Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/cpu/sparc/vm/cppInterpreter_sparc.cpp
32285 views
1
/*
2
* Copyright (c) 2007, 2016, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "asm/assembler.hpp"
27
#include "interpreter/bytecodeHistogram.hpp"
28
#include "interpreter/cppInterpreter.hpp"
29
#include "interpreter/interpreter.hpp"
30
#include "interpreter/interpreterGenerator.hpp"
31
#include "interpreter/interpreterRuntime.hpp"
32
#include "oops/arrayOop.hpp"
33
#include "oops/methodData.hpp"
34
#include "oops/method.hpp"
35
#include "oops/oop.inline.hpp"
36
#include "prims/jvmtiExport.hpp"
37
#include "prims/jvmtiThreadState.hpp"
38
#include "runtime/arguments.hpp"
39
#include "runtime/deoptimization.hpp"
40
#include "runtime/frame.inline.hpp"
41
#include "runtime/interfaceSupport.hpp"
42
#include "runtime/sharedRuntime.hpp"
43
#include "runtime/stubRoutines.hpp"
44
#include "runtime/synchronizer.hpp"
45
#include "runtime/timer.hpp"
46
#include "runtime/vframeArray.hpp"
47
#include "utilities/debug.hpp"
48
#include "utilities/macros.hpp"
49
#ifdef SHARK
50
#include "shark/shark_globals.hpp"
51
#endif
52
53
#ifdef CC_INTERP
54
55
// Routine exists to make tracebacks look decent in debugger
56
// while "shadow" interpreter frames are on stack. It is also
57
// used to distinguish interpreter frames.
58
59
extern "C" void RecursiveInterpreterActivation(interpreterState istate) {
60
ShouldNotReachHere();
61
}
62
63
bool CppInterpreter::contains(address pc) {
64
return ( _code->contains(pc) ||
65
( pc == (CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation) + frame::pc_return_offset)));
66
}
67
68
#define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
69
#define __ _masm->
70
71
Label frame_manager_entry;
72
Label fast_accessor_slow_entry_path; // fast accessor methods need to be able to jmp to unsynchronized
73
// c++ interpreter entry point this holds that entry point label.
74
75
static address unctrap_frame_manager_entry = NULL;
76
77
static address interpreter_return_address = NULL;
78
static address deopt_frame_manager_return_atos = NULL;
79
static address deopt_frame_manager_return_btos = NULL;
80
static address deopt_frame_manager_return_itos = NULL;
81
static address deopt_frame_manager_return_ltos = NULL;
82
static address deopt_frame_manager_return_ftos = NULL;
83
static address deopt_frame_manager_return_dtos = NULL;
84
static address deopt_frame_manager_return_vtos = NULL;
85
86
const Register prevState = G1_scratch;
87
88
void InterpreterGenerator::save_native_result(void) {
89
// result potentially in O0/O1: save it across calls
90
__ stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
91
#ifdef _LP64
92
__ stx(O0, STATE(_native_lresult));
93
#else
94
__ std(O0, STATE(_native_lresult));
95
#endif
96
}
97
98
void InterpreterGenerator::restore_native_result(void) {
99
100
// Restore any method result value
101
__ ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
102
#ifdef _LP64
103
__ ldx(STATE(_native_lresult), O0);
104
#else
105
__ ldd(STATE(_native_lresult), O0);
106
#endif
107
}
108
109
// A result handler converts/unboxes a native call result into
110
// a java interpreter/compiler result. The current frame is an
111
// interpreter frame. The activation frame unwind code must be
112
// consistent with that of TemplateTable::_return(...). In the
113
// case of native methods, the caller's SP was not modified.
114
address CppInterpreterGenerator::generate_result_handler_for(BasicType type) {
115
address entry = __ pc();
116
Register Itos_i = Otos_i ->after_save();
117
Register Itos_l = Otos_l ->after_save();
118
Register Itos_l1 = Otos_l1->after_save();
119
Register Itos_l2 = Otos_l2->after_save();
120
switch (type) {
121
case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
122
case T_CHAR : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i); break; // cannot use and3, 0xFFFF too big as immediate value!
123
case T_BYTE : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i); break;
124
case T_SHORT : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i); break;
125
case T_LONG :
126
#ifndef _LP64
127
__ mov(O1, Itos_l2); // move other half of long
128
#endif // ifdef or no ifdef, fall through to the T_INT case
129
case T_INT : __ mov(O0, Itos_i); break;
130
case T_VOID : /* nothing to do */ break;
131
case T_FLOAT : assert(F0 == Ftos_f, "fix this code" ); break;
132
case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" ); break;
133
case T_OBJECT :
134
__ ld_ptr(STATE(_oop_temp), Itos_i);
135
__ verify_oop(Itos_i);
136
break;
137
default : ShouldNotReachHere();
138
}
139
__ ret(); // return from interpreter activation
140
__ delayed()->restore(I5_savedSP, G0, SP); // remove interpreter frame
141
NOT_PRODUCT(__ emit_int32(0);) // marker for disassembly
142
return entry;
143
}
144
145
// tosca based result to c++ interpreter stack based result.
146
// Result goes to address in L1_scratch
147
148
address CppInterpreterGenerator::generate_tosca_to_stack_converter(BasicType type) {
149
// A result is in the native abi result register from a native method call.
150
// We need to return this result to the interpreter by pushing the result on the interpreter's
151
// stack. This is relatively simple the destination is in L1_scratch
152
// i.e. L1_scratch is the first free element on the stack. If we "push" a return value we must
153
// adjust L1_scratch
154
address entry = __ pc();
155
switch (type) {
156
case T_BOOLEAN:
157
// !0 => true; 0 => false
158
__ subcc(G0, O0, G0);
159
__ addc(G0, 0, O0);
160
__ st(O0, L1_scratch, 0);
161
__ sub(L1_scratch, wordSize, L1_scratch);
162
break;
163
164
// cannot use and3, 0xFFFF too big as immediate value!
165
case T_CHAR :
166
__ sll(O0, 16, O0);
167
__ srl(O0, 16, O0);
168
__ st(O0, L1_scratch, 0);
169
__ sub(L1_scratch, wordSize, L1_scratch);
170
break;
171
172
case T_BYTE :
173
__ sll(O0, 24, O0);
174
__ sra(O0, 24, O0);
175
__ st(O0, L1_scratch, 0);
176
__ sub(L1_scratch, wordSize, L1_scratch);
177
break;
178
179
case T_SHORT :
180
__ sll(O0, 16, O0);
181
__ sra(O0, 16, O0);
182
__ st(O0, L1_scratch, 0);
183
__ sub(L1_scratch, wordSize, L1_scratch);
184
break;
185
case T_LONG :
186
#ifndef _LP64
187
#if defined(COMPILER2)
188
// All return values are where we want them, except for Longs. C2 returns
189
// longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
190
// Since the interpreter will return longs in G1 and O0/O1 in the 32bit
191
// build even if we are returning from interpreted we just do a little
192
// stupid shuffing.
193
// Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
194
// do this here. Unfortunately if we did a rethrow we'd see an machepilog node
195
// first which would move g1 -> O0/O1 and destroy the exception we were throwing.
196
__ stx(G1, L1_scratch, -wordSize);
197
#else
198
// native result is in O0, O1
199
__ st(O1, L1_scratch, 0); // Low order
200
__ st(O0, L1_scratch, -wordSize); // High order
201
#endif /* COMPILER2 */
202
#else
203
__ stx(O0, L1_scratch, -wordSize);
204
#endif
205
__ sub(L1_scratch, 2*wordSize, L1_scratch);
206
break;
207
208
case T_INT :
209
__ st(O0, L1_scratch, 0);
210
__ sub(L1_scratch, wordSize, L1_scratch);
211
break;
212
213
case T_VOID : /* nothing to do */
214
break;
215
216
case T_FLOAT :
217
__ stf(FloatRegisterImpl::S, F0, L1_scratch, 0);
218
__ sub(L1_scratch, wordSize, L1_scratch);
219
break;
220
221
case T_DOUBLE :
222
// Every stack slot is aligned on 64 bit, However is this
223
// the correct stack slot on 64bit?? QQQ
224
__ stf(FloatRegisterImpl::D, F0, L1_scratch, -wordSize);
225
__ sub(L1_scratch, 2*wordSize, L1_scratch);
226
break;
227
case T_OBJECT :
228
__ verify_oop(O0);
229
__ st_ptr(O0, L1_scratch, 0);
230
__ sub(L1_scratch, wordSize, L1_scratch);
231
break;
232
default : ShouldNotReachHere();
233
}
234
__ retl(); // return from interpreter activation
235
__ delayed()->nop(); // schedule this better
236
NOT_PRODUCT(__ emit_int32(0);) // marker for disassembly
237
return entry;
238
}
239
240
address CppInterpreterGenerator::generate_stack_to_stack_converter(BasicType type) {
241
// A result is in the java expression stack of the interpreted method that has just
242
// returned. Place this result on the java expression stack of the caller.
243
//
244
// The current interpreter activation in Lstate is for the method just returning its
245
// result. So we know that the result of this method is on the top of the current
246
// execution stack (which is pre-pushed) and will be return to the top of the caller
247
// stack. The top of the callers stack is the bottom of the locals of the current
248
// activation.
249
// Because of the way activation are managed by the frame manager the value of esp is
250
// below both the stack top of the current activation and naturally the stack top
251
// of the calling activation. This enable this routine to leave the return address
252
// to the frame manager on the stack and do a vanilla return.
253
//
254
// On entry: O0 - points to source (callee stack top)
255
// O1 - points to destination (caller stack top [i.e. free location])
256
// destroys O2, O3
257
//
258
259
address entry = __ pc();
260
switch (type) {
261
case T_VOID: break;
262
break;
263
case T_FLOAT :
264
case T_BOOLEAN:
265
case T_CHAR :
266
case T_BYTE :
267
case T_SHORT :
268
case T_INT :
269
// 1 word result
270
__ ld(O0, 0, O2);
271
__ st(O2, O1, 0);
272
__ sub(O1, wordSize, O1);
273
break;
274
case T_DOUBLE :
275
case T_LONG :
276
// return top two words on current expression stack to caller's expression stack
277
// The caller's expression stack is adjacent to the current frame manager's intepretState
278
// except we allocated one extra word for this intepretState so we won't overwrite it
279
// when we return a two word result.
280
#ifdef _LP64
281
__ ld_ptr(O0, 0, O2);
282
__ st_ptr(O2, O1, -wordSize);
283
#else
284
__ ld(O0, 0, O2);
285
__ ld(O0, wordSize, O3);
286
__ st(O3, O1, 0);
287
__ st(O2, O1, -wordSize);
288
#endif
289
__ sub(O1, 2*wordSize, O1);
290
break;
291
case T_OBJECT :
292
__ ld_ptr(O0, 0, O2);
293
__ verify_oop(O2); // verify it
294
__ st_ptr(O2, O1, 0);
295
__ sub(O1, wordSize, O1);
296
break;
297
default : ShouldNotReachHere();
298
}
299
__ retl();
300
__ delayed()->nop(); // QQ schedule this better
301
return entry;
302
}
303
304
address CppInterpreterGenerator::generate_stack_to_native_abi_converter(BasicType type) {
305
// A result is in the java expression stack of the interpreted method that has just
306
// returned. Place this result in the native abi that the caller expects.
307
// We are in a new frame registers we set must be in caller (i.e. callstub) frame.
308
//
309
// Similar to generate_stack_to_stack_converter above. Called at a similar time from the
310
// frame manager execept in this situation the caller is native code (c1/c2/call_stub)
311
// and so rather than return result onto caller's java expression stack we return the
312
// result in the expected location based on the native abi.
