Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/cpu/x86/vm/assembler_x86.hpp
32285 views
1
/*
2
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#ifndef CPU_X86_VM_ASSEMBLER_X86_HPP
26
#define CPU_X86_VM_ASSEMBLER_X86_HPP
27
28
#include "asm/register.hpp"
29
30
class BiasedLockingCounters;
31
32
// Contains all the definitions needed for x86 assembly code generation.
33
34
// Calling convention
35
class Argument VALUE_OBJ_CLASS_SPEC {
36
public:
37
enum {
38
#ifdef _LP64
39
#ifdef _WIN64
40
n_int_register_parameters_c = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
41
n_float_register_parameters_c = 4, // xmm0 - xmm3 (c_farg0, c_farg1, ... )
42
#else
43
n_int_register_parameters_c = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
44
n_float_register_parameters_c = 8, // xmm0 - xmm7 (c_farg0, c_farg1, ... )
45
#endif // _WIN64
46
n_int_register_parameters_j = 6, // j_rarg0, j_rarg1, ...
47
n_float_register_parameters_j = 8 // j_farg0, j_farg1, ...
48
#else
49
n_register_parameters = 0 // 0 registers used to pass arguments
50
#endif // _LP64
51
};
52
};
53
54
55
#ifdef _LP64
56
// Symbolically name the register arguments used by the c calling convention.
57
// Windows is different from linux/solaris. So much for standards...
58
59
#ifdef _WIN64
60
61
REGISTER_DECLARATION(Register, c_rarg0, rcx);
62
REGISTER_DECLARATION(Register, c_rarg1, rdx);
63
REGISTER_DECLARATION(Register, c_rarg2, r8);
64
REGISTER_DECLARATION(Register, c_rarg3, r9);
65
66
REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
67
REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
68
REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
69
REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
70
71
#else
72
73
REGISTER_DECLARATION(Register, c_rarg0, rdi);
74
REGISTER_DECLARATION(Register, c_rarg1, rsi);
75
REGISTER_DECLARATION(Register, c_rarg2, rdx);
76
REGISTER_DECLARATION(Register, c_rarg3, rcx);
77
REGISTER_DECLARATION(Register, c_rarg4, r8);
78
REGISTER_DECLARATION(Register, c_rarg5, r9);
79
80
REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
81
REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
82
REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
83
REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
84
REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
85
REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
86
REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
87
REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
88
89
#endif // _WIN64
90
91
// Symbolically name the register arguments used by the Java calling convention.
92
// We have control over the convention for java so we can do what we please.
93
// What pleases us is to offset the java calling convention so that when
94
// we call a suitable jni method the arguments are lined up and we don't
95
// have to do little shuffling. A suitable jni method is non-static and a
96
// small number of arguments (two fewer args on windows)
97
//
98
// |-------------------------------------------------------|
99
// | c_rarg0 c_rarg1 c_rarg2 c_rarg3 c_rarg4 c_rarg5 |
100
// |-------------------------------------------------------|
101
// | rcx rdx r8 r9 rdi* rsi* | windows (* not a c_rarg)
102
// | rdi rsi rdx rcx r8 r9 | solaris/linux
103
// |-------------------------------------------------------|
104
// | j_rarg5 j_rarg0 j_rarg1 j_rarg2 j_rarg3 j_rarg4 |
105
// |-------------------------------------------------------|
106
107
REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
108
REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
109
REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
110
// Windows runs out of register args here
111
#ifdef _WIN64
112
REGISTER_DECLARATION(Register, j_rarg3, rdi);
113
REGISTER_DECLARATION(Register, j_rarg4, rsi);
114
#else
115
REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
116
REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
117
#endif /* _WIN64 */
118
REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
119
120
REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
121
REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
122
REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
123
REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
124
REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
125
REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
126
REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
127
REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
128
129
REGISTER_DECLARATION(Register, rscratch1, r10); // volatile
130
REGISTER_DECLARATION(Register, rscratch2, r11); // volatile
131
132
REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
133
REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
134
135
#else
136
// rscratch1 will apear in 32bit code that is dead but of course must compile
137
// Using noreg ensures if the dead code is incorrectly live and executed it
138
// will cause an assertion failure
139
#define rscratch1 noreg
140
#define rscratch2 noreg
141
142
#endif // _LP64
143
144
// JSR 292
145
// On x86, the SP does not have to be saved when invoking method handle intrinsics
146
// or compiled lambda forms. We indicate that by setting rbp_mh_SP_save to noreg.
147
REGISTER_DECLARATION(Register, rbp_mh_SP_save, noreg);
148
149
// Address is an abstraction used to represent a memory location
150
// using any of the amd64 addressing modes with one object.
151
//
152
// Note: A register location is represented via a Register, not
153
// via an address for efficiency & simplicity reasons.
154
155
class ArrayAddress;
156
157
class Address VALUE_OBJ_CLASS_SPEC {
158
public:
159
enum ScaleFactor {
160
no_scale = -1,
161
times_1 = 0,
162
times_2 = 1,
163
times_4 = 2,
164
times_8 = 3,
165
times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
166
};
167
static ScaleFactor times(int size) {
168
assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
169
if (size == 8) return times_8;
170
if (size == 4) return times_4;
171
if (size == 2) return times_2;
172
return times_1;
173
}
174
static int scale_size(ScaleFactor scale) {
175
assert(scale != no_scale, "");
176
assert(((1 << (int)times_1) == 1 &&
177
(1 << (int)times_2) == 2 &&
178
(1 << (int)times_4) == 4 &&
179
(1 << (int)times_8) == 8), "");
180
return (1 << (int)scale);
181
}
182
183
private:
184
Register _base;
185
Register _index;
186
ScaleFactor _scale;
187
int _disp;
188
RelocationHolder _rspec;
189
190
// Easily misused constructors make them private
191
// %%% can we make these go away?
192
NOT_LP64(Address(address loc, RelocationHolder spec);)
193
Address(int disp, address loc, relocInfo::relocType rtype);
194
Address(int disp, address loc, RelocationHolder spec);
195
196
public:
197
198
int disp() { return _disp; }
199
// creation
200
Address()
201
: _base(noreg),
202
_index(noreg),
203
_scale(no_scale),
204
_disp(0) {
205
}
206
207
// No default displacement otherwise Register can be implicitly
208
// converted to 0(Register) which is quite a different animal.
209
210
Address(Register base, int disp)
211
: _base(base),
212
_index(noreg),
213
_scale(no_scale),
214
_disp(disp) {
215
}
216
217
Address(Register base, Register index, ScaleFactor scale, int disp = 0)
218
: _base (base),
219
_index(index),
220
_scale(scale),
221
_disp (disp) {
222
assert(!index->is_valid() == (scale == Address::no_scale),
223
"inconsistent address");
224
}
225
226
Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
227
: _base (base),
228
_index(index.register_or_noreg()),
229
_scale(scale),
230
_disp (disp + (index.constant_or_zero() * scale_size(scale))) {
231
if (!index.is_register()) scale = Address::no_scale;
232
assert(!_index->is_valid() == (scale == Address::no_scale),
233
"inconsistent address");
234
}
235
236
Address plus_disp(int disp) const {
237
Address a = (*this);
238
a._disp += disp;
239
return a;
240
}
241
Address plus_disp(RegisterOrConstant disp, ScaleFactor scale = times_1) const {
242
Address a = (*this);
243
a._disp += disp.constant_or_zero() * scale_size(scale);
244
if (disp.is_register()) {
245
assert(!a.index()->is_valid(), "competing indexes");
246
a._index = disp.as_register();
247
a._scale = scale;
248
}
249
return a;
250
}
251
bool is_same_address(Address a) const {
252
// disregard _rspec
253
return _base == a._base && _disp == a._disp && _index == a._index && _scale == a._scale;
254
}
255
256
// The following two overloads are used in connection with the
257
// ByteSize type (see sizes.hpp). They simplify the use of
258
// ByteSize'd arguments in assembly code. Note that their equivalent
259
// for the optimized build are the member functions with int disp
260
// argument since ByteSize is mapped to an int type in that case.
