
break;
1972
}
1973
}
1974
}
1975
1976
1977
void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
1978
if (right->is_constant()) {
1979
if (dest->is_single_cpu()) {
1980
int simm13 = right->as_constant_ptr()->as_jint();
1981
switch (code) {
1982
case lir_logic_and: __ and3 (left->as_register(), simm13, dest->as_register()); break;
1983
case lir_logic_or: __ or3 (left->as_register(), simm13, dest->as_register()); break;
1984
case lir_logic_xor: __ xor3 (left->as_register(), simm13, dest->as_register()); break;
1985
default: ShouldNotReachHere();
1986
}
1987
} else {
1988
long c = right->as_constant_ptr()->as_jlong();
1989
assert(c == (int)c && Assembler::is_simm13(c), "out of range");
1990
int simm13 = (int)c;
1991
switch (code) {
1992
case lir_logic_and:
1993
#ifndef _LP64
1994
__ and3 (left->as_register_hi(), 0, dest->as_register_hi());
1995
#endif
1996
__ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
1997
break;
1998
1999
case lir_logic_or:
2000
#ifndef _LP64
2001
__ or3 (left->as_register_hi(), 0, dest->as_register_hi());
2002
#endif
2003
__ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
2004
break;
2005
2006
case lir_logic_xor:
2007
#ifndef _LP64
2008
__ xor3 (left->as_register_hi(), 0, dest->as_register_hi());
2009
#endif
2010
__ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
2011
break;
2012
2013
default: ShouldNotReachHere();
2014
}
2015
}
2016
} else {
2017
assert(right->is_register(), "right should be in register");
2018
2019
if (dest->is_single_cpu()) {
2020
switch (code) {
2021
case lir_logic_and: __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
2022
case lir_logic_or: __ or3 (left->as_register(), right->as_register(), dest->as_register()); break;
2023
case lir_logic_xor: __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
2024
default: ShouldNotReachHere();
2025
}
2026
} else {
2027
#ifdef _LP64
2028
Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
2029
left->as_register_lo();
2030
Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
2031
right->as_register_lo();
2032
2033
switch (code) {
2034
case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
2035
case lir_logic_or: __ or3 (l, r, dest->as_register_lo()); break;
2036
case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
2037
default: ShouldNotReachHere();
2038
}
2039
#else
2040
switch (code) {
2041
case lir_logic_and:
2042
__ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
2043
__ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
2044
break;
2045
2046
case lir_logic_or:
2047
__ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
2048
__ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
2049
break;
2050
2051
case lir_logic_xor:
2052
__ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
2053
__ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
2054
break;
2055
2056
default: ShouldNotReachHere();
2057
}
2058
#endif
2059
}
2060
}
2061
}
2062
2063
2064
int LIR_Assembler::shift_amount(BasicType t) {
2065
int elem_size = type2aelembytes(t);
2066
switch (elem_size) {
2067
case 1 : return 0;
2068
case 2 : return 1;
2069
case 4 : return 2;
2070
case 8 : return 3;
2071
}
2072
ShouldNotReachHere();
2073
return -1;
2074
}
2075
2076
2077
void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2078
assert(exceptionOop->as_register() == Oexception, "should match");
2079
assert(exceptionPC->as_register() == Oissuing_pc, "should match");
2080
2081
info->add_register_oop(exceptionOop);
2082
2083
// reuse the debug info from the safepoint poll for the throw op itself
2084
address pc_for_athrow = __ pc();
2085
int pc_for_athrow_offset = __ offset();
2086
RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
2087
__ set(pc_for_athrow, Oissuing_pc, rspec);
2088
add_call_info(pc_for_athrow_offset, info); // for exception handler
2089
2090
__ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
2091
__ delayed()->nop();
2092
}
2093
2094
2095
void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2096
assert(exceptionOop->as_register() == Oexception, "should match");
2097
2098
__ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
2099
__ delayed()->nop();
2100
}
2101
2102
void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2103
Register src = op->src()->as_register();
2104
Register dst = op->dst()->as_register();
2105
Register src_pos = op->src_pos()->as_register();
2106
Register dst_pos = op->dst_pos()->as_register();
2107
Register length = op->length()->as_register();
2108
Register tmp = op->tmp()->as_register();
2109
Register tmp2 = O7;
2110
2111
int flags = op->flags();
2112
ciArrayKlass* default_type = op->expected_type();
2113
BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
2114
if (basic_type == T_ARRAY) basic_type = T_OBJECT;
2115
2116
#ifdef _LP64
2117
// higher 32bits must be null
2118
__ sra(dst_pos, 0, dst_pos);
2119
__ sra(src_pos, 0, src_pos);
2120
__ sra(length, 0, length);
2121
#endif
2122
2123
// set up the arraycopy stub information
2124
ArrayCopyStub* stub = op->stub();
2125
2126
// always do stub if no type information is available. it's ok if
2127
// the known type isn't loaded since the code sanity checks
2128
// in debug mode and the type isn't required when we know the exact type
2129
// also check that the type is an array type.
2130
if (op->expected_type() == NULL) {
2131
__ mov(src, O0);
2132
__ mov(src_pos, O1);
2133
__ mov(dst, O2);
2134
__ mov(dst_pos, O3);
2135
__ mov(length, O4);
2136
address copyfunc_addr = StubRoutines::generic_arraycopy();
2137
2138
if (copyfunc_addr == NULL) { // Use C version if stub was not generated
2139
__ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
2140
} else {
2141
#ifndef PRODUCT
2142
if (PrintC1Statistics) {
2143
address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
2144
__ inc_counter(counter, G1, G3);
2145
}
2146
#endif
2147
__ call_VM_leaf(tmp, copyfunc_addr);
2148
}
2149
2150
if (copyfunc_addr != NULL) {
2151
__ xor3(O0, -1, tmp);
2152
__ sub(length, tmp, length);
2153
__ add(src_pos, tmp, src_pos);
2154
__ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
2155
__ delayed()->add(dst_pos, tmp, dst_pos);
2156
} else {
2157
__ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
2158
__ delayed()->nop();
2159
}
2160
__ bind(*stub->continuation());
2161
return;
2162
}
2163
2164
assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
2165
2166
// make sure src and dst are non-null and load array length
2167
if (flags & LIR_OpArrayCopy::src_null_check) {
2168
__ tst(src);
2169
__ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
2170
__ delayed()->nop();
2171
}
2172
2173
if (flags & LIR_OpArrayCopy::dst_null_check) {
2174
__ tst(dst);
2175
__ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
2176
__ delayed()->nop();
2177
}
2178
2179
// If the compiler was not able to prove that exact type of the source or the destination
2180
// of the arraycopy is an array type, check at runtime if the source or the destination is
2181
// an instance type.
