Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/cpu/sparc/vm/interp_masm_sparc.cpp
32285 views
1
/*
2
* Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "interp_masm_sparc.hpp"
27
#include "interpreter/interpreter.hpp"
28
#include "interpreter/interpreterRuntime.hpp"
29
#include "oops/arrayOop.hpp"
30
#include "oops/markOop.hpp"
31
#include "oops/methodData.hpp"
32
#include "oops/method.hpp"
33
#include "oops/methodCounters.hpp"
34
#include "prims/jvmtiExport.hpp"
35
#include "prims/jvmtiRedefineClassesTrace.hpp"
36
#include "prims/jvmtiThreadState.hpp"
37
#include "runtime/basicLock.hpp"
38
#include "runtime/biasedLocking.hpp"
39
#include "runtime/sharedRuntime.hpp"
40
#include "runtime/thread.inline.hpp"
41
42
#ifndef CC_INTERP
43
#ifndef FAST_DISPATCH
44
#define FAST_DISPATCH 1
45
#endif
46
#undef FAST_DISPATCH
47
48
// Implementation of InterpreterMacroAssembler
49
50
// This file specializes the assember with interpreter-specific macros
51
52
const Address InterpreterMacroAssembler::l_tmp(FP, (frame::interpreter_frame_l_scratch_fp_offset * wordSize) + STACK_BIAS);
53
const Address InterpreterMacroAssembler::d_tmp(FP, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
54
55
#else // CC_INTERP
56
#ifndef STATE
57
#define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
58
#endif // STATE
59
60
#endif // CC_INTERP
61
62
void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
63
// Note: this algorithm is also used by C1's OSR entry sequence.
64
// Any changes should also be applied to CodeEmitter::emit_osr_entry().
65
assert_different_registers(args_size, locals_size);
66
// max_locals*2 for TAGS. Assumes that args_size has already been adjusted.
67
subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
68
// Use br/mov combination because it works on both V8 and V9 and is
69
// faster.
70
Label skip_move;
71
br(Assembler::negative, true, Assembler::pt, skip_move);
72
delayed()->mov(G0, delta);
73
bind(skip_move);
74
round_to(delta, WordsPerLong); // make multiple of 2 (SP must be 2-word aligned)
75
sll(delta, LogBytesPerWord, delta); // extra space for locals in bytes
76
}
77
78
#ifndef CC_INTERP
79
80
// Dispatch code executed in the prolog of a bytecode which does not do it's
81
// own dispatch. The dispatch address is computed and placed in IdispatchAddress
82
void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
83
assert_not_delayed();
84
#ifdef FAST_DISPATCH
85
// FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
86
// they both use I2.
87
assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
88
ldub(Lbcp, bcp_incr, Lbyte_code); // load next bytecode
89
add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
90
// add offset to correct dispatch table
91
sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
92
ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
93
#else
94
ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
95
// dispatch table to use
96
AddressLiteral tbl(Interpreter::dispatch_table(state));
97
sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
98
set(tbl, G3_scratch); // compute addr of table
99
ld_ptr(G3_scratch, Lbyte_code, IdispatchAddress); // get entry addr
100
#endif
101
}
102
103
104
// Dispatch code executed in the epilog of a bytecode which does not do it's
105
// own dispatch. The dispatch address in IdispatchAddress is used for the
106
// dispatch.
107
void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
108
assert_not_delayed();
109
verify_FPU(1, state);
110
interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
111
jmp( IdispatchAddress, 0 );
112
if (bcp_incr != 0) delayed()->inc(Lbcp, bcp_incr);
113
else delayed()->nop();
114
}
115
116
117
void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
118
// %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
119
assert_not_delayed();
120
ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
121
dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
122
}
123
124
125
void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
126
// %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
127
assert_not_delayed();
128
ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
129
dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
130
}
131
132
133
void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
134
// load current bytecode
135
assert_not_delayed();
136
ldub( Lbcp, 0, Lbyte_code); // load next bytecode
137
dispatch_base(state, table);
138
}
139
140
141
void InterpreterMacroAssembler::call_VM_leaf_base(
142
Register java_thread,
143
address entry_point,
144
int number_of_arguments
145
) {
146
if (!java_thread->is_valid())
147
java_thread = L7_thread_cache;
148
// super call
149
MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
150
}
151
152
153
void InterpreterMacroAssembler::call_VM_base(
154
Register oop_result,
155
Register java_thread,
156
Register last_java_sp,
157
address entry_point,
158
int number_of_arguments,
159
bool check_exception
160
) {
161
if (!java_thread->is_valid())
162
java_thread = L7_thread_cache;
163
// See class ThreadInVMfromInterpreter, which assumes that the interpreter
164
// takes responsibility for setting its own thread-state on call-out.
165
// However, ThreadInVMfromInterpreter resets the state to "in_Java".
166
167
//save_bcp(); // save bcp
168
MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
169
//restore_bcp(); // restore bcp
170
//restore_locals(); // restore locals pointer
171
}
172
173
174
void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
175
if (JvmtiExport::can_pop_frame()) {
176
Label L;
177
178
// Check the "pending popframe condition" flag in the current thread
179
ld(G2_thread, JavaThread::popframe_condition_offset(), scratch_reg);
180
181
// Initiate popframe handling only if it is not already being processed. If the flag
182
// has the popframe_processing bit set, it means that this code is called *during* popframe
183
// handling - we don't want to reenter.
184
btst(JavaThread::popframe_pending_bit, scratch_reg);
185
br(zero, false, pt, L);
186
delayed()->nop();
187
btst(JavaThread::popframe_processing_bit, scratch_reg);
188
br(notZero, false, pt, L);
189
delayed()->nop();
190
191
// Call Interpreter::remove_activation_preserving_args_entry() to get the
192
// address of the same-named entrypoint in the generated interpreter code.
193
call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
194
195
// Jump to Interpreter::_remove_activation_preserving_args_entry
196
jmpl(O0, G0, G0);
197
delayed()->nop();
198
bind(L);
199
}
200
}
201
202
203
void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
204
Register thr_state = G4_scratch;
205
ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
206
const Address tos_addr(thr_state, JvmtiThreadState::earlyret_tos_offset());
207
const Address oop_addr(thr_state, JvmtiThreadState::earlyret_oop_offset());
208
const Address val_addr(thr_state, JvmtiThreadState::earlyret_value_offset());
209
switch (state) {
210
case ltos: ld_long(val_addr, Otos_l); break;
211
case atos: ld_ptr(oop_addr, Otos_l);
212
st_ptr(G0, oop_addr); break;
213
case btos: // fall through
214
case ztos: // fall through
215
case ctos: // fall through
216
case stos: // fall through
217
case itos: ld(val_addr, Otos_l1); break;
218
case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
219
case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
220
case vtos: /* nothing to do */ break;
221
default : ShouldNotReachHere();
222
}
223
// Clean up tos value in the jvmti thread state
224
or3(G0, ilgl, G3_scratch);
225
stw(G3_scratch, tos_addr);
226
st_long(G0, val_addr);
227
interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
228
}
229
230
231
void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
232
if (JvmtiExport::can_force_early_return()) {
233
Label L;
234
Register thr_state = G3_scratch;
235
ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
236
br_null_short(thr_state, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
237
238
// Initiate earlyret handling only if it is not already being processed.
239
// If the flag has the earlyret_processing bit set, it means that this code
240
// is called *during* earlyret handling - we don't want to reenter.
241
ld(thr_state, JvmtiThreadState::earlyret_state_offset(), G4_scratch);
242
cmp_and_br_short(G4_scratch, JvmtiThreadState::earlyret_pending, Assembler::notEqual, pt, L);
243
244
// Call Interpreter::remove_activation_early_entry() to get the address of the
245
// same-named entrypoint in the generated interpreter code
246
ld(thr_state, JvmtiThreadState::earlyret_tos_offset(), Otos_l1);
247
call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
248
249
// Jump to Interpreter::_remove_activation_early_entry
250
jmpl(O0, G0, G0);
251
delayed()->nop();
252
bind(L);
253
}
254
}
255
256
257
void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
258
mov(arg_1, O0);
259
mov(arg_2, O1);
260
MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 2);
261
}
262
#endif /* CC_INTERP */
263
264
265
#ifndef CC_INTERP
266
267
void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
268
assert_not_delayed();
269
dispatch_Lbyte_code(state, table);
270
}
271
272
273
void InterpreterMacroAssembler::dispatch_normal(TosState state) {
274
dispatch_base(state, Interpreter::normal_table(state));
275
}
276
277
278
void InterpreterMacroAssembler::dispatch_only(TosState state) {
279
dispatch_base(state, Interpreter::dispatch_table(state));
280
}
281
282
283
// common code to dispatch and dispatch_only
284
// dispatch value in Lbyte_code and increment Lbcp
285
286
void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
287
verify_FPU(1, state);
288
// %%%%% maybe implement +VerifyActivationFrameSize here
289
//verify_thread(); //too slow; we will just verify on method entry & exit
290
if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
291
#ifdef FAST_DISPATCH
292
if (table == Interpreter::dispatch_table(state)) {
293
// use IdispatchTables
294
add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
295
// add offset to correct dispatch table
296
sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
297
ld_ptr(IdispatchTables, Lbyte_code, G3_scratch); // get entry addr
298
} else {
299
#endif
300
// dispatch table to use
301
AddressLiteral tbl(table);
302
sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
303
set(tbl, G3_scratch); // compute addr of table
304
ld_ptr(G3_scratch, Lbyte_code, G3_scratch); // get entry addr
305
#ifdef FAST_DISPATCH
306
}
307
#endif
308
jmp( G3_scratch, 0 );
309
if (bcp_incr != 0) delayed()->inc(Lbcp, bcp_incr);
310
else delayed()->nop();
311
}
312
313
314
// Helpers for expression stack
315
316
// Longs and doubles are Category 2 computational types in the
317
// JVM specification (section 3.11.1) and take 2 expression stack or
318
// local slots.
319
// Aligning them on 32 bit with tagged stacks is hard because the code generated
320
// for the dup* bytecodes depends on what types are already on the stack.
321
// If the types are split into the two stack/local slots, that is much easier
322
// (and we can use 0 for non-reference tags).
