Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/cpu/x86/vm/c1_LIRGenerator_x86.cpp
32285 views
1
/*
2
* Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "c1/c1_Compilation.hpp"
27
#include "c1/c1_FrameMap.hpp"
28
#include "c1/c1_Instruction.hpp"
29
#include "c1/c1_LIRAssembler.hpp"
30
#include "c1/c1_LIRGenerator.hpp"
31
#include "c1/c1_Runtime1.hpp"
32
#include "c1/c1_ValueStack.hpp"
33
#include "ci/ciArray.hpp"
34
#include "ci/ciObjArrayKlass.hpp"
35
#include "ci/ciTypeArrayKlass.hpp"
36
#include "runtime/sharedRuntime.hpp"
37
#include "runtime/stubRoutines.hpp"
38
#include "vmreg_x86.inline.hpp"
39
40
#ifdef ASSERT
41
#define __ gen()->lir(__FILE__, __LINE__)->
42
#else
43
#define __ gen()->lir()->
44
#endif
45
46
#if INCLUDE_ALL_GCS
47
#include "gc_implementation/shenandoah/c1/shenandoahBarrierSetC1.hpp"
48
#endif
49
50
// Item will be loaded into a byte register; Intel only
51
void LIRItem::load_byte_item() {
52
load_item();
53
LIR_Opr res = result();
54
55
if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) {
56
// make sure that it is a byte register
57
assert(!value()->type()->is_float() && !value()->type()->is_double(),
58
"can't load floats in byte register");
59
LIR_Opr reg = _gen->rlock_byte(T_BYTE);
60
__ move(res, reg);
61
62
_result = reg;
63
}
64
}
65
66
67
void LIRItem::load_nonconstant() {
68
LIR_Opr r = value()->operand();
69
if (r->is_constant()) {
70
_result = r;
71
} else {
72
load_item();
73
}
74
}
75
76
//--------------------------------------------------------------
77
// LIRGenerator
78
//--------------------------------------------------------------
79
80
81
LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; }
82
LIR_Opr LIRGenerator::exceptionPcOpr() { return FrameMap::rdx_opr; }
83
LIR_Opr LIRGenerator::divInOpr() { return FrameMap::rax_opr; }
84
LIR_Opr LIRGenerator::divOutOpr() { return FrameMap::rax_opr; }
85
LIR_Opr LIRGenerator::remOutOpr() { return FrameMap::rdx_opr; }
86
LIR_Opr LIRGenerator::shiftCountOpr() { return FrameMap::rcx_opr; }
87
LIR_Opr LIRGenerator::syncTempOpr() { return FrameMap::rax_opr; }
88
LIR_Opr LIRGenerator::getThreadTemp() { return LIR_OprFact::illegalOpr; }
89
90
91
LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
92
LIR_Opr opr;
93
switch (type->tag()) {
94
case intTag: opr = FrameMap::rax_opr; break;
95
case objectTag: opr = FrameMap::rax_oop_opr; break;
96
case longTag: opr = FrameMap::long0_opr; break;
97
case floatTag: opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr : FrameMap::fpu0_float_opr; break;
98
case doubleTag: opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr; break;
99
100
case addressTag:
101
default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
102
}
103
104
assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
105
return opr;
106
}
107
108
109
LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
110
LIR_Opr reg = new_register(T_INT);
111
set_vreg_flag(reg, LIRGenerator::byte_reg);
112
return reg;
113
}
114
115
116
//--------- loading items into registers --------------------------------
117
118
119
// i486 instructions can inline constants
120
bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
121
if (type == T_SHORT || type == T_CHAR) {
122
// there is no immediate move of word values in asembler_i486.?pp
123
return false;
124
}
125
Constant* c = v->as_Constant();
126
if (c && c->state_before() == NULL) {
127
// constants of any type can be stored directly, except for
128
// unloaded object constants.
129
return true;
130
}
131
return false;
132
}
133
134
135
bool LIRGenerator::can_inline_as_constant(Value v) const {
136
if (v->type()->tag() == longTag) return false;
137
return v->type()->tag() != objectTag ||
138
(v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object());
139
}
140
141
142
bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
143
if (c->type() == T_LONG) return false;
144
return c->type() != T_OBJECT || c->as_jobject() == NULL;
145
}
146
147
148
LIR_Opr LIRGenerator::safepoint_poll_register() {
149
return LIR_OprFact::illegalOpr;
150
}
151
152
153
LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
154
int shift, int disp, BasicType type) {
155
assert(base->is_register(), "must be");
156
if (index->is_constant()) {
157
return new LIR_Address(base,
158
(index->as_constant_ptr()->as_jint() << shift) + disp,
159
type);
160
} else {
161
return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type);
162
}
163
}
164
165
166
LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
167
BasicType type, bool needs_card_mark) {
168
int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
169
170
LIR_Address* addr;
171
if (index_opr->is_constant()) {
172
int elem_size = type2aelembytes(type);
173
addr = new LIR_Address(array_opr,
174
offset_in_bytes + index_opr->as_jint() * elem_size, type);
175
} else {
176
#ifdef _LP64
177
if (index_opr->type() == T_INT) {
178
LIR_Opr tmp = new_register(T_LONG);
179
__ convert(Bytecodes::_i2l, index_opr, tmp);
180
index_opr = tmp;
181
}
182
#endif // _LP64
183
addr = new LIR_Address(array_opr,
184
index_opr,
185
LIR_Address::scale(type),
186
offset_in_bytes, type);
187
}
188
if (needs_card_mark) {
189
// This store will need a precise card mark, so go ahead and
190
// compute the full adddres instead of computing once for the
191
// store and again for the card mark.