2182
if (flags & LIR_OpArrayCopy::type_check) {
2183
if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) {
2184
__ load_klass(dst, tmp);
2185
__ lduw(tmp, in_bytes(Klass::layout_helper_offset()), tmp2);
2186
__ cmp(tmp2, Klass::_lh_neutral_value);
2187
__ br(Assembler::greaterEqual, false, Assembler::pn, *stub->entry());
2188
__ delayed()->nop();
2189
}
2190
2191
if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) {
2192
__ load_klass(src, tmp);
2193
__ lduw(tmp, in_bytes(Klass::layout_helper_offset()), tmp2);
2194
__ cmp(tmp2, Klass::_lh_neutral_value);
2195
__ br(Assembler::greaterEqual, false, Assembler::pn, *stub->entry());
2196
__ delayed()->nop();
2197
}
2198
}
2199
2200
if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
2201
// test src_pos register
2202
__ cmp_zero_and_br(Assembler::less, src_pos, *stub->entry());
2203
__ delayed()->nop();
2204
}
2205
2206
if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
2207
// test dst_pos register
2208
__ cmp_zero_and_br(Assembler::less, dst_pos, *stub->entry());
2209
__ delayed()->nop();
2210
}
2211
2212
if (flags & LIR_OpArrayCopy::length_positive_check) {
2213
// make sure length isn't negative
2214
__ cmp_zero_and_br(Assembler::less, length, *stub->entry());
2215
__ delayed()->nop();
2216
}
2217
2218
if (flags & LIR_OpArrayCopy::src_range_check) {
2219
__ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
2220
__ add(length, src_pos, tmp);
2221
__ cmp(tmp2, tmp);
2222
__ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
2223
__ delayed()->nop();
2224
}
2225
2226
if (flags & LIR_OpArrayCopy::dst_range_check) {
2227
__ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
2228
__ add(length, dst_pos, tmp);
2229
__ cmp(tmp2, tmp);
2230
__ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
2231
__ delayed()->nop();
2232
}
2233
2234
int shift = shift_amount(basic_type);
2235
2236
if (flags & LIR_OpArrayCopy::type_check) {
2237
// We don't know the array types are compatible
2238
if (basic_type != T_OBJECT) {
2239
// Simple test for basic type arrays
2240
if (UseCompressedClassPointers) {
2241
// We don't need decode because we just need to compare
2242
__ lduw(src, oopDesc::klass_offset_in_bytes(), tmp);
2243
__ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2244
__ cmp(tmp, tmp2);
2245
__ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
2246
} else {
2247
__ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
2248
__ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2249
__ cmp(tmp, tmp2);
2250
__ brx(Assembler::notEqual, false, Assembler::pt, *stub->entry());
2251
}
2252
__ delayed()->nop();
2253
} else {
2254
// For object arrays, if src is a sub class of dst then we can
2255
// safely do the copy.
2256
address copyfunc_addr = StubRoutines::checkcast_arraycopy();
2257
2258
Label cont, slow;
2259
assert_different_registers(tmp, tmp2, G3, G1);
2260
2261
__ load_klass(src, G3);
2262
__ load_klass(dst, G1);
2263
2264
__ check_klass_subtype_fast_path(G3, G1, tmp, tmp2, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL);
2265
2266
__ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2267
__ delayed()->nop();
2268
2269
__ cmp(G3, 0);
2270
if (copyfunc_addr != NULL) { // use stub if available
2271
// src is not a sub class of dst so we have to do a
2272
// per-element check.
2273
__ br(Assembler::notEqual, false, Assembler::pt, cont);
2274
__ delayed()->nop();
2275
2276
__ bind(slow);
2277
2278
int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
2279
if ((flags & mask) != mask) {
2280
// Check that at least both of them object arrays.
2281
assert(flags & mask, "one of the two should be known to be an object array");
2282
2283
if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2284
__ load_klass(src, tmp);
2285
} else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2286
__ load_klass(dst, tmp);
2287
}
2288
int lh_offset = in_bytes(Klass::layout_helper_offset());
2289
2290
__ lduw(tmp, lh_offset, tmp2);
2291
2292
jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2293
__ set(objArray_lh, tmp);
2294
__ cmp(tmp, tmp2);
2295
__ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
2296
__ delayed()->nop();
2297
}
2298
2299
Register src_ptr = O0;
2300
Register dst_ptr = O1;
2301
Register len = O2;
2302
Register chk_off = O3;
2303
Register super_k = O4;
2304
2305
__ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2306
if (shift == 0) {
2307
__ add(src_ptr, src_pos, src_ptr);
2308
} else {
2309
__ sll(src_pos, shift, tmp);
2310
__ add(src_ptr, tmp, src_ptr);
2311
}
2312
2313
__ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
2314
if (shift == 0) {
2315
__ add(dst_ptr, dst_pos, dst_ptr);
2316
} else {
2317
__ sll(dst_pos, shift, tmp);
2318
__ add(dst_ptr, tmp, dst_ptr);
2319
}
2320
__ mov(length, len);
2321
__ load_klass(dst, tmp);
2322
2323
int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
2324
__ ld_ptr(tmp, ek_offset, super_k);
2325
2326
int sco_offset = in_bytes(Klass::super_check_offset_offset());
2327
__ lduw(super_k, sco_offset, chk_off);
2328
2329
__ call_VM_leaf(tmp, copyfunc_addr);
2330
2331
#ifndef PRODUCT
2332
if (PrintC1Statistics) {
2333
Label failed;
2334
__ br_notnull_short(O0, Assembler::pn, failed);
2335
__ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, G1, G3);
2336
__ bind(failed);
2337
}
2338
#endif
2339
2340
__ br_null(O0, false, Assembler::pt, *stub->continuation());
2341
__ delayed()->xor3(O0, -1, tmp);
2342
2343
#ifndef PRODUCT
2344
if (PrintC1Statistics) {
2345
__ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, G1, G3);
2346
}
2347
#endif
2348
2349
__ sub(length, tmp, length);
2350
__ add(src_pos, tmp, src_pos);
2351
__ br(Assembler::always, false, Assembler::pt, *stub->entry());
2352
__ delayed()->add(dst_pos, tmp, dst_pos);
2353
2354
__ bind(cont);
2355
} else {
2356
__ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2357
__ delayed()->nop();
2358
__ bind(cont);
2359
}
2360
}
2361
}
2362
2363
#ifdef ASSERT
2364
if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2365
// Sanity check the known type with the incoming class. For the
2366
// primitive case the types must match exactly with src.klass and
2367
// dst.klass each exactly matching the default type. For the
2368
// object array case, if no type check is needed then either the
2369
// dst type is exactly the expected type and the src type is a
2370
// subtype which we can't check or src is the same array as dst
2371
// but not necessarily exactly of type default_type.
2372
Label known_ok, halt;
2373
metadata2reg(op->expected_type()->constant_encoding(), tmp);
2374
if (UseCompressedClassPointers) {
2375
// tmp holds the default type. It currently comes uncompressed after the
2376
// load of a constant, so encode it.
2377
__ encode_klass_not_null(tmp);
2378
// load the raw value of the dst klass, since we will be comparing
2379
// uncompressed values directly.
2380
__ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2381
if (basic_type != T_OBJECT) {
2382
__ cmp(tmp, tmp2);
2383
__ br(Assembler::notEqual, false, Assembler::pn, halt);
2384
// load the raw value of the src klass.