323
324
// Known good alignment in _LP64 but unknown otherwise
325
void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
326
assert_not_delayed();
327
328
#ifdef _LP64
329
ldf(FloatRegisterImpl::D, r1, offset, d);
330
#else
331
ldf(FloatRegisterImpl::S, r1, offset, d);
332
ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize, d->successor());
333
#endif
334
}
335
336
// Known good alignment in _LP64 but unknown otherwise
337
void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
338
assert_not_delayed();
339
340
#ifdef _LP64
341
stf(FloatRegisterImpl::D, d, r1, offset);
342
// store something more useful here
343
debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
344
#else
345
stf(FloatRegisterImpl::S, d, r1, offset);
346
stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize);
347
#endif
348
}
349
350
351
// Known good alignment in _LP64 but unknown otherwise
352
void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
353
assert_not_delayed();
354
#ifdef _LP64
355
ldx(r1, offset, rd);
356
#else
357
ld(r1, offset, rd);
358
ld(r1, offset + Interpreter::stackElementSize, rd->successor());
359
#endif
360
}
361
362
// Known good alignment in _LP64 but unknown otherwise
363
void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
364
assert_not_delayed();
365
366
#ifdef _LP64
367
stx(l, r1, offset);
368
// store something more useful here
369
debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
370
#else
371
st(l, r1, offset);
372
st(l->successor(), r1, offset + Interpreter::stackElementSize);
373
#endif
374
}
375
376
void InterpreterMacroAssembler::pop_i(Register r) {
377
assert_not_delayed();
378
ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
379
inc(Lesp, Interpreter::stackElementSize);
380
debug_only(verify_esp(Lesp));
381
}
382
383
void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
384
assert_not_delayed();
385
ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
386
inc(Lesp, Interpreter::stackElementSize);
387
debug_only(verify_esp(Lesp));
388
}
389
390
void InterpreterMacroAssembler::pop_l(Register r) {
391
assert_not_delayed();
392
load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
393
inc(Lesp, 2*Interpreter::stackElementSize);
394
debug_only(verify_esp(Lesp));
395
}
396
397
398
void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
399
assert_not_delayed();
400
ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
401
inc(Lesp, Interpreter::stackElementSize);
402
debug_only(verify_esp(Lesp));
403
}
404
405
406
void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
407
assert_not_delayed();
408
load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
409
inc(Lesp, 2*Interpreter::stackElementSize);
410
debug_only(verify_esp(Lesp));
411
}
412
413
414
void InterpreterMacroAssembler::push_i(Register r) {
415
assert_not_delayed();
416
debug_only(verify_esp(Lesp));
417
st(r, Lesp, 0);
418
dec(Lesp, Interpreter::stackElementSize);
419
}
420
421
void InterpreterMacroAssembler::push_ptr(Register r) {
422
assert_not_delayed();
423
st_ptr(r, Lesp, 0);
424
dec(Lesp, Interpreter::stackElementSize);
425
}
426
427
// remember: our convention for longs in SPARC is:
428
// O0 (Otos_l1) has high-order part in first word,
429
// O1 (Otos_l2) has low-order part in second word
430
431
void InterpreterMacroAssembler::push_l(Register r) {
432
assert_not_delayed();
433
debug_only(verify_esp(Lesp));
434
// Longs are stored in memory-correct order, even if unaligned.
435
int offset = -Interpreter::stackElementSize;
436
store_unaligned_long(r, Lesp, offset);
437
dec(Lesp, 2 * Interpreter::stackElementSize);
438
}
439
440
441
void InterpreterMacroAssembler::push_f(FloatRegister f) {
442
assert_not_delayed();
443
debug_only(verify_esp(Lesp));
444
stf(FloatRegisterImpl::S, f, Lesp, 0);
445
dec(Lesp, Interpreter::stackElementSize);
446
}
447
448
449
void InterpreterMacroAssembler::push_d(FloatRegister d) {
450
assert_not_delayed();
451
debug_only(verify_esp(Lesp));
452
// Longs are stored in memory-correct order, even if unaligned.
453
int offset = -Interpreter::stackElementSize;
454
store_unaligned_double(d, Lesp, offset);
455
dec(Lesp, 2 * Interpreter::stackElementSize);
456
}
457
458
459
void InterpreterMacroAssembler::push(TosState state) {
460
interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
461
switch (state) {
462
case atos: push_ptr(); break;
463
case btos: // fall through
464
case ztos: // fall through
465
case ctos: // fall through
466
case stos: // fall through
467
case itos: push_i(); break;
468
case ltos: push_l(); break;
469
case ftos: push_f(); break;
470
case dtos: push_d(); break;
471
case vtos: /* nothing to do */ break;
472
default : ShouldNotReachHere();
473
}
474
}
475
476
477
void InterpreterMacroAssembler::pop(TosState state) {
478
switch (state) {
479
case atos: pop_ptr(); break;
480
case btos: // fall through
481
case ztos: // fall through
482
case ctos: // fall through
483
case stos: // fall through
484
case itos: pop_i(); break;
485
case ltos: pop_l(); break;
486
case ftos: pop_f(); break;
487
case dtos: pop_d(); break;
488
case vtos: /* nothing to do */ break;
489
default : ShouldNotReachHere();
490
}
491
interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
492
}
493
494
495
// Helpers for swap and dup
496
void InterpreterMacroAssembler::load_ptr(int n, Register val) {
497
ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
498
}
499
void InterpreterMacroAssembler::store_ptr(int n, Register val) {
500
st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
501
}
502
503
504
void InterpreterMacroAssembler::load_receiver(Register param_count,
505
Register recv) {
506
sll(param_count, Interpreter::logStackElementSize, param_count);
507
ld_ptr(Lesp, param_count, recv); // gets receiver oop
508
}
509
510
void InterpreterMacroAssembler::empty_expression_stack() {
511
// Reset Lesp.
512
sub( Lmonitors, wordSize, Lesp );
513
514
// Reset SP by subtracting more space from Lesp.
515
Label done;
516
assert(G4_scratch != Gframe_size, "Only you can prevent register aliasing!");
517
518
// A native does not need to do this, since its callee does not change SP.
519
ld(Lmethod, Method::access_flags_offset(), Gframe_size); // Load access flags.
520
btst(JVM_ACC_NATIVE, Gframe_size);
521
br(Assembler::notZero, false, Assembler::pt, done);
522
delayed()->nop();
523
524
// Compute max expression stack+register save area
525
ld_ptr(Lmethod, in_bytes(Method::const_offset()), Gframe_size);
526
lduh(Gframe_size, in_bytes(ConstMethod::max_stack_offset()), Gframe_size); // Load max stack.
527
add(Gframe_size, frame::memory_parameter_word_sp_offset+Method::extra_stack_entries(), Gframe_size );
528
529
//
530
// now set up a stack frame with the size computed above
531
//
532
//round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
533
sll( Gframe_size, LogBytesPerWord, Gframe_size );
534
sub( Lesp, Gframe_size, Gframe_size );
535
and3( Gframe_size, -(2 * wordSize), Gframe_size ); // align SP (downwards) to an 8/16-byte boundary
536
debug_only(verify_sp(Gframe_size, G4_scratch));
537
#ifdef _LP64
538
sub(Gframe_size, STACK_BIAS, Gframe_size );
539
#endif
540
mov(Gframe_size, SP);
541
542
bind(done);
543
}
544
545
546
#ifdef ASSERT
547
void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
548
Label Bad, OK;
549
550
// Saved SP must be aligned.
551
#ifdef _LP64
552
btst(2*BytesPerWord-1, Rsp);
553
#else
554
btst(LongAlignmentMask, Rsp);
555
#endif
556
br(Assembler::notZero, false, Assembler::pn, Bad);
557
delayed()->nop();
558
559
// Saved SP, plus register window size, must not be above FP.
560
add(Rsp, frame::register_save_words * wordSize, Rtemp);
561
#ifdef _LP64
562
sub(Rtemp, STACK_BIAS, Rtemp); // Bias Rtemp before cmp to FP
563
#endif
564
cmp_and_brx_short(Rtemp, FP, Assembler::greaterUnsigned, Assembler::pn, Bad);
565
566
// Saved SP must not be ridiculously below current SP.
567
size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
568
set(maxstack, Rtemp);
569
sub(SP, Rtemp, Rtemp);
570
#ifdef _LP64
571
add(Rtemp, STACK_BIAS, Rtemp); // Unbias Rtemp before cmp to Rsp
572
#endif
573
cmp_and_brx_short(Rsp, Rtemp, Assembler::lessUnsigned, Assembler::pn, Bad);
574
575
ba_short(OK);
576
577
bind(Bad);
578
stop("on return to interpreted call, restored SP is corrupted");
579
580
bind(OK);
581
}
582
583
584
void InterpreterMacroAssembler::verify_esp(Register Resp) {
585
// about to read or write Resp[0]
586
// make sure it is not in the monitors or the register save area
587
Label OK1, OK2;
588
589
cmp(Resp, Lmonitors);
590
brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
591
delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
592
stop("too many pops: Lesp points into monitor area");
593
bind(OK1);
594
#ifdef _LP64
595
sub(Resp, STACK_BIAS, Resp);
596
#endif
597
cmp(Resp, SP);
598
brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
599
delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
600
stop("too many pushes: Lesp points into register window");
601
bind(OK2);
602
}
603
#endif // ASSERT
604
605
// Load compiled (i2c) or interpreter entry when calling from interpreted and
606
// do the call. Centralized so that all interpreter calls will do the same actions.
607
// If jvmti single stepping is on for a thread we must not call compiled code.
608
void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
609
610
// Assume we want to go compiled if available
611
612
ld_ptr(G5_method, in_bytes(Method::from_interpreted_offset()), target);
613
614
if (JvmtiExport::can_post_interpreter_events()) {
615
// JVMTI events, such as single-stepping, are implemented partly by avoiding running
616
// compiled code in threads for which the event is enabled. Check here for
617
// interp_only_mode if these events CAN be enabled.