313
// On entry: O0 - source (stack top)
314
// On exit result in expected output register
315
// QQQ schedule this better
316
317
address entry = __ pc();
318
switch (type) {
319
case T_VOID: break;
320
break;
321
case T_FLOAT :
322
__ ldf(FloatRegisterImpl::S, O0, 0, F0);
323
break;
324
case T_BOOLEAN:
325
case T_CHAR :
326
case T_BYTE :
327
case T_SHORT :
328
case T_INT :
329
// 1 word result
330
__ ld(O0, 0, O0->after_save());
331
break;
332
case T_DOUBLE :
333
__ ldf(FloatRegisterImpl::D, O0, 0, F0);
334
break;
335
case T_LONG :
336
// return top two words on current expression stack to caller's expression stack
337
// The caller's expression stack is adjacent to the current frame manager's interpretState
338
// except we allocated one extra word for this intepretState so we won't overwrite it
339
// when we return a two word result.
340
#ifdef _LP64
341
__ ld_ptr(O0, 0, O0->after_save());
342
#else
343
__ ld(O0, wordSize, O1->after_save());
344
__ ld(O0, 0, O0->after_save());
345
#endif
346
#if defined(COMPILER2) && !defined(_LP64)
347
// C2 expects long results in G1 we can't tell if we're returning to interpreted
348
// or compiled so just be safe use G1 and O0/O1
349
350
// Shift bits into high (msb) of G1
351
__ sllx(Otos_l1->after_save(), 32, G1);
352
// Zero extend low bits
353
__ srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
354
__ or3 (Otos_l2->after_save(), G1, G1);
355
#endif /* COMPILER2 */
356
break;
357
case T_OBJECT :
358
__ ld_ptr(O0, 0, O0->after_save());
359
__ verify_oop(O0->after_save()); // verify it
360
break;
361
default : ShouldNotReachHere();
362
}
363
__ retl();
364
__ delayed()->nop();
365
return entry;
366
}
367
368
address CppInterpreter::return_entry(TosState state, int length, Bytecodes::Code code) {
369
// make it look good in the debugger
370
return CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation) + frame::pc_return_offset;
371
}
372
373
address CppInterpreter::deopt_entry(TosState state, int length) {
374
address ret = NULL;
375
if (length != 0) {
376
switch (state) {
377
case atos: ret = deopt_frame_manager_return_atos; break;
378
case btos: ret = deopt_frame_manager_return_btos; break;
379
case ctos:
380
case stos:
381
case itos: ret = deopt_frame_manager_return_itos; break;
382
case ltos: ret = deopt_frame_manager_return_ltos; break;
383
case ftos: ret = deopt_frame_manager_return_ftos; break;
384
case dtos: ret = deopt_frame_manager_return_dtos; break;
385
case vtos: ret = deopt_frame_manager_return_vtos; break;
386
}
387
} else {
388
ret = unctrap_frame_manager_entry; // re-execute the bytecode ( e.g. uncommon trap)
389
}
390
assert(ret != NULL, "Not initialized");
391
return ret;
392
}
393
394
//
395
// Helpers for commoning out cases in the various type of method entries.
396
//
397
398
// increment invocation count & check for overflow
399
//
400
// Note: checking for negative value instead of overflow
401
// so we have a 'sticky' overflow test
402
//
403
// Lmethod: method
404
// ??: invocation counter
405
//
406
void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
407
Label done;
408
const Register Rcounters = G3_scratch;
409
410
__ ld_ptr(STATE(_method), G5_method);
411
__ get_method_counters(G5_method, Rcounters, done);
412
413
// Update standard invocation counters
414
__ increment_invocation_counter(Rcounters, O0, G4_scratch);
415
if (ProfileInterpreter) {
416
Address interpreter_invocation_counter(Rcounters, 0,
417
in_bytes(MethodCounters::interpreter_invocation_counter_offset()));
418
__ ld(interpreter_invocation_counter, G4_scratch);
419
__ inc(G4_scratch);
420
__ st(G4_scratch, interpreter_invocation_counter);
421
}
422
423
Address invocation_limit(G3_scratch, (address)&InvocationCounter::InterpreterInvocationLimit);
424
__ sethi(invocation_limit);
425
__ ld(invocation_limit, G3_scratch);
426
__ cmp(O0, G3_scratch);
427
__ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow);
428
__ delayed()->nop();
429
__ bind(done);
430
}
431
432
address InterpreterGenerator::generate_empty_entry(void) {
433
434
// A method that does nothing but return...
435
436
address entry = __ pc();
437
Label slow_path;
438
439
// do nothing for empty methods (do not even increment invocation counter)
440
if ( UseFastEmptyMethods) {
441
// If we need a safepoint check, generate full interpreter entry.
442
Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
443
__ load_contents(sync_state, G3_scratch);
444
__ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
445
__ br(Assembler::notEqual, false, Assembler::pn, frame_manager_entry);
446
__ delayed()->nop();
447
448
// Code: _return
449
__ retl();
450
__ delayed()->mov(O5_savedSP, SP);
451
return entry;
452
}
453
return NULL;
454
}
455
456
// Call an accessor method (assuming it is resolved, otherwise drop into
457
// vanilla (slow path) entry
458
459
// Generates code to elide accessor methods
460
// Uses G3_scratch and G1_scratch as scratch
461
address InterpreterGenerator::generate_accessor_entry(void) {
462
463
// Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof;
464
// parameter size = 1
465
// Note: We can only use this code if the getfield has been resolved
466
// and if we don't have a null-pointer exception => check for
467
// these conditions first and use slow path if necessary.
468
address entry = __ pc();
469
Label slow_path;
470
471
if ( UseFastAccessorMethods) {
472
// Check if we need to reach a safepoint and generate full interpreter
473
// frame if so.
474
Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
475
__ load_contents(sync_state, G3_scratch);
476
__ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
477
__ br(Assembler::notEqual, false, Assembler::pn, slow_path);
478
__ delayed()->nop();
479
480
// Check if local 0 != NULL
481
__ ld_ptr(Gargs, G0, Otos_i ); // get local 0
482
__ tst(Otos_i); // check if local 0 == NULL and go the slow path
483
__ brx(Assembler::zero, false, Assembler::pn, slow_path);
484
__ delayed()->nop();
485
486
487
// read first instruction word and extract bytecode @ 1 and index @ 2
488
// get first 4 bytes of the bytecodes (big endian!)
489
__ ld_ptr(Address(G5_method, 0, in_bytes(Method::const_offset())), G1_scratch);
490
__ ld(Address(G1_scratch, 0, in_bytes(ConstMethod::codes_offset())), G1_scratch);
491
492
// move index @ 2 far left then to the right most two bytes.
493
__ sll(G1_scratch, 2*BitsPerByte, G1_scratch);
494
__ srl(G1_scratch, 2*BitsPerByte - exact_log2(in_words(
495
ConstantPoolCacheEntry::size()) * BytesPerWord), G1_scratch);
496
497
// get constant pool cache
498
__ ld_ptr(G5_method, in_bytes(Method::const_offset()), G3_scratch);
499
__ ld_ptr(G3_scratch, in_bytes(ConstMethod::constants_offset()), G3_scratch);
500
__ ld_ptr(G3_scratch, ConstantPool::cache_offset_in_bytes(), G3_scratch);
501
502
// get specific constant pool cache entry
503
__ add(G3_scratch, G1_scratch, G3_scratch);
504
505
// Check the constant Pool cache entry to see if it has been resolved.
506
// If not, need the slow path.
507
ByteSize cp_base_offset = ConstantPoolCache::base_offset();
508
__ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::indices_offset()), G1_scratch);
509
__ srl(G1_scratch, 2*BitsPerByte, G1_scratch);
510
__ and3(G1_scratch, 0xFF, G1_scratch);
511
__ cmp(G1_scratch, Bytecodes::_getfield);
512
__ br(Assembler::notEqual, false, Assembler::pn, slow_path);
513
__ delayed()->nop();
514
515
// Get the type and return field offset from the constant pool cache
516
__ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset()), G1_scratch);
517
__ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset()), G3_scratch);
518
519
Label xreturn_path;
520
// Need to differentiate between igetfield, agetfield, bgetfield etc.
521
// because they are different sizes.
522
// Get the type from the constant pool cache
523
__ srl(G1_scratch, ConstantPoolCacheEntry::tos_state_shift, G1_scratch);
524
// Make sure we don't need to mask G1_scratch after the above shift
525
ConstantPoolCacheEntry::verify_tos_state_shift();
526
__ cmp(G1_scratch, atos );
527
__ br(Assembler::equal, true, Assembler::pt, xreturn_path);
528
__ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i);
529
__ cmp(G1_scratch, itos);
530
__ br(Assembler::equal, true, Assembler::pt, xreturn_path);
531
__ delayed()->ld(Otos_i, G3_scratch, Otos_i);
532
__ cmp(G1_scratch, stos);
533
__ br(Assembler::equal, true, Assembler::pt, xreturn_path);
534
__ delayed()->ldsh(Otos_i, G3_scratch, Otos_i);
535
__ cmp(G1_scratch, ctos);
536
__ br(Assembler::equal, true, Assembler::pt, xreturn_path);
537
__ delayed()->lduh(Otos_i, G3_scratch, Otos_i);
538
#ifdef ASSERT
539
__ cmp(G1_scratch, btos);
540
__ br(Assembler::equal, true, Assembler::pt, xreturn_path);
541
__ delayed()->ldsb(Otos_i, G3_scratch, Otos_i);
542
__ cmp(G1_scratch, ztos);
543
__ br(Assembler::equal, true, Assembler::pt, xreturn_path);
544
__ delayed()->ldsb(Otos_i, G3_scratch, Otos_i);
545
__ should_not_reach_here();
546
#endif
547
__ ldsb(Otos_i, G3_scratch, Otos_i);
548
__ bind(xreturn_path);
549
550
// _ireturn/_areturn
551
__ retl(); // return from leaf routine
552
__ delayed()->mov(O5_savedSP, SP);
553
554
// Generate regular method entry
555
__ bind(slow_path);
556
__ ba(fast_accessor_slow_entry_path);
557
__ delayed()->nop();
558
return entry;
559
}
560
return NULL;
561
}
562
563
address InterpreterGenerator::generate_Reference_get_entry(void) {
564
#if INCLUDE_ALL_GCS
565
if (UseG1GC) {
566
// We need to generate have a routine that generates code to:
567
// * load the value in the referent field
568
// * passes that value to the pre-barrier.
569
//
570
// In the case of G1 this will record the value of the
571
// referent in an SATB buffer if marking is active.
572
// This will cause concurrent marking to mark the referent
573
// field as live.
574
Unimplemented();
575
}
576
#endif // INCLUDE_ALL_GCS
577
578
// If G1 is not enabled then attempt to go through the accessor entry point
579
// Reference.get is an accessor
580
return generate_accessor_entry();
581
}
582
583
//
584
// Interpreter stub for calling a native method. (C++ interpreter)
585
// This sets up a somewhat different looking stack for calling the native method
586
// than the typical interpreter frame setup.
587
//
588
589
address InterpreterGenerator::generate_native_entry(bool synchronized) {
590
address entry = __ pc();
591
592
// the following temporary registers are used during frame creation
593
const Register Gtmp1 = G3_scratch ;
594
const Register Gtmp2 = G1_scratch;
595
const Register RconstMethod = Gtmp1;
596
const Address constMethod(G5_method, 0, in_bytes(Method::const_offset()));
597
const Address size_of_parameters(RconstMethod, 0, in_bytes(ConstMethod::size_of_parameters_offset()));
598
599
bool inc_counter = UseCompiler || CountCompiledCalls;
600
601
// make sure registers are different!
