Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/cpu/x86/vm/c1_LinearScan_x86.cpp
32285 views
1
/*
2
* Copyright (c) 2005, 2014, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "c1/c1_Instruction.hpp"
27
#include "c1/c1_LinearScan.hpp"
28
#include "utilities/bitMap.inline.hpp"
29
30
31
//----------------------------------------------------------------------
32
// Allocation of FPU stack slots (Intel x86 only)
33
//----------------------------------------------------------------------
34
35
void LinearScan::allocate_fpu_stack() {
36
// First compute which FPU registers are live at the start of each basic block
37
// (To minimize the amount of work we have to do if we have to merge FPU stacks)
38
if (ComputeExactFPURegisterUsage) {
39
Interval* intervals_in_register, *intervals_in_memory;
40
create_unhandled_lists(&intervals_in_register, &intervals_in_memory, is_in_fpu_register, NULL);
41
42
// ignore memory intervals by overwriting intervals_in_memory
43
// the dummy interval is needed to enforce the walker to walk until the given id:
44
// without it, the walker stops when the unhandled-list is empty -> live information
45
// beyond this point would be incorrect.
46
Interval* dummy_interval = new Interval(any_reg);
47
dummy_interval->add_range(max_jint - 2, max_jint - 1);
48
dummy_interval->set_next(Interval::end());
49
intervals_in_memory = dummy_interval;
50
51
IntervalWalker iw(this, intervals_in_register, intervals_in_memory);
52
53
const int num_blocks = block_count();
54
for (int i = 0; i < num_blocks; i++) {
55
BlockBegin* b = block_at(i);
56
57
// register usage is only needed for merging stacks -> compute only
58
// when more than one predecessor.
59
// the block must not have any spill moves at the beginning (checked by assertions)
60
// spill moves would use intervals that are marked as handled and so the usage bit
61
// would been set incorrectly
62
63
// NOTE: the check for number_of_preds > 1 is necessary. A block with only one
64
// predecessor may have spill moves at the begin of the block.
65
// If an interval ends at the current instruction id, it is not possible
66
// to decide if the register is live or not at the block begin -> the
67
// register information would be incorrect.
68
if (b->number_of_preds() > 1) {
69
int id = b->first_lir_instruction_id();
70
BitMap regs(FrameMap::nof_fpu_regs);
71
regs.clear();
72
73
iw.walk_to(id); // walk after the first instruction (always a label) of the block
74
assert(iw.current_position() == id, "did not walk completely to id");
75
76
// Only consider FPU values in registers
77
Interval* interval = iw.active_first(fixedKind);
78
while (interval != Interval::end()) {
79
int reg = interval->assigned_reg();
80
assert(reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg, "no fpu register");
81
assert(interval->assigned_regHi() == -1, "must not have hi register (doubles stored in one register)");
82
assert(interval->from() <= id && id < interval->to(), "interval out of range");
83
84
#ifndef PRODUCT
85
if (TraceFPURegisterUsage) {
86
tty->print("fpu reg %d is live because of ", reg - pd_first_fpu_reg); interval->print();
87
}
88
#endif
89
90
regs.set_bit(reg - pd_first_fpu_reg);
91
interval = interval->next();
92
}
93
94
b->set_fpu_register_usage(regs);
95
96
#ifndef PRODUCT
97
if (TraceFPURegisterUsage) {
98
tty->print("FPU regs for block %d, LIR instr %d): ", b->block_id(), id); regs.print_on(tty); tty->cr();
99
}
100
#endif
101
}
102
}
103
}
104
105
FpuStackAllocator alloc(ir()->compilation(), this);
106
_fpu_stack_allocator = &alloc;