261
//
262
// Note: DO NOT introduce similar overloaded functions for WordSize
263
// arguments as in the optimized mode, both ByteSize and WordSize
264
// are mapped to the same type and thus the compiler cannot make a
265
// distinction anymore (=> compiler errors).
266
267
#ifdef ASSERT
268
Address(Register base, ByteSize disp)
269
: _base(base),
270
_index(noreg),
271
_scale(no_scale),
272
_disp(in_bytes(disp)) {
273
}
274
275
Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
276
: _base(base),
277
_index(index),
278
_scale(scale),
279
_disp(in_bytes(disp)) {
280
assert(!index->is_valid() == (scale == Address::no_scale),
281
"inconsistent address");
282
}
283
284
Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
285
: _base (base),
286
_index(index.register_or_noreg()),
287
_scale(scale),
288
_disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
289
if (!index.is_register()) scale = Address::no_scale;
290
assert(!_index->is_valid() == (scale == Address::no_scale),
291
"inconsistent address");
292
}
293
294
#endif // ASSERT
295
296
// accessors
297
bool uses(Register reg) const { return _base == reg || _index == reg; }
298
Register base() const { return _base; }
299
Register index() const { return _index; }
300
ScaleFactor scale() const { return _scale; }
301
int disp() const { return _disp; }
302
303
// Convert the raw encoding form into the form expected by the constructor for
304
// Address. An index of 4 (rsp) corresponds to having no index, so convert
305
// that to noreg for the Address constructor.
306
static Address make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc);
307
308
static Address make_array(ArrayAddress);
309
310
private:
311
bool base_needs_rex() const {
312
return _base != noreg && _base->encoding() >= 8;
313
}
314
315
bool index_needs_rex() const {
316
return _index != noreg &&_index->encoding() >= 8;
317
}
318
319
relocInfo::relocType reloc() const { return _rspec.type(); }
320
321
friend class Assembler;
322
friend class MacroAssembler;
323
friend class LIR_Assembler; // base/index/scale/disp
324
};
325
326
//
327
// AddressLiteral has been split out from Address because operands of this type
328
// need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
329
// the few instructions that need to deal with address literals are unique and the
330
// MacroAssembler does not have to implement every instruction in the Assembler
331
// in order to search for address literals that may need special handling depending
332
// on the instruction and the platform. As small step on the way to merging i486/amd64
333
// directories.
334
//
335
class AddressLiteral VALUE_OBJ_CLASS_SPEC {
336
friend class ArrayAddress;
337
RelocationHolder _rspec;
338
// Typically we use AddressLiterals we want to use their rval
339
// However in some situations we want the lval (effect address) of the item.
340
// We provide a special factory for making those lvals.
341
bool _is_lval;
342
343
// If the target is far we'll need to load the ea of this to
344
// a register to reach it. Otherwise if near we can do rip
345
// relative addressing.
346
347
address _target;
348
349
protected:
350
// creation
351
AddressLiteral()
352
: _is_lval(false),
353
_target(NULL)
354
{}
355
356
public:
357
358
359
AddressLiteral(address target, relocInfo::relocType rtype);
360
361
AddressLiteral(address target, RelocationHolder const& rspec)
362
: _rspec(rspec),
363
_is_lval(false),
364
_target(target)
365
{}
366
367
AddressLiteral addr() {
368
AddressLiteral ret = *this;
369
ret._is_lval = true;
370
return ret;
371
}
372
373
374
private:
375
376
address target() { return _target; }
377
bool is_lval() { return _is_lval; }
378
379
relocInfo::relocType reloc() const { return _rspec.type(); }
380
const RelocationHolder& rspec() const { return _rspec; }
381
382
friend class Assembler;
383
friend class MacroAssembler;
384
friend class Address;
385
friend class LIR_Assembler;
386
};
387
388
// Convience classes
389
class RuntimeAddress: public AddressLiteral {
390
391
public:
392
393
RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
394
395
};
396
397
class ExternalAddress: public AddressLiteral {
398
private:
399
static relocInfo::relocType reloc_for_target(address target) {
400
// Sometimes ExternalAddress is used for values which aren't
401
// exactly addresses, like the card table base.
402
// external_word_type can't be used for values in the first page
403
// so just skip the reloc in that case.
404
return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
405
}
406
407
public:
408
409
ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(target)) {}
410
411
};
412
413
class InternalAddress: public AddressLiteral {
414
415
public:
416
417
InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
418
419
};
420
421
// x86 can do array addressing as a single operation since disp can be an absolute
422
// address amd64 can't. We create a class that expresses the concept but does extra
423
// magic on amd64 to get the final result
424
425
class ArrayAddress VALUE_OBJ_CLASS_SPEC {
426
private:
427
428
AddressLiteral _base;
429
Address _index;
430
431
public:
432
433
ArrayAddress() {};
434
ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
435
AddressLiteral base() { return _base; }
436
Address index() { return _index; }
437
438
};
439
440
const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
441
442
// The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
443
// level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
444
// is what you get. The Assembler is generating code into a CodeBuffer.
445
446
class Assembler : public AbstractAssembler {
447
friend class AbstractAssembler; // for the non-virtual hack
448
friend class LIR_Assembler; // as_Address()
449
friend class StubGenerator;
450
451
public:
452
enum Condition { // The x86 condition codes used for conditional jumps/moves.
453
zero = 0x4,
454
notZero = 0x5,
455
equal = 0x4,
456
notEqual = 0x5,
457
less = 0xc,
458
lessEqual = 0xe,
459
greater = 0xf,
460
greaterEqual = 0xd,
461
below = 0x2,
462
belowEqual = 0x6,
463
above = 0x7,
464
aboveEqual = 0x3,
465
overflow = 0x0,
466
noOverflow = 0x1,
467
carrySet = 0x2,
468
carryClear = 0x3,
469
negative = 0x8,
470
positive = 0x9,
471
parity = 0xa,
472
noParity = 0xb
473
};
474
475
enum Prefix {
476
// segment overrides
477
CS_segment = 0x2e,
478
SS_segment = 0x36,
479
DS_segment = 0x3e,
480
ES_segment = 0x26,
481
FS_segment = 0x64,
482
GS_segment = 0x65,
483
484
REX = 0x40,
485
486
REX_B = 0x41,
487
REX_X = 0x42,
488
REX_XB = 0x43,
489
REX_R = 0x44,
490
REX_RB = 0x45,
491
REX_RX = 0x46,
492
REX_RXB = 0x47,
493
494
REX_W = 0x48,
495
496
REX_WB = 0x49,
497
REX_WX = 0x4A,
498
REX_WXB = 0x4B,
499
REX_WR = 0x4C,
500
REX_WRB = 0x4D,
501
REX_WRX = 0x4E,
502
REX_WRXB = 0x4F,
503
504
VEX_3bytes = 0xC4,
505
VEX_2bytes = 0xC5
506
};
507
508
enum VexPrefix {
509
VEX_B = 0x20,
510
VEX_X = 0x40,
511
VEX_R = 0x80,
512
VEX_W = 0x80
513
};
514
515
enum VexSimdPrefix {
516
VEX_SIMD_NONE = 0x0,
517
VEX_SIMD_66 = 0x1,
518
VEX_SIMD_F3 = 0x2,
519
VEX_SIMD_F2 = 0x3
520
};
521
522
enum VexOpcode {
523
VEX_OPCODE_NONE = 0x0,
524
VEX_OPCODE_0F = 0x1,
525
VEX_OPCODE_0F_38 = 0x2,
526
VEX_OPCODE_0F_3A = 0x3
527
};
528
529
enum WhichOperand {
530
// input to locate_operand, and format code for relocations
531
imm_operand = 0, // embedded 32-bit|64-bit immediate operand
532
disp32_operand = 1, // embedded 32-bit displacement or address
533
call32_operand = 2, // embedded 32-bit self-relative displacement
534
#ifndef _LP64
535
_WhichOperand_limit = 3
536
#else
537
narrow_oop_operand = 3, // embedded 32-bit immediate narrow oop
538
_WhichOperand_limit = 4
539
#endif
540
};
541
542
543
544
// NOTE: The general philopsophy of the declarations here is that 64bit versions
545
// of instructions are freely declared without the need for wrapping them an ifdef.