192
LIR_Opr tmp = new_pointer_register();
193
__ leal(LIR_OprFact::address(addr), tmp);
194
return new LIR_Address(tmp, type);
195
} else {
196
return addr;
197
}
198
}
199
200
201
LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
202
LIR_Opr r = NULL;
203
if (type == T_LONG) {
204
r = LIR_OprFact::longConst(x);
205
} else if (type == T_INT) {
206
r = LIR_OprFact::intConst(x);
207
} else {
208
ShouldNotReachHere();
209
}
210
return r;
211
}
212
213
void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
214
LIR_Opr pointer = new_pointer_register();
215
__ move(LIR_OprFact::intptrConst(counter), pointer);
216
LIR_Address* addr = new LIR_Address(pointer, type);
217
increment_counter(addr, step);
218
}
219
220
221
void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
222
__ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr);
223
}
224
225
void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
226
__ cmp_mem_int(condition, base, disp, c, info);
227
}
228
229
230
void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
231
__ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
232
}
233
234
235
void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
236
__ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
237
}
238
239
240
bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, jint c, LIR_Opr result, LIR_Opr tmp) {
241
if (tmp->is_valid() && c > 0 && c < max_jint) {
242
if (is_power_of_2(c + 1)) {
243
__ move(left, tmp);
244
__ shift_left(left, log2_jint(c + 1), left);
245
__ sub(left, tmp, result);
246
return true;
247
} else if (is_power_of_2(c - 1)) {
248
__ move(left, tmp);
249
__ shift_left(left, log2_jint(c - 1), left);
250
__ add(left, tmp, result);
251
return true;
252
}
253
}
254
return false;
255
}
256
257
258
void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
259
BasicType type = item->type();
260
__ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type));
261
}
262
263
//----------------------------------------------------------------------
264
// visitor functions
265
//----------------------------------------------------------------------
266
267
268
void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
269
assert(x->is_pinned(),"");
270
bool needs_range_check = x->compute_needs_range_check();
271
bool use_length = x->length() != NULL;
272
bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
273
bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
274
!get_jobject_constant(x->value())->is_null_object() ||
275
x->should_profile());
276
277
LIRItem array(x->array(), this);
278
LIRItem index(x->index(), this);
279
LIRItem value(x->value(), this);
280
LIRItem length(this);
281
282
array.load_item();
283
index.load_nonconstant();
284
285
if (use_length && needs_range_check) {
286
length.set_instruction(x->length());
287
length.load_item();
288
289
}
290
if (needs_store_check || x->check_boolean()) {
291
value.load_item();
292
} else {
293
value.load_for_store(x->elt_type());
294
}
295
296
set_no_result(x);
297
298
// the CodeEmitInfo must be duplicated for each different
299
// LIR-instruction because spilling can occur anywhere between two
300
// instructions and so the debug information must be different
301
CodeEmitInfo* range_check_info = state_for(x);
302
CodeEmitInfo* null_check_info = NULL;
303
if (x->needs_null_check()) {
304
null_check_info = new CodeEmitInfo(range_check_info);
305
}
306
307
// emit array address setup early so it schedules better
308
LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
309
310
if (GenerateRangeChecks && needs_range_check) {
311
if (use_length) {
312
__ cmp(lir_cond_belowEqual, length.result(), index.result());
313
__ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
314
} else {
315
array_range_check(array.result(), index.result(), null_check_info, range_check_info);
316
// range_check also does the null check
317
null_check_info = NULL;
318
}
319
}
320
321
if (GenerateArrayStoreCheck && needs_store_check) {
322
LIR_Opr tmp1 = new_register(objectType);
323
LIR_Opr tmp2 = new_register(objectType);
324
LIR_Opr tmp3 = new_register(objectType);
325
326
CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
327
__ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info, x->profiled_method(), x->profiled_bci());
328
}
329
330
if (obj_store) {
331
// Needs GC write barriers.
332
pre_barrier(LIR_OprFact::address(array_addr), LIR_OprFact::illegalOpr /* pre_val */,
333
true /* do_load */, false /* patch */, NULL);
334
__ move(value.result(), array_addr, null_check_info);
335
// Seems to be a precise
336
post_barrier(LIR_OprFact::address(array_addr), value.result());
337
} else {
338
LIR_Opr result = maybe_mask_boolean(x, array.result(), value.result(), null_check_info);
339
__ move(result, array_addr, null_check_info);
340
}
341
}
342
343
344
void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
345
assert(x->is_pinned(),"");
346
LIRItem obj(x->obj(), this);
347
obj.load_item();
348
349
set_no_result(x);
350
351
// "lock" stores the address of the monitor stack slot, so this is not an oop
352
LIR_Opr lock = new_register(T_INT);
353
// Need a scratch register for biased locking on x86
354
LIR_Opr scratch = LIR_OprFact::illegalOpr;
355
if (UseBiasedLocking) {
356
scratch = new_register(T_INT);
357
}
358
359
CodeEmitInfo* info_for_exception = NULL;
360
if (x->needs_null_check()) {
361
info_for_exception = state_for(x);
362
}
363
// this CodeEmitInfo must not have the xhandlers because here the
364
// object is already locked (xhandlers expect object to be unlocked)
365
CodeEmitInfo* info = state_for(x, x->state(), true);
366
monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
367
x->monitor_no(), info_for_exception, info);
368
}
369
370
371
void LIRGenerator::do_MonitorExit(MonitorExit* x) {
372
assert(x->is_pinned(),"");
373
374
LIRItem obj(x->obj(), this);
375
obj.dont_load_item();
376
377
LIR_Opr lock = new_register(T_INT);
378
LIR_Opr obj_temp = new_register(T_INT);
379
set_no_result(x);
380
monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
381
}
382
383
384
// _ineg, _lneg, _fneg, _dneg
385
void LIRGenerator::do_NegateOp(NegateOp* x) {
386
LIRItem value(x->x(), this);
387
value.set_destroys_register();
388
value.load_item();
389
LIR_Opr reg = rlock(x);
390
__ negate(value.result(), reg);
391
392
set_result(x, round_item(reg));
393
}
394
395
396
// for _fadd, _fmul, _fsub, _fdiv, _frem
397
// _dadd, _dmul, _dsub, _ddiv, _drem
398
void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
399
LIRItem left(x->x(), this);
400
LIRItem right(x->y(), this);
401
LIRItem* left_arg = &left;
402
LIRItem* right_arg = &right;
403
assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands");
404
bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem);
405
if (left.is_register() || x->x()->type()->is_constant() || must_load_both) {
406
left.load_item();
407
} else {
408
left.dont_load_item();
409
}
410
411
// do not load right operand if it is a constant. only 0 and 1 are
412
// loaded because there are special instructions for loading them
413
// without memory access (not needed for SSE2 instructions)
414
bool must_load_right = false;
415
if (right.is_constant()) {
416
LIR_Const* c = right.result()->as_constant_ptr();
417
assert(c != NULL, "invalid constant");
418
assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type");
419
420
if (c->type() == T_FLOAT) {
421
must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float());
422
} else {
423
must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double());
424
}
425
}
426
427
if (must_load_both) {
428
// frem and drem destroy also right operand, so move it to a new register
429
right.set_destroys_register();
430
right.load_item();
431
} else if (right.is_register() || must_load_right) {
432
right.load_item();
433
} else {
434
right.dont_load_item();
435
}
436
LIR_Opr reg = rlock(x);
437
LIR_Opr tmp = LIR_OprFact::illegalOpr;
438
if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
439
tmp = new_register(T_DOUBLE);
440
}
441
442
if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) {
443
// special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots
444
LIR_Opr fpu0, fpu1;
445
if (x->op() == Bytecodes::_frem) {
446
fpu0 = LIR_OprFact::single_fpu(0);
447
fpu1 = LIR_OprFact::single_fpu(1);
448
} else {
449
fpu0 = LIR_OprFact::double_fpu(0);
450
fpu1 = LIR_OprFact::double_fpu(1);