107
alloc.allocate();
108
_fpu_stack_allocator = NULL;
109
}
110
111
112
FpuStackAllocator::FpuStackAllocator(Compilation* compilation, LinearScan* allocator)
113
: _compilation(compilation)
114
, _lir(NULL)
115
, _pos(-1)
116
, _allocator(allocator)
117
, _sim(compilation)
118
, _temp_sim(compilation)
119
{}
120
121
void FpuStackAllocator::allocate() {
122
int num_blocks = allocator()->block_count();
123
for (int i = 0; i < num_blocks; i++) {
124
// Set up to process block
125
BlockBegin* block = allocator()->block_at(i);
126
intArray* fpu_stack_state = block->fpu_stack_state();
127
128
#ifndef PRODUCT
129
if (TraceFPUStack) {
130
tty->cr();
131
tty->print_cr("------- Begin of new Block %d -------", block->block_id());
132
}
133
#endif
134
135
assert(fpu_stack_state != NULL ||
136
block->end()->as_Base() != NULL ||
137
block->is_set(BlockBegin::exception_entry_flag),
138
"FPU stack state must be present due to linear-scan order for FPU stack allocation");
139
// note: exception handler entries always start with an empty fpu stack
140
// because stack merging would be too complicated
141
142
if (fpu_stack_state != NULL) {
143
sim()->read_state(fpu_stack_state);
144
} else {
145
sim()->clear();
146
}
147
148
#ifndef PRODUCT
149
if (TraceFPUStack) {
150
tty->print("Reading FPU state for block %d:", block->block_id());
151
sim()->print();
152
tty->cr();
153
}
154
#endif
155
156
allocate_block(block);
157
CHECK_BAILOUT();
158
}
159
}
160
161
void FpuStackAllocator::allocate_block(BlockBegin* block) {
162
bool processed_merge = false;
163
LIR_OpList* insts = block->lir()->instructions_list();
164
set_lir(block->lir());
165
set_pos(0);
166
167
168
// Note: insts->length() may change during loop
169
while (pos() < insts->length()) {
170
LIR_Op* op = insts->at(pos());
171
_debug_information_computed = false;
172
173
#ifndef PRODUCT
174
if (TraceFPUStack) {
175
op->print();
176
}
177
check_invalid_lir_op(op);
178
#endif
179
180
LIR_OpBranch* branch = op->as_OpBranch();
181
LIR_Op1* op1 = op->as_Op1();
182
LIR_Op2* op2 = op->as_Op2();
183
LIR_OpCall* opCall = op->as_OpCall();
184
185
if (branch != NULL && branch->block() != NULL) {
186
if (!processed_merge) {
187
// propagate stack at first branch to a successor
188
processed_merge = true;
189
bool required_merge = merge_fpu_stack_with_successors(block);
190
191
assert(!required_merge || branch->cond() == lir_cond_always, "splitting of critical edges should prevent FPU stack mismatches at cond branches");
192
}
193
194
} else if (op1 != NULL) {
195
handle_op1(op1);
196
} else if (op2 != NULL) {
197
handle_op2(op2);
198
} else if (opCall != NULL) {
199
handle_opCall(opCall);
200
}
201
202
compute_debug_information(op);
203
204
set_pos(1 + pos());
205
}
206
207
// Propagate stack when block does not end with branch
208
if (!processed_merge) {
209
merge_fpu_stack_with_successors(block);
210
}
211
}
212
213
214
void FpuStackAllocator::compute_debug_information(LIR_Op* op) {
215
if (!_debug_information_computed && op->id() != -1 && allocator()->has_info(op->id())) {
216
visitor.visit(op);
217
218
// exception handling
219
if (allocator()->compilation()->has_exception_handlers()) {
220
XHandlers* xhandlers = visitor.all_xhandler();
221
int n = xhandlers->length();
222
for (int k = 0; k < n; k++) {
223
allocate_exception_handler(xhandlers->handler_at(k));
224
}
225
} else {
226
assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
227
}
228
229
// compute debug information
230
int n = visitor.info_count();
231
assert(n > 0, "should not visit operation otherwise");
232