546
// (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
547
// In the .cpp file the implementations are wrapped so that they are dropped out
548
// of the resulting jvm. This is done mostly to keep the footprint of MINIMAL
549
// to the size it was prior to merging up the 32bit and 64bit assemblers.
550
//
551
// This does mean you'll get a linker/runtime error if you use a 64bit only instruction
552
// in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
553
554
private:
555
556
557
// 64bit prefixes
558
int prefix_and_encode(int reg_enc, bool byteinst = false);
559
int prefixq_and_encode(int reg_enc);
560
561
int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
562
int prefixq_and_encode(int dst_enc, int src_enc);
563
564
void prefix(Register reg);
565
void prefix(Address adr);
566
void prefixq(Address adr);
567
568
void prefix(Address adr, Register reg, bool byteinst = false);
569
void prefix(Address adr, XMMRegister reg);
570
void prefixq(Address adr, Register reg);
571
void prefixq(Address adr, XMMRegister reg);
572
573
void prefetch_prefix(Address src);
574
575
void rex_prefix(Address adr, XMMRegister xreg,
576
VexSimdPrefix pre, VexOpcode opc, bool rex_w);
577
int rex_prefix_and_encode(int dst_enc, int src_enc,
578
VexSimdPrefix pre, VexOpcode opc, bool rex_w);
579
580
void vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w,
581
int nds_enc, VexSimdPrefix pre, VexOpcode opc,
582
bool vector256);
583
584
void vex_prefix(Address adr, int nds_enc, int xreg_enc,
585
VexSimdPrefix pre, VexOpcode opc,
586
bool vex_w, bool vector256);
587
588
void vex_prefix(XMMRegister dst, XMMRegister nds, Address src,
589
VexSimdPrefix pre, bool vector256 = false) {
590
int dst_enc = dst->encoding();
591
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
592
vex_prefix(src, nds_enc, dst_enc, pre, VEX_OPCODE_0F, false, vector256);
593
}
594
595
void vex_prefix_0F38(Register dst, Register nds, Address src) {
596
bool vex_w = false;
597
bool vector256 = false;
598
vex_prefix(src, nds->encoding(), dst->encoding(),
599
VEX_SIMD_NONE, VEX_OPCODE_0F_38, vex_w, vector256);
600
}
601
602
void vex_prefix_0F38_q(Register dst, Register nds, Address src) {
603
bool vex_w = true;
604
bool vector256 = false;
605
vex_prefix(src, nds->encoding(), dst->encoding(),
606
VEX_SIMD_NONE, VEX_OPCODE_0F_38, vex_w, vector256);
607
}
608
int vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc,
609
VexSimdPrefix pre, VexOpcode opc,
610
bool vex_w, bool vector256);
611
612
int vex_prefix_0F38_and_encode(Register dst, Register nds, Register src) {
613
bool vex_w = false;
614
bool vector256 = false;
615
return vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(),
616
VEX_SIMD_NONE, VEX_OPCODE_0F_38, vex_w, vector256);
617
}
618
int vex_prefix_0F38_and_encode_q(Register dst, Register nds, Register src) {
619
bool vex_w = true;
620
bool vector256 = false;
621
return vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(),
622
VEX_SIMD_NONE, VEX_OPCODE_0F_38, vex_w, vector256);
623
}
624
int vex_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src,
625
VexSimdPrefix pre, bool vector256 = false,
626
VexOpcode opc = VEX_OPCODE_0F) {
627
int src_enc = src->encoding();
628
int dst_enc = dst->encoding();
629
int nds_enc = nds->is_valid() ? nds->encoding() : 0;
630
return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, false, vector256);
631
}
632
633
void simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr,
634
VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F,
635
bool rex_w = false, bool vector256 = false);
636
637
void simd_prefix(XMMRegister dst, Address src,
638
VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
639
simd_prefix(dst, xnoreg, src, pre, opc);
640
}
641
642
void simd_prefix(Address dst, XMMRegister src, VexSimdPrefix pre) {
643
simd_prefix(src, dst, pre);
644
}
645
void simd_prefix_q(XMMRegister dst, XMMRegister nds, Address src,
646
VexSimdPrefix pre) {
647
bool rex_w = true;
648
simd_prefix(dst, nds, src, pre, VEX_OPCODE_0F, rex_w);
649
}
650
651
int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src,
652
VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F,
653
bool rex_w = false, bool vector256 = false);
654
655
// Move/convert 32-bit integer value.
656
int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, Register src,
657
VexSimdPrefix pre) {
658
// It is OK to cast from Register to XMMRegister to pass argument here
659
// since only encoding is used in simd_prefix_and_encode() and number of
660
// Gen and Xmm registers are the same.
661
return simd_prefix_and_encode(dst, nds, as_XMMRegister(src->encoding()), pre);
662
}
663
int simd_prefix_and_encode(XMMRegister dst, Register src, VexSimdPrefix pre) {
664
return simd_prefix_and_encode(dst, xnoreg, src, pre);
665
}
666
int simd_prefix_and_encode(Register dst, XMMRegister src,
667
VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
668
return simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, pre, opc);
669
}
670
671
// Move/convert 64-bit integer value.
672
int simd_prefix_and_encode_q(XMMRegister dst, XMMRegister nds, Register src,
673
VexSimdPrefix pre) {
674
bool rex_w = true;
675
return simd_prefix_and_encode(dst, nds, as_XMMRegister(src->encoding()), pre, VEX_OPCODE_0F, rex_w);
676
}
677
int simd_prefix_and_encode_q(XMMRegister dst, Register src, VexSimdPrefix pre) {
678
return simd_prefix_and_encode_q(dst, xnoreg, src, pre);
679
}
680
int simd_prefix_and_encode_q(Register dst, XMMRegister src,
681
VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
682
bool rex_w = true;
683
return simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, pre, opc, rex_w);
684
}
685
686
// Helper functions for groups of instructions
687
void emit_arith_b(int op1, int op2, Register dst, int imm8);
688
689
void emit_arith(int op1, int op2, Register dst, int32_t imm32);
690
// Force generation of a 4 byte immediate value even if it fits into 8bit
691
void emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32);
692
void emit_arith(int op1, int op2, Register dst, Register src);
693
694
void emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre);
695
void emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre);
696
void emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre);
697
void emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre);
698
void emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
699
Address src, VexSimdPrefix pre, bool vector256);
700
void emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
701
XMMRegister src, VexSimdPrefix pre, bool vector256);
702
703
void emit_operand(Register reg,
704
Register base, Register index, Address::ScaleFactor scale,
705
int disp,
706
RelocationHolder const& rspec,
707
int rip_relative_correction = 0);
708
709
void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
710
711
// operands that only take the original 32bit registers
712
void emit_operand32(Register reg, Address adr);
713
714
void emit_operand(XMMRegister reg,
715
Register base, Register index, Address::ScaleFactor scale,
716
int disp,
717
RelocationHolder const& rspec);
718
719
void emit_operand(XMMRegister reg, Address adr);
720
721
void emit_operand(MMXRegister reg, Address adr);
722
723
// workaround gcc (3.2.1-7) bug
724
void emit_operand(Address adr, MMXRegister reg);
725
726
727
// Immediate-to-memory forms
728
void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
729
730
void emit_farith(int b1, int b2, int i);
731
732
733
protected:
734
#ifdef ASSERT
735
void check_relocation(RelocationHolder const& rspec, int format);
736
#endif
737
738
void emit_data(jint data, relocInfo::relocType rtype, int format);
739
void emit_data(jint data, RelocationHolder const& rspec, int format);
740
void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
741
void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
742
743
bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
744
745
// These are all easily abused and hence protected
746
747
// 32BIT ONLY SECTION
748
#ifndef _LP64
749
// Make these disappear in 64bit mode since they would never be correct
750
void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
751
void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
752
753
void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
754
void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
755
756
void push_literal32(int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
757
#else
758
// 64BIT ONLY SECTION
759
void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec); // 64BIT ONLY
760
761
void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
762
void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
763
764
void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
765
void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
766
#endif // _LP64
767
768
// These are unique in that we are ensured by the caller that the 32bit
769
// relative in these instructions will always be able to reach the potentially
770
// 64bit address described by entry. Since they can take a 64bit address they
771
// don't have the 32 suffix like the other instructions in this class.