451
}
452
__ move(right.result(), fpu1); // order of left and right operand is important!
453
__ move(left.result(), fpu0);
454
__ rem (fpu0, fpu1, fpu0);
455
__ move(fpu0, reg);
456
457
} else {
458
arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp);
459
}
460
461
set_result(x, round_item(reg));
462
}
463
464
465
// for _ladd, _lmul, _lsub, _ldiv, _lrem
466
void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
467
if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) {
468
// long division is implemented as a direct call into the runtime
469
LIRItem left(x->x(), this);
470
LIRItem right(x->y(), this);
471
472
// the check for division by zero destroys the right operand
473
right.set_destroys_register();
474
475
BasicTypeList signature(2);
476
signature.append(T_LONG);
477
signature.append(T_LONG);
478
CallingConvention* cc = frame_map()->c_calling_convention(&signature);
479
480
// check for division by zero (destroys registers of right operand!)
481
CodeEmitInfo* info = state_for(x);
482
483
const LIR_Opr result_reg = result_register_for(x->type());
484
left.load_item_force(cc->at(1));
485
right.load_item();
486
487
__ move(right.result(), cc->at(0));
488
489
__ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
490
__ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
491
492
address entry = NULL;
493
switch (x->op()) {
494
case Bytecodes::_lrem:
495
entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
496
break; // check if dividend is 0 is done elsewhere
497
case Bytecodes::_ldiv:
498
entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
499
break; // check if dividend is 0 is done elsewhere
500
case Bytecodes::_lmul:
501
entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
502
break;
503
default:
504
ShouldNotReachHere();
505
}
506
507
LIR_Opr result = rlock_result(x);
508
__ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
509
__ move(result_reg, result);
510
} else if (x->op() == Bytecodes::_lmul) {
511
// missing test if instr is commutative and if we should swap
512
LIRItem left(x->x(), this);
513
LIRItem right(x->y(), this);
514
515
// right register is destroyed by the long mul, so it must be
516
// copied to a new register.
517
right.set_destroys_register();
518
519
left.load_item();
520
right.load_item();
521
522
LIR_Opr reg = FrameMap::long0_opr;
523
arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL);
524
LIR_Opr result = rlock_result(x);
525
__ move(reg, result);
526
} else {
527
// missing test if instr is commutative and if we should swap
528
LIRItem left(x->x(), this);
529
LIRItem right(x->y(), this);
530
531
left.load_item();
532
// don't load constants to save register
533
right.load_nonconstant();
534
rlock_result(x);
535
arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
536
}
537
}
538
539
540
541
// for: _iadd, _imul, _isub, _idiv, _irem
542
void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
543
if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
544
// The requirements for division and modulo
545
// input : rax,: dividend min_int
546
// reg: divisor (may not be rax,/rdx) -1
547
//
548
// output: rax,: quotient (= rax, idiv reg) min_int
549
// rdx: remainder (= rax, irem reg) 0
550
551
// rax, and rdx will be destroyed
552
553
// Note: does this invalidate the spec ???
554
LIRItem right(x->y(), this);
555
LIRItem left(x->x() , this); // visit left second, so that the is_register test is valid
556
557
// call state_for before load_item_force because state_for may
558
// force the evaluation of other instructions that are needed for
559
// correct debug info. Otherwise the live range of the fix
560
// register might be too long.
561
CodeEmitInfo* info = state_for(x);
562
563
left.load_item_force(divInOpr());
564
565
right.load_item();
566
567
LIR_Opr result = rlock_result(x);
568
LIR_Opr result_reg;
569
if (x->op() == Bytecodes::_idiv) {
570
result_reg = divOutOpr();
571
} else {
572
result_reg = remOutOpr();
573
}
574
575
if (!ImplicitDiv0Checks) {
576
__ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0));
577
__ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
578
}
579
LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation
580
if (x->op() == Bytecodes::_irem) {
581
__ irem(left.result(), right.result(), result_reg, tmp, info);
582
} else if (x->op() == Bytecodes::_idiv) {
583
__ idiv(left.result(), right.result(), result_reg, tmp, info);
584
} else {
585
ShouldNotReachHere();
586
}
587
588
__ move(result_reg, result);
589
} else {
590
// missing test if instr is commutative and if we should swap
591
LIRItem left(x->x(), this);
592
LIRItem right(x->y(), this);
593
LIRItem* left_arg = &left;
594
LIRItem* right_arg = &right;
595
if (x->is_commutative() && left.is_stack() && right.is_register()) {
596
// swap them if left is real stack (or cached) and right is real register(not cached)
597
left_arg = &right;
598
right_arg = &left;
599
}
600
601
left_arg->load_item();
602
603
// do not need to load right, as we can handle stack and constants
604
if (x->op() == Bytecodes::_imul ) {
605
// check if we can use shift instead
606
bool use_constant = false;
607
bool use_tmp = false;
608
if (right_arg->is_constant()) {
609
jint iconst = right_arg->get_jint_constant();
610
if (iconst > 0 && iconst < max_jint) {
611
if (is_power_of_2(iconst)) {
612
use_constant = true;
613
} else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) {
614
use_constant = true;
615
use_tmp = true;
616
}
617
}
618
}
619
if (use_constant) {
620
right_arg->dont_load_item();
621
} else {
622
right_arg->load_item();
623
}
624
LIR_Opr tmp = LIR_OprFact::illegalOpr;
625
if (use_tmp) {
626
tmp = new_register(T_INT);
627
}
628
rlock_result(x);
629
630
arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
631
} else {