233
for (int j = 0; j < n; j++) {
234
CodeEmitInfo* info = visitor.info_at(j);
235
// Compute debug information
236
allocator()->compute_debug_info(info, op->id());
237
}
238
}
239
_debug_information_computed = true;
240
}
241
242
void FpuStackAllocator::allocate_exception_handler(XHandler* xhandler) {
243
if (!sim()->is_empty()) {
244
LIR_List* old_lir = lir();
245
int old_pos = pos();
246
intArray* old_state = sim()->write_state();
247
248
#ifndef PRODUCT
249
if (TraceFPUStack) {
250
tty->cr();
251
tty->print_cr("------- begin of exception handler -------");
252
}
253
#endif
254
255
if (xhandler->entry_code() == NULL) {
256
// need entry code to clear FPU stack
257
LIR_List* entry_code = new LIR_List(_compilation);
258
entry_code->jump(xhandler->entry_block());
259
xhandler->set_entry_code(entry_code);
260
}
261
262
LIR_OpList* insts = xhandler->entry_code()->instructions_list();
263
set_lir(xhandler->entry_code());
264
set_pos(0);
265
266
// Note: insts->length() may change during loop
267
while (pos() < insts->length()) {
268
LIR_Op* op = insts->at(pos());
269
270
#ifndef PRODUCT
271
if (TraceFPUStack) {
272
op->print();
273
}
274
check_invalid_lir_op(op);
275
#endif
276
277
switch (op->code()) {
278
case lir_move:
279
assert(op->as_Op1() != NULL, "must be LIR_Op1");
280
assert(pos() != insts->length() - 1, "must not be last operation");
281
282
handle_op1((LIR_Op1*)op);
283
break;
284
285
case lir_branch:
286
assert(op->as_OpBranch()->cond() == lir_cond_always, "must be unconditional branch");
287
assert(pos() == insts->length() - 1, "must be last operation");
288
289
// remove all remaining dead registers from FPU stack
290
clear_fpu_stack(LIR_OprFact::illegalOpr);
291
break;
292
293
default:
294
// other operations not allowed in exception entry code
295
ShouldNotReachHere();
296
}
297
298
set_pos(pos() + 1);
299
}
300
301
#ifndef PRODUCT
302
if (TraceFPUStack) {
303
tty->cr();
304
tty->print_cr("------- end of exception handler -------");
305
}
306
#endif
307
308
set_lir(old_lir);
309
set_pos(old_pos);
310
sim()->read_state(old_state);
311
}
312
}
313
314
315
int FpuStackAllocator::fpu_num(LIR_Opr opr) {
316
assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise");
317
return opr->is_single_fpu() ? opr->fpu_regnr() : opr->fpu_regnrLo();
318
}
319
320
int FpuStackAllocator::tos_offset(LIR_Opr opr) {
321
return sim()->offset_from_tos(fpu_num(opr));
322
}
323
324
325
LIR_Opr FpuStackAllocator::to_fpu_stack(LIR_Opr opr) {
326
assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise");
327
328
int stack_offset = tos_offset(opr);
329
if (opr->is_single_fpu()) {
330
return LIR_OprFact::single_fpu(stack_offset)->make_fpu_stack_offset();
331
} else {
332
assert(opr->is_double_fpu(), "shouldn't call this otherwise");
333
return LIR_OprFact::double_fpu(stack_offset)->make_fpu_stack_offset();
334
}
335
}
336
337
LIR_Opr FpuStackAllocator::to_fpu_stack_top(LIR_Opr opr, bool dont_check_offset) {
338
assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise");
339
assert(dont_check_offset || tos_offset(opr) == 0, "operand is not on stack top");
340
341
int stack_offset = 0;
342
if (opr->is_single_fpu()) {
343
return LIR_OprFact::single_fpu(stack_offset)->make_fpu_stack_offset();
344
} else {
345
assert(opr->is_double_fpu(), "shouldn't call this otherwise");
346
return LIR_OprFact::double_fpu(stack_offset)->make_fpu_stack_offset();
347
}
348
}
349
350
351
352
void FpuStackAllocator::insert_op(LIR_Op* op) {
353
lir()->insert_before(pos(), op);
354
set_pos(1 + pos());
355
}
356
357
358