772
773
void call_literal(address entry, RelocationHolder const& rspec);
774
void jmp_literal(address entry, RelocationHolder const& rspec);
775
776
// Avoid using directly section
777
// Instructions in this section are actually usable by anyone without danger
778
// of failure but have performance issues that are addressed my enhanced
779
// instructions which will do the proper thing base on the particular cpu.
780
// We protect them because we don't trust you...
781
782
// Don't use next inc() and dec() methods directly. INC & DEC instructions
783
// could cause a partial flag stall since they don't set CF flag.
784
// Use MacroAssembler::decrement() & MacroAssembler::increment() methods
785
// which call inc() & dec() or add() & sub() in accordance with
786
// the product flag UseIncDec value.
787
788
void decl(Register dst);
789
void decl(Address dst);
790
void decq(Register dst);
791
void decq(Address dst);
792
793
void incl(Register dst);
794
void incl(Address dst);
795
void incq(Register dst);
796
void incq(Address dst);
797
798
// New cpus require use of movsd and movss to avoid partial register stall
799
// when loading from memory. But for old Opteron use movlpd instead of movsd.
800
// The selection is done in MacroAssembler::movdbl() and movflt().
801
802
// Move Scalar Single-Precision Floating-Point Values
803
void movss(XMMRegister dst, Address src);
804
void movss(XMMRegister dst, XMMRegister src);
805
void movss(Address dst, XMMRegister src);
806
807
// Move Scalar Double-Precision Floating-Point Values
808
void movsd(XMMRegister dst, Address src);
809
void movsd(XMMRegister dst, XMMRegister src);
810
void movsd(Address dst, XMMRegister src);
811
void movlpd(XMMRegister dst, Address src);
812
813
// New cpus require use of movaps and movapd to avoid partial register stall
814
// when moving between registers.
815
void movaps(XMMRegister dst, XMMRegister src);
816
void movapd(XMMRegister dst, XMMRegister src);
817
818
// End avoid using directly
819
820
821
// Instruction prefixes
822
void prefix(Prefix p);
823
824
public:
825
826
// Creation
827
Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
828
829
// Decoding
830
static address locate_operand(address inst, WhichOperand which);
831
static address locate_next_instruction(address inst);
832
833
// Utilities
834
static bool is_polling_page_far() NOT_LP64({ return false;});
835
836
// Generic instructions
837
// Does 32bit or 64bit as needed for the platform. In some sense these
838
// belong in macro assembler but there is no need for both varieties to exist
839
840
void lea(Register dst, Address src);
841
842
void mov(Register dst, Register src);
843
844
void pusha();
845
void popa();
846
847
void pushf();
848
void popf();
849
850
void push(int32_t imm32);
851
852
void push(Register src);
853
854
void pop(Register dst);
855
856
// These are dummies to prevent surprise implicit conversions to Register
857
void push(void* v);
858
void pop(void* v);
859
860
// These do register sized moves/scans
861
void rep_mov();
862
void rep_stos();
863
void rep_stosb();
864
void repne_scan();
865
#ifdef _LP64
866
void repne_scanl();
867
#endif
868
869
// Vanilla instructions in lexical order
870
871
void adcl(Address dst, int32_t imm32);
872
void adcl(Address dst, Register src);
873
void adcl(Register dst, int32_t imm32);
874
void adcl(Register dst, Address src);
875
void adcl(Register dst, Register src);
876
877
void adcq(Register dst, int32_t imm32);
878
void adcq(Register dst, Address src);
879
void adcq(Register dst, Register src);
880
881
void addl(Address dst, int32_t imm32);
882
void addl(Address dst, Register src);
883
void addl(Register dst, int32_t imm32);
884
void addl(Register dst, Address src);
885
void addl(Register dst, Register src);
886
887
void addq(Address dst, int32_t imm32);
888
void addq(Address dst, Register src);
889
void addq(Register dst, int32_t imm32);
890
void addq(Register dst, Address src);
891
void addq(Register dst, Register src);
892
893
#ifdef _LP64
894
//Add Unsigned Integers with Carry Flag
895
void adcxq(Register dst, Register src);
896
897
//Add Unsigned Integers with Overflow Flag
898
void adoxq(Register dst, Register src);
899
#endif
900
901
void addr_nop_4();
902
void addr_nop_5();
903
void addr_nop_7();
904
void addr_nop_8();
905
906
// Add Scalar Double-Precision Floating-Point Values
907
void addsd(XMMRegister dst, Address src);
908
void addsd(XMMRegister dst, XMMRegister src);
909
910
// Add Scalar Single-Precision Floating-Point Values
911
void addss(XMMRegister dst, Address src);
912
void addss(XMMRegister dst, XMMRegister src);
913
914
// AES instructions
915
void aesdec(XMMRegister dst, Address src);
916
void aesdec(XMMRegister dst, XMMRegister src);
917
void aesdeclast(XMMRegister dst, Address src);
918
void aesdeclast(XMMRegister dst, XMMRegister src);
919
void aesenc(XMMRegister dst, Address src);
920
void aesenc(XMMRegister dst, XMMRegister src);
921
void aesenclast(XMMRegister dst, Address src);
922
void aesenclast(XMMRegister dst, XMMRegister src);
923
924
925
void andl(Address dst, int32_t imm32);
926
void andl(Register dst, int32_t imm32);
927
void andl(Register dst, Address src);
928
void andl(Register dst, Register src);
929
930
void andq(Address dst, int32_t imm32);
931
void andq(Register dst, int32_t imm32);
932
void andq(Register dst, Address src);
933
void andq(Register dst, Register src);
934
935
// BMI instructions
936
void andnl(Register dst, Register src1, Register src2);
937
void andnl(Register dst, Register src1, Address src2);
938
void andnq(Register dst, Register src1, Register src2);
939
void andnq(Register dst, Register src1, Address src2);
940
941
void blsil(Register dst, Register src);
942
void blsil(Register dst, Address src);
943
void blsiq(Register dst, Register src);
944
void blsiq(Register dst, Address src);
945
946
void blsmskl(Register dst, Register src);
947
void blsmskl(Register dst, Address src);
948
void blsmskq(Register dst, Register src);
949
void blsmskq(Register dst, Address src);
950
951
void blsrl(Register dst, Register src);
952
void blsrl(Register dst, Address src);
953
void blsrq(Register dst, Register src);
954
void blsrq(Register dst, Address src);
955
956
void bsfl(Register dst, Register src);
957
void bsrl(Register dst, Register src);
958
959
#ifdef _LP64
960
void bsfq(Register dst, Register src);
961
void bsrq(Register dst, Register src);
962
#endif
963
964
void bswapl(Register reg);
965
966
void bswapq(Register reg);
967
968
void call(Label& L, relocInfo::relocType rtype);
969
void call(Register reg); // push pc; pc <- reg
970
void call(Address adr); // push pc; pc <- adr
971
972
void cdql();
973
974
void cdqq();
975
976
void cld();
977
978
void clflush(Address adr);
979
980
void cmovl(Condition cc, Register dst, Register src);
981
void cmovl(Condition cc, Register dst, Address src);
982
983
void cmovq(Condition cc, Register dst, Register src);
984
void cmovq(Condition cc, Register dst, Address src);
985
986
987
void cmpb(Address dst, int imm8);
988