632
right_arg->dont_load_item();
633
rlock_result(x);
634
LIR_Opr tmp = LIR_OprFact::illegalOpr;
635
arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
636
}
637
}
638
}
639
640
641
void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
642
// when an operand with use count 1 is the left operand, then it is
643
// likely that no move for 2-operand-LIR-form is necessary
644
if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
645
x->swap_operands();
646
}
647
648
ValueTag tag = x->type()->tag();
649
assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
650
switch (tag) {
651
case floatTag:
652
case doubleTag: do_ArithmeticOp_FPU(x); return;
653
case longTag: do_ArithmeticOp_Long(x); return;
654
case intTag: do_ArithmeticOp_Int(x); return;
655
}
656
ShouldNotReachHere();
657
}
658
659
660
// _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
661
void LIRGenerator::do_ShiftOp(ShiftOp* x) {
662
// count must always be in rcx
663
LIRItem value(x->x(), this);
664
LIRItem count(x->y(), this);
665
666
ValueTag elemType = x->type()->tag();
667
bool must_load_count = !count.is_constant() || elemType == longTag;
668
if (must_load_count) {
669
// count for long must be in register
670
count.load_item_force(shiftCountOpr());
671
} else {
672
count.dont_load_item();
673
}
674
value.load_item();
675
LIR_Opr reg = rlock_result(x);
676
677
shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
678
}
679
680
681
// _iand, _land, _ior, _lor, _ixor, _lxor
682
void LIRGenerator::do_LogicOp(LogicOp* x) {
683
// when an operand with use count 1 is the left operand, then it is
684
// likely that no move for 2-operand-LIR-form is necessary
685
if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
686
x->swap_operands();
687
}
688
689
LIRItem left(x->x(), this);
690
LIRItem right(x->y(), this);
691
692
left.load_item();
693
right.load_nonconstant();
694
LIR_Opr reg = rlock_result(x);
695
696
logic_op(x->op(), reg, left.result(), right.result());
697
}
698
699
700
701
// _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
702
void LIRGenerator::do_CompareOp(CompareOp* x) {
703
LIRItem left(x->x(), this);
704
LIRItem right(x->y(), this);
705
ValueTag tag = x->x()->type()->tag();
706
if (tag == longTag) {
707
left.set_destroys_register();
708
}
709
left.load_item();
710
right.load_item();
711
LIR_Opr reg = rlock_result(x);
712
713
if (x->x()->type()->is_float_kind()) {
714
Bytecodes::Code code = x->op();
715
__ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
716
} else if (x->x()->type()->tag() == longTag) {
717
__ lcmp2int(left.result(), right.result(), reg);
718
} else {
719
Unimplemented();
720
}
721
}
722
723
724
void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
725
assert(x->number_of_arguments() == 4, "wrong type");
726
LIRItem obj (x->argument_at(0), this); // object
727
LIRItem offset(x->argument_at(1), this); // offset of field
728
LIRItem cmp (x->argument_at(2), this); // value to compare with field
729
LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp
730
731
assert(obj.type()->tag() == objectTag, "invalid type");
732
733
// In 64bit the type can be long, sparc doesn't have this assert
734
// assert(offset.type()->tag() == intTag, "invalid type");
735
736
assert(cmp.type()->tag() == type->tag(), "invalid type");
737
assert(val.type()->tag() == type->tag(), "invalid type");
738
739
// get address of field
740
obj.load_item();
741
offset.load_nonconstant();
742
743
if (type == objectType) {
744
cmp.load_item_force(FrameMap::rax_oop_opr);
745
val.load_item();
746
} else if (type == intType) {
747
cmp.load_item_force(FrameMap::rax_opr);
748
val.load_item();
749
} else if (type == longType) {
750
cmp.load_item_force(FrameMap::long0_opr);
751
val.load_item_force(FrameMap::long1_opr);
752
} else {
753
ShouldNotReachHere();
754
}
755
756
LIR_Opr addr = new_pointer_register();
757
LIR_Address* a;
758
if(offset.result()->is_constant()) {
759
#ifdef _LP64
760
jlong c = offset.result()->as_jlong();
761
if ((jlong)((jint)c) == c) {
762
a = new LIR_Address(obj.result(),
763
(jint)c,
764
as_BasicType(type));
765
} else {
766
LIR_Opr tmp = new_register(T_LONG);
767
__ move(offset.result(), tmp);
768
a = new LIR_Address(obj.result(),
769
tmp,
770
as_BasicType(type));
771
}
772
#else
773
a = new LIR_Address(obj.result(),
774
offset.result()->as_jint(),
775
as_BasicType(type));
776
#endif
777
} else {
778
a = new LIR_Address(obj.result(),
779
offset.result(),
780
LIR_Address::times_1,
781
0,
782
as_BasicType(type));
783
}
784
__ leal(LIR_OprFact::address(a), addr);
785
786
if (type == objectType) { // Write-barrier needed for Object fields.
787
// Do the pre-write barrier, if any.
788
pre_barrier(addr, LIR_OprFact::illegalOpr /* pre_val */,
789
true /* do_load */, false /* patch */, NULL);
790
}
791
792
LIR_Opr ill = LIR_OprFact::illegalOpr; // for convenience
793
if (type == objectType) {
794
#if INCLUDE_ALL_GCS
795
if (UseShenandoahGC && ShenandoahCASBarrier) {
796
LIR_Opr result = rlock_result(x);
797
__ cas_obj(addr, cmp.result(), val.result(), new_register(T_OBJECT), new_register(T_OBJECT), result);
798
// Shenandoah C1 barrier would do all result management itself, shortcut here.
799
return;
800
} else
801
#endif
802
{
803
__ cas_obj(addr, cmp.result(), val.result(), ill, ill);
804
}
805
}
806
else if (type == intType)
807
__ cas_int(addr, cmp.result(), val.result(), ill, ill);
808
else if (type == longType)
809
__ cas_long(addr, cmp.result(), val.result(), ill, ill);
810
else {
811
ShouldNotReachHere();
812
}
813
814
// generate conditional move of boolean result
815
LIR_Opr result = rlock_result(x);
816
__ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
817
result, as_BasicType(type));
818
if (type == objectType) { // Write-barrier needed for Object fields.