void FpuStackAllocator::insert_exchange(int offset) {
359
if (offset > 0) {
360
LIR_Op1* fxch_op = new LIR_Op1(lir_fxch, LIR_OprFact::intConst(offset), LIR_OprFact::illegalOpr);
361
insert_op(fxch_op);
362
sim()->swap(offset);
363
364
#ifndef PRODUCT
365
if (TraceFPUStack) {
366
tty->print("Exchanged register: %d New state: ", sim()->get_slot(0)); sim()->print(); tty->cr();
367
}
368
#endif
369
370
}
371
}
372
373
void FpuStackAllocator::insert_exchange(LIR_Opr opr) {
374
insert_exchange(tos_offset(opr));
375
}
376
377
378
void FpuStackAllocator::insert_free(int offset) {
379
// move stack slot to the top of stack and then pop it
380
insert_exchange(offset);
381
382
LIR_Op* fpop = new LIR_Op0(lir_fpop_raw);
383
insert_op(fpop);
384
sim()->pop();
385
386
#ifndef PRODUCT
387
if (TraceFPUStack) {
388
tty->print("Inserted pop New state: "); sim()->print(); tty->cr();
389
}
390
#endif
391
}
392
393
394
void FpuStackAllocator::insert_free_if_dead(LIR_Opr opr) {
395
if (sim()->contains(fpu_num(opr))) {
396
int res_slot = tos_offset(opr);
397
insert_free(res_slot);
398
}
399
}
400
401
void FpuStackAllocator::insert_free_if_dead(LIR_Opr opr, LIR_Opr ignore) {
402
if (fpu_num(opr) != fpu_num(ignore) && sim()->contains(fpu_num(opr))) {
403
int res_slot = tos_offset(opr);
404
insert_free(res_slot);
405
}
406
}
407
408
void FpuStackAllocator::insert_copy(LIR_Opr from, LIR_Opr to) {
409
int offset = tos_offset(from);
410
LIR_Op1* fld = new LIR_Op1(lir_fld, LIR_OprFact::intConst(offset), LIR_OprFact::illegalOpr);
411
insert_op(fld);
412
413
sim()->push(fpu_num(to));
414
415
#ifndef PRODUCT
416
if (TraceFPUStack) {
417
tty->print("Inserted copy (%d -> %d) New state: ", fpu_num(from), fpu_num(to)); sim()->print(); tty->cr();
418
}
419
#endif
420
}
421
422
void FpuStackAllocator::do_rename(LIR_Opr from, LIR_Opr to) {
423
sim()->rename(fpu_num(from), fpu_num(to));
424
}
425
426
void FpuStackAllocator::do_push(LIR_Opr opr) {
427
sim()->push(fpu_num(opr));
428
}
429
430
void FpuStackAllocator::pop_if_last_use(LIR_Op* op, LIR_Opr opr) {
431
assert(op->fpu_pop_count() == 0, "fpu_pop_count alredy set");
432
assert(tos_offset(opr) == 0, "can only pop stack top");
433
434
if (opr->is_last_use()) {
435
op->set_fpu_pop_count(1);
436
sim()->pop();
437
}
438
}
439
440
void FpuStackAllocator::pop_always(LIR_Op* op, LIR_Opr opr) {
441
assert(op->fpu_pop_count() == 0, "fpu_pop_count alredy set");
442
assert(tos_offset(opr) == 0, "can only pop stack top");
443
444
op->set_fpu_pop_count(1);
445
sim()->pop();
446
}
447
448
void FpuStackAllocator::clear_fpu_stack(LIR_Opr preserve) {
449
int result_stack_size = (preserve->is_fpu_register() && !preserve->is_xmm_register() ? 1 : 0);
450
while (sim()->stack_size() > result_stack_size) {
451
assert(!sim()->slot_is_empty(0), "not allowed");
452
453
if (result_stack_size == 0 || sim()->get_slot(0) != fpu_num(preserve)) {
454
insert_free(0);
455
} else {
456
// move "preserve" to bottom of stack so that all other stack slots can be popped
457
insert_exchange(sim()->stack_size() - 1);
458
}
459
}
460
}
461
462
463
void FpuStackAllocator::handle_op1(LIR_Op1* op1) {
464
LIR_Opr in = op1->in_opr();
465
LIR_Opr res = op1->result_opr();
466
467
LIR_Opr new_in = in; // new operands relative to the actual fpu stack top
468
LIR_Opr new_res = res;
469
470
// Note: this switch is processed for all LIR_Op1, regardless if they have FPU-arguments,
471
// so checks for is_float_kind() are necessary inside the cases
472
switch (op1->code()) {
473
474
case lir_return: {
475
// FPU-Stack must only contain the (optional) fpu return value.