618
verify_thread();
619
Label skip_compiled_code;
620
621
const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
622
ld(interp_only, scratch);
623
cmp_zero_and_br(Assembler::notZero, scratch, skip_compiled_code, true, Assembler::pn);
624
delayed()->ld_ptr(G5_method, in_bytes(Method::interpreter_entry_offset()), target);
625
bind(skip_compiled_code);
626
}
627
628
// the i2c_adapters need Method* in G5_method (right? %%%)
629
// do the call
630
#ifdef ASSERT
631
{
632
Label ok;
633
br_notnull_short(target, Assembler::pt, ok);
634
stop("null entry point");
635
bind(ok);
636
}
637
#endif // ASSERT
638
639
// Adjust Rret first so Llast_SP can be same as Rret
640
add(Rret, -frame::pc_return_offset, O7);
641
add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
642
// Record SP so we can remove any stack space allocated by adapter transition
643
jmp(target, 0);
644
delayed()->mov(SP, Llast_SP);
645
}
646
647
void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
648
assert_not_delayed();
649
650
Label not_taken;
651
if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
652
else br (cc, false, Assembler::pn, not_taken);
653
delayed()->nop();
654
655
TemplateTable::branch(false,false);
656
657
bind(not_taken);
658
659
profile_not_taken_branch(G3_scratch);
660
}
661
662
663
void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
664
int bcp_offset,
665
Register Rtmp,
666
Register Rdst,
667
signedOrNot is_signed,
668
setCCOrNot should_set_CC ) {
669
assert(Rtmp != Rdst, "need separate temp register");
670
assert_not_delayed();
671
switch (is_signed) {
672
default: ShouldNotReachHere();
673
674
case Signed: ldsb( Lbcp, bcp_offset, Rdst ); break; // high byte
675
case Unsigned: ldub( Lbcp, bcp_offset, Rdst ); break; // high byte
676
}
677
ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
678
sll( Rdst, BitsPerByte, Rdst);
679
switch (should_set_CC ) {
680
default: ShouldNotReachHere();
681
682
case set_CC: orcc( Rdst, Rtmp, Rdst ); break;
683
case dont_set_CC: or3( Rdst, Rtmp, Rdst ); break;
684
}
685
}
686
687
688
void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
689
int bcp_offset,
690
Register Rtmp,
691
Register Rdst,
692
setCCOrNot should_set_CC ) {
693
assert(Rtmp != Rdst, "need separate temp register");
694
assert_not_delayed();
695
add( Lbcp, bcp_offset, Rtmp);
696
andcc( Rtmp, 3, G0);
697
Label aligned;
698
switch (should_set_CC ) {
699
default: ShouldNotReachHere();
700
701
case set_CC: break;
702
case dont_set_CC: break;
703
}
704
705
br(Assembler::zero, true, Assembler::pn, aligned);
706
#ifdef _LP64
707
delayed()->ldsw(Rtmp, 0, Rdst);
708
#else
709
delayed()->ld(Rtmp, 0, Rdst);
710
#endif
711
712
ldub(Lbcp, bcp_offset + 3, Rdst);
713
ldub(Lbcp, bcp_offset + 2, Rtmp); sll(Rtmp, 8, Rtmp); or3(Rtmp, Rdst, Rdst);
714
ldub(Lbcp, bcp_offset + 1, Rtmp); sll(Rtmp, 16, Rtmp); or3(Rtmp, Rdst, Rdst);
715
#ifdef _LP64
716
ldsb(Lbcp, bcp_offset + 0, Rtmp); sll(Rtmp, 24, Rtmp);
717
#else
718
// Unsigned load is faster than signed on some implementations
719
ldub(Lbcp, bcp_offset + 0, Rtmp); sll(Rtmp, 24, Rtmp);
720
#endif
721
or3(Rtmp, Rdst, Rdst );
722
723
bind(aligned);
724
if (should_set_CC == set_CC) tst(Rdst);
725
}
726
727
void InterpreterMacroAssembler::get_cache_index_at_bcp(Register temp, Register index,
728
int bcp_offset, size_t index_size) {
729
assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
730
if (index_size == sizeof(u2)) {
731
get_2_byte_integer_at_bcp(bcp_offset, temp, index, Unsigned);
732
} else if (index_size == sizeof(u4)) {
733
assert(EnableInvokeDynamic, "giant index used only for JSR 292");
734
get_4_byte_integer_at_bcp(bcp_offset, temp, index);
735
assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
736
xor3(index, -1, index); // convert to plain index
737
} else if (index_size == sizeof(u1)) {
738
ldub(Lbcp, bcp_offset, index);
739
} else {
740
ShouldNotReachHere();
741
}
742
}
743
744
745
void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp,
746
int bcp_offset, size_t index_size) {
747
assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
748
assert_different_registers(cache, tmp);
749
assert_not_delayed();
750
get_cache_index_at_bcp(cache, tmp, bcp_offset, index_size);
751
// convert from field index to ConstantPoolCacheEntry index and from
752
// word index to byte offset
753
sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
754
add(LcpoolCache, tmp, cache);
755
}
756
757
758
void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
759
Register temp,
760
Register bytecode,
761
int byte_no,
762
int bcp_offset,
763
size_t index_size) {
764
get_cache_and_index_at_bcp(cache, temp, bcp_offset, index_size);
765
ld_ptr(cache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset(), bytecode);
766
const int shift_count = (1 + byte_no) * BitsPerByte;
767
assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
768
(byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
769
"correct shift count");
770
srl(bytecode, shift_count, bytecode);
771
assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
772
and3(bytecode, ConstantPoolCacheEntry::bytecode_1_mask, bytecode);
773
}
774
775
776
void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
777
int bcp_offset, size_t index_size) {
778
assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
779
assert_different_registers(cache, tmp);
780
assert_not_delayed();
781
if (index_size == sizeof(u2)) {
782
get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
783
} else {
784
ShouldNotReachHere(); // other sizes not supported here
785
}
786
// convert from field index to ConstantPoolCacheEntry index
787
// and from word index to byte offset
788
sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
789
// skip past the header
790
add(tmp, in_bytes(ConstantPoolCache::base_offset()), tmp);
791
// construct pointer to cache entry
792
add(LcpoolCache, tmp, cache);
793
}
794
795
796
// Load object from cpool->resolved_references(index)
797
void InterpreterMacroAssembler::load_resolved_reference_at_index(
798
Register result, Register index) {
799
assert_different_registers(result, index);
800
assert_not_delayed();
801
// convert from field index to resolved_references() index and from
802
// word index to byte offset. Since this is a java object, it can be compressed
803
Register tmp = index; // reuse
804
sll(index, LogBytesPerHeapOop, tmp);
805
get_constant_pool(result);
806
// load pointer for resolved_references[] objArray
807
ld_ptr(result, ConstantPool::resolved_references_offset_in_bytes(), result);
808
// JNIHandles::resolve(result)
809
ld_ptr(result, 0, result);
810
// Add in the index
811
add(result, tmp, result);
812
load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result);
813
}
814
815
816
// Generate a subtype check: branch to ok_is_subtype if sub_klass is
817
// a subtype of super_klass. Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
818
void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
819
Register Rsuper_klass,
820
Register Rtmp1,
821
Register Rtmp2,
822
Register Rtmp3,
823
Label &ok_is_subtype ) {
824
Label not_subtype;
825
826
// Profile the not-null value's klass.
827
profile_typecheck(Rsub_klass, Rtmp1);
828
829
check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass,
830
Rtmp1, Rtmp2,
831
&ok_is_subtype, &not_subtype, NULL);
832
833
check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass,
834
Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg,
835
&ok_is_subtype, NULL);
836
837
bind(not_subtype);
838
profile_typecheck_failed(Rtmp1);
839
}
840
841
// Separate these two to allow for delay slot in middle
842
// These are used to do a test and full jump to exception-throwing code.
843
844
// %%%%% Could possibly reoptimize this by testing to see if could use
845
// a single conditional branch (i.e. if span is small enough.
846
// If you go that route, than get rid of the split and give up
847
// on the delay-slot hack.
848
849
void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
850
Label& ok ) {
851
assert_not_delayed();
852
br(ok_condition, true, pt, ok);
853
// DELAY SLOT
854
}
855
856
void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
857
Label& ok ) {
858
assert_not_delayed();
859
bp( ok_condition, true, Assembler::xcc, pt, ok);
860
// DELAY SLOT
861
}
862
863
void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
864
Label& ok ) {
865
assert_not_delayed();
866
brx(ok_condition, true, pt, ok);
867
// DELAY SLOT
868
}
869
870
void InterpreterMacroAssembler::throw_if_not_2( address throw_entry_point,
871
Register Rscratch,
872
Label& ok ) {
873
assert(throw_entry_point != NULL, "entry point must be generated by now");
874
AddressLiteral dest(throw_entry_point);
875
jump_to(dest, Rscratch);
876
delayed()->nop();
877
bind(ok);
878
}
879
880
881
// And if you cannot use the delay slot, here is a shorthand:
882
883
void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
884
address throw_entry_point,
885
Register Rscratch ) {
886
Label ok;
887
if (ok_condition != never) {
888
throw_if_not_1_icc( ok_condition, ok);
889
delayed()->nop();
890
}
891
throw_if_not_2( throw_entry_point, Rscratch, ok);
892
}
893
void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
894
address throw_entry_point,
895
Register Rscratch ) {
896
Label ok;
897
if (ok_condition != never) {
898
throw_if_not_1_xcc( ok_condition, ok);
899
delayed()->nop();
900
}
901
throw_if_not_2( throw_entry_point, Rscratch, ok);
902
}
903
void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
904
address throw_entry_point,
905
Register Rscratch ) {
906
Label ok;
907
if (ok_condition != never) {
908
throw_if_not_1_x( ok_condition, ok);
909
delayed()->nop();
910
}
911
throw_if_not_2( throw_entry_point, Rscratch, ok);
912
}
913
914
// Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
915
// Note: res is still shy of address by array offset into object.
916
917
void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
918
assert_not_delayed();
919
920
verify_oop(array);
921
#ifdef _LP64
922
// sign extend since tos (index) can be a 32bit value
923
sra(index, G0, index);
924
#endif // _LP64
925
926
// check array
927
Label ptr_ok;
928
tst(array);
929
throw_if_not_1_x( notZero, ptr_ok );
930
delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
931
throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
932
933
Label index_ok;
934
cmp(index, tmp);
935
throw_if_not_1_icc( lessUnsigned, index_ok );
936
if (index_shift > 0) delayed()->sll(index, index_shift, index);
937
else delayed()->add(array, index, res); // addr - const offset in index
938
// convention: move aberrant index into G3_scratch for exception message
939
mov(index, G3_scratch);
940
throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
941
942
// add offset if didn't do it in delay slot
943
if (index_shift > 0) add(array, index, res); // addr - const offset in index
944
}
945
946
947
void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
948
assert_not_delayed();
949
950
// pop array
951
pop_ptr(array);
952
953
// check array
954
index_check_without_pop(array, index, index_shift, tmp, res);
955
}
956
957
958
void InterpreterMacroAssembler::get_const(Register Rdst) {
959
ld_ptr(Lmethod, in_bytes(Method::const_offset()), Rdst);
960
}
961
962
963
void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
964
get_const(Rdst);
965
ld_ptr(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst);
966
}
967
968
969
void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
970
get_constant_pool(Rdst);
971
ld_ptr(Rdst, ConstantPool::cache_offset_in_bytes(), Rdst);
972
}
973
974
975
void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
976
get_constant_pool(Rcpool);
977
ld_ptr(Rcpool, ConstantPool::tags_offset_in_bytes(), Rtags);
978
}
979
980
981
// unlock if synchronized method
982
//
983
// Unlock the receiver if this is a synchronized method.
984
// Unlock any Java monitors from syncronized blocks.
985
//
986
// If there are locked Java monitors
987
// If throw_monitor_exception
988
// throws IllegalMonitorStateException
989
// Else if install_monitor_exception
990
// installs IllegalMonitorStateException
991
// Else
992
// no error processing
993
void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
994
bool throw_monitor_exception,
995
bool install_monitor_exception) {
996
Label unlocked, unlock, no_unlock;
997
998
// get the value of _do_not_unlock_if_synchronized into G1_scratch
999
const Address do_not_unlock_if_synchronized(G2_thread,
1000
JavaThread::do_not_unlock_if_synchronized_offset());
1001
ldbool(do_not_unlock_if_synchronized, G1_scratch);
1002
stbool(G0, do_not_unlock_if_synchronized); // reset the flag
1003
1004
// check if synchronized method
1005
const Address access_flags(Lmethod, Method::access_flags_offset());
1006
interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1007
push(state); // save tos
1008
ld(access_flags, G3_scratch); // Load access flags.
1009
btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
1010
br(zero, false, pt, unlocked);
1011
delayed()->nop();
1012
1013
// Don't unlock anything if the _do_not_unlock_if_synchronized flag
1014
// is set.
1015
cmp_zero_and_br(Assembler::notZero, G1_scratch, no_unlock);
1016
delayed()->nop();
1017
1018
// BasicObjectLock will be first in list, since this is a synchronized method. However, need
1019
// to check that the object has not been unlocked by an explicit monitorexit bytecode.
1020
1021
//Intel: if (throw_monitor_exception) ... else ...
1022
// Entry already unlocked, need to throw exception
1023
//...
1024
1025
// pass top-most monitor elem
1026
add( top_most_monitor(), O1 );
1027
1028
ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
1029
br_notnull_short(G3_scratch, pt, unlock);
1030
1031
if (throw_monitor_exception) {
1032
// Entry already unlocked need to throw an exception
1033
MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1034
should_not_reach_here();
1035
} else {
1036
// Monitor already unlocked during a stack unroll.
1037
// If requested, install an illegal_monitor_state_exception.
1038
// Continue with stack unrolling.