2385
__ delayed()->lduw(src, oopDesc::klass_offset_in_bytes(), tmp2);
2386
__ cmp_and_br_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
2387
} else {
2388
__ cmp(tmp, tmp2);
2389
__ br(Assembler::equal, false, Assembler::pn, known_ok);
2390
__ delayed()->cmp(src, dst);
2391
__ brx(Assembler::equal, false, Assembler::pn, known_ok);
2392
__ delayed()->nop();
2393
}
2394
} else {
2395
__ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2396
if (basic_type != T_OBJECT) {
2397
__ cmp(tmp, tmp2);
2398
__ brx(Assembler::notEqual, false, Assembler::pn, halt);
2399
__ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
2400
__ cmp_and_brx_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
2401
} else {
2402
__ cmp(tmp, tmp2);
2403
__ brx(Assembler::equal, false, Assembler::pn, known_ok);
2404
__ delayed()->cmp(src, dst);
2405
__ brx(Assembler::equal, false, Assembler::pn, known_ok);
2406
__ delayed()->nop();
2407
}
2408
}
2409
__ bind(halt);
2410
__ stop("incorrect type information in arraycopy");
2411
__ bind(known_ok);
2412
}
2413
#endif
2414
2415
#ifndef PRODUCT
2416
if (PrintC1Statistics) {
2417
address counter = Runtime1::arraycopy_count_address(basic_type);
2418
__ inc_counter(counter, G1, G3);
2419
}
2420
#endif
2421
2422
Register src_ptr = O0;
2423
Register dst_ptr = O1;
2424
Register len = O2;
2425
2426
__ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2427
if (shift == 0) {
2428
__ add(src_ptr, src_pos, src_ptr);
2429
} else {
2430
__ sll(src_pos, shift, tmp);
2431
__ add(src_ptr, tmp, src_ptr);
2432
}
2433
2434
__ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
2435
if (shift == 0) {
2436
__ add(dst_ptr, dst_pos, dst_ptr);
2437
} else {
2438
__ sll(dst_pos, shift, tmp);
2439
__ add(dst_ptr, tmp, dst_ptr);
2440
}
2441
2442
bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
2443
bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
2444
const char *name;
2445
address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
2446
2447
// arraycopy stubs takes a length in number of elements, so don't scale it.
2448
__ mov(length, len);
2449
__ call_VM_leaf(tmp, entry);
2450
2451
__ bind(*stub->continuation());
2452
}
2453
2454
2455
void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2456
if (dest->is_single_cpu()) {
2457
#ifdef _LP64
2458
if (left->type() == T_OBJECT) {
2459
switch (code) {
2460
case lir_shl: __ sllx (left->as_register(), count->as_register(), dest->as_register()); break;
2461
case lir_shr: __ srax (left->as_register(), count->as_register(), dest->as_register()); break;
2462
case lir_ushr: __ srl (left->as_register(), count->as_register(), dest->as_register()); break;
2463
default: ShouldNotReachHere();
2464
}
2465
} else
2466
#endif
2467
switch (code) {
2468
case lir_shl: __ sll (left->as_register(), count->as_register(), dest->as_register()); break;
2469
case lir_shr: __ sra (left->as_register(), count->as_register(), dest->as_register()); break;
2470
case lir_ushr: __ srl (left->as_register(), count->as_register(), dest->as_register()); break;
2471
default: ShouldNotReachHere();
2472
}
2473
} else {
2474
#ifdef _LP64
2475
switch (code) {
2476
case lir_shl: __ sllx (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2477
case lir_shr: __ srax (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2478
case lir_ushr: __ srlx (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2479
default: ShouldNotReachHere();
2480
}
2481
#else
2482
switch (code) {
2483
case lir_shl: __ lshl (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2484
case lir_shr: __ lshr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2485
case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2486
default: ShouldNotReachHere();
2487
}
2488
#endif
2489
}
2490
}
2491
2492
2493
void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2494
#ifdef _LP64
2495
if (left->type() == T_OBJECT) {
2496
count = count & 63; // shouldn't shift by more than sizeof(intptr_t)
2497
Register l = left->as_register();
2498
Register d = dest->as_register_lo();
2499
switch (code) {
2500
case lir_shl: __ sllx (l, count, d); break;
2501
case lir_shr: __ srax (l, count, d); break;
2502
case lir_ushr: __ srlx (l, count, d); break;
2503
default: ShouldNotReachHere();
2504
}
2505
return;
2506
}
2507
#endif
2508
2509
if (dest->is_single_cpu()) {
2510
count = count & 0x1F; // Java spec
2511
switch (code) {
2512
case lir_shl: __ sll (left->as_register(), count, dest->as_register()); break;
2513
case lir_shr: __ sra (left->as_register(), count, dest->as_register()); break;
2514
case lir_ushr: __ srl (left->as_register(), count, dest->as_register()); break;
2515
default: ShouldNotReachHere();
2516
}
2517
} else if (dest->is_double_cpu()) {
2518
count = count & 63; // Java spec
2519
switch (code) {
2520
case lir_shl: __ sllx (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2521
case lir_shr: __ srax (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2522
case lir_ushr: __ srlx (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2523
default: ShouldNotReachHere();
2524
}
2525
} else {
2526
ShouldNotReachHere();
2527
}
2528
}
2529
2530
2531
void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
2532
assert(op->tmp1()->as_register() == G1 &&
2533
op->tmp2()->as_register() == G3 &&
2534
op->tmp3()->as_register() == G4 &&
2535
op->obj()->as_register() == O0 &&
2536
op->klass()->as_register() == G5, "must be");
2537
if (op->init_check()) {
2538
__ ldub(op->klass()->as_register(),
2539
in_bytes(InstanceKlass::init_state_offset()),
2540
op->tmp1()->as_register());
2541
add_debug_info_for_null_check_here(op->stub()->info());
2542
__ cmp(op->tmp1()->as_register(), InstanceKlass::fully_initialized);
2543
__ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
2544
__ delayed()->nop();
2545
}
2546
__ allocate_object(op->obj()->as_register(),
2547
op->tmp1()->as_register(),
2548
op->tmp2()->as_register(),
2549
op->tmp3()->as_register(),
2550
op->header_size(),
2551
op->object_size(),
2552
op->klass()->as_register(),
2553
*op->stub()->entry());
2554
__ bind(*op->stub()->continuation());
2555
__ verify_oop(op->obj()->as_register());
2556
}
2557
2558
2559
void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
2560
assert(op->tmp1()->as_register() == G1 &&
2561
op->tmp2()->as_register() == G3 &&
2562
op->tmp3()->as_register() == G4 &&
2563
op->tmp4()->as_register() == O1 &&
2564
op->klass()->as_register() == G5, "must be");
2565
2566
LP64_ONLY( __ signx(op->len()->as_register()); )
2567
if (UseSlowPath ||
2568
(!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
2569
(!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
2570
__ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2571
__ delayed()->nop();
2572
} else {
2573
__ allocate_array(op->obj()->as_register(),
2574
op->len()->as_register(),
2575
op->tmp1()->as_register(),
2576
op->tmp2()->as_register(),
2577
op->tmp3()->as_register(),
2578
arrayOopDesc::header_size(op->type()),
2579
type2aelembytes(op->type()),
2580
op->klass()->as_register(),
2581
*op->stub()->entry());
2582
}
2583
__ bind(*op->stub()->continuation());
2584
}
2585
2586
2587
void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
2588
ciMethodData *md, ciProfileData *data,
2589
Register recv, Register tmp1, Label* update_done) {
2590
uint i;
2591
for (i = 0; i < VirtualCallData::row_limit(); i++) {
2592
Label next_test;
2593
// See if the receiver is receiver[n].
2594
Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
2595
mdo_offset_bias);
2596
__ ld_ptr(receiver_addr, tmp1);
2597
__ verify_klass_ptr(tmp1);
2598
__ cmp_and_brx_short(recv, tmp1, Assembler::notEqual, Assembler::pt, next_test);
2599
Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
2600
mdo_offset_bias);
2601
__ ld_ptr(data_addr, tmp1);
2602
__ add(tmp1, DataLayout::counter_increment, tmp1);
2603
__ st_ptr(tmp1, data_addr);
2604
__ ba(*update_done);
2605
__ delayed()->nop();
2606
__ bind(next_test);
2607
}
2608
2609
// Didn't find receiver; find next empty slot and fill it in
2610
for (i = 0; i < VirtualCallData::row_limit(); i++) {
2611
Label next_test;
2612
Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
2613
mdo_offset_bias);
2614
__ ld_ptr(recv_addr, tmp1);
2615
__ br_notnull_short(tmp1, Assembler::pt, next_test);
2616
__ st_ptr(recv, recv_addr);
2617
__ set(DataLayout::counter_increment, tmp1);
2618
__ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
2619
mdo_offset_bias);
2620
__ ba(*update_done);
2621
__ delayed()->nop();
2622
__ bind(next_test);
2623
}
2624
}
2625
2626
2627
void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
2628
ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
2629
md = method->method_data_or_null();
2630
assert(md != NULL, "Sanity");
2631
data = md->bci_to_data(bci);
2632
assert(data != NULL, "need data for checkcast");
2633
assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
2634
if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
2635
// The offset is large so bias the mdo by the base of the slot so
2636
// that the ld can use simm13s to reference the slots of the data
2637
mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
2638
}
2639
}
2640
2641
void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
2642
// we always need a stub for the failure case.