476
// All remaining dead values are popped from the stack
477
// If the input operand is a fpu-register, it is exchanged to the bottom of the stack
478
479
clear_fpu_stack(in);
480
if (in->is_fpu_register() && !in->is_xmm_register()) {
481
new_in = to_fpu_stack_top(in);
482
}
483
484
break;
485
}
486
487
case lir_move: {
488
if (in->is_fpu_register() && !in->is_xmm_register()) {
489
if (res->is_xmm_register()) {
490
// move from fpu register to xmm register (necessary for operations that
491
// are not available in the SSE instruction set)
492
insert_exchange(in);
493
new_in = to_fpu_stack_top(in);
494
pop_always(op1, in);
495
496
} else if (res->is_fpu_register() && !res->is_xmm_register()) {
497
// move from fpu-register to fpu-register:
498
// * input and result register equal:
499
// nothing to do
500
// * input register is last use:
501
// rename the input register to result register -> input register
502
// not present on fpu-stack afterwards
503
// * input register not last use:
504
// duplicate input register to result register to preserve input
505
//
506
// Note: The LIR-Assembler does not produce any code for fpu register moves,
507
// so input and result stack index must be equal
508
509
if (fpu_num(in) == fpu_num(res)) {
510
// nothing to do
511
} else if (in->is_last_use()) {
512
insert_free_if_dead(res);//, in);
513
do_rename(in, res);
514
} else {
515
insert_free_if_dead(res);
516
insert_copy(in, res);
517
}
518
new_in = to_fpu_stack(res);
519
new_res = new_in;
520
521
} else {
522
// move from fpu-register to memory
523
// input operand must be on top of stack
524
525
insert_exchange(in);
526
527
// create debug information here because afterwards the register may have been popped
528
compute_debug_information(op1);
529
530
new_in = to_fpu_stack_top(in);
531
pop_if_last_use(op1, in);
532
}
533
534
} else if (res->is_fpu_register() && !res->is_xmm_register()) {
535
// move from memory/constant to fpu register
536
// result is pushed on the stack
537
538
insert_free_if_dead(res);
539
540
// create debug information before register is pushed
541
compute_debug_information(op1);
542
543
do_push(res);
544
new_res = to_fpu_stack_top(res);
545
}
546
break;
547
}
548
549
case lir_neg: {
550
if (in->is_fpu_register() && !in->is_xmm_register()) {
551
assert(res->is_fpu_register() && !res->is_xmm_register(), "must be");
552
assert(in->is_last_use(), "old value gets destroyed");
553
554
insert_free_if_dead(res, in);
555
insert_exchange(in);
556
new_in = to_fpu_stack_top(in);
557
558
do_rename(in, res);
559
new_res = to_fpu_stack_top(res);
560
}
561
break;
562
}
563
564
case lir_convert: {
565
Bytecodes::Code bc = op1->as_OpConvert()->bytecode();
566
switch (bc) {
567
case Bytecodes::_d2f:
568
case Bytecodes::_f2d:
569
assert(res->is_fpu_register(), "must be");
570
assert(in->is_fpu_register(), "must be");
571
572
if (!in->is_xmm_register() && !res->is_xmm_register()) {
573
// this is quite the same as a move from fpu-register to fpu-register
574
// Note: input and result operands must have different types
575
if (fpu_num(in) == fpu_num(res)) {
576
// nothing to do
577
new_in = to_fpu_stack(in);
578
} else if (in->is_last_use()) {
579
insert_free_if_dead(res);//, in);
580
new_in = to_fpu_stack(in);
581
do_rename(in, res);
582
} else {
583
insert_free_if_dead(res);
584
insert_copy(in, res);
585
new_in = to_fpu_stack_top(in, true);
586
}
587
new_res = to_fpu_stack(res);
588
}
589
590
break;
591
592
case Bytecodes::_i2f:
593
case Bytecodes::_l2f:
594
case Bytecodes::_i2d:
595
case Bytecodes::_l2d:
596
assert(res->is_fpu_register(), "must be");
597
if (!res->is_xmm_register()) {
598
insert_free_if_dead(res);
599
do_push(res);
600
new_res = to_fpu_stack_top(res);
601
}
602
break;
603
604
case Bytecodes::_f2i:
605
case Bytecodes::_d2i:
606
assert(in->is_fpu_register(), "must be");
607
if (!in->is_xmm_register()) {
608
insert_exchange(in);
609
new_in = to_fpu_stack_top(in);
610
611
// TODO: update registes of stub
612
}
613
break;
614
615
case Bytecodes::_f2l:
616
case Bytecodes::_d2l:
617
assert(in->is_fpu_register(), "must be");
618
if (!in->is_xmm_register()) {
619
insert_exchange(in);
620
new_in = to_fpu_stack_top(in);
621
pop_always(op1, in);
622
}
623
break;
624
625
case Bytecodes::_i2l:
626
case Bytecodes::_l2i:
627
case Bytecodes::_i2b:
628
case Bytecodes::_i2c:
629
case Bytecodes::_i2s:
630
// no fpu operands
631
break;
632
633
default:
634
ShouldNotReachHere();
635
}
636
break;
637
}
638
639
case lir_roundfp: {
640
assert(in->is_fpu_register() && !in->is_xmm_register(), "input must be in register");