1039
if (install_monitor_exception) {
1040
MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
1041
}
1042
ba_short(unlocked);
1043
}
1044
1045
bind(unlock);
1046
1047
unlock_object(O1);
1048
1049
bind(unlocked);
1050
1051
// I0, I1: Might contain return value
1052
1053
// Check that all monitors are unlocked
1054
{ Label loop, exception, entry, restart;
1055
1056
Register Rmptr = O0;
1057
Register Rtemp = O1;
1058
Register Rlimit = Lmonitors;
1059
const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
1060
assert( (delta & LongAlignmentMask) == 0,
1061
"sizeof BasicObjectLock must be even number of doublewords");
1062
1063
#ifdef ASSERT
1064
add(top_most_monitor(), Rmptr, delta);
1065
{ Label L;
1066
// ensure that Rmptr starts out above (or at) Rlimit
1067
cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
1068
stop("monitor stack has negative size");
1069
bind(L);
1070
}
1071
#endif
1072
bind(restart);
1073
ba(entry);
1074
delayed()->
1075
add(top_most_monitor(), Rmptr, delta); // points to current entry, starting with bottom-most entry
1076
1077
// Entry is still locked, need to throw exception
1078
bind(exception);
1079
if (throw_monitor_exception) {
1080
MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1081
should_not_reach_here();
1082
} else {
1083
// Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
1084
// Unlock does not block, so don't have to worry about the frame
1085
unlock_object(Rmptr);
1086
if (install_monitor_exception) {
1087
MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
1088
}
1089
ba_short(restart);
1090
}
1091
1092
bind(loop);
1093
cmp(Rtemp, G0); // check if current entry is used
1094
brx(Assembler::notEqual, false, pn, exception);
1095
delayed()->
1096
dec(Rmptr, delta); // otherwise advance to next entry
1097
#ifdef ASSERT
1098
{ Label L;
1099
// ensure that Rmptr has not somehow stepped below Rlimit
1100
cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
1101
stop("ran off the end of the monitor stack");
1102
bind(L);
1103
}
1104
#endif
1105
bind(entry);
1106
cmp(Rmptr, Rlimit); // check if bottom reached
1107
brx(Assembler::notEqual, true, pn, loop); // if not at bottom then check this entry
1108
delayed()->
1109
ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
1110
}
1111
1112
bind(no_unlock);
1113
pop(state);
1114
interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1115
}
1116
1117
void InterpreterMacroAssembler::narrow(Register result) {
1118
1119
ld_ptr(Address(Lmethod, Method::const_offset()), G3_scratch);
1120
ldub(G3_scratch, in_bytes(ConstMethod::result_type_offset()), G3_scratch);
1121
1122
Label notBool, notByte, notChar, done;
1123
1124
// common case first
1125
cmp(G3_scratch, T_INT);
1126
br(Assembler::equal, true, pn, done);
1127
delayed()->nop();
1128
1129
cmp(G3_scratch, T_BOOLEAN);
1130
br(Assembler::notEqual, true, pn, notBool);
1131
delayed()->cmp(G3_scratch, T_BYTE);
1132
and3(result, 1, result);
1133
ba(done);
1134
delayed()->nop();
1135
1136
bind(notBool);
1137
// cmp(G3_scratch, T_BYTE);
1138
br(Assembler::notEqual, true, pn, notByte);
1139
delayed()->cmp(G3_scratch, T_CHAR);
1140
sll(result, 24, result);
1141
sra(result, 24, result);
1142
ba(done);
1143
delayed()->nop();
1144
1145
bind(notByte);
1146
// cmp(G3_scratch, T_CHAR);
1147
sll(result, 16, result);
1148
br(Assembler::notEqual, true, pn, done);
1149
delayed()->sra(result, 16, result);
1150
// sll(result, 16, result);
1151
srl(result, 16, result);
1152
1153
// bind(notChar);
1154
// must be short, instructions already executed in delay slot
1155
// sll(result, 16, result);
1156
// sra(result, 16, result);
1157
1158
bind(done);
1159
}
1160
1161
// remove activation
1162
//
1163
// Unlock the receiver if this is a synchronized method.
1164
// Unlock any Java monitors from syncronized blocks.
1165
// Remove the activation from the stack.
1166
//
1167
// If there are locked Java monitors
1168
// If throw_monitor_exception
1169
// throws IllegalMonitorStateException
1170
// Else if install_monitor_exception
1171
// installs IllegalMonitorStateException
1172
// Else
1173
// no error processing
1174
void InterpreterMacroAssembler::remove_activation(TosState state,
1175
bool throw_monitor_exception,
1176
bool install_monitor_exception) {
1177
1178
unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
1179
1180
// save result (push state before jvmti call and pop it afterwards) and notify jvmti
1181
notify_method_exit(false, state, NotifyJVMTI);
1182
1183
interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1184
verify_thread();
1185
1186
// return tos
1187
assert(Otos_l1 == Otos_i, "adjust code below");
1188
switch (state) {
1189
#ifdef _LP64
1190
case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
1191
#else
1192
case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through // O1 -> I1
1193
#endif
1194
case btos: // fall through
1195
case ztos: // fall through
1196
case ctos:
1197
case stos: // fall through
1198
case atos: // fall through
1199
case itos: mov(Otos_l1, Otos_l1->after_save()); break; // O0 -> I0
1200
case ftos: // fall through
1201
case dtos: // fall through
1202
case vtos: /* nothing to do */ break;
1203
default : ShouldNotReachHere();
1204
}
1205
1206
#if defined(COMPILER2) && !defined(_LP64)
1207
if (state == ltos) {
1208
// C2 expects long results in G1 we can't tell if we're returning to interpreted
1209
// or compiled so just be safe use G1 and O0/O1
1210
1211
// Shift bits into high (msb) of G1
1212
sllx(Otos_l1->after_save(), 32, G1);
1213
// Zero extend low bits
1214
srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
1215
or3 (Otos_l2->after_save(), G1, G1);
1216
}
1217
#endif /* COMPILER2 */
1218
1219
}
1220
#endif /* CC_INTERP */
1221
1222
1223
// Lock object
1224
//
1225
// Argument - lock_reg points to the BasicObjectLock to be used for locking,
1226
// it must be initialized with the object to lock
1227
void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
1228
if (UseHeavyMonitors) {
1229
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1230
}
1231
else {
1232
Register obj_reg = Object;
1233
Register mark_reg = G4_scratch;
1234
Register temp_reg = G1_scratch;
1235
Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes());
1236
Address mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1237
Label done;
1238
1239
Label slow_case;
1240
1241
assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
1242
1243
// load markOop from object into mark_reg
1244
ld_ptr(mark_addr, mark_reg);
1245
1246
if (UseBiasedLocking) {
1247
biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
1248
}
1249
1250
// get the address of basicLock on stack that will be stored in the object
1251
// we need a temporary register here as we do not want to clobber lock_reg
1252
// (cas clobbers the destination register)
1253
mov(lock_reg, temp_reg);
1254
// set mark reg to be (markOop of object | UNLOCK_VALUE)
1255
or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
1256
// initialize the box (Must happen before we update the object mark!)
1257
st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1258
// compare and exchange object_addr, markOop | 1, stack address of basicLock
1259
assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1260
cas_ptr(mark_addr.base(), mark_reg, temp_reg);
1261
1262
// if the compare and exchange succeeded we are done (we saw an unlocked object)
1263
cmp_and_brx_short(mark_reg, temp_reg, Assembler::equal, Assembler::pt, done);
1264
1265
// We did not see an unlocked object so try the fast recursive case
1266
1267
// Check if owner is self by comparing the value in the markOop of object
1268
// with the stack pointer
1269
sub(temp_reg, SP, temp_reg);
1270
#ifdef _LP64
1271
sub(temp_reg, STACK_BIAS, temp_reg);
1272
#endif
1273
assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
1274
1275
// Composite "andcc" test:
1276
// (a) %sp -vs- markword proximity check, and,
1277
// (b) verify mark word LSBs == 0 (Stack-locked).
1278
//
1279
// FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
1280
// Note that the page size used for %sp proximity testing is arbitrary and is
1281
// unrelated to the actual MMU page size. We use a 'logical' page size of
1282
// 4096 bytes. F..FFF003 is designed to fit conveniently in the SIMM13 immediate
1283
// field of the andcc instruction.
1284
andcc (temp_reg, 0xFFFFF003, G0) ;
1285
1286
// if condition is true we are done and hence we can store 0 in the displaced
1287
// header indicating it is a recursive lock and be done
1288
brx(Assembler::zero, true, Assembler::pt, done);
1289
delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1290
1291
// none of the above fast optimizations worked so we have to get into the
1292
// slow case of monitor enter
1293
bind(slow_case);
1294
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1295
1296
bind(done);
1297
}
1298
}
1299
1300
// Unlocks an object. Used in monitorexit bytecode and remove_activation.
1301
//
1302
// Argument - lock_reg points to the BasicObjectLock for lock
1303
// Throw IllegalMonitorException if object is not locked by current thread
1304
void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1305
if (UseHeavyMonitors) {
1306
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1307
} else {
1308
Register obj_reg = G3_scratch;
1309
Register mark_reg = G4_scratch;
1310
Register displaced_header_reg = G1_scratch;
1311
Address lockobj_addr(lock_reg, BasicObjectLock::obj_offset_in_bytes());
1312
Address mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1313
Label done;
1314
1315
if (UseBiasedLocking) {
1316
// load the object out of the BasicObjectLock
1317
ld_ptr(lockobj_addr, obj_reg);
1318
biased_locking_exit(mark_addr, mark_reg, done, true);
1319
st_ptr(G0, lockobj_addr); // free entry
1320
}
1321
1322
// Test first if we are in the fast recursive case
1323
Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes());
1324
ld_ptr(lock_addr, displaced_header_reg);
1325
br_null(displaced_header_reg, true, Assembler::pn, done);
1326
delayed()->st_ptr(G0, lockobj_addr); // free entry
1327
1328
// See if it is still a light weight lock, if so we just unlock
1329
// the object and we are done
1330
1331
if (!UseBiasedLocking) {
1332
// load the object out of the BasicObjectLock
1333
ld_ptr(lockobj_addr, obj_reg);
1334
}
1335
1336
// we have the displaced header in displaced_header_reg
1337
// we expect to see the stack address of the basicLock in case the
1338
// lock is still a light weight lock (lock_reg)
1339
assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1340
cas_ptr(mark_addr.base(), lock_reg, displaced_header_reg);
1341
cmp(lock_reg, displaced_header_reg);
1342
brx(Assembler::equal, true, Assembler::pn, done);
1343
delayed()->st_ptr(G0, lockobj_addr); // free entry
1344
1345
// The lock has been converted into a heavy lock and hence
1346
// we need to get into the slow case
1347
1348
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1349
1350
bind(done);
1351
}
1352
}
1353
1354
#ifndef CC_INTERP
1355
1356
// Get the method data pointer from the Method* and set the
1357
// specified register to its value.
1358
1359
void InterpreterMacroAssembler::set_method_data_pointer() {
1360
assert(ProfileInterpreter, "must be profiling interpreter");
1361
Label get_continue;
1362
1363
ld_ptr(Lmethod, in_bytes(Method::method_data_offset()), ImethodDataPtr);
1364
test_method_data_pointer(get_continue);
1365
add(ImethodDataPtr, in_bytes(MethodData::data_offset()), ImethodDataPtr);
1366
bind(get_continue);
1367
}
1368
1369
// Set the method data pointer for the current bcp.
1370
1371
void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1372
assert(ProfileInterpreter, "must be profiling interpreter");
1373
Label zero_continue;
1374
1375
// Test MDO to avoid the call if it is NULL.