989
void cmpl(Address dst, int32_t imm32);
990
991
void cmpl(Register dst, int32_t imm32);
992
void cmpl(Register dst, Register src);
993
void cmpl(Register dst, Address src);
994
995
void cmpq(Address dst, int32_t imm32);
996
void cmpq(Address dst, Register src);
997
998
void cmpq(Register dst, int32_t imm32);
999
void cmpq(Register dst, Register src);
1000
void cmpq(Register dst, Address src);
1001
1002
// these are dummies used to catch attempting to convert NULL to Register
1003
void cmpl(Register dst, void* junk); // dummy
1004
void cmpq(Register dst, void* junk); // dummy
1005
1006
void cmpw(Address dst, int imm16);
1007
1008
void cmpxchg8 (Address adr);
1009
1010
void cmpxchgl(Register reg, Address adr);
1011
1012
void cmpxchgq(Register reg, Address adr);
1013
1014
// Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
1015
void comisd(XMMRegister dst, Address src);
1016
void comisd(XMMRegister dst, XMMRegister src);
1017
1018
// Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
1019
void comiss(XMMRegister dst, Address src);
1020
void comiss(XMMRegister dst, XMMRegister src);
1021
1022
// Identify processor type and features
1023
void cpuid();
1024
1025
// Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
1026
void cvtsd2ss(XMMRegister dst, XMMRegister src);
1027
void cvtsd2ss(XMMRegister dst, Address src);
1028
1029
// Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
1030
void cvtsi2sdl(XMMRegister dst, Register src);
1031
void cvtsi2sdl(XMMRegister dst, Address src);
1032
void cvtsi2sdq(XMMRegister dst, Register src);
1033
void cvtsi2sdq(XMMRegister dst, Address src);
1034
1035
// Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
1036
void cvtsi2ssl(XMMRegister dst, Register src);
1037
void cvtsi2ssl(XMMRegister dst, Address src);
1038
void cvtsi2ssq(XMMRegister dst, Register src);
1039
void cvtsi2ssq(XMMRegister dst, Address src);
1040
1041
// Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
1042
void cvtdq2pd(XMMRegister dst, XMMRegister src);
1043
1044
// Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
1045
void cvtdq2ps(XMMRegister dst, XMMRegister src);
1046
1047
// Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
1048
void cvtss2sd(XMMRegister dst, XMMRegister src);
1049
void cvtss2sd(XMMRegister dst, Address src);
1050
1051
// Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
1052
void cvttsd2sil(Register dst, Address src);
1053
void cvttsd2sil(Register dst, XMMRegister src);
1054
void cvttsd2siq(Register dst, XMMRegister src);
1055
1056
// Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
1057
void cvttss2sil(Register dst, XMMRegister src);
1058
void cvttss2siq(Register dst, XMMRegister src);
1059
1060
// Divide Scalar Double-Precision Floating-Point Values
1061
void divsd(XMMRegister dst, Address src);
1062
void divsd(XMMRegister dst, XMMRegister src);
1063
1064
// Divide Scalar Single-Precision Floating-Point Values
1065
void divss(XMMRegister dst, Address src);
1066
void divss(XMMRegister dst, XMMRegister src);
1067
1068
void emms();
1069
1070
void fabs();
1071
1072
void fadd(int i);
1073
1074
void fadd_d(Address src);
1075
void fadd_s(Address src);
1076
1077
// "Alternate" versions of x87 instructions place result down in FPU
1078
// stack instead of on TOS
1079
1080
void fadda(int i); // "alternate" fadd
1081
void faddp(int i = 1);
1082
1083
void fchs();
1084
1085
void fcom(int i);
1086
1087
void fcomp(int i = 1);
1088
void fcomp_d(Address src);
1089
void fcomp_s(Address src);
1090
1091
void fcompp();
1092
1093
void fcos();
1094
1095
void fdecstp();
1096
1097
void fdiv(int i);
1098
void fdiv_d(Address src);
1099
void fdivr_s(Address src);
1100
void fdiva(int i); // "alternate" fdiv
1101
void fdivp(int i = 1);
1102
1103
void fdivr(int i);
1104
void fdivr_d(Address src);
1105
void fdiv_s(Address src);
1106
1107
void fdivra(int i); // "alternate" reversed fdiv
1108
1109
void fdivrp(int i = 1);
1110
1111
void ffree(int i = 0);
1112
1113
void fild_d(Address adr);
1114
void fild_s(Address adr);
1115
1116
void fincstp();
1117
1118
void finit();
1119
1120
void fist_s (Address adr);
1121
void fistp_d(Address adr);
1122
void fistp_s(Address adr);
1123
1124
void fld1();
1125
1126
void fld_d(Address adr);
1127
void fld_s(Address adr);
1128
void fld_s(int index);
1129
void fld_x(Address adr); // extended-precision (80-bit) format
1130
1131
void fldcw(Address src);
1132
1133
void fldenv(Address src);
1134
1135
void fldlg2();
1136
1137
void fldln2();
1138
1139
void fldz();
1140
1141
void flog();
1142
void flog10();
1143
1144
void fmul(int i);
1145
1146
void fmul_d(Address src);
1147
void fmul_s(Address src);
1148
1149
void fmula(int i); // "alternate" fmul
1150
1151
void fmulp(int i = 1);
1152
1153
void fnsave(Address dst);
1154
1155
void fnstcw(Address src);
1156
1157
void fnstsw_ax();
1158
1159
void fprem();
1160
void fprem1();
1161
1162
void frstor(Address src);
1163
1164
void fsin();
1165
1166
void fsqrt();
1167
1168
void fst_d(Address adr);
1169
void fst_s(Address adr);
1170
1171
void fstp_d(Address adr);
1172
void fstp_d(int index);
1173
void fstp_s(Address adr);
1174
void fstp_x(Address adr); // extended-precision (80-bit) format
1175
1176
void fsub(int i);
1177
void fsub_d(Address src);
1178
void fsub_s(Address src);
1179
1180
void fsuba(int i); // "alternate" fsub
1181
1182
void fsubp(int i = 1);
1183
1184
void fsubr(int i);
1185
void fsubr_d(Address src);
1186
void fsubr_s(Address src);
1187
1188
void fsubra(int i); // "alternate" reversed fsub
1189
1190
void fsubrp(int i = 1);
1191
1192
void ftan();
1193
1194
void ftst();
1195
1196
void fucomi(int i = 1);
1197
void fucomip(int i = 1);
1198
1199
void fwait();
1200
1201
void fxch(int i = 1);
1202
1203
void fxrstor(Address src);
1204
1205
void fxsave(Address dst);
1206
1207
void fyl2x();
1208
void frndint();
1209
void f2xm1();
1210
void fldl2e();
1211
1212
void hlt();
1213
1214
void idivl(Register src);
1215
void divl(Register src); // Unsigned division
1216
1217
#ifdef _LP64
1218
void idivq(Register src);
1219
#endif
1220
1221
void imull(Register dst, Register src);
1222
void imull(Register dst, Register src, int value);
1223
void imull(Register dst, Address src);
1224
1225
#ifdef _LP64
1226
void imulq(Register dst, Register src);
1227
void imulq(Register dst, Register src, int value);
1228
void imulq(Register dst, Address src);
1229
#endif
1230
1231
// jcc is the generic conditional branch generator to run-
1232
// time routines, jcc is used for branches to labels. jcc
1233
// takes a branch opcode (cc) and a label (L) and generates
1234
// either a backward branch or a forward branch and links it
1235
// to the label fixup chain. Usage:
1236
//
1237
// Label L; // unbound label
1238
// jcc(cc, L); // forward branch to unbound label
1239
// bind(L); // bind label to the current pc
1240
// jcc(cc, L); // backward branch to bound label
1241
// bind(L); // illegal: a label may be bound only once
1242
//
1243
// Note: The same Label can be used for forward and backward branches
1244
// but it may be bound only once.