641
assert(res->is_stack(), "result must be on stack");
642
643
insert_exchange(in);
644
new_in = to_fpu_stack_top(in);
645
pop_if_last_use(op1, in);
646
break;
647
}
648
649
default: {
650
assert(!in->is_float_kind() && !res->is_float_kind(), "missed a fpu-operation");
651
}
652
}
653
654
op1->set_in_opr(new_in);
655
op1->set_result_opr(new_res);
656
}
657
658
void FpuStackAllocator::handle_op2(LIR_Op2* op2) {
659
LIR_Opr left = op2->in_opr1();
660
if (!left->is_float_kind()) {
661
return;
662
}
663
if (left->is_xmm_register()) {
664
return;
665
}
666
667
LIR_Opr right = op2->in_opr2();
668
LIR_Opr res = op2->result_opr();
669
LIR_Opr new_left = left; // new operands relative to the actual fpu stack top
670
LIR_Opr new_right = right;
671
LIR_Opr new_res = res;
672
673
assert(!left->is_xmm_register() && !right->is_xmm_register() && !res->is_xmm_register(), "not for xmm registers");
674
675
switch (op2->code()) {
676
case lir_cmp:
677
case lir_cmp_fd2i:
678
case lir_ucmp_fd2i:
679
case lir_assert: {
680
assert(left->is_fpu_register(), "invalid LIR");
681
assert(right->is_fpu_register(), "invalid LIR");
682
683
// the left-hand side must be on top of stack.
684
// the right-hand side is never popped, even if is_last_use is set
685
insert_exchange(left);
686
new_left = to_fpu_stack_top(left);
687
new_right = to_fpu_stack(right);
688
pop_if_last_use(op2, left);
689
break;
690
}
691
692
case lir_mul_strictfp:
693
case lir_div_strictfp: {
694
assert(op2->tmp1_opr()->is_fpu_register(), "strict operations need temporary fpu stack slot");
695
insert_free_if_dead(op2->tmp1_opr());
696
assert(sim()->stack_size() <= 7, "at least one stack slot must be free");
697
// fall-through: continue with the normal handling of lir_mul and lir_div
698
}
699
case lir_add:
700
case lir_sub:
701
case lir_mul:
702
case lir_div: {
703
assert(left->is_fpu_register(), "must be");
704
assert(res->is_fpu_register(), "must be");
705
assert(left->is_equal(res), "must be");
706
707
// either the left-hand or the right-hand side must be on top of stack
708
// (if right is not a register, left must be on top)
709
if (!right->is_fpu_register()) {
710
insert_exchange(left);
711
new_left = to_fpu_stack_top(left);
712
} else {
713
// no exchange necessary if right is alredy on top of stack
714
if (tos_offset(right) == 0) {
715
new_left = to_fpu_stack(left);
716
new_right = to_fpu_stack_top(right);
717
} else {
718
insert_exchange(left);
719
new_left = to_fpu_stack_top(left);
720
new_right = to_fpu_stack(right);
721
}
722
723
if (right->is_last_use()) {
724
op2->set_fpu_pop_count(1);
725
726
if (tos_offset(right) == 0) {
727
sim()->pop();
728
} else {
729
// if left is on top of stack, the result is placed in the stack
730
// slot of right, so a renaming from right to res is necessary
731
assert(tos_offset(left) == 0, "must be");
732
sim()->pop();
733
do_rename(right, res);
734
}
735
}
736
}
737
new_res = to_fpu_stack(res);
738
739
break;
740
}
741
742
case lir_rem: {
743
assert(left->is_fpu_register(), "must be");
744
assert(right->is_fpu_register(), "must be");
745
assert(res->is_fpu_register(), "must be");
746
assert(left->is_equal(res), "must be");
747
748
// Must bring both operands to top of stack with following operand ordering:
749
// * fpu stack before rem: ... right left
750
// * fpu stack after rem: ... left
751
if (tos_offset(right) != 1) {
752
insert_exchange(right);
753
insert_exchange(1);
754
}
755
insert_exchange(left);
756
assert(tos_offset(right) == 1, "check");
757
assert(tos_offset(left) == 0, "check");
758
759
new_left = to_fpu_stack_top(left);
760
new_right = to_fpu_stack(right);
761
762
op2->set_fpu_pop_count(1);
763
sim()->pop();
764
do_rename(right, res);
765
766
new_res = to_fpu_stack_top(res);
767
break;
768
}
769
770
case lir_abs:
771
case lir_sqrt: {
772
// Right argument appears to be unused
773
assert(right->is_illegal(), "must be");
774
assert(left->is_fpu_register(), "must be");
775
assert(res->is_fpu_register(), "must be");
776
assert(left->is_last_use(), "old value gets destroyed");
777
778
insert_free_if_dead(res, left);
779
insert_exchange(left);
780
do_rename(left, res);
781
782
new_left = to_fpu_stack_top(res);
783
new_res = new_left;
784
785
op2->set_fpu_stack_size(sim()->stack_size());
786
break;
787
}
788
789
case lir_log:
790
case lir_log10: {
791
// log and log10 need one temporary fpu stack slot, so
792
// there is one temporary registers stored in temp of the
793
// operation. the stack allocator must guarantee that the stack
794
// slots are really free, otherwise there might be a stack
795
// overflow.