602
assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
603
604
const Address access_flags (G5_method, 0, in_bytes(Method::access_flags_offset()));
605
606
Label Lentry;
607
__ bind(Lentry);
608
609
const Register Glocals_size = G3;
610
assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
611
612
// make sure method is native & not abstract
613
// rethink these assertions - they can be simplified and shared (gri 2/25/2000)
614
#ifdef ASSERT
615
__ ld(access_flags, Gtmp1);
616
{
617
Label L;
618
__ btst(JVM_ACC_NATIVE, Gtmp1);
619
__ br(Assembler::notZero, false, Assembler::pt, L);
620
__ delayed()->nop();
621
__ stop("tried to execute non-native method as native");
622
__ bind(L);
623
}
624
{ Label L;
625
__ btst(JVM_ACC_ABSTRACT, Gtmp1);
626
__ br(Assembler::zero, false, Assembler::pt, L);
627
__ delayed()->nop();
628
__ stop("tried to execute abstract method as non-abstract");
629
__ bind(L);
630
}
631
#endif // ASSERT
632
633
__ ld_ptr(constMethod, RconstMethod);
634
__ lduh(size_of_parameters, Gtmp1);
635
__ sll(Gtmp1, LogBytesPerWord, Gtmp2); // parameter size in bytes
636
__ add(Gargs, Gtmp2, Gargs); // points to first local + BytesPerWord
637
// NEW
638
__ add(Gargs, -wordSize, Gargs); // points to first local[0]
639
// generate the code to allocate the interpreter stack frame
640
// NEW FRAME ALLOCATED HERE
641
// save callers original sp
642
// __ mov(SP, I5_savedSP->after_restore());
643
644
generate_compute_interpreter_state(Lstate, G0, true);
645
646
// At this point Lstate points to new interpreter state
647
//
648
649
const Address do_not_unlock_if_synchronized(G2_thread, 0,
650
in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
651
// Since at this point in the method invocation the exception handler
652
// would try to exit the monitor of synchronized methods which hasn't
653
// been entered yet, we set the thread local variable
654
// _do_not_unlock_if_synchronized to true. If any exception was thrown by
655
// runtime, exception handling i.e. unlock_if_synchronized_method will
656
// check this thread local flag.
657
// This flag has two effects, one is to force an unwind in the topmost
658
// interpreter frame and not perform an unlock while doing so.
659
660
__ movbool(true, G3_scratch);
661
__ stbool(G3_scratch, do_not_unlock_if_synchronized);
662
663
664
// increment invocation counter and check for overflow
665
//
666
// Note: checking for negative value instead of overflow
667
// so we have a 'sticky' overflow test (may be of
668
// importance as soon as we have true MT/MP)
669
Label invocation_counter_overflow;
670
if (inc_counter) {
671
generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
672
}
673
Label Lcontinue;
674
__ bind(Lcontinue);
675
676
bang_stack_shadow_pages(true);
677
// reset the _do_not_unlock_if_synchronized flag
678
__ stbool(G0, do_not_unlock_if_synchronized);
679
680
// check for synchronized methods
681
// Must happen AFTER invocation_counter check, so method is not locked
682
// if counter overflows.
683
684
if (synchronized) {
685
lock_method();
686
// Don't see how G2_thread is preserved here...
687
// __ verify_thread(); QQQ destroys L0,L1 can't use
688
} else {
689
#ifdef ASSERT
690
{ Label ok;
691
__ ld_ptr(STATE(_method), G5_method);
692
__ ld(access_flags, O0);
693
__ btst(JVM_ACC_SYNCHRONIZED, O0);
694
__ br( Assembler::zero, false, Assembler::pt, ok);
695
__ delayed()->nop();
696
__ stop("method needs synchronization");
697
__ bind(ok);
698
}
699
#endif // ASSERT
700
}
701
702
// start execution
703
704
// __ verify_thread(); kills L1,L2 can't use at the moment
705
706
// jvmti/jvmpi support
707
__ notify_method_entry();
708
709
// native call
710
711
// (note that O0 is never an oop--at most it is a handle)
712
// It is important not to smash any handles created by this call,
713
// until any oop handle in O0 is dereferenced.
714
715
// (note that the space for outgoing params is preallocated)
716
717
// get signature handler
718
719
Label pending_exception_present;
720
721
{ Label L;
722
__ ld_ptr(STATE(_method), G5_method);
723
__ ld_ptr(Address(G5_method, 0, in_bytes(Method::signature_handler_offset())), G3_scratch);
724
__ tst(G3_scratch);
725
__ brx(Assembler::notZero, false, Assembler::pt, L);
726
__ delayed()->nop();
727
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), G5_method, false);
728
__ ld_ptr(STATE(_method), G5_method);
729
730
Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
731
__ ld_ptr(exception_addr, G3_scratch);
732
__ br_notnull_short(G3_scratch, Assembler::pn, pending_exception_present);
733
__ ld_ptr(Address(G5_method, 0, in_bytes(Method::signature_handler_offset())), G3_scratch);
734
__ bind(L);
735
}
736
737
// Push a new frame so that the args will really be stored in
738
// Copy a few locals across so the new frame has the variables
739
// we need but these values will be dead at the jni call and
740
// therefore not gc volatile like the values in the current
741
// frame (Lstate in particular)
742
743
// Flush the state pointer to the register save area
744
// Which is the only register we need for a stack walk.
745
__ st_ptr(Lstate, SP, (Lstate->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
746
747
__ mov(Lstate, O1); // Need to pass the state pointer across the frame
748
749
// Calculate current frame size
750
__ sub(SP, FP, O3); // Calculate negative of current frame size
751
__ save(SP, O3, SP); // Allocate an identical sized frame
752
753
__ mov(I1, Lstate); // In the "natural" register.
754
755
// Note I7 has leftover trash. Slow signature handler will fill it in
756
// should we get there. Normal jni call will set reasonable last_Java_pc
757
// below (and fix I7 so the stack trace doesn't have a meaningless frame
758
// in it).
759
760
761
// call signature handler
762
__ ld_ptr(STATE(_method), Lmethod);
763
__ ld_ptr(STATE(_locals), Llocals);
764
765
__ callr(G3_scratch, 0);
766
__ delayed()->nop();
767
__ ld_ptr(STATE(_thread), G2_thread); // restore thread (shouldn't be needed)
768
769
{ Label not_static;
770
771
__ ld_ptr(STATE(_method), G5_method);
772
__ ld(access_flags, O0);
773
__ btst(JVM_ACC_STATIC, O0);
774
__ br( Assembler::zero, false, Assembler::pt, not_static);
775
__ delayed()->
776
// get native function entry point(O0 is a good temp until the very end)
777
ld_ptr(Address(G5_method, 0, in_bytes(Method::native_function_offset())), O0);
778
// for static methods insert the mirror argument
779
const int mirror_offset = in_bytes(Klass::java_mirror_offset());
780
781
__ ld_ptr(Address(G5_method, 0, in_bytes(Method:: const_offset())), O1);
782
__ ld_ptr(Address(O1, 0, in_bytes(ConstMethod::constants_offset())), O1);
783
__ ld_ptr(Address(O1, 0, ConstantPool::pool_holder_offset_in_bytes()), O1);
784
__ ld_ptr(O1, mirror_offset, O1);
785
// where the mirror handle body is allocated:
786
#ifdef ASSERT
787
if (!PrintSignatureHandlers) // do not dirty the output with this
788
{ Label L;
789
__ tst(O1);
790
__ brx(Assembler::notZero, false, Assembler::pt, L);
791
__ delayed()->nop();
792
__ stop("mirror is missing");
793
__ bind(L);
794
}
795
#endif // ASSERT
796
__ st_ptr(O1, STATE(_oop_temp));
797
__ add(STATE(_oop_temp), O1); // this is really an LEA not an add
798
__ bind(not_static);
799
}
800
801
// At this point, arguments have been copied off of stack into
802
// their JNI positions, which are O1..O5 and SP[68..].
803
// Oops are boxed in-place on the stack, with handles copied to arguments.
804
// The result handler is in Lscratch. O0 will shortly hold the JNIEnv*.
805
806
#ifdef ASSERT
807
{ Label L;
808
__ tst(O0);
809
__ brx(Assembler::notZero, false, Assembler::pt, L);
810
__ delayed()->nop();
811
__ stop("native entry point is missing");
812
__ bind(L);
813
}
814
#endif // ASSERT
815
816
//
817
// setup the java frame anchor
818
//
819
// The scavenge function only needs to know that the PC of this frame is
820
// in the interpreter method entry code, it doesn't need to know the exact
821
// PC and hence we can use O7 which points to the return address from the
822
// previous call in the code stream (signature handler function)
823
//
824
// The other trick is we set last_Java_sp to FP instead of the usual SP because
825
// we have pushed the extra frame in order to protect the volatile register(s)
826
// in that frame when we return from the jni call
827
//
828
829
830
__ set_last_Java_frame(FP, O7);
831
__ mov(O7, I7); // make dummy interpreter frame look like one above,
832
// not meaningless information that'll confuse me.
833
834
// flush the windows now. We don't care about the current (protection) frame
835
// only the outer frames
836
837
__ flush_windows();
838
839
// mark windows as flushed
840
Address flags(G2_thread,
841
0,
842
in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset()));
843
__ set(JavaFrameAnchor::flushed, G3_scratch);
844
__ st(G3_scratch, flags);
845
846
// Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
847
848
Address thread_state(G2_thread, 0, in_bytes(JavaThread::thread_state_offset()));
849
#ifdef ASSERT
850
{ Label L;
851
__ ld(thread_state, G3_scratch);
852
__ cmp(G3_scratch, _thread_in_Java);
853
__ br(Assembler::equal, false, Assembler::pt, L);
854
__ delayed()->nop();
855
__ stop("Wrong thread state in native stub");
856
__ bind(L);
857
}
858
#endif // ASSERT
859
__ set(_thread_in_native, G3_scratch);
860
__ st(G3_scratch, thread_state);
861
862
// Call the jni method, using the delay slot to set the JNIEnv* argument.
863
__ callr(O0, 0);
864
__ delayed()->
865
add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
866
__ ld_ptr(STATE(_thread), G2_thread); // restore thread
867
868
// must we block?
869
870
// Block, if necessary, before resuming in _thread_in_Java state.
871
// In order for GC to work, don't clear the last_Java_sp until after blocking.
872
{ Label no_block;
873
Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
874
875
// Switch thread to "native transition" state before reading the synchronization state.
876
// This additional state is necessary because reading and testing the synchronization
877
// state is not atomic w.r.t. GC, as this scenario demonstrates:
878
// Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
879
// VM thread changes sync state to synchronizing and suspends threads for GC.
880
// Thread A is resumed to finish this native method, but doesn't block here since it
881
// didn't see any synchronization is progress, and escapes.
882
__ set(_thread_in_native_trans, G3_scratch);
883
__ st(G3_scratch, thread_state);
884
if(os::is_MP()) {
885
// Write serialization page so VM thread can do a pseudo remote membar.
886
// We use the current thread pointer to calculate a thread specific
887
// offset to write to within the page. This minimizes bus traffic
888
// due to cache line collision.
889
__ serialize_memory(G2_thread, G1_scratch, G3_scratch);
890
}
891
__ load_contents(sync_state, G3_scratch);
892
__ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
893
894
895
Label L;
896
Address suspend_state(G2_thread, 0, in_bytes(JavaThread::suspend_flags_offset()));
897
__ br(Assembler::notEqual, false, Assembler::pn, L);
898
__ delayed()->
899
ld(suspend_state, G3_scratch);
900
__ cmp(G3_scratch, 0);
901
__ br(Assembler::equal, false, Assembler::pt, no_block);
902
__ delayed()->nop();
903
__ bind(L);
904
905
// Block. Save any potential method result value before the operation and
906
// use a leaf call to leave the last_Java_frame setup undisturbed.
907
save_native_result();
908
__ call_VM_leaf(noreg,
909
CAST_FROM_FN_PTR(address, JavaThread::check_safepoint_and_suspend_for_native_trans),
910
G2_thread);
911
__ ld_ptr(STATE(_thread), G2_thread); // restore thread
912
// Restore any method result value
913
restore_native_result();
914
__ bind(no_block);
915
}
916
917
// Clear the frame anchor now
918
919
__ reset_last_Java_frame();
920
921
// Move the result handler address
922
__ mov(Lscratch, G3_scratch);
923
// return possible result to the outer frame
924
#ifndef __LP64
925
__ mov(O0, I0);
926
__ restore(O1, G0, O1);
927
#else
928
__ restore(O0, G0, O0);
929
#endif /* __LP64 */
930
931
// Move result handler to expected register
932
__ mov(G3_scratch, Lscratch);
933
934
935
// thread state is thread_in_native_trans. Any safepoint blocking has
936
// happened in the trampoline we are ready to switch to thread_in_Java.