1376
ld_ptr(Lmethod, in_bytes(Method::method_data_offset()), ImethodDataPtr);
1377
test_method_data_pointer(zero_continue);
1378
call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
1379
add(ImethodDataPtr, in_bytes(MethodData::data_offset()), ImethodDataPtr);
1380
add(ImethodDataPtr, O0, ImethodDataPtr);
1381
bind(zero_continue);
1382
}
1383
1384
// Test ImethodDataPtr. If it is null, continue at the specified label
1385
1386
void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
1387
assert(ProfileInterpreter, "must be profiling interpreter");
1388
br_null_short(ImethodDataPtr, Assembler::pn, zero_continue);
1389
}
1390
1391
void InterpreterMacroAssembler::verify_method_data_pointer() {
1392
assert(ProfileInterpreter, "must be profiling interpreter");
1393
#ifdef ASSERT
1394
Label verify_continue;
1395
test_method_data_pointer(verify_continue);
1396
1397
// If the mdp is valid, it will point to a DataLayout header which is
1398
// consistent with the bcp. The converse is highly probable also.
1399
lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
1400
ld_ptr(Lmethod, Method::const_offset(), O5);
1401
add(G3_scratch, in_bytes(ConstMethod::codes_offset()), G3_scratch);
1402
add(G3_scratch, O5, G3_scratch);
1403
cmp(Lbcp, G3_scratch);
1404
brx(Assembler::equal, false, Assembler::pt, verify_continue);
1405
1406
Register temp_reg = O5;
1407
delayed()->mov(ImethodDataPtr, temp_reg);
1408
// %%% should use call_VM_leaf here?
1409
//call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
1410
save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
1411
Address d_save(FP, -sizeof(jdouble) + STACK_BIAS);
1412
stf(FloatRegisterImpl::D, Ftos_d, d_save);
1413
mov(temp_reg->after_save(), O2);
1414
save_thread(L7_thread_cache);
1415
call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
1416
delayed()->nop();
1417
restore_thread(L7_thread_cache);
1418
ldf(FloatRegisterImpl::D, d_save, Ftos_d);
1419
restore();
1420
bind(verify_continue);
1421
#endif // ASSERT
1422
}
1423
1424
void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
1425
Register Rtmp,
1426
Label &profile_continue) {
1427
assert(ProfileInterpreter, "must be profiling interpreter");
1428
// Control will flow to "profile_continue" if the counter is less than the
1429
// limit or if we call profile_method()
1430
1431
Label done;
1432
1433
// if no method data exists, and the counter is high enough, make one
1434
br_notnull_short(ImethodDataPtr, Assembler::pn, done);
1435
1436
// Test to see if we should create a method data oop
1437
AddressLiteral profile_limit((address) &InvocationCounter::InterpreterProfileLimit);
1438
sethi(profile_limit, Rtmp);
1439
ld(Rtmp, profile_limit.low10(), Rtmp);
1440
cmp(invocation_count, Rtmp);
1441
// Use long branches because call_VM() code and following code generated by
1442
// test_backedge_count_for_osr() is large in debug VM.
1443
br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
1444
delayed()->nop();
1445
1446
// Build it now.
1447
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1448
set_method_data_pointer_for_bcp();
1449
ba(profile_continue);
1450
delayed()->nop();
1451
bind(done);
1452
}
1453
1454
// Store a value at some constant offset from the method data pointer.
1455
1456
void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
1457
assert(ProfileInterpreter, "must be profiling interpreter");
1458
st_ptr(value, ImethodDataPtr, constant);
1459
}
1460
1461
void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
1462
Register bumped_count,
1463
bool decrement) {
1464
assert(ProfileInterpreter, "must be profiling interpreter");
1465
1466
// Load the counter.
1467
ld_ptr(counter, bumped_count);
1468
1469
if (decrement) {
1470
// Decrement the register. Set condition codes.
1471
subcc(bumped_count, DataLayout::counter_increment, bumped_count);
1472
1473
// If the decrement causes the counter to overflow, stay negative
1474
Label L;
1475
brx(Assembler::negative, true, Assembler::pn, L);
1476
1477
// Store the decremented counter, if it is still negative.
1478
delayed()->st_ptr(bumped_count, counter);
1479
bind(L);
1480
} else {
1481
// Increment the register. Set carry flag.
1482
addcc(bumped_count, DataLayout::counter_increment, bumped_count);
1483
1484
// If the increment causes the counter to overflow, pull back by 1.
1485
assert(DataLayout::counter_increment == 1, "subc works");
1486
subc(bumped_count, G0, bumped_count);
1487
1488
// Store the incremented counter.
1489
st_ptr(bumped_count, counter);
1490
}
1491
}
1492
1493
// Increment the value at some constant offset from the method data pointer.
1494
1495
void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
1496
Register bumped_count,
1497
bool decrement) {
1498
// Locate the counter at a fixed offset from the mdp:
1499
Address counter(ImethodDataPtr, constant);
1500
increment_mdp_data_at(counter, bumped_count, decrement);
1501
}
1502
1503
// Increment the value at some non-fixed (reg + constant) offset from
1504
// the method data pointer.
1505
1506
void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
1507
int constant,
1508
Register bumped_count,
1509
Register scratch2,
1510
bool decrement) {
1511
// Add the constant to reg to get the offset.
1512
add(ImethodDataPtr, reg, scratch2);
1513
Address counter(scratch2, constant);
1514
increment_mdp_data_at(counter, bumped_count, decrement);
1515
}
1516
1517
// Set a flag value at the current method data pointer position.
1518
// Updates a single byte of the header, to avoid races with other header bits.
1519
1520
void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
1521
Register scratch) {
1522
assert(ProfileInterpreter, "must be profiling interpreter");
1523
// Load the data header
1524
ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
1525
1526
// Set the flag
1527
or3(scratch, flag_constant, scratch);
1528
1529
// Store the modified header.
1530
stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
1531
}
1532
1533
// Test the location at some offset from the method data pointer.
1534
// If it is not equal to value, branch to the not_equal_continue Label.
1535
// Set condition codes to match the nullness of the loaded value.
1536
1537
void InterpreterMacroAssembler::test_mdp_data_at(int offset,
1538
Register value,
1539
Label& not_equal_continue,
1540
Register scratch) {
1541
assert(ProfileInterpreter, "must be profiling interpreter");
1542
ld_ptr(ImethodDataPtr, offset, scratch);
1543
cmp(value, scratch);
1544
brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
1545
delayed()->tst(scratch);
1546
}
1547
1548
// Update the method data pointer by the displacement located at some fixed
1549
// offset from the method data pointer.
1550
1551
void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
1552
Register scratch) {
1553
assert(ProfileInterpreter, "must be profiling interpreter");
1554
ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
1555
add(ImethodDataPtr, scratch, ImethodDataPtr);
1556
}
1557
1558
// Update the method data pointer by the displacement located at the
1559
// offset (reg + offset_of_disp).
1560
1561
void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
1562
int offset_of_disp,
1563
Register scratch) {
1564
assert(ProfileInterpreter, "must be profiling interpreter");
1565
add(reg, offset_of_disp, scratch);
1566
ld_ptr(ImethodDataPtr, scratch, scratch);
1567
add(ImethodDataPtr, scratch, ImethodDataPtr);
1568
}
1569
1570
// Update the method data pointer by a simple constant displacement.
1571
1572
void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
1573
assert(ProfileInterpreter, "must be profiling interpreter");
1574
add(ImethodDataPtr, constant, ImethodDataPtr);
1575
}
1576
1577
// Update the method data pointer for a _ret bytecode whose target
1578
// was not among our cached targets.
1579
1580
void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
1581
Register return_bci) {
1582
assert(ProfileInterpreter, "must be profiling interpreter");
1583
push(state);
1584
st_ptr(return_bci, l_tmp); // protect return_bci, in case it is volatile
1585
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
1586
ld_ptr(l_tmp, return_bci);
1587
pop(state);
1588
}
1589
1590
// Count a taken branch in the bytecodes.
1591
1592
void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
1593
if (ProfileInterpreter) {
1594
Label profile_continue;
1595
1596
// If no method data exists, go to profile_continue.
1597
test_method_data_pointer(profile_continue);
1598
1599
// We are taking a branch. Increment the taken count.
1600
increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
1601
1602
// The method data pointer needs to be updated to reflect the new target.
1603
update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
1604
bind (profile_continue);
1605
}
1606
}
1607
1608
1609
// Count a not-taken branch in the bytecodes.
1610
1611
void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
1612
if (ProfileInterpreter) {
1613
Label profile_continue;
1614
1615
// If no method data exists, go to profile_continue.
1616
test_method_data_pointer(profile_continue);
1617
1618
// We are taking a branch. Increment the not taken count.
1619
increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
1620
1621
// The method data pointer needs to be updated to correspond to the
1622
// next bytecode.
1623
update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
1624
bind (profile_continue);
1625
}
1626
}
1627
1628
1629
// Count a non-virtual call in the bytecodes.
1630
1631
void InterpreterMacroAssembler::profile_call(Register scratch) {
1632
if (ProfileInterpreter) {
1633
Label profile_continue;
1634
1635
// If no method data exists, go to profile_continue.
1636
test_method_data_pointer(profile_continue);
1637
1638
// We are making a call. Increment the count.
1639
increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1640
1641
// The method data pointer needs to be updated to reflect the new target.
1642
update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
1643
bind (profile_continue);
1644
}
1645
}
1646
1647
1648
// Count a final call in the bytecodes.
1649
1650
void InterpreterMacroAssembler::profile_final_call(Register scratch) {
1651
if (ProfileInterpreter) {
1652
Label profile_continue;
1653
1654
// If no method data exists, go to profile_continue.
1655
test_method_data_pointer(profile_continue);
1656
1657
// We are making a call. Increment the count.
1658
increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1659
1660
// The method data pointer needs to be updated to reflect the new target.
1661
update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1662
bind (profile_continue);
1663
}
1664
}
1665
1666
1667
// Count a virtual call in the bytecodes.
1668
1669
void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1670
Register scratch,
1671
bool receiver_can_be_null) {
1672
if (ProfileInterpreter) {
1673
Label profile_continue;
1674
1675
// If no method data exists, go to profile_continue.
1676
test_method_data_pointer(profile_continue);
1677
1678
1679
Label skip_receiver_profile;
1680
if (receiver_can_be_null) {
1681
Label not_null;
1682
br_notnull_short(receiver, Assembler::pt, not_null);
1683
// We are making a call. Increment the count for null receiver.
1684
increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1685
ba_short(skip_receiver_profile);
1686
bind(not_null);
1687
}
1688
1689
// Record the receiver type.
1690
record_klass_in_profile(receiver, scratch, true);
1691
bind(skip_receiver_profile);
1692
1693
// The method data pointer needs to be updated to reflect the new target.
1694
update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1695
bind (profile_continue);
1696
}
1697
}
1698
1699
void InterpreterMacroAssembler::record_klass_in_profile_helper(
1700
Register receiver, Register scratch,
1701
int start_row, Label& done, bool is_virtual_call) {
1702
if (TypeProfileWidth == 0) {
1703
if (is_virtual_call) {
1704
increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1705
}
1706
return;
1707
}
1708
1709
int last_row = VirtualCallData::row_limit() - 1;
1710
assert(start_row <= last_row, "must be work left to do");
1711
// Test this row for both the receiver and for null.
1712
// Take any of three different outcomes:
1713
// 1. found receiver => increment count and goto done
1714
// 2. found null => keep looking for case 1, maybe allocate this cell
1715
// 3. found something else => keep looking for cases 1 and 2
1716
// Case 3 is handled by a recursive call.
1717
for (int row = start_row; row <= last_row; row++) {
1718
Label next_test;
1719
bool test_for_null_also = (row == start_row);
1720
1721
// See if the receiver is receiver[n].