796
assert(right->is_illegal(), "must be");
797
assert(left->is_fpu_register(), "must be");
798
assert(res->is_fpu_register(), "must be");
799
assert(op2->tmp1_opr()->is_fpu_register(), "must be");
800
801
insert_free_if_dead(op2->tmp1_opr());
802
insert_free_if_dead(res, left);
803
insert_exchange(left);
804
do_rename(left, res);
805
806
new_left = to_fpu_stack_top(res);
807
new_res = new_left;
808
809
op2->set_fpu_stack_size(sim()->stack_size());
810
assert(sim()->stack_size() <= 7, "at least one stack slot must be free");
811
break;
812
}
813
814
815
case lir_tan:
816
case lir_sin:
817
case lir_cos:
818
case lir_exp: {
819
// sin, cos and exp need two temporary fpu stack slots, so there are two temporary
820
// registers (stored in right and temp of the operation).
821
// the stack allocator must guarantee that the stack slots are really free,
822
// otherwise there might be a stack overflow.
823
assert(left->is_fpu_register(), "must be");
824
assert(res->is_fpu_register(), "must be");
825
// assert(left->is_last_use(), "old value gets destroyed");
826
assert(right->is_fpu_register(), "right is used as the first temporary register");
827
assert(op2->tmp1_opr()->is_fpu_register(), "temp is used as the second temporary register");
828
assert(fpu_num(left) != fpu_num(right) && fpu_num(right) != fpu_num(op2->tmp1_opr()) && fpu_num(op2->tmp1_opr()) != fpu_num(res), "need distinct temp registers");
829
830
insert_free_if_dead(right);
831
insert_free_if_dead(op2->tmp1_opr());
832
833
insert_free_if_dead(res, left);
834
insert_exchange(left);
835
do_rename(left, res);
836
837
new_left = to_fpu_stack_top(res);
838
new_res = new_left;
839
840
op2->set_fpu_stack_size(sim()->stack_size());
841
assert(sim()->stack_size() <= 6, "at least two stack slots must be free");
842
break;
843
}
844
845
case lir_pow: {
846
// pow needs two temporary fpu stack slots, so there are two temporary
847
// registers (stored in tmp1 and tmp2 of the operation).
848
// the stack allocator must guarantee that the stack slots are really free,
849
// otherwise there might be a stack overflow.