937
938
__ set(_thread_in_Java, G3_scratch);
939
__ st(G3_scratch, thread_state);
940
941
// If we have an oop result store it where it will be safe for any further gc
942
// until we return now that we've released the handle it might be protected by
943
944
{
945
Label no_oop, store_result;
946
947
__ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
948
__ cmp(G3_scratch, Lscratch);
949
__ brx(Assembler::notEqual, false, Assembler::pt, no_oop);
950
__ delayed()->nop();
951
__ addcc(G0, O0, O0);
952
__ brx(Assembler::notZero, true, Assembler::pt, store_result); // if result is not NULL:
953
__ delayed()->ld_ptr(O0, 0, O0); // unbox it
954
__ mov(G0, O0);
955
956
__ bind(store_result);
957
// Store it where gc will look for it and result handler expects it.
958
__ st_ptr(O0, STATE(_oop_temp));
959
960
__ bind(no_oop);
961
962
}
963
964
// reset handle block
965
__ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), G3_scratch);
966
__ st(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
967
968
969
// handle exceptions (exception handling will handle unlocking!)
970
{ Label L;
971
Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
972
973
__ ld_ptr(exception_addr, Gtemp);
974
__ tst(Gtemp);
975
__ brx(Assembler::equal, false, Assembler::pt, L);
976
__ delayed()->nop();
977
__ bind(pending_exception_present);
978
// With c++ interpreter we just leave it pending caller will do the correct thing. However...
979
// Like x86 we ignore the result of the native call and leave the method locked. This
980
// seems wrong to leave things locked.
981
982
__ br(Assembler::always, false, Assembler::pt, StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
983
__ delayed()->restore(I5_savedSP, G0, SP); // remove interpreter frame
984
985
__ bind(L);
986
}
987
988
// jvmdi/jvmpi support (preserves thread register)
989
__ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
990
991
if (synchronized) {
992
// save and restore any potential method result value around the unlocking operation
993
save_native_result();
994
995
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
996
// Get the initial monitor we allocated
997
__ sub(Lstate, entry_size, O1); // initial monitor
998
__ unlock_object(O1);
999
restore_native_result();
1000
}
1001
1002
#if defined(COMPILER2) && !defined(_LP64)
1003
1004
// C2 expects long results in G1 we can't tell if we're returning to interpreted
1005
// or compiled so just be safe.
1006
1007
__ sllx(O0, 32, G1); // Shift bits into high G1
1008
__ srl (O1, 0, O1); // Zero extend O1
1009
__ or3 (O1, G1, G1); // OR 64 bits into G1
1010
1011
#endif /* COMPILER2 && !_LP64 */
1012
1013
#ifdef ASSERT
1014
{
1015
Label ok;
1016
__ cmp(I5_savedSP, FP);
1017
__ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, ok);
1018
__ delayed()->nop();
1019
__ stop("bad I5_savedSP value");
1020
__ should_not_reach_here();
1021
__ bind(ok);
1022
}
1023
#endif
1024
// Calls result handler which POPS FRAME
1025
if (TraceJumps) {
1026
// Move target to register that is recordable
1027
__ mov(Lscratch, G3_scratch);
1028
__ JMP(G3_scratch, 0);
1029
} else {
1030
__ jmp(Lscratch, 0);
1031
}
1032
__ delayed()->nop();
1033
1034
if (inc_counter) {
1035
// handle invocation counter overflow
1036
__ bind(invocation_counter_overflow);
1037
generate_counter_overflow(Lcontinue);
1038
}
1039
1040
1041
return entry;
1042
}
1043
1044
void CppInterpreterGenerator::generate_compute_interpreter_state(const Register state,
1045
const Register prev_state,
1046
bool native) {
1047
1048
// On entry
1049
// G5_method - caller's method
1050
// Gargs - points to initial parameters (i.e. locals[0])
1051
// G2_thread - valid? (C1 only??)
1052
// "prev_state" - contains any previous frame manager state which we must save a link
1053
//
1054
// On return
1055
// "state" is a pointer to the newly allocated state object. We must allocate and initialize
1056
// a new interpretState object and the method expression stack.
1057
1058
assert_different_registers(state, prev_state);
1059
assert_different_registers(prev_state, G3_scratch);
1060
const Register Gtmp = G3_scratch;
1061
const Address constMethod (G5_method, 0, in_bytes(Method::const_offset()));
1062
const Address access_flags (G5_method, 0, in_bytes(Method::access_flags_offset()));
1063
1064
// slop factor is two extra slots on the expression stack so that
1065
// we always have room to store a result when returning from a call without parameters
1066
// that returns a result.
1067
1068
const int slop_factor = 2*wordSize;
1069
1070
const int fixed_size = ((sizeof(BytecodeInterpreter) + slop_factor) >> LogBytesPerWord) + // what is the slop factor?
1071
Method::extra_stack_entries() + // extra stack for jsr 292
1072
frame::memory_parameter_word_sp_offset + // register save area + param window
1073
(native ? frame::interpreter_frame_extra_outgoing_argument_words : 0); // JNI, class
1074
1075
// XXX G5_method valid
1076
1077
// Now compute new frame size
1078
1079
if (native) {
1080
const Register RconstMethod = Gtmp;
1081
const Address size_of_parameters(RconstMethod, 0, in_bytes(ConstMethod::size_of_parameters_offset()));
1082
__ ld_ptr(constMethod, RconstMethod);
1083
__ lduh( size_of_parameters, Gtmp );
1084
__ calc_mem_param_words(Gtmp, Gtmp); // space for native call parameters passed on the stack in words
1085
} else {
1086
// Full size expression stack
1087
__ ld_ptr(constMethod, Gtmp);
1088
__ lduh(Gtmp, in_bytes(ConstMethod::max_stack_offset()), Gtmp);
1089
}
1090
__ add(Gtmp, fixed_size, Gtmp); // plus the fixed portion
1091
1092
__ neg(Gtmp); // negative space for stack/parameters in words
1093
__ and3(Gtmp, -WordsPerLong, Gtmp); // make multiple of 2 (SP must be 2-word aligned)
1094
__ sll(Gtmp, LogBytesPerWord, Gtmp); // negative space for frame in bytes
1095
1096
// Need to do stack size check here before we fault on large frames
1097
1098
Label stack_ok;
1099
1100
const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
1101
(StackRedPages+StackYellowPages);
1102
1103
1104
__ ld_ptr(G2_thread, in_bytes(Thread::stack_base_offset()), O0);
1105
__ ld_ptr(G2_thread, in_bytes(Thread::stack_size_offset()), O1);
1106
// compute stack bottom
1107
__ sub(O0, O1, O0);
1108
1109
// Avoid touching the guard pages
1110
// Also a fudge for frame size of BytecodeInterpreter::run
1111
// It varies from 1k->4k depending on build type
1112
const int fudge = 6 * K;
1113
1114
__ set(fudge + (max_pages * os::vm_page_size()), O1);
1115
1116
__ add(O0, O1, O0);
1117
__ sub(O0, Gtmp, O0);
1118
__ cmp(SP, O0);
1119
__ brx(Assembler::greaterUnsigned, false, Assembler::pt, stack_ok);
1120
__ delayed()->nop();
1121
1122
// throw exception return address becomes throwing pc
1123
1124
__ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
1125
__ stop("never reached");
1126
1127
__ bind(stack_ok);
1128
1129
__ save(SP, Gtmp, SP); // setup new frame and register window
1130
1131
// New window I7 call_stub or previous activation
1132
// O6 - register save area, BytecodeInterpreter just below it, args/locals just above that
1133
//
1134
__ sub(FP, sizeof(BytecodeInterpreter), state); // Point to new Interpreter state
1135
__ add(state, STACK_BIAS, state ); // Account for 64bit bias
1136
1137
#define XXX_STATE(field_name) state, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
1138
1139
// Initialize a new Interpreter state
1140
// orig_sp - caller's original sp
1141
// G2_thread - thread
1142
// Gargs - &locals[0] (unbiased?)
1143
// G5_method - method
1144
// SP (biased) - accounts for full size java stack, BytecodeInterpreter object, register save area, and register parameter save window
1145
1146
1147
__ set(0xdead0004, O1);
1148
1149
1150
__ st_ptr(Gargs, XXX_STATE(_locals));
1151
__ st_ptr(G0, XXX_STATE(_oop_temp));
1152
1153
__ st_ptr(state, XXX_STATE(_self_link)); // point to self
1154
__ st_ptr(prev_state->after_save(), XXX_STATE(_prev_link)); // Chain interpreter states
1155
__ st_ptr(G2_thread, XXX_STATE(_thread)); // Store javathread
1156
1157
if (native) {
1158
__ st_ptr(G0, XXX_STATE(_bcp));
1159
} else {
1160
__ ld_ptr(G5_method, in_bytes(Method::const_offset()), O2); // get ConstMethod*
1161
__ add(O2, in_bytes(ConstMethod::codes_offset()), O2); // get bcp
1162
__ st_ptr(O2, XXX_STATE(_bcp));
1163
}
1164
1165
__ st_ptr(G0, XXX_STATE(_mdx));
1166
__ st_ptr(G5_method, XXX_STATE(_method));
1167
1168
__ set((int) BytecodeInterpreter::method_entry, O1);
1169
__ st(O1, XXX_STATE(_msg));
1170
1171
__ ld_ptr(constMethod, O3);
1172
__ ld_ptr(O3, in_bytes(ConstMethod::constants_offset()), O3);
1173
__ ld_ptr(O3, ConstantPool::cache_offset_in_bytes(), O2);
1174
__ st_ptr(O2, XXX_STATE(_constants));
1175
1176
__ st_ptr(G0, XXX_STATE(_result._to_call._callee));
1177
1178
// Monitor base is just start of BytecodeInterpreter object;
1179
__ mov(state, O2);
1180
__ st_ptr(O2, XXX_STATE(_monitor_base));
1181
1182
// Do we need a monitor for synchonized method?
1183
{
1184
__ ld(access_flags, O1);
1185
Label done;
1186
Label got_obj;
1187
__ btst(JVM_ACC_SYNCHRONIZED, O1);
1188
__ br( Assembler::zero, false, Assembler::pt, done);
1189
1190
const int mirror_offset = in_bytes(Klass::java_mirror_offset());
1191
__ delayed()->btst(JVM_ACC_STATIC, O1);
1192
__ ld_ptr(XXX_STATE(_locals), O1);
1193
__ br( Assembler::zero, true, Assembler::pt, got_obj);
1194
__ delayed()->ld_ptr(O1, 0, O1); // get receiver for not-static case
1195
__ ld_ptr(constMethod, O1);
1196
__ ld_ptr( O1, in_bytes(ConstMethod::constants_offset()), O1);
1197
__ ld_ptr( O1, ConstantPool::pool_holder_offset_in_bytes(), O1);
1198
// lock the mirror, not the Klass*
1199
__ ld_ptr( O1, mirror_offset, O1);
1200
1201
__ bind(got_obj);
1202
1203
#ifdef ASSERT
1204
__ tst(O1);
1205
__ breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
1206
#endif // ASSERT
1207
1208
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
1209
__ sub(SP, entry_size, SP); // account for initial monitor
1210
__ sub(O2, entry_size, O2); // initial monitor
1211
__ st_ptr(O1, O2, BasicObjectLock::obj_offset_in_bytes()); // and allocate it for interpreter use
1212
__ bind(done);
1213
}
1214
1215
// Remember initial frame bottom
1216
1217
__ st_ptr(SP, XXX_STATE(_frame_bottom));
1218
1219
__ st_ptr(O2, XXX_STATE(_stack_base));
1220
1221
__ sub(O2, wordSize, O2); // prepush
1222
__ st_ptr(O2, XXX_STATE(_stack)); // PREPUSH
1223
1224
// Full size expression stack
1225
__ ld_ptr(constMethod, O3);
1226
__ lduh(O3, in_bytes(ConstMethod::max_stack_offset()), O3);
1227
__ inc(O3, Method::extra_stack_entries());
1228
__ sll(O3, LogBytesPerWord, O3);
1229
__ sub(O2, O3, O3);
1230
// __ sub(O3, wordSize, O3); // so prepush doesn't look out of bounds
1231
__ st_ptr(O3, XXX_STATE(_stack_limit));
1232
1233
if (!native) {
1234
//
1235
// Code to initialize locals
1236
//
1237
Register init_value = noreg; // will be G0 if we must clear locals
1238
// Now zero locals
1239
if (true /* zerolocals */ || ClearInterpreterLocals) {
1240
// explicitly initialize locals
1241
init_value = G0;
1242
} else {
1243
#ifdef ASSERT
1244
// initialize locals to a garbage pattern for better debugging
1245
init_value = O3;
1246
__ set( 0x0F0F0F0F, init_value );
1247
#endif // ASSERT
1248
}
1249
if (init_value != noreg) {
1250
Label clear_loop;
1251
const Register RconstMethod = O1;
1252
const Address size_of_parameters(RconstMethod, 0, in_bytes(ConstMethod::size_of_parameters_offset()));
1253
const Address size_of_locals (RconstMethod, 0, in_bytes(ConstMethod::size_of_locals_offset()));
1254
1255
// NOTE: If you change the frame layout, this code will need to
1256
// be updated!