2643
CodeStub* stub = op->stub();
2644
Register obj = op->object()->as_register();
2645
Register k_RInfo = op->tmp1()->as_register();
2646
Register klass_RInfo = op->tmp2()->as_register();
2647
Register dst = op->result_opr()->as_register();
2648
Register Rtmp1 = op->tmp3()->as_register();
2649
ciKlass* k = op->klass();
2650
2651
2652
if (obj == k_RInfo) {
2653
k_RInfo = klass_RInfo;
2654
klass_RInfo = obj;
2655
}
2656
2657
ciMethodData* md;
2658
ciProfileData* data;
2659
int mdo_offset_bias = 0;
2660
if (op->should_profile()) {
2661
ciMethod* method = op->profiled_method();
2662
assert(method != NULL, "Should have method");
2663
setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2664
2665
Label not_null;
2666
__ br_notnull_short(obj, Assembler::pn, not_null);
2667
Register mdo = k_RInfo;
2668
Register data_val = Rtmp1;
2669
metadata2reg(md->constant_encoding(), mdo);
2670
if (mdo_offset_bias > 0) {
2671
__ set(mdo_offset_bias, data_val);
2672
__ add(mdo, data_val, mdo);
2673
}
2674
Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2675
__ ldub(flags_addr, data_val);
2676
__ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2677
__ stb(data_val, flags_addr);
2678
__ ba(*obj_is_null);
2679
__ delayed()->nop();
2680
__ bind(not_null);
2681
} else {
2682
__ br_null(obj, false, Assembler::pn, *obj_is_null);
2683
__ delayed()->nop();
2684
}
2685
2686
Label profile_cast_failure, profile_cast_success;
2687
Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
2688
Label *success_target = op->should_profile() ? &profile_cast_success : success;
2689
2690
// patching may screw with our temporaries on sparc,
2691
// so let's do it before loading the class
2692
if (k->is_loaded()) {
2693
metadata2reg(k->constant_encoding(), k_RInfo);
2694
} else {
2695
klass2reg_with_patching(k_RInfo, op->info_for_patch());
2696
}
2697
assert(obj != k_RInfo, "must be different");
2698
2699
// get object class
2700
// not a safepoint as obj null check happens earlier
2701
__ load_klass(obj, klass_RInfo);
2702
if (op->fast_check()) {
2703
assert_different_registers(klass_RInfo, k_RInfo);
2704
__ cmp(k_RInfo, klass_RInfo);
2705
__ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
2706
__ delayed()->nop();
2707
} else {
2708
bool need_slow_path = true;
2709
if (k->is_loaded()) {
2710
if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset()))
2711
need_slow_path = false;
2712
// perform the fast part of the checking logic
2713
__ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
2714
(need_slow_path ? success_target : NULL),
2715
failure_target, NULL,
2716
RegisterOrConstant(k->super_check_offset()));
2717
} else {
2718
// perform the fast part of the checking logic
2719
__ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
2720
failure_target, NULL);
2721
}
2722
if (need_slow_path) {
2723
// call out-of-line instance of __ check_klass_subtype_slow_path(...):
2724
assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2725
__ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2726
__ delayed()->nop();
2727
__ cmp(G3, 0);
2728
__ br(Assembler::equal, false, Assembler::pn, *failure_target);
2729
__ delayed()->nop();
2730
// Fall through to success case
2731
}
2732
}
2733
2734
if (op->should_profile()) {
2735
Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2736
assert_different_registers(obj, mdo, recv, tmp1);
2737
__ bind(profile_cast_success);
2738
metadata2reg(md->constant_encoding(), mdo);
2739
if (mdo_offset_bias > 0) {
2740
__ set(mdo_offset_bias, tmp1);
2741
__ add(mdo, tmp1, mdo);
2742
}
2743
__ load_klass(obj, recv);
2744
type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
2745
// Jump over the failure case
2746
__ ba(*success);
2747
__ delayed()->nop();
2748
// Cast failure case
2749
__ bind(profile_cast_failure);
2750
metadata2reg(md->constant_encoding(), mdo);
2751
if (mdo_offset_bias > 0) {
2752
__ set(mdo_offset_bias, tmp1);
2753
__ add(mdo, tmp1, mdo);
2754
}
2755
Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2756
__ ld_ptr(data_addr, tmp1);
2757
__ sub(tmp1, DataLayout::counter_increment, tmp1);
2758
__ st_ptr(tmp1, data_addr);
2759
__ ba(*failure);
2760
__ delayed()->nop();
2761
}
2762
__ ba(*success);
2763
__ delayed()->nop();
2764
}
2765
2766
void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
2767
LIR_Code code = op->code();
2768
if (code == lir_store_check) {
2769
Register value = op->object()->as_register();
2770
Register array = op->array()->as_register();
2771
Register k_RInfo = op->tmp1()->as_register();
2772
Register klass_RInfo = op->tmp2()->as_register();
2773
Register Rtmp1 = op->tmp3()->as_register();
2774
2775
__ verify_oop(value);
2776
CodeStub* stub = op->stub();
2777
// check if it needs to be profiled
2778
ciMethodData* md;
2779
ciProfileData* data;
2780
int mdo_offset_bias = 0;
2781
if (op->should_profile()) {
2782
ciMethod* method = op->profiled_method();
2783
assert(method != NULL, "Should have method");
2784
setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2785
}
2786
Label profile_cast_success, profile_cast_failure, done;
2787
Label *success_target = op->should_profile() ? &profile_cast_success : &done;
2788
Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
2789
2790
if (op->should_profile()) {
2791
Label not_null;
2792
__ br_notnull_short(value, Assembler::pn, not_null);
2793
Register mdo = k_RInfo;
2794
Register data_val = Rtmp1;
2795
metadata2reg(md->constant_encoding(), mdo);
2796
if (mdo_offset_bias > 0) {
2797
__ set(mdo_offset_bias, data_val);
2798
__ add(mdo, data_val, mdo);
2799
}
2800
Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2801
__ ldub(flags_addr, data_val);
2802
__ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2803
__ stb(data_val, flags_addr);
2804
__ ba_short(done);
2805
__ bind(not_null);
2806
} else {
2807
__ br_null_short(value, Assembler::pn, done);
2808
}
2809
add_debug_info_for_null_check_here(op->info_for_exception());
2810
__ load_klass(array, k_RInfo);
2811
__ load_klass(value, klass_RInfo);
2812
2813
// get instance klass
2814
__ ld_ptr(Address(k_RInfo, ObjArrayKlass::element_klass_offset()), k_RInfo);
2815
// perform the fast part of the checking logic
2816
__ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
2817
2818
// call out-of-line instance of __ check_klass_subtype_slow_path(...):
2819
assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2820
__ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2821
__ delayed()->nop();
2822
__ cmp(G3, 0);
2823
__ br(Assembler::equal, false, Assembler::pn, *failure_target);
2824
__ delayed()->nop();
2825
// fall through to the success case
2826
2827
if (op->should_profile()) {
2828
Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2829
assert_different_registers(value, mdo, recv, tmp1);
2830
__ bind(profile_cast_success);
2831
metadata2reg(md->constant_encoding(), mdo);
2832
if (mdo_offset_bias > 0) {
2833