1245
1246
void jcc(Condition cc, Label& L, bool maybe_short = true);
1247
1248
// Conditional jump to a 8-bit offset to L.
1249
// WARNING: be very careful using this for forward jumps. If the label is
1250
// not bound within an 8-bit offset of this instruction, a run-time error
1251
// will occur.
1252
void jccb(Condition cc, Label& L);
1253
1254
void jmp(Address entry); // pc <- entry
1255
1256
// Label operations & relative jumps (PPUM Appendix D)
1257
void jmp(Label& L, bool maybe_short = true); // unconditional jump to L
1258
1259
void jmp(Register entry); // pc <- entry
1260
1261
// Unconditional 8-bit offset jump to L.
1262
// WARNING: be very careful using this for forward jumps. If the label is
1263
// not bound within an 8-bit offset of this instruction, a run-time error
1264
// will occur.
1265
void jmpb(Label& L);
1266
1267
void ldmxcsr( Address src );
1268
1269
void leal(Register dst, Address src);
1270
1271
void leaq(Register dst, Address src);
1272
1273
void lfence();
1274
1275
void lock();
1276
1277
void lzcntl(Register dst, Register src);
1278
1279
#ifdef _LP64
1280
void lzcntq(Register dst, Register src);
1281
#endif
1282
1283
enum Membar_mask_bits {
1284
StoreStore = 1 << 3,
1285
LoadStore = 1 << 2,
1286
StoreLoad = 1 << 1,
1287
LoadLoad = 1 << 0
1288
};
1289
1290
// Serializes memory and blows flags
1291
void membar(Membar_mask_bits order_constraint) {
1292
if (os::is_MP()) {
1293
// We only have to handle StoreLoad
1294
if (order_constraint & StoreLoad) {
1295
// All usable chips support "locked" instructions which suffice
1296
// as barriers, and are much faster than the alternative of
1297
// using cpuid instruction. We use here a locked add [esp],0.
1298
// This is conveniently otherwise a no-op except for blowing
1299
// flags.
1300
// Any change to this code may need to revisit other places in
1301
// the code where this idiom is used, in particular the
1302
// orderAccess code.
1303
lock();
1304
addl(Address(rsp, 0), 0);// Assert the lock# signal here
1305
}
1306
}
1307
}
1308
1309
void mfence();
1310
1311
// Moves
1312
1313
void mov64(Register dst, int64_t imm64);
1314
1315
void movb(Address dst, Register src);
1316
void movb(Address dst, int imm8);
1317
void movb(Register dst, Address src);
1318
1319
void movdl(XMMRegister dst, Register src);
1320
void movdl(Register dst, XMMRegister src);
1321
void movdl(XMMRegister dst, Address src);
1322
void movdl(Address dst, XMMRegister src);
1323
1324
// Move Double Quadword
1325
void movdq(XMMRegister dst, Register src);
1326
void movdq(Register dst, XMMRegister src);
1327
1328
// Move Aligned Double Quadword
1329
void movdqa(XMMRegister dst, XMMRegister src);
1330
void movdqa(XMMRegister dst, Address src);
1331
1332
// Move Unaligned Double Quadword
1333
void movdqu(Address dst, XMMRegister src);
1334
void movdqu(XMMRegister dst, Address src);
1335
void movdqu(XMMRegister dst, XMMRegister src);
1336
1337
// Move Unaligned 256bit Vector
1338
void vmovdqu(Address dst, XMMRegister src);
1339
void vmovdqu(XMMRegister dst, Address src);
1340
void vmovdqu(XMMRegister dst, XMMRegister src);
1341
1342
// Move lower 64bit to high 64bit in 128bit register
1343
void movlhps(XMMRegister dst, XMMRegister src);
1344
1345
void movl(Register dst, int32_t imm32);
1346
void movl(Address dst, int32_t imm32);
1347
void movl(Register dst, Register src);
1348
void movl(Register dst, Address src);
1349
void movl(Address dst, Register src);
1350
1351
// These dummies prevent using movl from converting a zero (like NULL) into Register
1352
// by giving the compiler two choices it can't resolve
1353
1354
void movl(Address dst, void* junk);
1355
void movl(Register dst, void* junk);
1356
1357
#ifdef _LP64
1358
void movq(Register dst, Register src);
1359
void movq(Register dst, Address src);
1360
void movq(Address dst, Register src);
1361
#endif
1362
1363
void movq(Address dst, MMXRegister src );
1364
void movq(MMXRegister dst, Address src );
1365
1366
#ifdef _LP64
1367
// These dummies prevent using movq from converting a zero (like NULL) into Register
1368
// by giving the compiler two choices it can't resolve
1369
1370
void movq(Address dst, void* dummy);
1371
void movq(Register dst, void* dummy);
1372
#endif
1373
1374
// Move Quadword
1375
void movq(Address dst, XMMRegister src);
1376
void movq(XMMRegister dst, Address src);
1377
1378
void movsbl(Register dst, Address src);
1379
void movsbl(Register dst, Register src);
1380
1381
#ifdef _LP64
1382
void movsbq(Register dst, Address src);
1383
void movsbq(Register dst, Register src);
1384
1385
// Move signed 32bit immediate to 64bit extending sign
1386
void movslq(Address dst, int32_t imm64);
1387
void movslq(Register dst, int32_t imm64);
1388
1389
void movslq(Register dst, Address src);
1390
void movslq(Register dst, Register src);
1391
void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
1392
#endif
1393
1394
void movswl(Register dst, Address src);
1395
void movswl(Register dst, Register src);
1396
1397
#ifdef _LP64
1398
void movswq(Register dst, Address src);
1399
void movswq(Register dst, Register src);
1400
#endif
1401
1402
void movw(Address dst, int imm16);
1403
void movw(Register dst, Address src);
1404
void movw(Address dst, Register src);
1405
1406
void movzbl(Register dst, Address src);
1407
void movzbl(Register dst, Register src);
1408
1409
#ifdef _LP64
1410
void movzbq(Register dst, Address src);
1411
void movzbq(Register dst, Register src);
1412
#endif
1413
1414
void movzwl(Register dst, Address src);
1415
void movzwl(Register dst, Register src);
1416
1417
#ifdef _LP64
1418
void movzwq(Register dst, Address src);
1419
void movzwq(Register dst, Register src);
1420
#endif
1421
1422
// Unsigned multiply with RAX destination register
1423
void mull(Address src);
1424
void mull(Register src);
1425
1426
#ifdef _LP64
1427
void mulq(Address src);
1428
void mulq(Register src);
1429
void mulxq(Register dst1, Register dst2, Register src);
1430
#endif
1431
1432
// Multiply Scalar Double-Precision Floating-Point Values
1433
void mulsd(XMMRegister dst, Address src);
1434
void mulsd(XMMRegister dst, XMMRegister src);
1435
1436
// Multiply Scalar Single-Precision Floating-Point Values
1437
void mulss(XMMRegister dst, Address src);
1438
void mulss(XMMRegister dst, XMMRegister src);
1439
1440
void negl(Register dst);
1441
1442
#ifdef _LP64
1443
void negq(Register dst);
1444
#endif
1445
1446
void nop(int i = 1);
1447
1448
void notl(Register dst);
1449
1450
#ifdef _LP64
1451
void notq(Register dst);
1452
#endif
1453
1454
void orl(Address dst, int32_t imm32);
1455
void orl(Register dst, int32_t imm32);
1456
void orl(Register dst, Address src);
1457
void orl(Register dst, Register src);
1458
void orl(Address dst, Register src);
1459
1460
void orq(Address dst, int32_t imm32);
1461
void orq(Register dst, int32_t imm32);
1462
void orq(Register dst, Address src);
1463
void orq(Register dst, Register src);
1464
1465
// Pack with unsigned saturation
1466
void packuswb(XMMRegister dst, XMMRegister src);
1467
void packuswb(XMMRegister dst, Address src);
1468
void vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1469
1470
// Pemutation of 64bit words
1471
void vpermq(XMMRegister dst, XMMRegister src, int imm8, bool vector256);
1472
1473
void pause();
1474
1475
// SSE4.2 string instructions
1476
void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
1477
void pcmpestri(XMMRegister xmm1, Address src, int imm8);
1478
1479
// SSE 4.1 extract
1480
void pextrd(Register dst, XMMRegister src, int imm8);
1481
void pextrq(Register dst, XMMRegister src, int imm8);
1482
1483
// SSE 4.1 insert
1484
void pinsrd(XMMRegister dst, Register src, int imm8);
1485
void pinsrq(XMMRegister dst, Register src, int imm8);
1486
1487
// SSE4.1 packed move
1488
void pmovzxbw(XMMRegister dst, XMMRegister src);
1489
void pmovzxbw(XMMRegister dst, Address src);
1490
1491
#ifndef _LP64 // no 32bit push/pop on amd64
1492
void popl(Address dst);
1493
#endif
1494
1495
#ifdef _LP64
1496
void popq(Address dst);
1497
#endif
1498
1499
void popcntl(Register dst, Address src);
1500