1257
__ ld_ptr( constMethod, RconstMethod );
1258
__ lduh( size_of_locals, O2 );
1259
__ lduh( size_of_parameters, O1 );
1260
__ sll( O2, LogBytesPerWord, O2);
1261
__ sll( O1, LogBytesPerWord, O1 );
1262
__ ld_ptr(XXX_STATE(_locals), L2_scratch);
1263
__ sub( L2_scratch, O2, O2 );
1264
__ sub( L2_scratch, O1, O1 );
1265
1266
__ bind( clear_loop );
1267
__ inc( O2, wordSize );
1268
1269
__ cmp( O2, O1 );
1270
__ br( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
1271
__ delayed()->st_ptr( init_value, O2, 0 );
1272
}
1273
}
1274
}
1275
// Find preallocated monitor and lock method (C++ interpreter)
1276
//
1277
void InterpreterGenerator::lock_method(void) {
1278
// Lock the current method.
1279
// Destroys registers L2_scratch, L3_scratch, O0
1280
//
1281
// Find everything relative to Lstate
1282
1283
#ifdef ASSERT
1284
__ ld_ptr(STATE(_method), L2_scratch);
1285
__ ld(L2_scratch, in_bytes(Method::access_flags_offset()), O0);
1286
1287
{ Label ok;
1288
__ btst(JVM_ACC_SYNCHRONIZED, O0);
1289
__ br( Assembler::notZero, false, Assembler::pt, ok);
1290
__ delayed()->nop();
1291
__ stop("method doesn't need synchronization");
1292
__ bind(ok);
1293
}
1294
#endif // ASSERT
1295
1296
// monitor is already allocated at stack base
1297
// and the lockee is already present
1298
__ ld_ptr(STATE(_stack_base), L2_scratch);
1299
__ ld_ptr(L2_scratch, BasicObjectLock::obj_offset_in_bytes(), O0); // get object
1300
__ lock_object(L2_scratch, O0);
1301
1302
}
1303
1304
// Generate code for handling resuming a deopted method
1305
void CppInterpreterGenerator::generate_deopt_handling() {
1306
1307
Label return_from_deopt_common;
1308
1309
// deopt needs to jump to here to enter the interpreter (return a result)
1310
deopt_frame_manager_return_atos = __ pc();
1311
1312
// O0/O1 live
1313
__ ba(return_from_deopt_common);
1314
__ delayed()->set(AbstractInterpreter::BasicType_as_index(T_OBJECT), L3_scratch); // Result stub address array index
1315
1316
1317
// deopt needs to jump to here to enter the interpreter (return a result)
1318
deopt_frame_manager_return_btos = __ pc();
1319
1320
// O0/O1 live
1321
__ ba(return_from_deopt_common);
1322
__ delayed()->set(AbstractInterpreter::BasicType_as_index(T_BOOLEAN), L3_scratch); // Result stub address array index
1323
1324
// deopt needs to jump to here to enter the interpreter (return a result)
1325
deopt_frame_manager_return_itos = __ pc();
1326
1327
// O0/O1 live
1328
__ ba(return_from_deopt_common);
1329
__ delayed()->set(AbstractInterpreter::BasicType_as_index(T_INT), L3_scratch); // Result stub address array index
1330
1331
// deopt needs to jump to here to enter the interpreter (return a result)
1332
1333
deopt_frame_manager_return_ltos = __ pc();
1334
#if !defined(_LP64) && defined(COMPILER2)
1335
// All return values are where we want them, except for Longs. C2 returns
1336
// longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
1337
// Since the interpreter will return longs in G1 and O0/O1 in the 32bit
1338
// build even if we are returning from interpreted we just do a little
1339
// stupid shuffing.
1340
// Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
1341
// do this here. Unfortunately if we did a rethrow we'd see an machepilog node
1342
// first which would move g1 -> O0/O1 and destroy the exception we were throwing.
1343
1344
__ srl (G1, 0,O1);
1345
__ srlx(G1,32,O0);
1346
#endif /* !_LP64 && COMPILER2 */
1347
// O0/O1 live
1348
__ ba(return_from_deopt_common);
1349
__ delayed()->set(AbstractInterpreter::BasicType_as_index(T_LONG), L3_scratch); // Result stub address array index
1350
1351
// deopt needs to jump to here to enter the interpreter (return a result)
1352
1353
deopt_frame_manager_return_ftos = __ pc();
1354
// O0/O1 live
1355
__ ba(return_from_deopt_common);
1356
__ delayed()->set(AbstractInterpreter::BasicType_as_index(T_FLOAT), L3_scratch); // Result stub address array index
1357
1358
// deopt needs to jump to here to enter the interpreter (return a result)
1359
deopt_frame_manager_return_dtos = __ pc();
1360
1361
// O0/O1 live
1362
__ ba(return_from_deopt_common);
1363
__ delayed()->set(AbstractInterpreter::BasicType_as_index(T_DOUBLE), L3_scratch); // Result stub address array index
1364
1365
// deopt needs to jump to here to enter the interpreter (return a result)
1366
deopt_frame_manager_return_vtos = __ pc();
1367
1368
// O0/O1 live
1369
__ set(AbstractInterpreter::BasicType_as_index(T_VOID), L3_scratch);
1370
1371
// Deopt return common
1372
// an index is present that lets us move any possible result being
1373
// return to the interpreter's stack
1374
//
1375
__ bind(return_from_deopt_common);
1376
1377
// Result if any is in native abi result (O0..O1/F0..F1). The java expression
1378
// stack is in the state that the calling convention left it.
1379
// Copy the result from native abi result and place it on java expression stack.
1380
1381
// Current interpreter state is present in Lstate
1382
1383
// Get current pre-pushed top of interpreter stack
1384
// Any result (if any) is in native abi
1385
// result type index is in L3_scratch
1386
1387
__ ld_ptr(STATE(_stack), L1_scratch); // get top of java expr stack
1388
1389
__ set((intptr_t)CppInterpreter::_tosca_to_stack, L4_scratch);
1390
__ sll(L3_scratch, LogBytesPerWord, L3_scratch);
1391
__ ld_ptr(L4_scratch, L3_scratch, Lscratch); // get typed result converter address
1392
__ jmpl(Lscratch, G0, O7); // and convert it
1393
__ delayed()->nop();
1394
1395
// L1_scratch points to top of stack (prepushed)
1396
__ st_ptr(L1_scratch, STATE(_stack));
1397
}
1398
1399
// Generate the code to handle a more_monitors message from the c++ interpreter
1400
void CppInterpreterGenerator::generate_more_monitors() {
1401
1402
Label entry, loop;
1403
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
1404
// 1. compute new pointers // esp: old expression stack top
1405
__ delayed()->ld_ptr(STATE(_stack_base), L4_scratch); // current expression stack bottom
1406
__ sub(L4_scratch, entry_size, L4_scratch);
1407
__ st_ptr(L4_scratch, STATE(_stack_base));
1408
1409
__ sub(SP, entry_size, SP); // Grow stack
1410
__ st_ptr(SP, STATE(_frame_bottom));
1411
1412
__ ld_ptr(STATE(_stack_limit), L2_scratch);
1413
__ sub(L2_scratch, entry_size, L2_scratch);
1414
__ st_ptr(L2_scratch, STATE(_stack_limit));
1415
1416
__ ld_ptr(STATE(_stack), L1_scratch); // Get current stack top
1417
__ sub(L1_scratch, entry_size, L1_scratch);
1418
__ st_ptr(L1_scratch, STATE(_stack));
1419
__ ba(entry);
1420
__ delayed()->add(L1_scratch, wordSize, L1_scratch); // first real entry (undo prepush)
1421
1422
// 2. move expression stack
1423
1424
__ bind(loop);
1425
__ st_ptr(L3_scratch, Address(L1_scratch, 0));
1426
__ add(L1_scratch, wordSize, L1_scratch);
1427
__ bind(entry);
1428
__ cmp(L1_scratch, L4_scratch);
1429
__ br(Assembler::notEqual, false, Assembler::pt, loop);
1430
__ delayed()->ld_ptr(L1_scratch, entry_size, L3_scratch);
1431
1432
// now zero the slot so we can find it.
1433
__ st_ptr(G0, L4_scratch, BasicObjectLock::obj_offset_in_bytes());
1434
1435
}
1436
1437
// Initial entry to C++ interpreter from the call_stub.
1438
// This entry point is called the frame manager since it handles the generation
1439
// of interpreter activation frames via requests directly from the vm (via call_stub)
1440
// and via requests from the interpreter. The requests from the call_stub happen
1441
// directly thru the entry point. Requests from the interpreter happen via returning
1442
// from the interpreter and examining the message the interpreter has returned to
1443
// the frame manager. The frame manager can take the following requests:
1444
1445
// NO_REQUEST - error, should never happen.
1446
// MORE_MONITORS - need a new monitor. Shuffle the expression stack on down and
1447
// allocate a new monitor.
1448
// CALL_METHOD - setup a new activation to call a new method. Very similar to what
1449
// happens during entry during the entry via the call stub.
1450
// RETURN_FROM_METHOD - remove an activation. Return to interpreter or call stub.
1451
//
1452
// Arguments:
1453
//
1454
// ebx: Method*
1455
// ecx: receiver - unused (retrieved from stack as needed)
1456
// esi: previous frame manager state (NULL from the call_stub/c1/c2)
1457
//
1458
//
1459
// Stack layout at entry
1460
//
1461
// [ return address ] <--- esp
1462
// [ parameter n ]
1463
// ...
1464
// [ parameter 1 ]
1465
// [ expression stack ]
1466
//
1467
//
1468
// We are free to blow any registers we like because the call_stub which brought us here
1469
// initially has preserved the callee save registers already.
1470
//
1471
//
1472
1473
static address interpreter_frame_manager = NULL;
1474
1475
#ifdef ASSERT
1476
#define VALIDATE_STATE(scratch, marker) \
1477
{ \
1478
Label skip; \
1479
__ ld_ptr(STATE(_self_link), scratch); \
1480
__ cmp(Lstate, scratch); \
1481
__ brx(Assembler::equal, false, Assembler::pt, skip); \
1482
__ delayed()->nop(); \
1483
__ breakpoint_trap(); \
1484
__ emit_int32(marker); \
1485
__ bind(skip); \
1486
}
1487
#else
1488
#define VALIDATE_STATE(scratch, marker)
1489
#endif /* ASSERT */
1490
1491
void CppInterpreterGenerator::adjust_callers_stack(Register args) {
1492
//
1493
// Adjust caller's stack so that all the locals can be contiguous with
1494
// the parameters.
1495
// Worries about stack overflow make this a pain.
