Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/cpu/x86/vm/c1_FrameMap_x86.cpp
32285 views
1
/*
2
* Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "c1/c1_FrameMap.hpp"
27
#include "c1/c1_LIR.hpp"
28
#include "runtime/sharedRuntime.hpp"
29
#include "vmreg_x86.inline.hpp"
30
31
const int FrameMap::pd_c_runtime_reserved_arg_size = 0;
32
33
LIR_Opr FrameMap::map_to_opr(BasicType type, VMRegPair* reg, bool) {
34
LIR_Opr opr = LIR_OprFact::illegalOpr;
35
VMReg r_1 = reg->first();
36
VMReg r_2 = reg->second();
37
if (r_1->is_stack()) {
38
// Convert stack slot to an SP offset
39
// The calling convention does not count the SharedRuntime::out_preserve_stack_slots() value
40
// so we must add it in here.
41
int st_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
42
opr = LIR_OprFact::address(new LIR_Address(rsp_opr, st_off, type));
43
} else if (r_1->is_Register()) {
44
Register reg = r_1->as_Register();
45
if (r_2->is_Register() && (type == T_LONG || type == T_DOUBLE)) {
46
Register reg2 = r_2->as_Register();
47
#ifdef _LP64
48
assert(reg2 == reg, "must be same register");
49
opr = as_long_opr(reg);
50
#else
51
opr = as_long_opr(reg2, reg);
52
#endif // _LP64
53
} else if (type == T_OBJECT || type == T_ARRAY) {
54
opr = as_oop_opr(reg);
55
} else if (type == T_METADATA) {
56
opr = as_metadata_opr(reg);
57
} else if (type == T_ADDRESS) {
58
opr = as_address_opr(reg);
59
} else {
60
opr = as_opr(reg);
61
}
62
} else if (r_1->is_FloatRegister()) {
63
assert(type == T_DOUBLE || type == T_FLOAT, "wrong type");
64
int num = r_1->as_FloatRegister()->encoding();
65
if (type == T_FLOAT) {
66
opr = LIR_OprFact::single_fpu(num);
67
} else {
68
opr = LIR_OprFact::double_fpu(num);
69
}
70
} else if (r_1->is_XMMRegister()) {
71
assert(type == T_DOUBLE || type == T_FLOAT, "wrong type");
72
int num = r_1->as_XMMRegister()->encoding();
73
if (type == T_FLOAT) {
74
opr = LIR_OprFact::single_xmm(num);
75
} else {
76
opr = LIR_OprFact::double_xmm(num);
77
}
78
} else {
79
ShouldNotReachHere();
80
}
81
return opr;
82
}
83
84
85
LIR_Opr FrameMap::rsi_opr;
86
LIR_Opr FrameMap::rdi_opr;
87
LIR_Opr FrameMap::rbx_opr;
88
LIR_Opr FrameMap::rax_opr;
89
LIR_Opr FrameMap::rdx_opr;
90
LIR_Opr FrameMap::rcx_opr;
91
LIR_Opr FrameMap::rsp_opr;
92
LIR_Opr FrameMap::rbp_opr;
93
94
LIR_Opr FrameMap::receiver_opr;
95
96
LIR_Opr FrameMap::rsi_oop_opr;
97
LIR_Opr FrameMap::rdi_oop_opr;
98
LIR_Opr FrameMap::rbx_oop_opr;
99
LIR_Opr FrameMap::rax_oop_opr;
100
LIR_Opr FrameMap::rdx_oop_opr;
101
LIR_Opr FrameMap::rcx_oop_opr;
102
103
LIR_Opr FrameMap::rsi_metadata_opr;
104
LIR_Opr FrameMap::rdi_metadata_opr;
105
LIR_Opr FrameMap::rbx_metadata_opr;
106
LIR_Opr FrameMap::rax_metadata_opr;
107
LIR_Opr FrameMap::rdx_metadata_opr;
108
LIR_Opr FrameMap::rcx_metadata_opr;
109
110
LIR_Opr FrameMap::long0_opr;
111
LIR_Opr FrameMap::long1_opr;
112
LIR_Opr FrameMap::fpu0_float_opr;
113
LIR_Opr FrameMap::fpu0_double_opr;
114
LIR_Opr FrameMap::xmm0_float_opr;
115
LIR_Opr FrameMap::xmm0_double_opr;
116
117
#ifdef _LP64
118
119
LIR_Opr FrameMap::r8_opr;
120
LIR_Opr FrameMap::r9_opr;
121
LIR_Opr FrameMap::r10_opr;
122
LIR_Opr FrameMap::r11_opr;
123
LIR_Opr FrameMap::r12_opr;
124
LIR_Opr FrameMap::r13_opr;
125
LIR_Opr FrameMap::r14_opr;
126
LIR_Opr FrameMap::r15_opr;
127
128
// r10 and r15 can never contain oops since they aren't available to
129
// the allocator
130
LIR_Opr FrameMap::r8_oop_opr;
131
LIR_Opr FrameMap::r9_oop_opr;
132
LIR_Opr FrameMap::r11_oop_opr;
133
LIR_Opr FrameMap::r12_oop_opr;
134
LIR_Opr FrameMap::r13_oop_opr;
135
LIR_Opr FrameMap::r14_oop_opr;
136
137
LIR_Opr FrameMap::r8_metadata_opr;