819
// Seems to be precise
820
post_barrier(addr, val.result());
821
}
822
}
823
824
825
void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
826
assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type");
827
LIRItem value(x->argument_at(0), this);
828
829
bool use_fpu = false;
830
if (UseSSE >= 2) {
831
switch(x->id()) {
832
case vmIntrinsics::_dsin:
833
case vmIntrinsics::_dcos:
834
case vmIntrinsics::_dtan:
835
case vmIntrinsics::_dlog:
836
case vmIntrinsics::_dlog10:
837
case vmIntrinsics::_dexp:
838
case vmIntrinsics::_dpow:
839
use_fpu = true;
840
}
841
} else {
842
value.set_destroys_register();
843
}
844
845
value.load_item();
846
847
LIR_Opr calc_input = value.result();
848
LIR_Opr calc_input2 = NULL;
849
if (x->id() == vmIntrinsics::_dpow) {
850
LIRItem extra_arg(x->argument_at(1), this);
851
if (UseSSE < 2) {
852
extra_arg.set_destroys_register();
853
}
854
extra_arg.load_item();
855
calc_input2 = extra_arg.result();
856
}
857
LIR_Opr calc_result = rlock_result(x);
858
859
// sin, cos, pow and exp need two free fpu stack slots, so register
860
// two temporary operands
861
LIR_Opr tmp1 = FrameMap::caller_save_fpu_reg_at(0);
862
LIR_Opr tmp2 = FrameMap::caller_save_fpu_reg_at(1);
863
864
if (use_fpu) {
865
LIR_Opr tmp = FrameMap::fpu0_double_opr;
866
int tmp_start = 1;
867
if (calc_input2 != NULL) {
868
__ move(calc_input2, tmp);
869
tmp_start = 2;
870
calc_input2 = tmp;
871
}
872
__ move(calc_input, tmp);
873
874
calc_input = tmp;
875
calc_result = tmp;
876
877
tmp1 = FrameMap::caller_save_fpu_reg_at(tmp_start);
878
tmp2 = FrameMap::caller_save_fpu_reg_at(tmp_start + 1);
879
}
880
881
switch(x->id()) {
882
case vmIntrinsics::_dabs: __ abs (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
883
case vmIntrinsics::_dsqrt: __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
884
case vmIntrinsics::_dsin: __ sin (calc_input, calc_result, tmp1, tmp2); break;
885
case vmIntrinsics::_dcos: __ cos (calc_input, calc_result, tmp1, tmp2); break;
886
case vmIntrinsics::_dtan: __ tan (calc_input, calc_result, tmp1, tmp2); break;
887
case vmIntrinsics::_dlog: __ log (calc_input, calc_result, tmp1); break;
888
case vmIntrinsics::_dlog10: __ log10(calc_input, calc_result, tmp1); break;
889
case vmIntrinsics::_dexp: __ exp (calc_input, calc_result, tmp1, tmp2, FrameMap::rax_opr, FrameMap::rcx_opr, FrameMap::rdx_opr); break;
890
case vmIntrinsics::_dpow: __ pow (calc_input, calc_input2, calc_result, tmp1, tmp2, FrameMap::rax_opr, FrameMap::rcx_opr, FrameMap::rdx_opr); break;
891
default: ShouldNotReachHere();
892
}
893
894
if (use_fpu) {
895
__ move(calc_result, x->operand());
896
}
897
}
898
899
900
void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
901
assert(x->number_of_arguments() == 5, "wrong type");
902
903
// Make all state_for calls early since they can emit code
904
CodeEmitInfo* info = state_for(x, x->state());
905
906
LIRItem src(x->argument_at(0), this);
907
LIRItem src_pos(x->argument_at(1), this);
908
LIRItem dst(x->argument_at(2), this);
909
LIRItem dst_pos(x->argument_at(3), this);
910
LIRItem length(x->argument_at(4), this);
911
912
// operands for arraycopy must use fixed registers, otherwise
913
// LinearScan will fail allocation (because arraycopy always needs a
914
// call)
915
916
#ifndef _LP64
917
src.load_item_force (FrameMap::rcx_oop_opr);
918
src_pos.load_item_force (FrameMap::rdx_opr);
919
dst.load_item_force (FrameMap::rax_oop_opr);
920
dst_pos.load_item_force (FrameMap::rbx_opr);
921
length.load_item_force (FrameMap::rdi_opr);
922
LIR_Opr tmp = (FrameMap::rsi_opr);
923
#else
924
925
// The java calling convention will give us enough registers
926
// so that on the stub side the args will be perfect already.
927
// On the other slow/special case side we call C and the arg
928
// positions are not similar enough to pick one as the best.
929
// Also because the java calling convention is a "shifted" version
930
// of the C convention we can process the java args trivially into C
931
// args without worry of overwriting during the xfer
932
933
src.load_item_force (FrameMap::as_oop_opr(j_rarg0));
934
src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
935
dst.load_item_force (FrameMap::as_oop_opr(j_rarg2));
936
dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
937
length.load_item_force (FrameMap::as_opr(j_rarg4));
938
939
LIR_Opr tmp = FrameMap::as_opr(j_rarg5);
940
#endif // LP64
941
942
set_no_result(x);
943
944
int flags;
945
ciArrayKlass* expected_type;
946
arraycopy_helper(x, &flags, &expected_type);
947
948
__ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
949
}
950
951
void LIRGenerator::do_update_CRC32(Intrinsic* x) {
952
assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
953
// Make all state_for calls early since they can emit code
954
LIR_Opr result = rlock_result(x);
955
int flags = 0;
956
switch (x->id()) {
957
case vmIntrinsics::_updateCRC32: {
958
LIRItem crc(x->argument_at(0), this);
959
LIRItem val(x->argument_at(1), this);
960
// val is destroyed by update_crc32
961
val.set_destroys_register();
962
crc.load_item();
963
val.load_item();
964
__ update_crc32(crc.result(), val.result(), result);
965
break;
966
}
967
case vmIntrinsics::_updateBytesCRC32:
968
case vmIntrinsics::_updateByteBufferCRC32: {
969
bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32);
970
971
LIRItem crc(x->argument_at(0), this);
972
LIRItem buf(x->argument_at(1), this);
973
LIRItem off(x->argument_at(2), this);
974
LIRItem len(x->argument_at(3), this);
975
buf.load_item();
976
off.load_nonconstant();
977
978
LIR_Opr index = off.result();
979
int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
980
if(off.result()->is_constant()) {
981
index = LIR_OprFact::illegalOpr;
982
offset += off.result()->as_jint();
983
}
984
LIR_Opr base_op = buf.result();
985
986
#ifndef _LP64
987
if (!is_updateBytes) { // long b raw address
988
base_op = new_register(T_INT);
989
__ convert(Bytecodes::_l2i, buf.result(), base_op);
990
}
991
#else
992
if (index->is_valid()) {
993
LIR_Opr tmp = new_register(T_LONG);
994
__ convert(Bytecodes::_i2l, index, tmp);
995
index = tmp;
996
}
997
#endif
998
999
LIR_Address* a = new LIR_Address(base_op,
1000
index,
1001
LIR_Address::times_1,
1002
offset,
1003
T_BYTE);
1004
BasicTypeList signature(3);
1005
signature.append(T_INT);
1006
signature.append(T_ADDRESS);
1007
signature.append(T_INT);
1008
CallingConvention* cc = frame_map()->c_calling_convention(&signature);
1009
const LIR_Opr result_reg = result_register_for(x->type());
1010
1011
LIR_Opr addr = new_pointer_register();
1012
__ leal(LIR_OprFact::address(a), addr);
1013