1496
//
1497
// Destroys args, G3_scratch, G3_scratch
1498
// In/Out O5_savedSP (sender's original SP)
1499
//
1500
// assert_different_registers(state, prev_state);
1501
const Register Gtmp = G3_scratch;
1502
const RconstMethod = G3_scratch;
1503
const Register tmp = O2;
1504
const Address constMethod(G5_method, 0, in_bytes(Method::const_offset()));
1505
const Address size_of_parameters(RconstMethod, 0, in_bytes(ConstMethod::size_of_parameters_offset()));
1506
const Address size_of_locals (RconstMethod, 0, in_bytes(ConstMethod::size_of_locals_offset()));
1507
1508
__ ld_ptr(constMethod, RconstMethod);
1509
__ lduh(size_of_parameters, tmp);
1510
__ sll(tmp, LogBytesPerWord, Gargs); // parameter size in bytes
1511
__ add(args, Gargs, Gargs); // points to first local + BytesPerWord
1512
// NEW
1513
__ add(Gargs, -wordSize, Gargs); // points to first local[0]
1514
// determine extra space for non-argument locals & adjust caller's SP
1515
// Gtmp1: parameter size in words
1516
__ lduh(size_of_locals, Gtmp);
1517
__ compute_extra_locals_size_in_bytes(tmp, Gtmp, Gtmp);
1518
1519
#if 1
1520
// c2i adapters place the final interpreter argument in the register save area for O0/I0
1521
// the call_stub will place the final interpreter argument at
1522
// frame::memory_parameter_word_sp_offset. This is mostly not noticable for either asm
1523
// or c++ interpreter. However with the c++ interpreter when we do a recursive call
1524
// and try to make it look good in the debugger we will store the argument to
1525
// RecursiveInterpreterActivation in the register argument save area. Without allocating
1526
// extra space for the compiler this will overwrite locals in the local array of the
1527
// interpreter.
1528
// QQQ still needed with frameless adapters???
1529
1530
const int c2i_adjust_words = frame::memory_parameter_word_sp_offset - frame::callee_register_argument_save_area_sp_offset;
1531
1532
__ add(Gtmp, c2i_adjust_words*wordSize, Gtmp);
1533
#endif // 1
1534
1535
1536
__ sub(SP, Gtmp, SP); // just caller's frame for the additional space we need.
1537
}
1538
1539
address InterpreterGenerator::generate_normal_entry(bool synchronized) {
1540
1541
// G5_method: Method*
1542
// G2_thread: thread (unused)
1543
// Gargs: bottom of args (sender_sp)
1544
// O5: sender's sp
1545
1546
// A single frame manager is plenty as we don't specialize for synchronized. We could and
1547
// the code is pretty much ready. Would need to change the test below and for good measure
1548
// modify generate_interpreter_state to only do the (pre) sync stuff stuff for synchronized
1549
// routines. Not clear this is worth it yet.
1550
1551
if (interpreter_frame_manager) {
1552
return interpreter_frame_manager;
1553
}
1554
1555
__ bind(frame_manager_entry);
1556
1557
// the following temporary registers are used during frame creation
1558
const Register Gtmp1 = G3_scratch;
1559
// const Register Lmirror = L1; // native mirror (native calls only)
1560
1561
const Address constMethod (G5_method, 0, in_bytes(Method::const_offset()));
1562
const Address access_flags (G5_method, 0, in_bytes(Method::access_flags_offset()));
1563
1564
address entry_point = __ pc();
1565
__ mov(G0, prevState); // no current activation
1566
1567
1568
Label re_dispatch;
1569
1570
__ bind(re_dispatch);
1571
1572
// Interpreter needs to have locals completely contiguous. In order to do that
1573
// We must adjust the caller's stack pointer for any locals beyond just the
1574
// parameters
1575
adjust_callers_stack(Gargs);
1576
1577
// O5_savedSP still contains sender's sp
1578
1579
// NEW FRAME
1580
1581
generate_compute_interpreter_state(Lstate, prevState, false);
1582
1583
// At this point a new interpreter frame and state object are created and initialized
1584
// Lstate has the pointer to the new activation
1585
// Any stack banging or limit check should already be done.
1586
1587
Label call_interpreter;
1588
1589
__ bind(call_interpreter);
1590
1591
1592
#if 1
1593
__ set(0xdead002, Lmirror);
1594
__ set(0xdead002, L2_scratch);
1595
__ set(0xdead003, L3_scratch);
1596
__ set(0xdead004, L4_scratch);
1597
__ set(0xdead005, Lscratch);
1598
__ set(0xdead006, Lscratch2);
1599
__ set(0xdead007, L7_scratch);
1600
1601
__ set(0xdeaf002, O2);
1602
__ set(0xdeaf003, O3);
1603
__ set(0xdeaf004, O4);
1604
__ set(0xdeaf005, O5);
1605
#endif
1606
1607
// Call interpreter (stack bang complete) enter here if message is
1608
// set and we know stack size is valid
1609
1610
Label call_interpreter_2;
1611
1612
__ bind(call_interpreter_2);
1613
1614
#ifdef ASSERT
1615
{
1616
Label skip;
1617
__ ld_ptr(STATE(_frame_bottom), G3_scratch);
1618
__ cmp(G3_scratch, SP);
1619
__ brx(Assembler::equal, false, Assembler::pt, skip);
1620
__ delayed()->nop();
1621
__ stop("SP not restored to frame bottom");
1622
__ bind(skip);
1623
}
1624
#endif
1625
1626
VALIDATE_STATE(G3_scratch, 4);
1627
__ set_last_Java_frame(SP, noreg);
1628
__ mov(Lstate, O0); // (arg) pointer to current state
1629
1630
__ call(CAST_FROM_FN_PTR(address,
1631
JvmtiExport::can_post_interpreter_events() ?
1632
BytecodeInterpreter::runWithChecks
1633
: BytecodeInterpreter::run),
1634
relocInfo::runtime_call_type);
1635
1636
__ delayed()->nop();
1637
1638
__ ld_ptr(STATE(_thread), G2_thread);
1639
__ reset_last_Java_frame();
1640
1641
// examine msg from interpreter to determine next action
1642
__ ld_ptr(STATE(_thread), G2_thread); // restore G2_thread
1643
1644
__ ld(STATE(_msg), L1_scratch); // Get new message
1645
1646
Label call_method;
1647
Label return_from_interpreted_method;
1648
Label throw_exception;
1649
Label do_OSR;
1650
Label bad_msg;
1651
Label resume_interpreter;
1652
1653
__ cmp(L1_scratch, (int)BytecodeInterpreter::call_method);
1654
__ br(Assembler::equal, false, Assembler::pt, call_method);
1655
__ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::return_from_method);
1656
__ br(Assembler::equal, false, Assembler::pt, return_from_interpreted_method);
1657
__ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::throwing_exception);
1658
__ br(Assembler::equal, false, Assembler::pt, throw_exception);
1659
__ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::do_osr);
1660
__ br(Assembler::equal, false, Assembler::pt, do_OSR);
1661
__ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::more_monitors);
1662
__ br(Assembler::notEqual, false, Assembler::pt, bad_msg);
1663
1664
// Allocate more monitor space, shuffle expression stack....
1665
1666
generate_more_monitors();
1667
1668
// new monitor slot allocated, resume the interpreter.
1669
1670
__ set((int)BytecodeInterpreter::got_monitors, L1_scratch);
1671
VALIDATE_STATE(G3_scratch, 5);
1672
__ ba(call_interpreter);
1673
__ delayed()->st(L1_scratch, STATE(_msg));
1674
1675
// uncommon trap needs to jump to here to enter the interpreter (re-execute current bytecode)
1676
unctrap_frame_manager_entry = __ pc();
1677
1678
// QQQ what message do we send
1679
1680
__ ba(call_interpreter);
1681
__ delayed()->ld_ptr(STATE(_frame_bottom), SP); // restore to full stack frame
1682
1683
//=============================================================================
1684
// Returning from a compiled method into a deopted method. The bytecode at the
1685
// bcp has completed. The result of the bytecode is in the native abi (the tosca
1686
// for the template based interpreter). Any stack space that was used by the
1687
// bytecode that has completed has been removed (e.g. parameters for an invoke)
1688
// so all that we have to do is place any pending result on the expression stack
1689
// and resume execution on the next bytecode.
1690
1691
generate_deopt_handling();
1692
1693
// ready to resume the interpreter
1694
1695
__ set((int)BytecodeInterpreter::deopt_resume, L1_scratch);
1696
__ ba(call_interpreter);
1697
__ delayed()->st(L1_scratch, STATE(_msg));
1698
1699
// Current frame has caught an exception we need to dispatch to the
1700
// handler. We can get here because a native interpreter frame caught
1701
// an exception in which case there is no handler and we must rethrow
1702
// If it is a vanilla interpreted frame the we simply drop into the
1703
// interpreter and let it do the lookup.
1704
1705
Interpreter::_rethrow_exception_entry = __ pc();
1706
1707
Label return_with_exception;
1708
Label unwind_and_forward;
1709
1710
// O0: exception
1711
// O7: throwing pc
1712
1713
// We want exception in the thread no matter what we ultimately decide about frame type.
1714
1715
Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
1716
__ verify_thread();
1717
__ st_ptr(O0, exception_addr);
1718
1719
// get the Method*
1720
__ ld_ptr(STATE(_method), G5_method);
1721
1722
// if this current frame vanilla or native?
1723
1724
__ ld(access_flags, Gtmp1);
1725
__ btst(JVM_ACC_NATIVE, Gtmp1);
1726
__ br(Assembler::zero, false, Assembler::pt, return_with_exception); // vanilla interpreted frame handle directly
1727
__ delayed()->nop();
1728
1729
// We drop thru to unwind a native interpreted frame with a pending exception
1730
// We jump here for the initial interpreter frame with exception pending
1731
// We unwind the current acivation and forward it to our caller.
1732
1733
__ bind(unwind_and_forward);
1734
1735
// Unwind frame and jump to forward exception. unwinding will place throwing pc in O7
1736
// as expected by forward_exception.
1737
1738
__ restore(FP, G0, SP); // unwind interpreter state frame
1739
__ br(Assembler::always, false, Assembler::pt, StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
1740
__ delayed()->mov(I5_savedSP->after_restore(), SP);
1741
1742
// Return point from a call which returns a result in the native abi
1743
// (c1/c2/jni-native). This result must be processed onto the java
1744
// expression stack.
1745
//
1746
// A pending exception may be present in which case there is no result present
1747
1748
address return_from_native_method = __ pc();
1749
1750
VALIDATE_STATE(G3_scratch, 6);
1751
1752
// Result if any is in native abi result (O0..O1/F0..F1). The java expression
1753
// stack is in the state that the calling convention left it.
1754
// Copy the result from native abi result and place it on java expression stack.
1755
1756
// Current interpreter state is present in Lstate
1757
1758
// Exception pending?
1759
1760
__ ld_ptr(STATE(_frame_bottom), SP); // restore to full stack frame
1761
__ ld_ptr(exception_addr, Lscratch); // get any pending exception
1762
__ tst(Lscratch); // exception pending?
1763
__ brx(Assembler::notZero, false, Assembler::pt, return_with_exception);
1764
__ delayed()->nop();
1765
1766
// Process the native abi result to java expression stack
1767
1768
__ ld_ptr(STATE(_result._to_call._callee), L4_scratch); // called method
1769
__ ld_ptr(STATE(_stack), L1_scratch); // get top of java expr stack
1770
// get parameter size
1771
__ ld_ptr(L4_scratch, in_bytes(Method::const_offset()), L2_scratch);
1772
__ lduh(L2_scratch, in_bytes(ConstMethod::size_of_parameters_offset()), L2_scratch);
1773
__ sll(L2_scratch, LogBytesPerWord, L2_scratch ); // parameter size in bytes
1774
__ add(L1_scratch, L2_scratch, L1_scratch); // stack destination for result
1775
__ ld(L4_scratch, in_bytes(Method::result_index_offset()), L3_scratch); // called method result type index
1776
1777
// tosca is really just native abi
1778
__ set((intptr_t)CppInterpreter::_tosca_to_stack, L4_scratch);
1779
__ sll(L3_scratch, LogBytesPerWord, L3_scratch);
1780
__ ld_ptr(L4_scratch, L3_scratch, Lscratch); // get typed result converter address
1781
__ jmpl(Lscratch, G0, O7); // and convert it
1782
__ delayed()->nop();
1783
1784
// L1_scratch points to top of stack (prepushed)
1785
1786
__ ba(resume_interpreter);
1787
__ delayed()->mov(L1_scratch, O1);
1788
1789
// An exception is being caught on return to a vanilla interpreter frame.