138
LIR_Opr FrameMap::r9_metadata_opr;
139
LIR_Opr FrameMap::r11_metadata_opr;
140
LIR_Opr FrameMap::r12_metadata_opr;
141
LIR_Opr FrameMap::r13_metadata_opr;
142
LIR_Opr FrameMap::r14_metadata_opr;
143
#endif // _LP64
144
145
LIR_Opr FrameMap::_caller_save_cpu_regs[] = { 0, };
146
LIR_Opr FrameMap::_caller_save_fpu_regs[] = { 0, };
147
LIR_Opr FrameMap::_caller_save_xmm_regs[] = { 0, };
148
149
XMMRegister FrameMap::_xmm_regs [] = { 0, };
150
151
XMMRegister FrameMap::nr2xmmreg(int rnr) {
152
assert(_init_done, "tables not initialized");
153
return _xmm_regs[rnr];
154
}
155
156
//--------------------------------------------------------
157
// FrameMap
158
//--------------------------------------------------------
159
160
void FrameMap::initialize() {
161
assert(!_init_done, "once");
162
163
assert(nof_cpu_regs == LP64_ONLY(16) NOT_LP64(8), "wrong number of CPU registers");
164
map_register(0, rsi); rsi_opr = LIR_OprFact::single_cpu(0);
165
map_register(1, rdi); rdi_opr = LIR_OprFact::single_cpu(1);
166
map_register(2, rbx); rbx_opr = LIR_OprFact::single_cpu(2);
167
map_register(3, rax); rax_opr = LIR_OprFact::single_cpu(3);
168
map_register(4, rdx); rdx_opr = LIR_OprFact::single_cpu(4);
169
map_register(5, rcx); rcx_opr = LIR_OprFact::single_cpu(5);
170
171
#ifndef _LP64
172
// The unallocatable registers are at the end
173
map_register(6, rsp);
174
map_register(7, rbp);
175
#else
176
map_register( 6, r8); r8_opr = LIR_OprFact::single_cpu(6);
177
map_register( 7, r9); r9_opr = LIR_OprFact::single_cpu(7);
178
map_register( 8, r11); r11_opr = LIR_OprFact::single_cpu(8);
179
map_register( 9, r13); r13_opr = LIR_OprFact::single_cpu(9);
180
map_register(10, r14); r14_opr = LIR_OprFact::single_cpu(10);
181
// r12 is allocated conditionally. With compressed oops it holds
182
// the heapbase value and is not visible to the allocator.
183
map_register(11, r12); r12_opr = LIR_OprFact::single_cpu(11);
184
// The unallocatable registers are at the end
185
map_register(12, r10); r10_opr = LIR_OprFact::single_cpu(12);
186
map_register(13, r15); r15_opr = LIR_OprFact::single_cpu(13);
187
map_register(14, rsp);
188
map_register(15, rbp);
189
#endif // _LP64
190
191
#ifdef _LP64
192
long0_opr = LIR_OprFact::double_cpu(3 /*eax*/, 3 /*eax*/);
193
long1_opr = LIR_OprFact::double_cpu(2 /*ebx*/, 2 /*ebx*/);
194
#else
195
long0_opr = LIR_OprFact::double_cpu(3 /*eax*/, 4 /*edx*/);
196
long1_opr = LIR_OprFact::double_cpu(2 /*ebx*/, 5 /*ecx*/);
197
#endif // _LP64
198
fpu0_float_opr = LIR_OprFact::single_fpu(0);
199
fpu0_double_opr = LIR_OprFact::double_fpu(0);
200
xmm0_float_opr = LIR_OprFact::single_xmm(0);
201
xmm0_double_opr = LIR_OprFact::double_xmm(0);
202
203
_caller_save_cpu_regs[0] = rsi_opr;
204
_caller_save_cpu_regs[1] = rdi_opr;
205
_caller_save_cpu_regs[2] = rbx_opr;
206
_caller_save_cpu_regs[3] = rax_opr;
207
_caller_save_cpu_regs[4] = rdx_opr;
208
_caller_save_cpu_regs[5] = rcx_opr;
209
210
#ifdef _LP64
211
_caller_save_cpu_regs[6] = r8_opr;
212
_caller_save_cpu_regs[7] = r9_opr;
213
_caller_save_cpu_regs[8] = r11_opr;
214
_caller_save_cpu_regs[9] = r13_opr;
215
_caller_save_cpu_regs[10] = r14_opr;
216
_caller_save_cpu_regs[11] = r12_opr;
217
#endif // _LP64
218
219
220
_xmm_regs[0] = xmm0;
221
_xmm_regs[1] = xmm1;
222
_xmm_regs[2] = xmm2;
223
_xmm_regs[3] = xmm3;
224
_xmm_regs[4] = xmm4;
225
_xmm_regs[5] = xmm5;
226
_xmm_regs[6] = xmm6;
227
_xmm_regs[7] = xmm7;
228
229
#ifdef _LP64
230
_xmm_regs[8] = xmm8;
231
_xmm_regs[9] = xmm9;
232
_xmm_regs[10] = xmm10;
233
_xmm_regs[11] = xmm11;
234
_xmm_regs[12] = xmm12;
235
_xmm_regs[13] = xmm13;
236