void popcntl(Register dst, Register src);
1501
1502
#ifdef _LP64
1503
void popcntq(Register dst, Address src);
1504
void popcntq(Register dst, Register src);
1505
#endif
1506
1507
// Prefetches (SSE, SSE2, 3DNOW only)
1508
1509
void prefetchnta(Address src);
1510
void prefetchr(Address src);
1511
void prefetcht0(Address src);
1512
void prefetcht1(Address src);
1513
void prefetcht2(Address src);
1514
void prefetchw(Address src);
1515
1516
// Shuffle Bytes
1517
void pshufb(XMMRegister dst, XMMRegister src);
1518
void pshufb(XMMRegister dst, Address src);
1519
1520
// Shuffle Packed Doublewords
1521
void pshufd(XMMRegister dst, XMMRegister src, int mode);
1522
void pshufd(XMMRegister dst, Address src, int mode);
1523
1524
// Shuffle Packed Low Words
1525
void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1526
void pshuflw(XMMRegister dst, Address src, int mode);
1527
1528
// Shift Right by bytes Logical DoubleQuadword Immediate
1529
void psrldq(XMMRegister dst, int shift);
1530
// Shift Left by bytes Logical DoubleQuadword Immediate
1531
void pslldq(XMMRegister dst, int shift);
1532
1533
// Logical Compare 128bit
1534
void ptest(XMMRegister dst, XMMRegister src);
1535
void ptest(XMMRegister dst, Address src);
1536
// Logical Compare 256bit
1537
void vptest(XMMRegister dst, XMMRegister src);
1538
void vptest(XMMRegister dst, Address src);
1539
1540
// Interleave Low Bytes
1541
void punpcklbw(XMMRegister dst, XMMRegister src);
1542
void punpcklbw(XMMRegister dst, Address src);
1543
1544
// Interleave Low Doublewords
1545
void punpckldq(XMMRegister dst, XMMRegister src);
1546
void punpckldq(XMMRegister dst, Address src);
1547
1548
// Interleave Low Quadwords
1549
void punpcklqdq(XMMRegister dst, XMMRegister src);
1550
1551
#ifndef _LP64 // no 32bit push/pop on amd64
1552
void pushl(Address src);
1553
#endif
1554
1555
void pushq(Address src);
1556
1557
void rcll(Register dst, int imm8);
1558
1559
void rclq(Register dst, int imm8);
1560
1561
void rcrq(Register dst, int imm8);
1562
1563
void rdtsc();
1564
1565
void ret(int imm16);
1566
1567
#ifdef _LP64
1568
void rorq(Register dst, int imm8);
1569
void rorxq(Register dst, Register src, int imm8);
1570
#endif
1571
1572
void sahf();
1573
1574
void sarl(Register dst, int imm8);
1575
void sarl(Register dst);
1576
1577
void sarq(Register dst, int imm8);
1578
void sarq(Register dst);
1579
1580
void sbbl(Address dst, int32_t imm32);
1581
void sbbl(Register dst, int32_t imm32);
1582
void sbbl(Register dst, Address src);
1583
void sbbl(Register dst, Register src);
1584
1585
void sbbq(Address dst, int32_t imm32);
1586
void sbbq(Register dst, int32_t imm32);
1587
void sbbq(Register dst, Address src);
1588
void sbbq(Register dst, Register src);
1589
1590
void setb(Condition cc, Register dst);
1591
1592
void shldl(Register dst, Register src);
1593
1594
void shll(Register dst, int imm8);
1595
void shll(Register dst);
1596
1597
void shlq(Register dst, int imm8);
1598
void shlq(Register dst);
1599
1600
void shrdl(Register dst, Register src);
1601
1602
void shrl(Register dst, int imm8);
1603
void shrl(Register dst);
1604
1605
void shrq(Register dst, int imm8);
1606
void shrq(Register dst);
1607
1608
void smovl(); // QQQ generic?
1609
1610
// Compute Square Root of Scalar Double-Precision Floating-Point Value
1611
void sqrtsd(XMMRegister dst, Address src);
1612
void sqrtsd(XMMRegister dst, XMMRegister src);
1613
1614
// Compute Square Root of Scalar Single-Precision Floating-Point Value
1615
void sqrtss(XMMRegister dst, Address src);
1616
void sqrtss(XMMRegister dst, XMMRegister src);
1617
1618
void std();
1619
1620
void stmxcsr( Address dst );
1621
1622
void subl(Address dst, int32_t imm32);
1623
void subl(Address dst, Register src);
1624
void subl(Register dst, int32_t imm32);
1625
void subl(Register dst, Address src);
1626
void subl(Register dst, Register src);
1627
1628
void subq(Address dst, int32_t imm32);
1629
void subq(Address dst, Register src);
1630
void subq(Register dst, int32_t imm32);
1631
void subq(Register dst, Address src);
1632
void subq(Register dst, Register src);
1633
1634
// Force generation of a 4 byte immediate value even if it fits into 8bit
1635
void subl_imm32(Register dst, int32_t imm32);
1636
void subq_imm32(Register dst, int32_t imm32);
1637
1638
// Subtract Scalar Double-Precision Floating-Point Values
1639
void subsd(XMMRegister dst, Address src);
1640
void subsd(XMMRegister dst, XMMRegister src);
1641
1642
// Subtract Scalar Single-Precision Floating-Point Values
1643
void subss(XMMRegister dst, Address src);
1644
void subss(XMMRegister dst, XMMRegister src);
1645
1646
void testb(Register dst, int imm8);
1647
void testb(Address dst, int imm8);
1648
1649
void testl(Register dst, int32_t imm32);
1650
void testl(Register dst, Register src);
1651
void testl(Register dst, Address src);
1652
1653
void testq(Register dst, int32_t imm32);
1654
void testq(Register dst, Register src);
1655
1656
// BMI - count trailing zeros
1657
void tzcntl(Register dst, Register src);
1658
void tzcntq(Register dst, Register src);
1659
1660
// Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
1661
void ucomisd(XMMRegister dst, Address src);
1662
void ucomisd(XMMRegister dst, XMMRegister src);
1663
1664
// Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
1665
void ucomiss(XMMRegister dst, Address src);
1666
void ucomiss(XMMRegister dst, XMMRegister src);
1667
1668
void xabort(int8_t imm8);
1669
1670
void xaddl(Address dst, Register src);
1671
1672
void xaddq(Address dst, Register src);
1673
1674
void xbegin(Label& abort, relocInfo::relocType rtype = relocInfo::none);
1675
1676
void xchgl(Register reg, Address adr);
1677
void xchgl(Register dst, Register src);
1678
1679
void xchgq(Register reg, Address adr);
1680
void xchgq(Register dst, Register src);
1681
1682
void xend();
1683
1684
// Get Value of Extended Control Register
1685
void xgetbv();
1686
1687
void xorl(Register dst, int32_t imm32);
1688
void xorl(Register dst, Address src);
1689
void xorl(Register dst, Register src);
1690
1691
void xorq(Register dst, Address src);
1692
void xorq(Register dst, Register src);
1693
1694
void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
1695
1696
// AVX 3-operands scalar instructions (encoded with VEX prefix)
1697
1698
void vaddsd(XMMRegister dst, XMMRegister nds, Address src);
1699
void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1700
void vaddss(XMMRegister dst, XMMRegister nds, Address src);
1701
void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1702
void vdivsd(XMMRegister dst, XMMRegister nds, Address src);
1703
void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1704
void vdivss(XMMRegister dst, XMMRegister nds, Address src);
1705
void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1706
void vmulsd(XMMRegister dst, XMMRegister nds, Address src);
1707
void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1708
void vmulss(XMMRegister dst, XMMRegister nds, Address src);
1709
void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1710
void vsubsd(XMMRegister dst, XMMRegister nds, Address src);
1711
void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1712
void vsubss(XMMRegister dst, XMMRegister nds, Address src);
1713
void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1714
1715
1716
//====================VECTOR ARITHMETIC=====================================
1717
1718
// Add Packed Floating-Point Values
1719
void addpd(XMMRegister dst, XMMRegister src);
1720
void addps(XMMRegister dst, XMMRegister src);
1721
void vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1722
void vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1723
void vaddpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1724
void vaddps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1725
1726
// Subtract Packed Floating-Point Values
1727
void subpd(XMMRegister dst, XMMRegister src);
1728
void subps(XMMRegister dst, XMMRegister src);
1729
void vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1730
void vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1731
void vsubpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1732
void vsubps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1733
1734
// Multiply Packed Floating-Point Values
1735
void mulpd(XMMRegister dst, XMMRegister src);
1736
void mulps(XMMRegister dst, XMMRegister src);
1737
void vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1738
void vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1739
void vmulpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1740
void vmulps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1741
1742
// Divide Packed Floating-Point Values
1743
void divpd(XMMRegister dst, XMMRegister src);
1744
void divps(XMMRegister dst, XMMRegister src);
1745
void vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1746
void vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1747
void vdivpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1748
void vdivps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1749
1750
// Bitwise Logical AND of Packed Floating-Point Values
1751
void andpd(XMMRegister dst, XMMRegister src);
1752
void andps(XMMRegister dst, XMMRegister src);
1753
void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1754
void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1755
void vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1756
void vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1757
1758
// Bitwise Logical XOR of Packed Floating-Point Values
1759
void xorpd(XMMRegister dst, XMMRegister src);
1760
void xorps(XMMRegister dst, XMMRegister src);
1761
void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1762
void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1763
void vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1764
void vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1765
1766
// Add packed integers
1767
void paddb(XMMRegister dst, XMMRegister src);
1768
void paddw(XMMRegister dst, XMMRegister src);
1769
void paddd(XMMRegister dst, XMMRegister src);
1770
void paddq(XMMRegister dst, XMMRegister src);
1771
void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1772
void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1773
void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1774
void vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1775
void vpaddb(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1776
void vpaddw(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1777
void vpaddd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1778
void vpaddq(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1779
1780
// Sub packed integers
1781
void psubb(XMMRegister dst, XMMRegister src);
1782
void psubw(XMMRegister dst, XMMRegister src);
1783
void psubd(XMMRegister dst, XMMRegister src);
1784
void psubq(XMMRegister dst, XMMRegister src);
1785
void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1786
void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1787
void vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1788
void vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1789
void vpsubb(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1790
void vpsubw(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1791
void vpsubd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1792
void vpsubq(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1793
1794
// Multiply packed integers (only shorts and ints)
1795
void pmullw(XMMRegister dst, XMMRegister src);
1796
void pmulld(XMMRegister dst, XMMRegister src);
1797
void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1798
void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1799
void vpmullw(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1800
void vpmulld(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1801
1802
// Shift left packed integers
1803
void psllw(XMMRegister dst, int shift);
1804
void pslld(XMMRegister dst, int shift);
1805
void psllq(XMMRegister dst, int shift);
1806
void psllw(XMMRegister dst, XMMRegister shift);
1807
void pslld(XMMRegister dst, XMMRegister shift);
1808
void psllq(XMMRegister dst, XMMRegister shift);
1809
void vpsllw(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1810
void vpslld(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1811
void vpsllq(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1812
void vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1813
void vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1814
void vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1815
1816
// Logical shift right packed integers
1817
void psrlw(XMMRegister dst, int shift);
1818
void psrld(XMMRegister dst, int shift);
1819
void psrlq(XMMRegister dst, int shift);
1820
void psrlw(XMMRegister dst, XMMRegister shift);
1821
void psrld(XMMRegister dst, XMMRegister shift);
1822
void psrlq(XMMRegister dst, XMMRegister shift);
1823
void vpsrlw(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1824
void vpsrld(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1825
void vpsrlq(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1826
void vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1827
void vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1828
void vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1829
1830
// Arithmetic shift right packed integers (only shorts and ints, no instructions for longs)
1831
void psraw(XMMRegister dst, int shift);
1832
void psrad(XMMRegister dst, int shift);
1833
void psraw(XMMRegister dst, XMMRegister shift);
1834
void psrad(XMMRegister dst, XMMRegister shift);
1835
void vpsraw(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1836
void vpsrad(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1837
void vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1838
void vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1839
1840
// And packed integers
1841
void pand(XMMRegister dst, XMMRegister src);
1842
void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1843
void vpand(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1844
1845
// Or packed integers
1846
void por(XMMRegister dst, XMMRegister src);
1847
void vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1848
void vpor(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1849
1850
// Xor packed integers
1851
void pxor(XMMRegister dst, XMMRegister src);
1852
void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1853
void vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1854
1855
// Copy low 128bit into high 128bit of YMM registers.
1856
void vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src);
1857
void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src);
1858
1859
// Load/store high 128bit of YMM registers which does not destroy other half.
1860
void vinsertf128h(XMMRegister dst, Address src);
1861
void vinserti128h(XMMRegister dst, Address src);
1862
void vextractf128h(Address dst, XMMRegister src);
1863
void vextracti128h(Address dst, XMMRegister src);
1864
1865
// duplicate 4-bytes integer data from src into 8 locations in dest
1866
void vpbroadcastd(XMMRegister dst, XMMRegister src);
1867
1868
// Carry-Less Multiplication Quadword
1869
void pclmulqdq(XMMRegister dst, XMMRegister src, int mask);
1870
void vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask);
1871
1872
// AVX instruction which is used to clear upper 128 bits of YMM registers and
1873
// to avoid transaction penalty between AVX and SSE states. There is no
1874
// penalty if legacy SSE instructions are encoded using VEX prefix because
1875
// they always clear upper 128 bits. It should be used before calling
1876
// runtime code and native libraries.
1877
void vzeroupper();
1878
1879
protected:
1880
// Next instructions require address alignment 16 bytes SSE mode.
1881
// They should be called only from corresponding MacroAssembler instructions.
1882
void andpd(XMMRegister dst, Address src);
1883
void andps(XMMRegister dst, Address src);
1884
void xorpd(XMMRegister dst, Address src);
1885
void xorps(XMMRegister dst, Address src);
1886
1887
};
1888
1889
#endif // CPU_X86_VM_ASSEMBLER_X86_HPP
1890
1891