1790
// Empty the stack and resume interpreter
1791
1792
__ bind(return_with_exception);
1793
1794
__ ld_ptr(STATE(_frame_bottom), SP); // restore to full stack frame
1795
__ ld_ptr(STATE(_stack_base), O1); // empty java expression stack
1796
__ ba(resume_interpreter);
1797
__ delayed()->sub(O1, wordSize, O1); // account for prepush
1798
1799
// Return from interpreted method we return result appropriate to the caller (i.e. "recursive"
1800
// interpreter call, or native) and unwind this interpreter activation.
1801
// All monitors should be unlocked.
1802
1803
__ bind(return_from_interpreted_method);
1804
1805
VALIDATE_STATE(G3_scratch, 7);
1806
1807
Label return_to_initial_caller;
1808
1809
// Interpreted result is on the top of the completed activation expression stack.
1810
// We must return it to the top of the callers stack if caller was interpreted
1811
// otherwise we convert to native abi result and return to call_stub/c1/c2
1812
// The caller's expression stack was truncated by the call however the current activation
1813
// has enough stuff on the stack that we have usable space there no matter what. The
1814
// other thing that makes it easy is that the top of the caller's stack is stored in STATE(_locals)
1815
// for the current activation
1816
1817
__ ld_ptr(STATE(_prev_link), L1_scratch);
1818
__ ld_ptr(STATE(_method), L2_scratch); // get method just executed
1819
__ ld(L2_scratch, in_bytes(Method::result_index_offset()), L2_scratch);
1820
__ tst(L1_scratch);
1821
__ brx(Assembler::zero, false, Assembler::pt, return_to_initial_caller);
1822
__ delayed()->sll(L2_scratch, LogBytesPerWord, L2_scratch);
1823
1824
// Copy result to callers java stack
1825
1826
__ set((intptr_t)CppInterpreter::_stack_to_stack, L4_scratch);
1827
__ ld_ptr(L4_scratch, L2_scratch, Lscratch); // get typed result converter address
1828
__ ld_ptr(STATE(_stack), O0); // current top (prepushed)
1829
__ ld_ptr(STATE(_locals), O1); // stack destination
1830
1831
// O0 - will be source, O1 - will be destination (preserved)
1832
__ jmpl(Lscratch, G0, O7); // and convert it
1833
__ delayed()->add(O0, wordSize, O0); // get source (top of current expr stack)
1834
1835
// O1 == &locals[0]
1836
1837
// Result is now on caller's stack. Just unwind current activation and resume
1838
1839
Label unwind_recursive_activation;
1840
1841
1842
__ bind(unwind_recursive_activation);
1843
1844
// O1 == &locals[0] (really callers stacktop) for activation now returning
1845
// returning to interpreter method from "recursive" interpreter call
1846
// result converter left O1 pointing to top of the( prepushed) java stack for method we are returning
1847
// to. Now all we must do is unwind the state from the completed call
1848
1849
// Must restore stack
1850
VALIDATE_STATE(G3_scratch, 8);
1851
1852
// Return to interpreter method after a method call (interpreted/native/c1/c2) has completed.
1853
// Result if any is already on the caller's stack. All we must do now is remove the now dead
1854
// frame and tell interpreter to resume.
1855
1856
1857
__ mov(O1, I1); // pass back new stack top across activation
1858
// POP FRAME HERE ==================================
1859
__ restore(FP, G0, SP); // unwind interpreter state frame
1860
__ ld_ptr(STATE(_frame_bottom), SP); // restore to full stack frame
1861
1862
1863
// Resume the interpreter. The current frame contains the current interpreter
1864
// state object.
1865
//
1866
// O1 == new java stack pointer
1867
1868
__ bind(resume_interpreter);
1869
VALIDATE_STATE(G3_scratch, 10);
1870
1871
// A frame we have already used before so no need to bang stack so use call_interpreter_2 entry
1872
1873
__ set((int)BytecodeInterpreter::method_resume, L1_scratch);
1874
__ st(L1_scratch, STATE(_msg));
1875
__ ba(call_interpreter_2);
1876
__ delayed()->st_ptr(O1, STATE(_stack));
1877
1878
1879
// Fast accessor methods share this entry point.
1880
// This works because frame manager is in the same codelet
1881
// This can either be an entry via call_stub/c1/c2 or a recursive interpreter call
1882
// we need to do a little register fixup here once we distinguish the two of them
1883
if (UseFastAccessorMethods && !synchronized) {
1884
// Call stub_return address still in O7
1885
__ bind(fast_accessor_slow_entry_path);
1886
__ set((intptr_t)return_from_native_method - 8, Gtmp1);
1887
__ cmp(Gtmp1, O7); // returning to interpreter?
1888
__ brx(Assembler::equal, true, Assembler::pt, re_dispatch); // yep
1889
__ delayed()->nop();
1890
__ ba(re_dispatch);
1891
__ delayed()->mov(G0, prevState); // initial entry
1892
1893
}
1894
1895
// interpreter returning to native code (call_stub/c1/c2)
1896
// convert result and unwind initial activation
1897
// L2_scratch - scaled result type index
1898
1899
__ bind(return_to_initial_caller);
1900
1901
__ set((intptr_t)CppInterpreter::_stack_to_native_abi, L4_scratch);
1902
__ ld_ptr(L4_scratch, L2_scratch, Lscratch); // get typed result converter address
1903
__ ld_ptr(STATE(_stack), O0); // current top (prepushed)
1904
__ jmpl(Lscratch, G0, O7); // and convert it
1905
__ delayed()->add(O0, wordSize, O0); // get source (top of current expr stack)
1906
1907
Label unwind_initial_activation;
1908
__ bind(unwind_initial_activation);
1909
1910
// RETURN TO CALL_STUB/C1/C2 code (result if any in I0..I1/(F0/..F1)
1911
// we can return here with an exception that wasn't handled by interpreted code
1912
// how does c1/c2 see it on return?
1913
1914
// compute resulting sp before/after args popped depending upon calling convention
1915
// __ ld_ptr(STATE(_saved_sp), Gtmp1);
1916
//
1917
// POP FRAME HERE ==================================
1918
__ restore(FP, G0, SP);
1919
__ retl();
1920
__ delayed()->mov(I5_savedSP->after_restore(), SP);
1921
1922
// OSR request, unwind the current frame and transfer to the OSR entry
1923
// and enter OSR nmethod
1924
1925
__ bind(do_OSR);
1926
Label remove_initial_frame;
1927
__ ld_ptr(STATE(_prev_link), L1_scratch);
1928
__ ld_ptr(STATE(_result._osr._osr_buf), G1_scratch);
1929
1930
// We are going to pop this frame. Is there another interpreter frame underneath
1931
// it or is it callstub/compiled?
1932
1933
__ tst(L1_scratch);
1934
__ brx(Assembler::zero, false, Assembler::pt, remove_initial_frame);
1935
__ delayed()->ld_ptr(STATE(_result._osr._osr_entry), G3_scratch);
1936
1937
// Frame underneath is an interpreter frame simply unwind
1938
// POP FRAME HERE ==================================
1939
__ restore(FP, G0, SP); // unwind interpreter state frame
1940
__ mov(I5_savedSP->after_restore(), SP);
1941
1942
// Since we are now calling native need to change our "return address" from the
1943
// dummy RecursiveInterpreterActivation to a return from native
1944
1945
__ set((intptr_t)return_from_native_method - 8, O7);
1946
1947
__ jmpl(G3_scratch, G0, G0);
1948
__ delayed()->mov(G1_scratch, O0);
1949
1950
__ bind(remove_initial_frame);
1951
1952
// POP FRAME HERE ==================================
1953
__ restore(FP, G0, SP);
1954
__ mov(I5_savedSP->after_restore(), SP);
1955
__ jmpl(G3_scratch, G0, G0);
1956
__ delayed()->mov(G1_scratch, O0);
1957
1958
// Call a new method. All we do is (temporarily) trim the expression stack
1959
// push a return address to bring us back to here and leap to the new entry.
1960
// At this point we have a topmost frame that was allocated by the frame manager
1961
// which contains the current method interpreted state. We trim this frame
1962
// of excess java expression stack entries and then recurse.
1963
1964
__ bind(call_method);
1965
1966
// stack points to next free location and not top element on expression stack
1967
// method expects sp to be pointing to topmost element
1968
1969
__ ld_ptr(STATE(_thread), G2_thread);
1970
__ ld_ptr(STATE(_result._to_call._callee), G5_method);
1971
1972
1973
// SP already takes in to account the 2 extra words we use for slop
1974
// when we call a "static long no_params()" method. So if
1975
// we trim back sp by the amount of unused java expression stack
1976
// there will be automagically the 2 extra words we need.
1977
// We also have to worry about keeping SP aligned.
1978
1979
__ ld_ptr(STATE(_stack), Gargs);
1980
__ ld_ptr(STATE(_stack_limit), L1_scratch);
1981
1982
// compute the unused java stack size
1983
__ sub(Gargs, L1_scratch, L2_scratch); // compute unused space
1984
1985
// Round down the unused space to that stack is always 16-byte aligned
1986
// by making the unused space a multiple of the size of two longs.
1987
1988
__ and3(L2_scratch, -2*BytesPerLong, L2_scratch);
1989
1990
// Now trim the stack
1991
__ add(SP, L2_scratch, SP);
1992
1993
1994
// Now point to the final argument (account for prepush)
1995
__ add(Gargs, wordSize, Gargs);
1996
#ifdef ASSERT
1997
// Make sure we have space for the window
1998
__ sub(Gargs, SP, L1_scratch);
1999
__ cmp(L1_scratch, 16*wordSize);
2000
{
2001
Label skip;
2002
__ brx(Assembler::greaterEqual, false, Assembler::pt, skip);
2003
__ delayed()->nop();
2004
__ stop("killed stack");
2005
__ bind(skip);
2006
}
2007
#endif // ASSERT
2008
2009
// Create a new frame where we can store values that make it look like the interpreter
2010
// really recursed.
2011
2012
// prepare to recurse or call specialized entry
2013
2014
// First link the registers we need
2015
2016
// make the pc look good in debugger
2017
__ set(CAST_FROM_FN_PTR(intptr_t, RecursiveInterpreterActivation), O7);
2018
// argument too
2019
__ mov(Lstate, I0);
2020
2021
// Record our sending SP
2022
__ mov(SP, O5_savedSP);
2023
2024
__ ld_ptr(STATE(_result._to_call._callee_entry_point), L2_scratch);
2025
__ set((intptr_t) entry_point, L1_scratch);
2026
__ cmp(L1_scratch, L2_scratch);
2027
__ brx(Assembler::equal, false, Assembler::pt, re_dispatch);
2028
__ delayed()->mov(Lstate, prevState); // link activations
2029
2030
// method uses specialized entry, push a return so we look like call stub setup
2031
// this path will handle fact that result is returned in registers and not
2032
// on the java stack.
2033
2034
__ set((intptr_t)return_from_native_method - 8, O7);
2035
__ jmpl(L2_scratch, G0, G0); // Do specialized entry
2036
__ delayed()->nop();
2037
2038
//
2039
// Bad Message from interpreter
2040
//
2041
__ bind(bad_msg);
2042
__ stop("Bad message from interpreter");
2043
2044
// Interpreted method "returned" with an exception pass it on...