1014
crc.load_item_force(cc->at(0));
1015
__ move(addr, cc->at(1));
1016
len.load_item_force(cc->at(2));
1017
1018
__ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args());
1019
__ move(result_reg, result);
1020
1021
break;
1022
}
1023
default: {
1024
ShouldNotReachHere();
1025
}
1026
}
1027
}
1028
1029
// _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
1030
// _i2b, _i2c, _i2s
1031
LIR_Opr fixed_register_for(BasicType type) {
1032
switch (type) {
1033
case T_FLOAT: return FrameMap::fpu0_float_opr;
1034
case T_DOUBLE: return FrameMap::fpu0_double_opr;
1035
case T_INT: return FrameMap::rax_opr;
1036
case T_LONG: return FrameMap::long0_opr;
1037
default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
1038
}
1039
}
1040
1041
void LIRGenerator::do_Convert(Convert* x) {
1042
// flags that vary for the different operations and different SSE-settings
1043
bool fixed_input = false, fixed_result = false, round_result = false, needs_stub = false;
1044
1045
switch (x->op()) {
1046
case Bytecodes::_i2l: // fall through
1047
case Bytecodes::_l2i: // fall through
1048
case Bytecodes::_i2b: // fall through
1049
case Bytecodes::_i2c: // fall through
1050
case Bytecodes::_i2s: fixed_input = false; fixed_result = false; round_result = false; needs_stub = false; break;
1051
1052
case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false; round_result = false; needs_stub = false; break;
1053
case Bytecodes::_d2f: fixed_input = false; fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break;
1054
case Bytecodes::_i2f: fixed_input = false; fixed_result = false; round_result = UseSSE < 1; needs_stub = false; break;
1055
case Bytecodes::_i2d: fixed_input = false; fixed_result = false; round_result = false; needs_stub = false; break;
1056
case Bytecodes::_f2i: fixed_input = false; fixed_result = false; round_result = false; needs_stub = true; break;
1057
case Bytecodes::_d2i: fixed_input = false; fixed_result = false; round_result = false; needs_stub = true; break;
1058
case Bytecodes::_l2f: fixed_input = false; fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break;
1059
case Bytecodes::_l2d: fixed_input = false; fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break;
1060
case Bytecodes::_f2l: fixed_input = true; fixed_result = true; round_result = false; needs_stub = false; break;
1061
case Bytecodes::_d2l: fixed_input = true; fixed_result = true; round_result = false; needs_stub = false; break;
1062
default: ShouldNotReachHere();
1063
}
1064
1065
LIRItem value(x->value(), this);
1066
value.load_item();
1067
LIR_Opr input = value.result();
1068
LIR_Opr result = rlock(x);
1069
1070
// arguments of lir_convert
1071
LIR_Opr conv_input = input;
1072
LIR_Opr conv_result = result;
1073
ConversionStub* stub = NULL;
1074
1075
if (fixed_input) {
1076
conv_input = fixed_register_for(input->type());
1077
__ move(input, conv_input);
1078
}
1079
1080
assert(fixed_result == false || round_result == false, "cannot set both");
1081
if (fixed_result) {
1082
conv_result = fixed_register_for(result->type());
1083
} else if (round_result) {
1084
result = new_register(result->type());
1085
set_vreg_flag(result, must_start_in_memory);
1086
}
1087
1088
if (needs_stub) {
1089
stub = new ConversionStub(x->op(), conv_input, conv_result);
1090
}
1091
1092
__ convert(x->op(), conv_input, conv_result, stub);
1093
1094
if (result != conv_result) {
1095
__ move(conv_result, result);
1096
}
1097
1098
assert(result->is_virtual(), "result must be virtual register");
1099
set_result(x, result);
1100
}
1101
1102
1103
void LIRGenerator::do_NewInstance(NewInstance* x) {
1104
print_if_not_loaded(x);
1105
1106
CodeEmitInfo* info = state_for(x, x->state());
1107
LIR_Opr reg = result_register_for(x->type());
1108
new_instance(reg, x->klass(), x->is_unresolved(),
1109
FrameMap::rcx_oop_opr,
1110
FrameMap::rdi_oop_opr,
1111
FrameMap::rsi_oop_opr,
1112
LIR_OprFact::illegalOpr,
1113
FrameMap::rdx_metadata_opr, info);
1114
LIR_Opr result = rlock_result(x);
1115
__ move(reg, result);
1116
}
1117
1118
1119
void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
1120
CodeEmitInfo* info = state_for(x, x->state());
1121
1122
LIRItem length(x->length(), this);
1123
length.load_item_force(FrameMap::rbx_opr);
1124
1125
LIR_Opr reg = result_register_for(x->type());
1126
LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
1127
LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
1128
LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
1129
LIR_Opr tmp4 = reg;
1130
LIR_Opr klass_reg = FrameMap::rdx_metadata_opr;
1131
LIR_Opr len = length.result();
1132
BasicType elem_type = x->elt_type();
1133
1134
__ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
1135
1136
CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
1137
__ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
1138
1139
LIR_Opr result = rlock_result(x);
1140
__ move(reg, result);
1141
}
1142
1143
1144
void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1145
LIRItem length(x->length(), this);
1146
// in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
1147
// and therefore provide the state before the parameters have been consumed
1148
CodeEmitInfo* patching_info = NULL;
1149
if (!x->klass()->is_loaded() || PatchALot) {
1150
patching_info = state_for(x, x->state_before());
1151
}
1152
1153
CodeEmitInfo* info = state_for(x, x->state());
1154
1155
const LIR_Opr reg = result_register_for(x->type());
1156
LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
1157
LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
1158
LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
1159
LIR_Opr tmp4 = reg;
1160
LIR_Opr klass_reg = FrameMap::rdx_metadata_opr;
1161
1162
length.load_item_force(FrameMap::rbx_opr);
1163
LIR_Opr len = length.result();
1164
1165
CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
1166
ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass());
1167
if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1168
BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1169
}
1170
klass2reg_with_patching(klass_reg, obj, patching_info);
1171
__ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
1172
1173
LIR_Opr result = rlock_result(x);
1174
__ move(reg, result);
1175
}
1176
1177
1178
void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1179
Values* dims = x->dims();
1180
int i = dims->length();
1181
LIRItemList* items = new LIRItemList(dims->length(), NULL);
1182
while (i-- > 0) {
1183
LIRItem* size = new LIRItem(dims->at(i), this);
1184
items->at_put(i, size);
1185
}
1186
1187
// Evaluate state_for early since it may emit code.