1722
int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1723
test_mdp_data_at(recvr_offset, receiver, next_test, scratch);
1724
// delayed()->tst(scratch);
1725
1726
// The receiver is receiver[n]. Increment count[n].
1727
int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1728
increment_mdp_data_at(count_offset, scratch);
1729
ba_short(done);
1730
bind(next_test);
1731
1732
if (test_for_null_also) {
1733
Label found_null;
1734
// Failed the equality check on receiver[n]... Test for null.
1735
if (start_row == last_row) {
1736
// The only thing left to do is handle the null case.
1737
if (is_virtual_call) {
1738
brx(Assembler::zero, false, Assembler::pn, found_null);
1739
delayed()->nop();
1740
// Receiver did not match any saved receiver and there is no empty row for it.
1741
// Increment total counter to indicate polymorphic case.
1742
increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1743
ba_short(done);
1744
bind(found_null);
1745
} else {
1746
brx(Assembler::notZero, false, Assembler::pt, done);
1747
delayed()->nop();
1748
}
1749
break;
1750
}
1751
// Since null is rare, make it be the branch-taken case.
1752
brx(Assembler::zero, false, Assembler::pn, found_null);
1753
delayed()->nop();
1754
1755
// Put all the "Case 3" tests here.
1756
record_klass_in_profile_helper(receiver, scratch, start_row + 1, done, is_virtual_call);
1757
1758
// Found a null. Keep searching for a matching receiver,
1759
// but remember that this is an empty (unused) slot.
1760
bind(found_null);
1761
}
1762
}
1763
1764
// In the fall-through case, we found no matching receiver, but we
1765
// observed the receiver[start_row] is NULL.
1766
1767
// Fill in the receiver field and increment the count.
1768
int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1769
set_mdp_data_at(recvr_offset, receiver);
1770
int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1771
mov(DataLayout::counter_increment, scratch);
1772
set_mdp_data_at(count_offset, scratch);
1773
if (start_row > 0) {
1774
ba_short(done);
1775
}
1776
}
1777
1778
void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1779
Register scratch, bool is_virtual_call) {
1780
assert(ProfileInterpreter, "must be profiling");
1781
Label done;
1782
1783
record_klass_in_profile_helper(receiver, scratch, 0, done, is_virtual_call);
1784
1785
bind (done);
1786
}
1787
1788
1789
// Count a ret in the bytecodes.
1790
1791
void InterpreterMacroAssembler::profile_ret(TosState state,
1792
Register return_bci,
1793
Register scratch) {
1794
if (ProfileInterpreter) {
1795
Label profile_continue;
1796
uint row;
1797
1798
// If no method data exists, go to profile_continue.
1799
test_method_data_pointer(profile_continue);
1800
1801
// Update the total ret count.
1802
increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1803
1804
for (row = 0; row < RetData::row_limit(); row++) {
1805
Label next_test;
1806
1807
// See if return_bci is equal to bci[n]:
1808
test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
1809
return_bci, next_test, scratch);
1810
1811
// return_bci is equal to bci[n]. Increment the count.
1812
increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
1813
1814
// The method data pointer needs to be updated to reflect the new target.
1815
update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
1816
ba_short(profile_continue);
1817
bind(next_test);
1818
}
1819
1820
update_mdp_for_ret(state, return_bci);
1821
1822
bind (profile_continue);
1823
}
1824
}
1825
1826
// Profile an unexpected null in the bytecodes.
1827
void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
1828
if (ProfileInterpreter) {
1829
Label profile_continue;
1830
1831
// If no method data exists, go to profile_continue.
1832
test_method_data_pointer(profile_continue);
1833
1834
set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
1835
1836
// The method data pointer needs to be updated.
1837
int mdp_delta = in_bytes(BitData::bit_data_size());
1838
if (TypeProfileCasts) {
1839
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1840
}
1841
update_mdp_by_constant(mdp_delta);
1842
1843
bind (profile_continue);
1844
}
1845
}
1846
1847
void InterpreterMacroAssembler::profile_typecheck(Register klass,
1848
Register scratch) {
1849
if (ProfileInterpreter) {
1850
Label profile_continue;
1851
1852
// If no method data exists, go to profile_continue.
1853
test_method_data_pointer(profile_continue);
1854
1855
int mdp_delta = in_bytes(BitData::bit_data_size());
1856
if (TypeProfileCasts) {
1857
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1858
1859
// Record the object type.
1860
record_klass_in_profile(klass, scratch, false);
1861
}
1862
1863
// The method data pointer needs to be updated.
1864
update_mdp_by_constant(mdp_delta);
1865
1866
bind (profile_continue);
1867
}
1868
}
1869
1870
void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
1871
if (ProfileInterpreter && TypeProfileCasts) {
1872
Label profile_continue;
1873
1874
// If no method data exists, go to profile_continue.
1875
test_method_data_pointer(profile_continue);
1876
1877
int count_offset = in_bytes(CounterData::count_offset());
1878
// Back up the address, since we have already bumped the mdp.
1879
count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1880
1881
// *Decrement* the counter. We expect to see zero or small negatives.
1882
increment_mdp_data_at(count_offset, scratch, true);
1883
1884
bind (profile_continue);
1885
}
1886
}
1887
1888
// Count the default case of a switch construct.
1889
1890
void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
1891
if (ProfileInterpreter) {
1892
Label profile_continue;
1893
1894
// If no method data exists, go to profile_continue.
1895
test_method_data_pointer(profile_continue);
1896
1897
// Update the default case count
1898
increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
1899
scratch);
1900
1901
// The method data pointer needs to be updated.
1902
update_mdp_by_offset(
1903
in_bytes(MultiBranchData::default_displacement_offset()),
1904
scratch);
1905
1906
bind (profile_continue);
1907
}
1908
}
1909
1910
// Count the index'th case of a switch construct.
1911
1912
void InterpreterMacroAssembler::profile_switch_case(Register index,
1913
Register scratch,
1914
Register scratch2,
1915
Register scratch3) {
1916
if (ProfileInterpreter) {
1917
Label profile_continue;
1918
1919
// If no method data exists, go to profile_continue.
1920
test_method_data_pointer(profile_continue);
1921
1922
// Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
1923
set(in_bytes(MultiBranchData::per_case_size()), scratch);
1924
smul(index, scratch, scratch);
1925
add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
1926
1927
// Update the case count
1928
increment_mdp_data_at(scratch,
1929
in_bytes(MultiBranchData::relative_count_offset()),
1930
scratch2,
1931
scratch3);
1932
1933
// The method data pointer needs to be updated.
1934
update_mdp_by_offset(scratch,
1935
in_bytes(MultiBranchData::relative_displacement_offset()),
1936
scratch2);
1937
1938
bind (profile_continue);
1939
}
1940
}
1941
1942
void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr, Register tmp) {
1943
Label not_null, do_nothing, do_update;
1944
1945
assert_different_registers(obj, mdo_addr.base(), tmp);
1946
1947
verify_oop(obj);
1948
1949
ld_ptr(mdo_addr, tmp);
1950
1951
br_notnull_short(obj, pt, not_null);
1952
or3(tmp, TypeEntries::null_seen, tmp);
1953
ba_short(do_update);
1954
1955
bind(not_null);
1956
load_klass(obj, obj);
1957
1958
xor3(obj, tmp, obj);
1959
btst(TypeEntries::type_klass_mask, obj);
1960
// klass seen before, nothing to do. The unknown bit may have been
1961
// set already but no need to check.
1962
brx(zero, false, pt, do_nothing);
1963
delayed()->
1964
1965
btst(TypeEntries::type_unknown, obj);
1966
// already unknown. Nothing to do anymore.
1967
brx(notZero, false, pt, do_nothing);
1968
delayed()->
1969
1970
btst(TypeEntries::type_mask, tmp);
1971
brx(zero, true, pt, do_update);
1972
// first time here. Set profile type.
1973
delayed()->or3(tmp, obj, tmp);
1974
1975
// different than before. Cannot keep accurate profile.
1976
or3(tmp, TypeEntries::type_unknown, tmp);
1977
1978
bind(do_update);
1979
// update profile
1980
st_ptr(tmp, mdo_addr);
1981
1982
bind(do_nothing);
1983
}
1984
1985
void InterpreterMacroAssembler::profile_arguments_type(Register callee, Register tmp1, Register tmp2, bool is_virtual) {
1986
if (!ProfileInterpreter) {
1987
return;
1988
}
1989
1990
assert_different_registers(callee, tmp1, tmp2, ImethodDataPtr);
1991
1992
if (MethodData::profile_arguments() || MethodData::profile_return()) {
1993
Label profile_continue;
1994
1995
test_method_data_pointer(profile_continue);
1996
1997
int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1998
1999
ldub(ImethodDataPtr, in_bytes(DataLayout::tag_offset()) - off_to_start, tmp1);
2000
cmp_and_br_short(tmp1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag, notEqual, pn, profile_continue);
2001
2002
if (MethodData::profile_arguments()) {
2003
Label done;
2004
int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
2005
add(ImethodDataPtr, off_to_args, ImethodDataPtr);
2006
2007
for (int i = 0; i < TypeProfileArgsLimit; i++) {
2008
if (i > 0 || MethodData::profile_return()) {
2009
// If return value type is profiled we may have no argument to profile
2010
ld_ptr(ImethodDataPtr, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, tmp1);
2011
sub(tmp1, i*TypeStackSlotEntries::per_arg_count(), tmp1);
2012
cmp_and_br_short(tmp1, TypeStackSlotEntries::per_arg_count(), less, pn, done);
2013
}
2014
ld_ptr(Address(callee, Method::const_offset()), tmp1);
2015
lduh(Address(tmp1, ConstMethod::size_of_parameters_offset()), tmp1);
2016
// stack offset o (zero based) from the start of the argument
2017
// list, for n arguments translates into offset n - o - 1 from
2018
// the end of the argument list. But there's an extra slot at
2019
// the stop of the stack. So the offset is n - o from Lesp.
2020
ld_ptr(ImethodDataPtr, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args, tmp2);
2021
sub(tmp1, tmp2, tmp1);
2022
2023
// Can't use MacroAssembler::argument_address() which needs Gargs to be set up
2024
sll(tmp1, Interpreter::logStackElementSize, tmp1);
2025
ld_ptr(Lesp, tmp1, tmp1);
2026
2027
Address mdo_arg_addr(ImethodDataPtr, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
2028
profile_obj_type(tmp1, mdo_arg_addr, tmp2);
2029
2030
int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
2031
add(ImethodDataPtr, to_add, ImethodDataPtr);
2032
off_to_args += to_add;
2033
}
2034
2035
if (MethodData::profile_return()) {
2036
ld_ptr(ImethodDataPtr, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, tmp1);
2037
sub(tmp1, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count(), tmp1);
2038
}
2039
2040
bind(done);
2041
2042
if (MethodData::profile_return()) {
2043
// We're right after the type profile for the last
2044
// argument. tmp1 is the number of cells left in the
2045
// CallTypeData/VirtualCallTypeData to reach its end. Non null
2046
// if there's a return to profile.
2047
assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
2048
sll(tmp1, exact_log2(DataLayout::cell_size), tmp1);
2049
add(ImethodDataPtr, tmp1, ImethodDataPtr);
2050
}
2051
} else {
2052
assert(MethodData::profile_return(), "either profile call args or call ret");
2053
update_mdp_by_constant(in_bytes(TypeEntriesAtCall::return_only_size()));
2054
}
2055
2056
// mdp points right after the end of the
2057
// CallTypeData/VirtualCallTypeData, right after the cells for the
2058
// return value type if there's one.