__ set(mdo_offset_bias, tmp1);
2834
__ add(mdo, tmp1, mdo);
2835
}
2836
__ load_klass(value, recv);
2837
type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
2838
__ ba_short(done);
2839
// Cast failure case
2840
__ bind(profile_cast_failure);
2841
metadata2reg(md->constant_encoding(), mdo);
2842
if (mdo_offset_bias > 0) {
2843
__ set(mdo_offset_bias, tmp1);
2844
__ add(mdo, tmp1, mdo);
2845
}
2846
Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2847
__ ld_ptr(data_addr, tmp1);
2848
__ sub(tmp1, DataLayout::counter_increment, tmp1);
2849
__ st_ptr(tmp1, data_addr);
2850
__ ba(*stub->entry());
2851
__ delayed()->nop();
2852
}
2853
__ bind(done);
2854
} else if (code == lir_checkcast) {
2855
Register obj = op->object()->as_register();
2856
Register dst = op->result_opr()->as_register();
2857
Label success;
2858
emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
2859
__ bind(success);
2860
__ mov(obj, dst);
2861
} else if (code == lir_instanceof) {
2862
Register obj = op->object()->as_register();
2863
Register dst = op->result_opr()->as_register();
2864
Label success, failure, done;
2865
emit_typecheck_helper(op, &success, &failure, &failure);
2866
__ bind(failure);
2867
__ set(0, dst);
2868
__ ba_short(done);
2869
__ bind(success);
2870
__ set(1, dst);
2871
__ bind(done);
2872
} else {
2873
ShouldNotReachHere();
2874
}
2875
2876
}
2877
2878
2879
void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
2880
if (op->code() == lir_cas_long) {
2881
assert(VM_Version::supports_cx8(), "wrong machine");
2882
Register addr = op->addr()->as_pointer_register();
2883
Register cmp_value_lo = op->cmp_value()->as_register_lo();
2884
Register cmp_value_hi = op->cmp_value()->as_register_hi();
2885
Register new_value_lo = op->new_value()->as_register_lo();
2886
Register new_value_hi = op->new_value()->as_register_hi();
2887
Register t1 = op->tmp1()->as_register();
2888
Register t2 = op->tmp2()->as_register();
2889
#ifdef _LP64
2890
__ mov(cmp_value_lo, t1);
2891
__ mov(new_value_lo, t2);
2892
// perform the compare and swap operation
2893
__ casx(addr, t1, t2);
2894
// generate condition code - if the swap succeeded, t2 ("new value" reg) was
2895
// overwritten with the original value in "addr" and will be equal to t1.
2896
__ cmp(t1, t2);
2897
#else
2898
// move high and low halves of long values into single registers
2899
__ sllx(cmp_value_hi, 32, t1); // shift high half into temp reg
2900
__ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
2901
__ or3(t1, cmp_value_lo, t1); // t1 holds 64-bit compare value
2902
__ sllx(new_value_hi, 32, t2);
2903
__ srl(new_value_lo, 0, new_value_lo);
2904
__ or3(t2, new_value_lo, t2); // t2 holds 64-bit value to swap
2905
// perform the compare and swap operation
2906
__ casx(addr, t1, t2);
2907
// generate condition code - if the swap succeeded, t2 ("new value" reg) was
2908
// overwritten with the original value in "addr" and will be equal to t1.
2909
// Produce icc flag for 32bit.
2910
__ sub(t1, t2, t2);
2911
__ srlx(t2, 32, t1);
2912
__ orcc(t2, t1, G0);
2913
#endif
2914
} else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
2915
Register addr = op->addr()->as_pointer_register();
2916
Register cmp_value = op->cmp_value()->as_register();
2917
Register new_value = op->new_value()->as_register();
2918
Register t1 = op->tmp1()->as_register();
2919
Register t2 = op->tmp2()->as_register();
2920
__ mov(cmp_value, t1);
2921
__ mov(new_value, t2);
2922
if (op->code() == lir_cas_obj) {
2923
if (UseCompressedOops) {
2924
__ encode_heap_oop(t1);
2925
__ encode_heap_oop(t2);
2926
__ cas(addr, t1, t2);
2927
} else {
2928
__ cas_ptr(addr, t1, t2);
2929
}
2930
} else {
2931
__ cas(addr, t1, t2);
2932
}
2933
__ cmp(t1, t2);
2934
} else {
2935
Unimplemented();
2936
}
2937
}
2938
2939
void LIR_Assembler::set_24bit_FPU() {
2940
Unimplemented();
2941
}
2942
2943
2944
void LIR_Assembler::reset_FPU() {
2945
Unimplemented();
2946
}
2947
2948
2949
void LIR_Assembler::breakpoint() {
2950
__ breakpoint_trap();
2951
}
2952
2953
2954
void LIR_Assembler::push(LIR_Opr opr) {
2955
Unimplemented();
2956
}
2957
2958
2959
void LIR_Assembler::pop(LIR_Opr opr) {
2960
Unimplemented();
2961
}
2962
2963
2964
void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
2965
Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
2966
Register dst = dst_opr->as_register();
2967
Register reg = mon_addr.base();
2968
int offset = mon_addr.disp();
2969
// compute pointer to BasicLock
2970
if (mon_addr.is_simm13()) {
2971
__ add(reg, offset, dst);
2972
} else {
2973
__ set(offset, dst);
2974
__ add(dst, reg, dst);
2975
}
2976
}
2977
2978
void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
2979
fatal("CRC32 intrinsic is not implemented on this platform");
2980
}
2981
2982
void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2983
Register obj = op->obj_opr()->as_register();
2984
Register hdr = op->hdr_opr()->as_register();
2985
Register lock = op->lock_opr()->as_register();
2986
2987
// obj may not be an oop
2988
if (op->code() == lir_lock) {
2989
MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
2990
if (UseFastLocking) {
2991
assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2992
// add debug info for NullPointerException only if one is possible
2993
if (op->info() != NULL) {
2994
add_debug_info_for_null_check_here(op->info());
2995
}
2996
__ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
2997
} else {
2998
// always do slow locking
2999
// note: the slow locking code could be inlined here, however if we use
3000
// slow locking, speed doesn't matter anyway and this solution is
3001
// simpler and requires less duplicated code - additionally, the
3002
// slow locking code is the same in either case which simplifies
3003
// debugging
3004
__ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
3005
__ delayed()->nop();
3006
}
3007
} else {
3008
assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
3009
if (UseFastLocking) {
3010
assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3011
__ unlock_object(hdr, obj, lock, *op->stub()->entry());
3012
} else {
3013
// always do slow unlocking
3014
// note: the slow unlocking code could be inlined here, however if we use
3015
// slow unlocking, speed doesn't matter anyway and this solution is
3016
// simpler and requires less duplicated code - additionally, the
3017
// slow unlocking code is the same in either case which simplifies
3018
// debugging
3019
__ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
3020
__ delayed()->nop();
3021
}
3022
}
3023
__ bind(*op->stub()->continuation());
3024
}
3025
3026
3027
void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3028
ciMethod* method = op->profiled_method();
3029
int bci = op->profiled_bci();
3030
ciMethod* callee = op->profiled_callee();
3031
3032
// Update counter for all call types
3033
ciMethodData* md = method->method_data_or_null();
3034
assert(md != NULL, "Sanity");