_xmm_regs[14] = xmm14;
237
_xmm_regs[15] = xmm15;
238
#endif // _LP64
239
240
for (int i = 0; i < 8; i++) {
241
_caller_save_fpu_regs[i] = LIR_OprFact::single_fpu(i);
242
}
243
244
for (int i = 0; i < nof_caller_save_xmm_regs ; i++) {
245
_caller_save_xmm_regs[i] = LIR_OprFact::single_xmm(i);
246
}
247
248
_init_done = true;
249
250
rsi_oop_opr = as_oop_opr(rsi);
251
rdi_oop_opr = as_oop_opr(rdi);
252
rbx_oop_opr = as_oop_opr(rbx);
253
rax_oop_opr = as_oop_opr(rax);
254
rdx_oop_opr = as_oop_opr(rdx);
255
rcx_oop_opr = as_oop_opr(rcx);
256
257
rsi_metadata_opr = as_metadata_opr(rsi);
258
rdi_metadata_opr = as_metadata_opr(rdi);
259
rbx_metadata_opr = as_metadata_opr(rbx);
260
rax_metadata_opr = as_metadata_opr(rax);
261
rdx_metadata_opr = as_metadata_opr(rdx);
262
rcx_metadata_opr = as_metadata_opr(rcx);
263
264
rsp_opr = as_pointer_opr(rsp);
265
rbp_opr = as_pointer_opr(rbp);
266
267
#ifdef _LP64
268
r8_oop_opr = as_oop_opr(r8);
269
r9_oop_opr = as_oop_opr(r9);
270
r11_oop_opr = as_oop_opr(r11);
271
r12_oop_opr = as_oop_opr(r12);
272
r13_oop_opr = as_oop_opr(r13);
273
r14_oop_opr = as_oop_opr(r14);
274
275
r8_metadata_opr = as_metadata_opr(r8);
276
r9_metadata_opr = as_metadata_opr(r9);
277
r11_metadata_opr = as_metadata_opr(r11);
278
r12_metadata_opr = as_metadata_opr(r12);
279
r13_metadata_opr = as_metadata_opr(r13);
280
r14_metadata_opr = as_metadata_opr(r14);
281
#endif // _LP64
282
283
VMRegPair regs;
284
BasicType sig_bt = T_OBJECT;
285
SharedRuntime::java_calling_convention(&sig_bt, &regs, 1, true);
286
receiver_opr = as_oop_opr(regs.first()->as_Register());
287
288
}
289
290
291
Address FrameMap::make_new_address(ByteSize sp_offset) const {
292
// for rbp, based address use this:
293
// return Address(rbp, in_bytes(sp_offset) - (framesize() - 2) * 4);
294
return Address(rsp, in_bytes(sp_offset));
295
}
296
297
298
// ----------------mapping-----------------------
299
// all mapping is based on rbp, addressing, except for simple leaf methods where we access
300
// the locals rsp based (and no frame is built)
301
302
303
// Frame for simple leaf methods (quick entries)
304
//
305
// +----------+
306
// | ret addr | <- TOS
307
// +----------+
308
// | args |
309
// | ...... |
310
311
// Frame for standard methods
312
//
313
// | .........| <- TOS
314
// | locals |
315
// +----------+
316
// | old rbp, | <- EBP
317
// +----------+
318
// | ret addr |
319
// +----------+
320
// | args |
321
// | .........|
322
323
324
// For OopMaps, map a local variable or spill index to an VMRegImpl name.
325
// This is the offset from sp() in the frame of the slot for the index,
326
// skewed by VMRegImpl::stack0 to indicate a stack location (vs.a register.)
327
//
328
// framesize +
329
// stack0 stack0 0 <- VMReg
330
// | | <registers> |
331
// ...........|..............|.............|
332
// 0 1 2 3 x x 4 5 6 ... | <- local indices
333
// ^ ^ sp() ( x x indicate link
334
// | | and return addr)
335
// arguments non-argument locals
336
337
338
VMReg FrameMap::fpu_regname (int n) {
339
// Return the OptoReg name for the fpu stack slot "n"
340
// A spilled fpu stack slot comprises to two single-word OptoReg's.
341
return as_FloatRegister(n)->as_VMReg();
342
}
343
344
LIR_Opr FrameMap::stack_pointer() {
345
return FrameMap::rsp_opr;
346
}
347
348
// JSR 292
349
// On x86, there is no need to save the SP, because neither
350
// method handle intrinsics, nor compiled lambda forms modify it.
351
LIR_Opr FrameMap::method_handle_invoke_SP_save_opr() {
352
return LIR_OprFact::illegalOpr;
353
}
354
355
bool FrameMap::validate_frame() {
356
return true;
357
}
358
359