2059
2060
bind(profile_continue);
2061
}
2062
}
2063
2064
void InterpreterMacroAssembler::profile_return_type(Register ret, Register tmp1, Register tmp2) {
2065
assert_different_registers(ret, tmp1, tmp2);
2066
if (ProfileInterpreter && MethodData::profile_return()) {
2067
Label profile_continue, done;
2068
2069
test_method_data_pointer(profile_continue);
2070
2071
if (MethodData::profile_return_jsr292_only()) {
2072
// If we don't profile all invoke bytecodes we must make sure
2073
// it's a bytecode we indeed profile. We can't go back to the
2074
// begining of the ProfileData we intend to update to check its
2075
// type because we're right after it and we don't known its
2076
// length.
2077
Label do_profile;
2078
ldub(Lbcp, 0, tmp1);
2079
cmp_and_br_short(tmp1, Bytecodes::_invokedynamic, equal, pn, do_profile);
2080
cmp(tmp1, Bytecodes::_invokehandle);
2081
br(equal, false, pn, do_profile);
2082
delayed()->ldub(Lmethod, Method::intrinsic_id_offset_in_bytes(), tmp1);
2083
cmp_and_br_short(tmp1, vmIntrinsics::_compiledLambdaForm, notEqual, pt, profile_continue);
2084
2085
bind(do_profile);
2086
}
2087
2088
Address mdo_ret_addr(ImethodDataPtr, -in_bytes(ReturnTypeEntry::size()));
2089
mov(ret, tmp1);
2090
profile_obj_type(tmp1, mdo_ret_addr, tmp2);
2091
2092
bind(profile_continue);
2093
}
2094
}
2095
2096
void InterpreterMacroAssembler::profile_parameters_type(Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
2097
if (ProfileInterpreter && MethodData::profile_parameters()) {
2098
Label profile_continue, done;
2099
2100
test_method_data_pointer(profile_continue);
2101
2102
// Load the offset of the area within the MDO used for
2103
// parameters. If it's negative we're not profiling any parameters.
2104
lduw(ImethodDataPtr, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()), tmp1);
2105
cmp_and_br_short(tmp1, 0, less, pn, profile_continue);
2106
2107
// Compute a pointer to the area for parameters from the offset
2108
// and move the pointer to the slot for the last
2109
// parameters. Collect profiling from last parameter down.
2110
// mdo start + parameters offset + array length - 1
2111
2112
// Pointer to the parameter area in the MDO
2113
Register mdp = tmp1;
2114
add(ImethodDataPtr, tmp1, mdp);
2115
2116
// offset of the current profile entry to update
2117
Register entry_offset = tmp2;
2118
// entry_offset = array len in number of cells
2119
ld_ptr(mdp, ArrayData::array_len_offset(), entry_offset);
2120
2121
int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
2122
assert(off_base % DataLayout::cell_size == 0, "should be a number of cells");
2123
2124
// entry_offset (number of cells) = array len - size of 1 entry + offset of the stack slot field
2125
sub(entry_offset, TypeStackSlotEntries::per_arg_count() - (off_base / DataLayout::cell_size), entry_offset);
2126
// entry_offset in bytes
2127
sll(entry_offset, exact_log2(DataLayout::cell_size), entry_offset);
2128
2129
Label loop;
2130
bind(loop);
2131
2132
// load offset on the stack from the slot for this parameter
2133
ld_ptr(mdp, entry_offset, tmp3);
2134
sll(tmp3,Interpreter::logStackElementSize, tmp3);
2135
neg(tmp3);
2136
// read the parameter from the local area
2137
ld_ptr(Llocals, tmp3, tmp3);
2138
2139
// make entry_offset now point to the type field for this parameter
2140
int type_base = in_bytes(ParametersTypeData::type_offset(0));
2141
assert(type_base > off_base, "unexpected");
2142
add(entry_offset, type_base - off_base, entry_offset);
2143
2144
// profile the parameter
2145
Address arg_type(mdp, entry_offset);
2146
profile_obj_type(tmp3, arg_type, tmp4);
2147
2148
// go to next parameter
2149
sub(entry_offset, TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size + (type_base - off_base), entry_offset);
2150
cmp_and_br_short(entry_offset, off_base, greaterEqual, pt, loop);
2151
2152
bind(profile_continue);
2153
}
2154
}
2155
2156
// add a InterpMonitorElem to stack (see frame_sparc.hpp)
2157
2158
void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
2159
Register Rtemp,
2160
Register Rtemp2 ) {
2161
2162
Register Rlimit = Lmonitors;
2163
const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
2164
assert( (delta & LongAlignmentMask) == 0,
2165
"sizeof BasicObjectLock must be even number of doublewords");
2166
2167
sub( SP, delta, SP);
2168
sub( Lesp, delta, Lesp);
2169
sub( Lmonitors, delta, Lmonitors);
2170
2171
if (!stack_is_empty) {
2172
2173
// must copy stack contents down
2174
2175
Label start_copying, next;
2176
2177
// untested("monitor stack expansion");
2178
compute_stack_base(Rtemp);
2179
ba(start_copying);
2180
delayed()->cmp(Rtemp, Rlimit); // done? duplicated below
2181
2182
// note: must copy from low memory upwards
2183
// On entry to loop,
2184
// Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
2185
// Loop mutates Rtemp
2186
2187
bind( next);
2188
2189
st_ptr(Rtemp2, Rtemp, 0);
2190
inc(Rtemp, wordSize);
2191
cmp(Rtemp, Rlimit); // are we done? (duplicated above)
2192
2193
bind( start_copying );
2194
2195
brx( notEqual, true, pn, next );
2196
delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
2197
2198
// done copying stack
2199
}
2200
}
2201
2202
// Locals
2203
void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
2204
assert_not_delayed();
2205
sll(index, Interpreter::logStackElementSize, index);
2206
sub(Llocals, index, index);
2207
ld_ptr(index, 0, dst);
2208
// Note: index must hold the effective address--the iinc template uses it
2209
}
2210
2211
// Just like access_local_ptr but the tag is a returnAddress
2212
void InterpreterMacroAssembler::access_local_returnAddress(Register index,
2213
Register dst ) {
2214
assert_not_delayed();
2215
sll(index, Interpreter::logStackElementSize, index);
2216
sub(Llocals, index, index);
2217
ld_ptr(index, 0, dst);
2218
}
2219
2220
void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
2221
assert_not_delayed();
2222
sll(index, Interpreter::logStackElementSize, index);
2223
sub(Llocals, index, index);
2224
ld(index, 0, dst);
2225
// Note: index must hold the effective address--the iinc template uses it
2226
}
2227
2228
2229
void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
2230
assert_not_delayed();
2231
sll(index, Interpreter::logStackElementSize, index);
2232
sub(Llocals, index, index);
2233
// First half stored at index n+1 (which grows down from Llocals[n])
2234
load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
2235
}
2236
2237
2238
void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
2239
assert_not_delayed();
2240
sll(index, Interpreter::logStackElementSize, index);
2241
sub(Llocals, index, index);
2242
ldf(FloatRegisterImpl::S, index, 0, dst);
2243
}
2244
2245
2246
void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
2247
assert_not_delayed();
2248
sll(index, Interpreter::logStackElementSize, index);
2249
sub(Llocals, index, index);
2250
load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
2251
}
2252
2253
2254
#ifdef ASSERT
2255
void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
2256
Label L;
2257
2258
assert(Rindex != Rscratch, "Registers cannot be same");
2259
assert(Rindex != Rscratch1, "Registers cannot be same");
2260
assert(Rlimit != Rscratch, "Registers cannot be same");
2261
assert(Rlimit != Rscratch1, "Registers cannot be same");
2262
assert(Rscratch1 != Rscratch, "Registers cannot be same");
2263
2264
// untested("reg area corruption");
2265
add(Rindex, offset, Rscratch);
2266
add(Rlimit, 64 + STACK_BIAS, Rscratch1);
2267
cmp_and_brx_short(Rscratch, Rscratch1, Assembler::greaterEqualUnsigned, pn, L);
2268
stop("regsave area is being clobbered");
2269
bind(L);
2270
}
2271
#endif // ASSERT
2272
2273
2274
void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
2275
assert_not_delayed();
2276
sll(index, Interpreter::logStackElementSize, index);
2277
sub(Llocals, index, index);
2278
debug_only(check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);)
2279
st(src, index, 0);
2280
}
2281
2282
void InterpreterMacroAssembler::store_local_ptr( Register index, Register src ) {
2283
assert_not_delayed();
2284
sll(index, Interpreter::logStackElementSize, index);
2285
sub(Llocals, index, index);
2286
#ifdef ASSERT
2287
check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
2288
#endif
2289
st_ptr(src, index, 0);
2290
}
2291
2292
2293
2294
void InterpreterMacroAssembler::store_local_ptr( int n, Register src ) {
2295
st_ptr(src, Llocals, Interpreter::local_offset_in_bytes(n));
2296
}
2297
2298
void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
2299
assert_not_delayed();
2300
sll(index, Interpreter::logStackElementSize, index);
2301
sub(Llocals, index, index);
2302
#ifdef ASSERT
2303
check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2304
#endif
2305
store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
2306
}
2307
2308
2309
void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
2310
assert_not_delayed();
2311
sll(index, Interpreter::logStackElementSize, index);
2312
sub(Llocals, index, index);
2313
#ifdef ASSERT
2314
check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
2315
#endif
2316
stf(FloatRegisterImpl::S, src, index, 0);
2317
}
2318
2319
2320
void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
2321
assert_not_delayed();
2322
sll(index, Interpreter::logStackElementSize, index);
2323
sub(Llocals, index, index);
2324
#ifdef ASSERT
2325
check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2326
#endif
2327
store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
2328
}
2329
2330
2331
int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
2332
const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
2333
int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
2334
return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
2335
}
2336
2337
2338
Address InterpreterMacroAssembler::top_most_monitor() {
2339
return Address(FP, top_most_monitor_byte_offset());
2340
}
2341
2342
2343
void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
2344
add( Lesp, wordSize, Rdest );
2345
}
2346
2347
#endif /* CC_INTERP */
2348
2349
void InterpreterMacroAssembler::get_method_counters(Register method,
2350
Register Rcounters,
2351
Label& skip) {
2352
Label has_counters;
2353
Address method_counters(method, in_bytes(Method::method_counters_offset()));
2354
ld_ptr(method_counters, Rcounters);
2355
br_notnull_short(Rcounters, Assembler::pt, has_counters);
2356
call_VM(noreg, CAST_FROM_FN_PTR(address,
2357
InterpreterRuntime::build_method_counters), method);
2358
ld_ptr(method_counters, Rcounters);
2359
br_null(Rcounters, false, Assembler::pn, skip); // No MethodCounters, OutOfMemory
2360
delayed()->nop();
2361
bind(has_counters);
2362
}
2363
2364
void InterpreterMacroAssembler::increment_invocation_counter( Register Rcounters, Register Rtmp, Register Rtmp2 ) {
2365
assert(UseCompiler, "incrementing must be useful");
2366
assert_different_registers(Rcounters, Rtmp, Rtmp2);
2367
2368
Address inv_counter(Rcounters, MethodCounters::invocation_counter_offset() +
2369
InvocationCounter::counter_offset());
2370
Address be_counter (Rcounters, MethodCounters::backedge_counter_offset() +
2371
InvocationCounter::counter_offset());
2372
int delta = InvocationCounter::count_increment;
2373
2374
// Load each counter in a register
2375
ld( inv_counter, Rtmp );
2376
ld( be_counter, Rtmp2 );
2377
2378
assert( is_simm13( delta ), " delta too large.");
2379
2380
// Add the delta to the invocation counter and store the result
2381
add( Rtmp, delta, Rtmp );
2382
2383
// Mask the backedge counter
2384
and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2385
2386
// Store value
2387
st( Rtmp, inv_counter);
2388
2389
// Add invocation counter + backedge counter
2390
add( Rtmp, Rtmp2, Rtmp);
2391
2392
// Note that this macro must leave the backedge_count + invocation_count in Rtmp!