3035
ciProfileData* data = md->bci_to_data(bci);
3036
assert(data->is_CounterData(), "need CounterData for calls");
3037
assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
3038
Register mdo = op->mdo()->as_register();
3039
#ifdef _LP64
3040
assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
3041
Register tmp1 = op->tmp1()->as_register_lo();
3042
#else
3043
assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
3044
Register tmp1 = op->tmp1()->as_register();
3045
#endif
3046
metadata2reg(md->constant_encoding(), mdo);
3047
int mdo_offset_bias = 0;
3048
if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
3049
data->size_in_bytes())) {
3050
// The offset is large so bias the mdo by the base of the slot so
3051
// that the ld can use simm13s to reference the slots of the data
3052
mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
3053
__ set(mdo_offset_bias, O7);
3054
__ add(mdo, O7, mdo);
3055
}
3056
3057
Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
3058
Bytecodes::Code bc = method->java_code_at_bci(bci);
3059
const bool callee_is_static = callee->is_loaded() && callee->is_static();
3060
// Perform additional virtual call profiling for invokevirtual and
3061
// invokeinterface bytecodes
3062
if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
3063
!callee_is_static && // required for optimized MH invokes
3064
C1ProfileVirtualCalls) {
3065
assert(op->recv()->is_single_cpu(), "recv must be allocated");
3066
Register recv = op->recv()->as_register();
3067
assert_different_registers(mdo, tmp1, recv);
3068
assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3069
ciKlass* known_klass = op->known_holder();
3070
if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3071
// We know the type that will be seen at this call site; we can
3072
// statically update the MethodData* rather than needing to do
3073
// dynamic tests on the receiver type
3074
3075
// NOTE: we should probably put a lock around this search to
3076
// avoid collisions by concurrent compilations
3077
ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3078
uint i;
3079
for (i = 0; i < VirtualCallData::row_limit(); i++) {
3080
ciKlass* receiver = vc_data->receiver(i);
3081
if (known_klass->equals(receiver)) {
3082
Address data_addr(mdo, md->byte_offset_of_slot(data,
3083
VirtualCallData::receiver_count_offset(i)) -
3084
mdo_offset_bias);
3085
__ ld_ptr(data_addr, tmp1);
3086
__ add(tmp1, DataLayout::counter_increment, tmp1);
3087
__ st_ptr(tmp1, data_addr);
3088
return;
3089
}
3090
}
3091
3092
// Receiver type not found in profile data; select an empty slot
3093
3094
// Note that this is less efficient than it should be because it
3095
// always does a write to the receiver part of the
3096
// VirtualCallData rather than just the first time
3097
for (i = 0; i < VirtualCallData::row_limit(); i++) {
3098
ciKlass* receiver = vc_data->receiver(i);
3099
if (receiver == NULL) {
3100
Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
3101
mdo_offset_bias);
3102
metadata2reg(known_klass->constant_encoding(), tmp1);
3103
__ st_ptr(tmp1, recv_addr);
3104
Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
3105
mdo_offset_bias);
3106
__ ld_ptr(data_addr, tmp1);
3107
__ add(tmp1, DataLayout::counter_increment, tmp1);
3108
__ st_ptr(tmp1, data_addr);
3109
return;
3110
}
3111
}
3112
} else {
3113
__ load_klass(recv, recv);
3114
Label update_done;
3115
type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
3116
// Receiver did not match any saved receiver and there is no empty row for it.
3117
// Increment total counter to indicate polymorphic case.
3118
__ ld_ptr(counter_addr, tmp1);
3119
__ add(tmp1, DataLayout::counter_increment, tmp1);
3120
__ st_ptr(tmp1, counter_addr);
3121
3122
__ bind(update_done);
3123
}
3124
} else {
3125
// Static call
3126
__ ld_ptr(counter_addr, tmp1);
3127
__ add(tmp1, DataLayout::counter_increment, tmp1);
3128
__ st_ptr(tmp1, counter_addr);
3129
}
3130
}
3131
3132
void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
3133
Register obj = op->obj()->as_register();
3134
Register tmp1 = op->tmp()->as_pointer_register();
3135
Register tmp2 = G1;
3136
Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
3137
ciKlass* exact_klass = op->exact_klass();
3138
intptr_t current_klass = op->current_klass();
3139
bool not_null = op->not_null();
3140
bool no_conflict = op->no_conflict();
3141
3142
Label update, next, none;
3143
3144
bool do_null = !not_null;
3145
bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
3146
bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
3147
3148
assert(do_null || do_update, "why are we here?");
3149
assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
3150
3151
__ verify_oop(obj);
3152
3153
if (tmp1 != obj) {
3154
__ mov(obj, tmp1);
3155
}
3156
if (do_null) {
3157
__ br_notnull_short(tmp1, Assembler::pt, update);
3158
if (!TypeEntries::was_null_seen(current_klass)) {
3159
__ ld_ptr(mdo_addr, tmp1);
3160
__ or3(tmp1, TypeEntries::null_seen, tmp1);
3161
__ st_ptr(tmp1, mdo_addr);
3162
}
3163
if (do_update) {
3164
__ ba(next);
3165
__ delayed()->nop();
3166
}
3167
#ifdef ASSERT
3168
} else {
3169
__ br_notnull_short(tmp1, Assembler::pt, update);
3170
__ stop("unexpect null obj");
3171
#endif
3172
}
3173
3174
__ bind(update);
3175
3176
if (do_update) {
3177
#ifdef ASSERT
3178
if (exact_klass != NULL) {
3179
Label ok;
3180
__ load_klass(tmp1, tmp1);
3181
metadata2reg(exact_klass->constant_encoding(), tmp2);
3182
__ cmp_and_br_short(tmp1, tmp2, Assembler::equal, Assembler::pt, ok);
3183
__ stop("exact klass and actual klass differ");
3184
__ bind(ok);
3185
}
3186
#endif
3187
3188
Label do_update;
3189
__ ld_ptr(mdo_addr, tmp2);
3190
3191
if (!no_conflict) {
3192
if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
3193
if (exact_klass != NULL) {
3194
metadata2reg(exact_klass->constant_encoding(), tmp1);
3195
} else {
3196
__ load_klass(tmp1, tmp1);
3197
}
3198
3199
__ xor3(tmp1, tmp2, tmp1);
3200
__ btst(TypeEntries::type_klass_mask, tmp1);
3201
// klass seen before, nothing to do. The unknown bit may have been
3202
// set already but no need to check.
3203
__ brx(Assembler::zero, false, Assembler::pt, next);
3204
__ delayed()->
3205
3206
btst(TypeEntries::type_unknown, tmp1);
3207
// already unknown. Nothing to do anymore.
3208
__ brx(Assembler::notZero, false, Assembler::pt, next);
3209
3210
if (TypeEntries::is_type_none(current_klass)) {
3211
__ delayed()->btst(TypeEntries::type_mask, tmp2);
3212
__ brx(Assembler::zero, true, Assembler::pt, do_update);
3213
// first time here. Set profile type.
3214
__ delayed()->or3(tmp2, tmp1, tmp2);
3215
} else {
3216
__ delayed()->nop();
3217
}
3218
} else {
3219
assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3220
ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3221
3222
__ btst(TypeEntries::type_unknown, tmp2);
3223
// already unknown. Nothing to do anymore.