1188
CodeEmitInfo* patching_info = NULL;
1189
if (!x->klass()->is_loaded() || PatchALot) {
1190
patching_info = state_for(x, x->state_before());
1191
1192
// Cannot re-use same xhandlers for multiple CodeEmitInfos, so
1193
// clone all handlers (NOTE: Usually this is handled transparently
1194
// by the CodeEmitInfo cloning logic in CodeStub constructors but
1195
// is done explicitly here because a stub isn't being used).
1196
x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1197
}
1198
CodeEmitInfo* info = state_for(x, x->state());
1199
1200
i = dims->length();
1201
while (i-- > 0) {
1202
LIRItem* size = items->at(i);
1203
size->load_nonconstant();
1204
1205
store_stack_parameter(size->result(), in_ByteSize(i*4));
1206
}
1207
1208
LIR_Opr klass_reg = FrameMap::rax_metadata_opr;
1209
klass2reg_with_patching(klass_reg, x->klass(), patching_info);
1210
1211
LIR_Opr rank = FrameMap::rbx_opr;
1212
__ move(LIR_OprFact::intConst(x->rank()), rank);
1213
LIR_Opr varargs = FrameMap::rcx_opr;
1214
__ move(FrameMap::rsp_opr, varargs);
1215
LIR_OprList* args = new LIR_OprList(3);
1216
args->append(klass_reg);
1217
args->append(rank);
1218
args->append(varargs);
1219
LIR_Opr reg = result_register_for(x->type());
1220
__ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1221
LIR_OprFact::illegalOpr,
1222
reg, args, info);
1223
1224
LIR_Opr result = rlock_result(x);
1225
__ move(reg, result);
1226
}
1227
1228
1229
void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1230
// nothing to do for now
1231
}
1232
1233
1234
void LIRGenerator::do_CheckCast(CheckCast* x) {
1235
LIRItem obj(x->obj(), this);
1236
1237
CodeEmitInfo* patching_info = NULL;
1238
if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
1239
// must do this before locking the destination register as an oop register,
1240
// and before the obj is loaded (the latter is for deoptimization)
1241
patching_info = state_for(x, x->state_before());
1242
}
1243
obj.load_item();
1244
1245
// info for exceptions
1246
CodeEmitInfo* info_for_exception =
1247
(x->needs_exception_state() ? state_for(x) :
1248
state_for(x, x->state_before(), true /*ignore_xhandler*/));
1249
1250
CodeStub* stub;
1251
if (x->is_incompatible_class_change_check()) {
1252
assert(patching_info == NULL, "can't patch this");
1253
stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1254
} else if (x->is_invokespecial_receiver_check()) {
1255
assert(patching_info == NULL, "can't patch this");
1256
stub = new DeoptimizeStub(info_for_exception);
1257
} else {
1258
stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1259
}
1260
LIR_Opr reg = rlock_result(x);
1261
LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1262
if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1263
tmp3 = new_register(objectType);
1264
}
1265
__ checkcast(reg, obj.result(), x->klass(),
1266
new_register(objectType), new_register(objectType), tmp3,
1267
x->direct_compare(), info_for_exception, patching_info, stub,
1268
x->profiled_method(), x->profiled_bci());
1269
}
1270
1271
1272
void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1273
LIRItem obj(x->obj(), this);
1274
1275
// result and test object may not be in same register
1276
LIR_Opr reg = rlock_result(x);
1277
CodeEmitInfo* patching_info = NULL;
1278
if ((!x->klass()->is_loaded() || PatchALot)) {
1279
// must do this before locking the destination register as an oop register
1280
patching_info = state_for(x, x->state_before());
1281
}
1282
obj.load_item();
1283
LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1284
if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1285
tmp3 = new_register(objectType);
1286
}
1287
__ instanceof(reg, obj.result(), x->klass(),
1288
new_register(objectType), new_register(objectType), tmp3,
1289
x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
1290
}
1291
1292
1293
void LIRGenerator::do_If(If* x) {
1294
assert(x->number_of_sux() == 2, "inconsistency");
1295
ValueTag tag = x->x()->type()->tag();
1296
bool is_safepoint = x->is_safepoint();
1297
1298
If::Condition cond = x->cond();
1299
1300
LIRItem xitem(x->x(), this);
1301
LIRItem yitem(x->y(), this);
1302
LIRItem* xin = &xitem;
1303
LIRItem* yin = &yitem;
1304
1305
if (tag == longTag) {
1306
// for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1307
// mirror for other conditions
1308
if (cond == If::gtr || cond == If::leq) {
1309
cond = Instruction::mirror(cond);
1310
xin = &yitem;
1311
yin = &xitem;
1312
}
1313
xin->set_destroys_register();
1314
}
1315
xin->load_item();
1316
if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) {
1317
// inline long zero
1318
yin->dont_load_item();
1319
} else if (tag == longTag || tag == floatTag || tag == doubleTag) {
1320
// longs cannot handle constants at right side
1321
yin->load_item();
1322
} else {
1323
yin->dont_load_item();
1324
}
1325
1326
// add safepoint before generating condition code so it can be recomputed
1327
if (x->is_safepoint()) {
1328
// increment backedge counter if needed
1329
increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
1330
__ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
1331
}
1332
set_no_result(x);
1333
1334
LIR_Opr left = xin->result();
1335
LIR_Opr right = yin->result();
1336
__ cmp(lir_cond(cond), left, right);
1337
// Generate branch profiling. Profiling code doesn't kill flags.