2045
// Pass result, unwind activation and continue/return to interpreter/call_stub
2046
// We handle result (if any) differently based on return to interpreter or call_stub
2047
2048
__ bind(throw_exception);
2049
__ ld_ptr(STATE(_prev_link), L1_scratch);
2050
__ tst(L1_scratch);
2051
__ brx(Assembler::zero, false, Assembler::pt, unwind_and_forward);
2052
__ delayed()->nop();
2053
2054
__ ld_ptr(STATE(_locals), O1); // get result of popping callee's args
2055
__ ba(unwind_recursive_activation);
2056
__ delayed()->nop();
2057
2058
interpreter_frame_manager = entry_point;
2059
return entry_point;
2060
}
2061
2062
InterpreterGenerator::InterpreterGenerator(StubQueue* code)
2063
: CppInterpreterGenerator(code) {
2064
generate_all(); // down here so it can be "virtual"
2065
}
2066
2067
2068
static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
2069
2070
// Figure out the size of an interpreter frame (in words) given that we have a fully allocated
2071
// expression stack, the callee will have callee_extra_locals (so we can account for
2072
// frame extension) and monitor_size for monitors. Basically we need to calculate
2073
// this exactly like generate_fixed_frame/generate_compute_interpreter_state.
2074
//
2075
//
2076
// The big complicating thing here is that we must ensure that the stack stays properly
2077
// aligned. This would be even uglier if monitor size wasn't modulo what the stack
2078
// needs to be aligned for). We are given that the sp (fp) is already aligned by
2079
// the caller so we must ensure that it is properly aligned for our callee.
2080
//
2081
// Ths c++ interpreter always makes sure that we have a enough extra space on the
2082
// stack at all times to deal with the "stack long no_params()" method issue. This
2083
// is "slop_factor" here.
2084
const int slop_factor = 2;
2085
2086
const int fixed_size = sizeof(BytecodeInterpreter)/wordSize + // interpreter state object
2087
frame::memory_parameter_word_sp_offset; // register save area + param window
2088
return (round_to(max_stack +
2089
slop_factor +
2090
fixed_size +
2091
monitor_size +
2092
(callee_extra_locals * Interpreter::stackElementWords), WordsPerLong));
2093
2094
}
2095
2096
int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
2097
2098
// See call_stub code
2099
int call_stub_size = round_to(7 + frame::memory_parameter_word_sp_offset,
2100
WordsPerLong); // 7 + register save area
2101
2102
// Save space for one monitor to get into the interpreted method in case
2103
// the method is synchronized
2104
int monitor_size = method->is_synchronized() ?
2105
1*frame::interpreter_frame_monitor_size() : 0;
2106
return size_activation_helper(method->max_locals(), method->max_stack(),
2107
monitor_size) + call_stub_size;
2108
}
2109
2110
void BytecodeInterpreter::layout_interpreterState(interpreterState to_fill,
2111
frame* caller,
2112
frame* current,
2113
Method* method,
2114
intptr_t* locals,
2115
intptr_t* stack,
2116
intptr_t* stack_base,
2117
intptr_t* monitor_base,
2118
intptr_t* frame_bottom,
2119
bool is_top_frame
2120
)
2121
{
2122
// What about any vtable?
2123
//
2124
to_fill->_thread = JavaThread::current();
2125
// This gets filled in later but make it something recognizable for now
2126
to_fill->_bcp = method->code_base();
2127
to_fill->_locals = locals;
2128
to_fill->_constants = method->constants()->cache();
2129
to_fill->_method = method;
2130
to_fill->_mdx = NULL;
2131
to_fill->_stack = stack;
2132
if (is_top_frame && JavaThread::current()->popframe_forcing_deopt_reexecution() ) {
2133
to_fill->_msg = deopt_resume2;
2134
} else {
2135
to_fill->_msg = method_resume;
2136
}
2137
to_fill->_result._to_call._bcp_advance = 0;
2138
to_fill->_result._to_call._callee_entry_point = NULL; // doesn't matter to anyone
2139
to_fill->_result._to_call._callee = NULL; // doesn't matter to anyone
2140
to_fill->_prev_link = NULL;
2141
2142
// Fill in the registers for the frame
2143
2144
// Need to install _sender_sp. Actually not too hard in C++!
2145
// When the skeletal frames are layed out we fill in a value
2146
// for _sender_sp. That value is only correct for the oldest
2147
// skeletal frame constructed (because there is only a single
2148
// entry for "caller_adjustment". While the skeletal frames
2149
// exist that is good enough. We correct that calculation
2150
// here and get all the frames correct.
2151
2152
// to_fill->_sender_sp = locals - (method->size_of_parameters() - 1);
2153
2154
*current->register_addr(Lstate) = (intptr_t) to_fill;
2155
// skeletal already places a useful value here and this doesn't account
2156
// for alignment so don't bother.
2157
// *current->register_addr(I5_savedSP) = (intptr_t) locals - (method->size_of_parameters() - 1);
2158
2159
if (caller->is_interpreted_frame()) {
2160
interpreterState prev = caller->get_interpreterState();
2161
to_fill->_prev_link = prev;
2162
// Make the prev callee look proper
2163
prev->_result._to_call._callee = method;
2164
if (*prev->_bcp == Bytecodes::_invokeinterface) {
2165
prev->_result._to_call._bcp_advance = 5;
2166
} else {
2167
prev->_result._to_call._bcp_advance = 3;
2168
}
2169
}
2170
to_fill->_oop_temp = NULL;
2171
to_fill->_stack_base = stack_base;
2172
// Need +1 here because stack_base points to the word just above the first expr stack entry
2173
// and stack_limit is supposed to point to the word just below the last expr stack entry.
2174
// See generate_compute_interpreter_state.
2175
to_fill->_stack_limit = stack_base - (method->max_stack() + 1);
2176
to_fill->_monitor_base = (BasicObjectLock*) monitor_base;
2177
2178
// sparc specific
2179
to_fill->_frame_bottom = frame_bottom;
2180
to_fill->_self_link = to_fill;
2181
#ifdef ASSERT
2182
to_fill->_native_fresult = 123456.789;
2183
to_fill->_native_lresult = CONST64(0xdeadcafedeafcafe);
2184
#endif
2185
}
2186
2187
void BytecodeInterpreter::pd_layout_interpreterState(interpreterState istate, address last_Java_pc, intptr_t* last_Java_fp) {
2188
istate->_last_Java_pc = (intptr_t*) last_Java_pc;
2189
}
2190
2191
static int frame_size_helper(int max_stack,
2192
int moncount,
2193
int callee_param_size,
2194
int callee_locals_size,
2195
bool is_top_frame,
2196
int& monitor_size,
2197
int& full_frame_words) {
2198
int extra_locals_size = callee_locals_size - callee_param_size;
2199
monitor_size = (sizeof(BasicObjectLock) * moncount) / wordSize;
2200
full_frame_words = size_activation_helper(extra_locals_size, max_stack, monitor_size);
2201
int short_frame_words = size_activation_helper(extra_locals_size, max_stack, monitor_size);
2202
int frame_words = is_top_frame ? full_frame_words : short_frame_words;
2203
2204
return frame_words;
2205
}
2206
2207
int AbstractInterpreter::size_activation(int max_stack,
2208
int tempcount,
2209
int extra_args,
2210
int moncount,
2211
int callee_param_size,
2212
int callee_locals_size,
2213
bool is_top_frame) {
2214
assert(extra_args == 0, "NEED TO FIX");
2215
// NOTE: return size is in words not bytes
2216
// Calculate the amount our frame will be adjust by the callee. For top frame
2217
// this is zero.
2218
2219
// NOTE: ia64 seems to do this wrong (or at least backwards) in that it
2220
// calculates the extra locals based on itself. Not what the callee does
2221
// to it. So it ignores last_frame_adjust value. Seems suspicious as far
2222
// as getting sender_sp correct.
2223
2224
int unused_monitor_size = 0;
2225
int unused_full_frame_words = 0;
2226
return frame_size_helper(max_stack, moncount, callee_param_size, callee_locals_size, is_top_frame,
2227
unused_monitor_size, unused_full_frame_words);
2228
}
2229
void AbstractInterpreter::layout_activation(Method* method,
2230
int tempcount, // Number of slots on java expression stack in use
2231
int popframe_extra_args,
2232
int moncount, // Number of active monitors
2233
int caller_actual_parameters,
2234
int callee_param_size,
2235
int callee_locals_size,
2236
frame* caller,
2237
frame* interpreter_frame,
2238
bool is_top_frame,
2239
bool is_bottom_frame) {
2240
assert(popframe_extra_args == 0, "NEED TO FIX");
2241
// NOTE this code must exactly mimic what InterpreterGenerator::generate_compute_interpreter_state()
2242
// does as far as allocating an interpreter frame.
2243
// Set up the method, locals, and monitors.
2244
// The frame interpreter_frame is guaranteed to be the right size,
2245
// as determined by a previous call to the size_activation() method.
2246
// It is also guaranteed to be walkable even though it is in a skeletal state
2247
// NOTE: tempcount is the current size of the java expression stack. For top most
2248
// frames we will allocate a full sized expression stack and not the curback
2249
// version that non-top frames have.
2250
2251
int monitor_size = 0;
2252
int full_frame_words = 0;
2253
int frame_words = frame_size_helper(method->max_stack(), moncount, callee_param_size, callee_locals_size,
2254
is_top_frame, monitor_size, full_frame_words);
2255
2256
/*
2257
We must now fill in all the pieces of the frame. This means both
2258
the interpreterState and the registers.
2259
*/
2260
2261
// MUCHO HACK
2262
2263
intptr_t* frame_bottom = interpreter_frame->sp() - (full_frame_words - frame_words);
2264
// 'interpreter_frame->sp()' is unbiased while 'frame_bottom' must be a biased value in 64bit mode.
2265
assert(((intptr_t)frame_bottom & 0xf) == 0, "SP biased in layout_activation");
2266
frame_bottom = (intptr_t*)((intptr_t)frame_bottom - STACK_BIAS);
2267
2268
/* Now fillin the interpreterState object */
2269
2270
interpreterState cur_state = (interpreterState) ((intptr_t)interpreter_frame->fp() - sizeof(BytecodeInterpreter));
2271
2272
2273
intptr_t* locals;
2274
2275
// Calculate the postion of locals[0]. This is painful because of
2276
// stack alignment (same as ia64). The problem is that we can
2277
// not compute the location of locals from fp(). fp() will account
2278
// for the extra locals but it also accounts for aligning the stack
2279
// and we can't determine if the locals[0] was misaligned but max_locals
2280
// was enough to have the
2281
// calculate postion of locals. fp already accounts for extra locals.
2282
// +2 for the static long no_params() issue.
2283
2284
if (caller->is_interpreted_frame()) {
2285
// locals must agree with the caller because it will be used to set the
2286
// caller's tos when we return.
2287
interpreterState prev = caller->get_interpreterState();
2288
// stack() is prepushed.
2289
locals = prev->stack() + method->size_of_parameters();
2290
} else {
2291
// Lay out locals block in the caller adjacent to the register window save area.
2292
//
2293
// Compiled frames do not allocate a varargs area which is why this if
2294
// statement is needed.
2295
//
2296
intptr_t* fp = interpreter_frame->fp();
2297
int local_words = method->max_locals() * Interpreter::stackElementWords;
2298
2299
if (caller->is_compiled_frame()) {
2300
locals = fp + frame::register_save_words + local_words - 1;
2301
} else {
2302
locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
2303
}
2304
2305
}
2306
// END MUCHO HACK
2307
2308
intptr_t* monitor_base = (intptr_t*) cur_state;
2309
intptr_t* stack_base = monitor_base - monitor_size;
2310
/* +1 because stack is always prepushed */
2311
intptr_t* stack = stack_base - (tempcount + 1);
2312
2313
2314
BytecodeInterpreter::layout_interpreterState(cur_state,
2315
caller,
2316
interpreter_frame,
2317
method,
2318
locals,
2319
stack,
2320
stack_base,
2321
monitor_base,
2322
frame_bottom,
2323
is_top_frame);
2324
2325
BytecodeInterpreter::pd_layout_interpreterState(cur_state, interpreter_return_address, interpreter_frame->fp());
2326
}
2327
2328
#endif // CC_INTERP
2329
2330