3224
__ brx(Assembler::notZero, false, Assembler::pt, next);
3225
__ delayed()->nop();
3226
}
3227
3228
// different than before. Cannot keep accurate profile.
3229
__ or3(tmp2, TypeEntries::type_unknown, tmp2);
3230
} else {
3231
// There's a single possible klass at this profile point
3232
assert(exact_klass != NULL, "should be");
3233
if (TypeEntries::is_type_none(current_klass)) {
3234
metadata2reg(exact_klass->constant_encoding(), tmp1);
3235
__ xor3(tmp1, tmp2, tmp1);
3236
__ btst(TypeEntries::type_klass_mask, tmp1);
3237
__ brx(Assembler::zero, false, Assembler::pt, next);
3238
#ifdef ASSERT
3239
3240
{
3241
Label ok;
3242
__ delayed()->btst(TypeEntries::type_mask, tmp2);
3243
__ brx(Assembler::zero, true, Assembler::pt, ok);
3244
__ delayed()->nop();
3245
3246
__ stop("unexpected profiling mismatch");
3247
__ bind(ok);
3248
}
3249
// first time here. Set profile type.
3250
__ or3(tmp2, tmp1, tmp2);
3251
#else
3252
// first time here. Set profile type.
3253
__ delayed()->or3(tmp2, tmp1, tmp2);
3254
#endif
3255
3256
} else {
3257
assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3258
ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3259
3260
// already unknown. Nothing to do anymore.
3261
__ btst(TypeEntries::type_unknown, tmp2);
3262
__ brx(Assembler::notZero, false, Assembler::pt, next);
3263
__ delayed()->or3(tmp2, TypeEntries::type_unknown, tmp2);
3264
}
3265
}
3266
3267
__ bind(do_update);
3268
__ st_ptr(tmp2, mdo_addr);
3269
3270
__ bind(next);
3271
}
3272
}
3273
3274
void LIR_Assembler::align_backward_branch_target() {
3275
__ align(OptoLoopAlignment);
3276
}
3277
3278
3279
void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
3280
// make sure we are expecting a delay
3281
// this has the side effect of clearing the delay state
3282
// so we can use _masm instead of _masm->delayed() to do the
3283
// code generation.
3284
__ delayed();
3285
3286
// make sure we only emit one instruction
3287
int offset = code_offset();
3288
op->delay_op()->emit_code(this);
3289
#ifdef ASSERT
3290
if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
3291
op->delay_op()->print();
3292
}
3293
assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
3294
"only one instruction can go in a delay slot");
3295
#endif
3296
3297
// we may also be emitting the call info for the instruction
3298
// which we are the delay slot of.
3299
CodeEmitInfo* call_info = op->call_info();
3300
if (call_info) {
3301
add_call_info(code_offset(), call_info);
3302
}
3303
3304
if (VerifyStackAtCalls) {
3305
_masm->sub(FP, SP, O7);
3306
_masm->cmp(O7, initial_frame_size_in_bytes());
3307
_masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
3308
}
3309
}
3310
3311
3312
void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3313
assert(left->is_register(), "can only handle registers");
3314
3315
if (left->is_single_cpu()) {
3316
__ neg(left->as_register(), dest->as_register());
3317
} else if (left->is_single_fpu()) {
3318
__ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
3319
} else if (left->is_double_fpu()) {
3320
__ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
3321
} else {
3322
assert (left->is_double_cpu(), "Must be a long");
3323
Register Rlow = left->as_register_lo();
3324
Register Rhi = left->as_register_hi();
3325
#ifdef _LP64
3326
__ sub(G0, Rlow, dest->as_register_lo());
3327
#else
3328
__ subcc(G0, Rlow, dest->as_register_lo());
3329
__ subc (G0, Rhi, dest->as_register_hi());
3330
#endif
3331
}
3332
}
3333
3334
3335
void LIR_Assembler::fxch(int i) {
3336
Unimplemented();
3337
}
3338
3339
void LIR_Assembler::fld(int i) {
3340
Unimplemented();
3341
}
3342
3343
void LIR_Assembler::ffree(int i) {
3344
Unimplemented();
3345
}
3346
3347
void LIR_Assembler::rt_call(LIR_Opr result, address dest,
3348
const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3349
3350
// if tmp is invalid, then the function being called doesn't destroy the thread
3351
if (tmp->is_valid()) {
3352
__ save_thread(tmp->as_register());
3353
}
3354
__ call(dest, relocInfo::runtime_call_type);
3355
__ delayed()->nop();
3356
if (info != NULL) {
3357
add_call_info_here(info);
3358
}
3359
if (tmp->is_valid()) {
3360
__ restore_thread(tmp->as_register());
3361
}
3362
3363
#ifdef ASSERT
3364
__ verify_thread();
3365
#endif // ASSERT
3366
}
3367
3368
3369
void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3370
#ifdef _LP64
3371
ShouldNotReachHere();
3372
#endif
3373
3374
NEEDS_CLEANUP;
3375
if (type == T_LONG) {
3376
LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
3377
3378
// (extended to allow indexed as well as constant displaced for JSR-166)
3379
Register idx = noreg; // contains either constant offset or index
3380
3381
int disp = mem_addr->disp();
3382
if (mem_addr->index() == LIR_OprFact::illegalOpr) {
3383
if (!Assembler::is_simm13(disp)) {
3384
idx = O7;
3385
__ set(disp, idx);
3386
}
3387
} else {
3388
assert(disp == 0, "not both indexed and disp");
3389
idx = mem_addr->index()->as_register();
3390
}
3391
3392
int null_check_offset = -1;
3393
3394
Register base = mem_addr->base()->as_register();
3395
if (src->is_register() && dest->is_address()) {
3396
// G4 is high half, G5 is low half
3397
// clear the top bits of G5, and scale up G4
3398
__ srl (src->as_register_lo(), 0, G5);
3399
__ sllx(src->as_register_hi(), 32, G4);
3400
// combine the two halves into the 64 bits of G4
3401
__ or3(G4, G5, G4);
3402
null_check_offset = __ offset();
3403
if (idx == noreg) {
3404
__ stx(G4, base, disp);
3405
} else {
3406
__ stx(G4, base, idx);
3407
}
3408
} else if (src->is_address() && dest->is_register()) {
3409
null_check_offset = __ offset();
3410
if (idx == noreg) {
3411
__ ldx(base, disp, G5);
3412
} else {
3413
__ ldx(base, idx, G5);
3414
}
3415
__ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
3416
__ mov (G5, dest->as_register_lo()); // copy low half into lo
3417
} else {
3418
Unimplemented();
3419
}
3420
if (info != NULL) {
3421
add_debug_info_for_null_check(null_check_offset, info);
3422
}
3423
3424
} else {
3425
// use normal move for all other volatiles since they don't need
3426
// special handling to remain atomic.
3427
move_op(src, dest, type, lir_patch_none, info, false, false, false);
3428
}
3429
}
3430
3431
void LIR_Assembler::membar() {
3432
// only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
3433
__ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3434
}
3435
3436
void LIR_Assembler::membar_acquire() {
3437
// no-op on TSO
3438
}
3439
3440
void LIR_Assembler::membar_release() {
3441
// no-op on TSO
3442
}
3443
3444
void LIR_Assembler::membar_loadload() {
3445
// no-op
3446
//__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
3447
}
3448
3449
void LIR_Assembler::membar_storestore() {
3450
// no-op
3451
//__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
3452
}
3453
3454
void LIR_Assembler::membar_loadstore() {
3455
// no-op
3456
//__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
3457
}
3458
3459
void LIR_Assembler::membar_storeload() {
3460
__ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3461
}
3462
3463
3464
// Pack two sequential registers containing 32 bit values
3465
// into a single 64 bit register.