2393
}
2394
2395
void InterpreterMacroAssembler::increment_backedge_counter( Register Rcounters, Register Rtmp, Register Rtmp2 ) {
2396
assert(UseCompiler, "incrementing must be useful");
2397
assert_different_registers(Rcounters, Rtmp, Rtmp2);
2398
2399
Address be_counter (Rcounters, MethodCounters::backedge_counter_offset() +
2400
InvocationCounter::counter_offset());
2401
Address inv_counter(Rcounters, MethodCounters::invocation_counter_offset() +
2402
InvocationCounter::counter_offset());
2403
2404
int delta = InvocationCounter::count_increment;
2405
// Load each counter in a register
2406
ld( be_counter, Rtmp );
2407
ld( inv_counter, Rtmp2 );
2408
2409
// Add the delta to the backedge counter
2410
add( Rtmp, delta, Rtmp );
2411
2412
// Mask the invocation counter, add to backedge counter
2413
and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2414
2415
// and store the result to memory
2416
st( Rtmp, be_counter );
2417
2418
// Add backedge + invocation counter
2419
add( Rtmp, Rtmp2, Rtmp );
2420
2421
// Note that this macro must leave backedge_count + invocation_count in Rtmp!
2422
}
2423
2424
#ifndef CC_INTERP
2425
void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
2426
Register branch_bcp,
2427
Register Rtmp ) {
2428
Label did_not_overflow;
2429
Label overflow_with_error;
2430
assert_different_registers(backedge_count, Rtmp, branch_bcp);
2431
assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
2432
2433
AddressLiteral limit(&InvocationCounter::InterpreterBackwardBranchLimit);
2434
load_contents(limit, Rtmp);
2435
cmp_and_br_short(backedge_count, Rtmp, Assembler::lessUnsigned, Assembler::pt, did_not_overflow);
2436
2437
// When ProfileInterpreter is on, the backedge_count comes from the
2438
// MethodData*, which value does not get reset on the call to
2439
// frequency_counter_overflow(). To avoid excessive calls to the overflow
2440
// routine while the method is being compiled, add a second test to make sure
2441
// the overflow function is called only once every overflow_frequency.
2442
if (ProfileInterpreter) {
2443
const int overflow_frequency = 1024;
2444
andcc(backedge_count, overflow_frequency-1, Rtmp);
2445
brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
2446
delayed()->nop();
2447
}
2448
2449
// overflow in loop, pass branch bytecode
2450
set(6,Rtmp);
2451
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
2452
2453
// Was an OSR adapter generated?
2454
// O0 = osr nmethod
2455
br_null_short(O0, Assembler::pn, overflow_with_error);
2456
2457
// Has the nmethod been invalidated already?
2458
ld(O0, nmethod::entry_bci_offset(), O2);
2459
cmp_and_br_short(O2, InvalidOSREntryBci, Assembler::equal, Assembler::pn, overflow_with_error);
2460
2461
// migrate the interpreter frame off of the stack
2462
2463
mov(G2_thread, L7);
2464
// save nmethod
2465
mov(O0, L6);
2466
set_last_Java_frame(SP, noreg);
2467
call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
2468
reset_last_Java_frame();
2469
mov(L7, G2_thread);
2470
2471
// move OSR nmethod to I1
2472
mov(L6, I1);
2473
2474
// OSR buffer to I0
2475
mov(O0, I0);
2476
2477
// remove the interpreter frame
2478
restore(I5_savedSP, 0, SP);
2479
2480
// Jump to the osr code.
2481
ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
2482
jmp(O2, G0);
2483
delayed()->nop();
2484
2485
bind(overflow_with_error);
2486
2487
bind(did_not_overflow);
2488
}
2489
2490
2491
2492
void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
2493
if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
2494
}
2495
2496
2497
// local helper function for the verify_oop_or_return_address macro
2498
static bool verify_return_address(Method* m, int bci) {
2499
#ifndef PRODUCT
2500
address pc = (address)(m->constMethod())
2501
+ in_bytes(ConstMethod::codes_offset()) + bci;
2502
// assume it is a valid return address if it is inside m and is preceded by a jsr
2503
if (!m->contains(pc)) return false;
2504
address jsr_pc;
2505
jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
2506
if (*jsr_pc == Bytecodes::_jsr && jsr_pc >= m->code_base()) return true;
2507
jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
2508
if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base()) return true;
2509
#endif // PRODUCT
2510
return false;
2511
}
2512
2513
2514
void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
2515
if (!VerifyOops) return;
2516
// the VM documentation for the astore[_wide] bytecode allows
2517
// the TOS to be not only an oop but also a return address
2518
Label test;
2519
Label skip;
2520
// See if it is an address (in the current method):
2521
2522
mov(reg, Rtmp);
2523
const int log2_bytecode_size_limit = 16;
2524
srl(Rtmp, log2_bytecode_size_limit, Rtmp);
2525
br_notnull_short( Rtmp, pt, test );
2526
2527
// %%% should use call_VM_leaf here?
2528
save_frame_and_mov(0, Lmethod, O0, reg, O1);
2529
save_thread(L7_thread_cache);
2530
call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
2531
delayed()->nop();
2532
restore_thread(L7_thread_cache);
2533
br_notnull( O0, false, pt, skip );
2534
delayed()->restore();
2535
2536
// Perform a more elaborate out-of-line call
2537
// Not an address; verify it:
2538
bind(test);
2539
verify_oop(reg);
2540
bind(skip);
2541
}
2542
2543
2544
void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
2545
if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
2546
}
2547
#endif /* CC_INTERP */
2548
2549
// Inline assembly for:
2550
//
2551
// if (thread is in interp_only_mode) {
2552
// InterpreterRuntime::post_method_entry();
2553
// }
2554
// if (DTraceMethodProbes) {
2555
// SharedRuntime::dtrace_method_entry(method, receiver);
2556
// }
2557
// if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2558
// SharedRuntime::rc_trace_method_entry(method, receiver);
2559
// }
2560
2561
void InterpreterMacroAssembler::notify_method_entry() {
2562
2563
// C++ interpreter only uses this for native methods.
2564
2565
// Whenever JVMTI puts a thread in interp_only_mode, method
2566
// entry/exit events are sent for that thread to track stack
2567
// depth. If it is possible to enter interp_only_mode we add
2568
// the code to check if the event should be sent.
2569
if (JvmtiExport::can_post_interpreter_events()) {
2570
Label L;
2571
Register temp_reg = O5;
2572
const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
2573
ld(interp_only, temp_reg);
2574
cmp_and_br_short(temp_reg, 0, equal, pt, L);
2575
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
2576
bind(L);
2577
}
2578
2579
{
2580
Register temp_reg = O5;
2581
SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2582
call_VM_leaf(noreg,
2583
CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2584
G2_thread, Lmethod);
2585
}
2586
2587
// RedefineClasses() tracing support for obsolete method entry
2588
if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2589
call_VM_leaf(noreg,
2590
CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2591
G2_thread, Lmethod);
2592
}
2593
}
2594
2595
2596
// Inline assembly for:
2597
//
2598
// if (thread is in interp_only_mode) {
2599
// // save result
2600
// InterpreterRuntime::post_method_exit();
2601
// // restore result
2602
// }
2603
// if (DTraceMethodProbes) {
2604
// SharedRuntime::dtrace_method_exit(thread, method);
2605
// }
2606
//
2607
// Native methods have their result stored in d_tmp and l_tmp
2608
// Java methods have their result stored in the expression stack
2609
2610
void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
2611
TosState state,
2612
NotifyMethodExitMode mode) {
2613
// C++ interpreter only uses this for native methods.
2614
2615
// Whenever JVMTI puts a thread in interp_only_mode, method
2616
// entry/exit events are sent for that thread to track stack
2617
// depth. If it is possible to enter interp_only_mode we add
2618
// the code to check if the event should be sent.
2619
if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2620
Label L;
2621
Register temp_reg = O5;
2622
const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
2623
ld(interp_only, temp_reg);
2624
cmp_and_br_short(temp_reg, 0, equal, pt, L);
2625
2626
// Note: frame::interpreter_frame_result has a dependency on how the
2627
// method result is saved across the call to post_method_exit. For
2628
// native methods it assumes the result registers are saved to
2629
// l_scratch and d_scratch. If this changes then the interpreter_frame_result
2630
// implementation will need to be updated too.
2631
2632
save_return_value(state, is_native_method);
2633
call_VM(noreg,
2634
CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2635
restore_return_value(state, is_native_method);
2636
bind(L);
2637
}
2638
2639
{
2640
Register temp_reg = O5;
2641
// Dtrace notification
2642
SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2643
save_return_value(state, is_native_method);
2644
call_VM_leaf(
2645
noreg,
2646
CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2647
G2_thread, Lmethod);
2648
restore_return_value(state, is_native_method);
2649
}
2650
}
2651
2652
void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
2653
#ifdef CC_INTERP
2654
// result potentially in O0/O1: save it across calls
2655
stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
2656
#ifdef _LP64
2657
stx(O0, STATE(_native_lresult));
2658
#else
2659
std(O0, STATE(_native_lresult));
2660
#endif
2661
#else // CC_INTERP
2662
if (is_native_call) {
2663
stf(FloatRegisterImpl::D, F0, d_tmp);
2664
#ifdef _LP64
2665
stx(O0, l_tmp);
2666
#else
2667
std(O0, l_tmp);
2668
#endif
2669
} else {
2670
push(state);
2671
}
2672
#endif // CC_INTERP
2673
}
2674
2675
void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
2676
#ifdef CC_INTERP
2677
ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
2678
#ifdef _LP64
2679
ldx(STATE(_native_lresult), O0);
2680
#else
2681
ldd(STATE(_native_lresult), O0);
2682
#endif
2683
#else // CC_INTERP
2684
if (is_native_call) {
2685
ldf(FloatRegisterImpl::D, d_tmp, F0);
2686
#ifdef _LP64
2687
ldx(l_tmp, O0);
2688
#else
2689
ldd(l_tmp, O0);
2690
#endif
2691
} else {
2692
pop(state);
2693
}
2694
#endif // CC_INTERP
2695
}
2696
2697
// Jump if ((*counter_addr += increment) & mask) satisfies the condition.
2698
void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
2699
int increment, int mask,
2700
Register scratch1, Register scratch2,
2701
Condition cond, Label *where) {
2702
ld(counter_addr, scratch1);
2703
add(scratch1, increment, scratch1);
2704
if (is_simm13(mask)) {
2705
andcc(scratch1, mask, G0);
2706
} else {
2707
set(mask, scratch2);
2708
andcc(scratch1, scratch2, G0);
2709
}
2710
br(cond, false, Assembler::pn, *where);
2711
delayed()->st(scratch1, counter_addr);
2712
}
2713
2714