1338
profile_branch(x, cond);
1339
move_to_phi(x->state());
1340
if (x->x()->type()->is_float_kind()) {
1341
__ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1342
} else {
1343
__ branch(lir_cond(cond), right->type(), x->tsux());
1344
}
1345
assert(x->default_sux() == x->fsux(), "wrong destination above");
1346
__ jump(x->default_sux());
1347
}
1348
1349
1350
LIR_Opr LIRGenerator::getThreadPointer() {
1351
#ifdef _LP64
1352
return FrameMap::as_pointer_opr(r15_thread);
1353
#else
1354
LIR_Opr result = new_register(T_INT);
1355
__ get_thread(result);
1356
return result;
1357
#endif //
1358
}
1359
1360
void LIRGenerator::trace_block_entry(BlockBegin* block) {
1361
store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0));
1362
LIR_OprList* args = new LIR_OprList();
1363
address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
1364
__ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
1365
}
1366
1367
1368
void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1369
CodeEmitInfo* info) {
1370
if (address->type() == T_LONG) {
1371
address = new LIR_Address(address->base(),
1372
address->index(), address->scale(),
1373
address->disp(), T_DOUBLE);
1374
// Transfer the value atomically by using FP moves. This means
1375
// the value has to be moved between CPU and FPU registers. It
1376
// always has to be moved through spill slot since there's no
1377
// quick way to pack the value into an SSE register.
1378
LIR_Opr temp_double = new_register(T_DOUBLE);
1379
LIR_Opr spill = new_register(T_LONG);
1380
set_vreg_flag(spill, must_start_in_memory);
1381
__ move(value, spill);
1382
__ volatile_move(spill, temp_double, T_LONG);
1383
__ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info);
1384
} else {
1385
__ store(value, address, info);
1386
}
1387
}
1388
1389
1390
1391
void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1392
CodeEmitInfo* info) {
1393
if (address->type() == T_LONG) {
1394
address = new LIR_Address(address->base(),
1395
address->index(), address->scale(),
1396
address->disp(), T_DOUBLE);
1397
// Transfer the value atomically by using FP moves. This means
1398
// the value has to be moved between CPU and FPU registers. In
1399
// SSE0 and SSE1 mode it has to be moved through spill slot but in
1400
// SSE2+ mode it can be moved directly.
1401
LIR_Opr temp_double = new_register(T_DOUBLE);
1402
__ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info);
1403
__ volatile_move(temp_double, result, T_LONG);
1404
if (UseSSE < 2) {
1405
// no spill slot needed in SSE2 mode because xmm->cpu register move is possible
1406
set_vreg_flag(result, must_start_in_memory);
1407
}
1408
} else {
1409
__ load(address, result, info);
1410
}
1411
}
1412
1413
void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
1414
BasicType type, bool is_volatile) {
1415
if (is_volatile && type == T_LONG) {
1416
LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
1417
LIR_Opr tmp = new_register(T_DOUBLE);
1418
__ load(addr, tmp);
1419
LIR_Opr spill = new_register(T_LONG);
1420
set_vreg_flag(spill, must_start_in_memory);
1421
__ move(tmp, spill);
1422
__ move(spill, dst);
1423
} else {
1424
LIR_Address* addr = new LIR_Address(src, offset, type);
1425
__ load(addr, dst);
1426
}
1427
}
1428
1429
1430
void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
1431
BasicType type, bool is_volatile) {
1432
if (is_volatile && type == T_LONG) {
1433
LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
1434
LIR_Opr tmp = new_register(T_DOUBLE);
1435
LIR_Opr spill = new_register(T_DOUBLE);
1436
set_vreg_flag(spill, must_start_in_memory);
1437
__ move(data, spill);
1438
__ move(spill, tmp);
1439
__ move(tmp, addr);
1440
} else {
1441
LIR_Address* addr = new LIR_Address(src, offset, type);
1442
bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1443
if (is_obj) {
1444
// Do the pre-write barrier, if any.
1445
pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
1446
true /* do_load */, false /* patch */, NULL);
1447
__ move(data, addr);
1448
assert(src->is_register(), "must be register");
1449
// Seems to be a precise address
1450
post_barrier(LIR_OprFact::address(addr), data);
1451
} else {
1452
__ move(data, addr);
1453
}
1454
}
1455
}
1456
1457
void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
1458
BasicType type = x->basic_type();
1459
LIRItem src(x->object(), this);
1460
LIRItem off(x->offset(), this);
1461
LIRItem value(x->value(), this);
1462
1463
src.load_item();
1464
value.load_item();
1465
off.load_nonconstant();
1466
1467
LIR_Opr dst = rlock_result(x, type);
1468
LIR_Opr data = value.result();
1469
bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1470
LIR_Opr offset = off.result();
1471
1472
assert (type == T_INT || (!x->is_add() && is_obj) LP64_ONLY( || type == T_LONG ), "unexpected type");
1473
LIR_Address* addr;
1474
if (offset->is_constant()) {
1475
#ifdef _LP64
1476
jlong c = offset->as_jlong();
1477
if ((jlong)((jint)c) == c) {
1478
addr = new LIR_Address(src.result(), (jint)c, type);
1479
} else {
1480
LIR_Opr tmp = new_register(T_LONG);
1481
__ move(offset, tmp);
1482
addr = new LIR_Address(src.result(), tmp, type);
1483
}
1484
#else
1485
addr = new LIR_Address(src.result(), offset->as_jint(), type);
1486
#endif
1487
} else {
1488
addr = new LIR_Address(src.result(), offset, type);
1489
}
1490
1491
// Because we want a 2-arg form of xchg and xadd
1492
__ move(data, dst);
1493
1494
if (x->is_add()) {
1495
__ xadd(LIR_OprFact::address(addr), dst, dst, LIR_OprFact::illegalOpr);
1496
} else {
1497
if (is_obj) {
1498
// Do the pre-write barrier, if any.
1499
pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
1500
true /* do_load */, false /* patch */, NULL);
1501
}
1502
__ xchg(LIR_OprFact::address(addr), dst, dst, LIR_OprFact::illegalOpr);
1503
1504
#if INCLUDE_ALL_GCS
1505
if (UseShenandoahGC && is_obj) {
1506
LIR_Opr tmp = ShenandoahBarrierSet::barrier_set()->bsc1()->load_reference_barrier(this, dst, LIR_OprFact::addressConst(0));
1507
__ move(tmp, dst);
1508
}
1509
#endif
1510
1511
if (is_obj) {
1512
// Seems to be a precise address
1513
post_barrier(LIR_OprFact::address(addr), data);
1514
}
1515
}
1516
}
1517
1518