3466
// src and src->successor() are packed into dst
3467
// src and dst may be the same register.
3468
// Note: src is destroyed
3469
void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
3470
Register rs = src->as_register();
3471
Register rd = dst->as_register_lo();
3472
__ sllx(rs, 32, rs);
3473
__ srl(rs->successor(), 0, rs->successor());
3474
__ or3(rs, rs->successor(), rd);
3475
}
3476
3477
// Unpack a 64 bit value in a register into
3478
// two sequential registers.
3479
// src is unpacked into dst and dst->successor()
3480
void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
3481
Register rs = src->as_register_lo();
3482
Register rd = dst->as_register_hi();
3483
assert_different_registers(rs, rd, rd->successor());
3484
__ srlx(rs, 32, rd);
3485
__ srl (rs, 0, rd->successor());
3486
}
3487
3488
3489
void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
3490
LIR_Address* addr = addr_opr->as_address_ptr();
3491
assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1, "can't handle complex addresses yet");
3492
3493
if (Assembler::is_simm13(addr->disp())) {
3494
__ add(addr->base()->as_pointer_register(), addr->disp(), dest->as_pointer_register());
3495
} else {
3496
__ set(addr->disp(), G3_scratch);
3497
__ add(addr->base()->as_pointer_register(), G3_scratch, dest->as_pointer_register());
3498
}
3499
}
3500
3501
3502
void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3503
assert(result_reg->is_register(), "check");
3504
__ mov(G2_thread, result_reg->as_register());
3505
}
3506
3507
#ifdef ASSERT
3508
// emit run-time assertion
3509
void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3510
assert(op->code() == lir_assert, "must be");
3511
3512
if (op->in_opr1()->is_valid()) {
3513
assert(op->in_opr2()->is_valid(), "both operands must be valid");
3514
comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3515
} else {
3516
assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3517
assert(op->condition() == lir_cond_always, "no other conditions allowed");
3518
}
3519
3520
Label ok;
3521
if (op->condition() != lir_cond_always) {
3522
Assembler::Condition acond;
3523
switch (op->condition()) {
3524
case lir_cond_equal: acond = Assembler::equal; break;
3525
case lir_cond_notEqual: acond = Assembler::notEqual; break;
3526
case lir_cond_less: acond = Assembler::less; break;
3527
case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
3528
case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
3529
case lir_cond_greater: acond = Assembler::greater; break;
3530
case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break;
3531
case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break;
3532
default: ShouldNotReachHere();
3533
};
3534
__ br(acond, false, Assembler::pt, ok);
3535
__ delayed()->nop();
3536
}
3537
if (op->halt()) {
3538
const char* str = __ code_string(op->msg());
3539
__ stop(str);
3540
} else {
3541
breakpoint();
3542
}
3543
__ bind(ok);
3544
}
3545
#endif
3546
3547
void LIR_Assembler::peephole(LIR_List* lir) {
3548
LIR_OpList* inst = lir->instructions_list();
3549
for (int i = 0; i < inst->length(); i++) {
3550
LIR_Op* op = inst->at(i);
3551
switch (op->code()) {
3552
case lir_cond_float_branch:
3553
case lir_branch: {
3554
LIR_OpBranch* branch = op->as_OpBranch();
3555
assert(branch->info() == NULL, "shouldn't be state on branches anymore");
3556
LIR_Op* delay_op = NULL;
3557
// we'd like to be able to pull following instructions into
3558
// this slot but we don't know enough to do it safely yet so
3559
// only optimize block to block control flow.
3560
if (LIRFillDelaySlots && branch->block()) {
3561
LIR_Op* prev = inst->at(i - 1);
3562
if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
3563
// swap previous instruction into delay slot
3564
inst->at_put(i - 1, op);
3565
inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3566
#ifndef PRODUCT
3567
if (LIRTracePeephole) {
3568
tty->print_cr("delayed");
3569
inst->at(i - 1)->print();
3570
inst->at(i)->print();
3571
tty->cr();
3572
}
3573
#endif
3574
continue;
3575
}
3576
}
3577
3578
if (!delay_op) {
3579
delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
3580
}
3581
inst->insert_before(i + 1, delay_op);
3582
break;
3583
}
3584
case lir_static_call:
3585
case lir_virtual_call:
3586
case lir_icvirtual_call:
3587
case lir_optvirtual_call:
3588
case lir_dynamic_call: {
3589
LIR_Op* prev = inst->at(i - 1);
3590
if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
3591
(op->code() != lir_virtual_call ||
3592
!prev->result_opr()->is_single_cpu() ||
3593
prev->result_opr()->as_register() != O0) &&
3594
LIR_Assembler::is_single_instruction(prev)) {
3595
// Only moves without info can be put into the delay slot.
3596
// Also don't allow the setup of the receiver in the delay
3597
// slot for vtable calls.
3598
inst->at_put(i - 1, op);
3599
inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3600
#ifndef PRODUCT
3601
if (LIRTracePeephole) {
3602
tty->print_cr("delayed");
3603
inst->at(i - 1)->print();
3604
inst->at(i)->print();
3605
tty->cr();
3606
}
3607
#endif
3608
} else {
3609
LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
3610
inst->insert_before(i + 1, delay_op);
3611
i++;
3612
}
3613
3614
#if defined(TIERED) && !defined(_LP64)
3615
// fixup the return value from G1 to O0/O1 for long returns.
3616
// It's done here instead of in LIRGenerator because there's
3617
// such a mismatch between the single reg and double reg
3618
// calling convention.
3619
LIR_OpJavaCall* callop = op->as_OpJavaCall();
3620
if (callop->result_opr() == FrameMap::out_long_opr) {
3621
LIR_OpJavaCall* call;
3622
LIR_OprList* arguments = new LIR_OprList(callop->arguments()->length());
3623
for (int a = 0; a < arguments->length(); a++) {
3624
arguments[a] = callop->arguments()[a];
3625
}
3626
if (op->code() == lir_virtual_call) {
3627
call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
3628
callop->vtable_offset(), arguments, callop->info());
3629
} else {
3630
call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
3631
callop->addr(), arguments, callop->info());
3632
}
3633
inst->at_put(i - 1, call);
3634
inst->insert_before(i + 1, new LIR_Op1(lir_unpack64, FrameMap::g1_long_single_opr, callop->result_opr(),
3635
T_LONG, lir_patch_none, NULL));
3636
}
3637
#endif
3638
break;
3639
}
3640
}
3641
}
3642
}
3643
3644
void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
3645
LIR_Address* addr = src->as_address_ptr();
3646
3647
assert(data == dest, "swap uses only 2 operands");
3648
assert (code == lir_xchg, "no xadd on sparc");
3649
3650
if (data->type() == T_INT) {
3651
__ swap(as_Address(addr), data->as_register());
3652
} else if (data->is_oop()) {
3653
Register obj = data->as_register();
3654
Register narrow = tmp->as_register();
3655
#ifdef _LP64
3656
assert(UseCompressedOops, "swap is 32bit only");
3657
__ encode_heap_oop(obj, narrow);
3658
__ swap(as_Address(addr), narrow);
3659
__ decode_heap_oop(narrow, obj);
3660
#else
3661
__ swap(as_Address(addr), obj);
3662
#endif
3663
} else {
3664
ShouldNotReachHere();
3665
}
3666
}
3667
3668
#undef __
3669
3670