850
assert(left->is_fpu_register(), "must be");
851
assert(right->is_fpu_register(), "must be");
852
assert(res->is_fpu_register(), "must be");
853
854
assert(op2->tmp1_opr()->is_fpu_register(), "tmp1 is the first temporary register");
855
assert(op2->tmp2_opr()->is_fpu_register(), "tmp2 is the second temporary register");
856
assert(fpu_num(left) != fpu_num(right) && fpu_num(left) != fpu_num(op2->tmp1_opr()) && fpu_num(left) != fpu_num(op2->tmp2_opr()) && fpu_num(left) != fpu_num(res), "need distinct temp registers");
857
assert(fpu_num(right) != fpu_num(op2->tmp1_opr()) && fpu_num(right) != fpu_num(op2->tmp2_opr()) && fpu_num(right) != fpu_num(res), "need distinct temp registers");
858
assert(fpu_num(op2->tmp1_opr()) != fpu_num(op2->tmp2_opr()) && fpu_num(op2->tmp1_opr()) != fpu_num(res), "need distinct temp registers");
859
assert(fpu_num(op2->tmp2_opr()) != fpu_num(res), "need distinct temp registers");
860
861
insert_free_if_dead(op2->tmp1_opr());
862
insert_free_if_dead(op2->tmp2_opr());
863
864
// Must bring both operands to top of stack with following operand ordering:
865
// * fpu stack before pow: ... right left
866
// * fpu stack after pow: ... left
867
868
insert_free_if_dead(res, right);
869
870
if (tos_offset(right) != 1) {
871
insert_exchange(right);
872
insert_exchange(1);
873
}
874
insert_exchange(left);
875
assert(tos_offset(right) == 1, "check");
876
assert(tos_offset(left) == 0, "check");
877
878
new_left = to_fpu_stack_top(left);
879
new_right = to_fpu_stack(right);
880
881
op2->set_fpu_stack_size(sim()->stack_size());
882
assert(sim()->stack_size() <= 6, "at least two stack slots must be free");
883
884
sim()->pop();
885
886
do_rename(right, res);
887
888
new_res = to_fpu_stack_top(res);
889
break;
890
}
891
892
default: {
893
assert(false, "missed a fpu-operation");
894
}
895
}
896
897
op2->set_in_opr1(new_left);
898
op2->set_in_opr2(new_right);
899
op2->set_result_opr(new_res);
900
}
901
902
void FpuStackAllocator::handle_opCall(LIR_OpCall* opCall) {
903
LIR_Opr res = opCall->result_opr();
904
905
// clear fpu-stack before call
906
// it may contain dead values that could not have been remved by previous operations
907
clear_fpu_stack(LIR_OprFact::illegalOpr);
908
assert(sim()->is_empty(), "fpu stack must be empty now");
909
910
// compute debug information before (possible) fpu result is pushed
911
compute_debug_information(opCall);
912
913
if (res->is_fpu_register() && !res->is_xmm_register()) {
914
do_push(res);
915
opCall->set_result_opr(to_fpu_stack_top(res));
916
}
917
}
918
919
#ifndef PRODUCT
920
void FpuStackAllocator::check_invalid_lir_op(LIR_Op* op) {
921
switch (op->code()) {
922
case lir_24bit_FPU:
923
case lir_reset_FPU:
924
case lir_ffree:
925
assert(false, "operations not allowed in lir. If one of these operations is needed, check if they have fpu operands");
926
break;
927
928
case lir_fpop_raw:
929
case lir_fxch:
930
case lir_fld:
931
assert(false, "operations only inserted by FpuStackAllocator");
932
break;
933
}
934
}
935
#endif
936
937
938
void FpuStackAllocator::merge_insert_add(LIR_List* instrs, FpuStackSim* cur_sim, int reg) {
939
LIR_Op1* move = new LIR_Op1(lir_move, LIR_OprFact::doubleConst(0), LIR_OprFact::double_fpu(reg)->make_fpu_stack_offset());
940
941
instrs->instructions_list()->push(move);
942
943
cur_sim->push(reg);
944
move->set_result_opr(to_fpu_stack(move->result_opr()));
945
946
#ifndef PRODUCT
947
if (TraceFPUStack) {
948
tty->print("Added new register: %d New state: ", reg); cur_sim->print(); tty->cr();
949
}
950
#endif
951
}
952
953
void FpuStackAllocator::merge_insert_xchg(LIR_List* instrs, FpuStackSim* cur_sim, int slot) {
954
assert(slot > 0, "no exchange necessary");
955
956
LIR_Op1* fxch = new LIR_Op1(lir_fxch, LIR_OprFact::intConst(slot));
957
instrs->instructions_list()->push(fxch);
958
cur_sim->swap(slot);
959
960
#ifndef PRODUCT
961
if (TraceFPUStack) {
962
tty->print("Exchanged register: %d New state: ", cur_sim->get_slot(slot)); cur_sim->print(); tty->cr();
963
}
964
#endif
965
}
966
967
void FpuStackAllocator::merge_insert_pop(LIR_List* instrs, FpuStackSim* cur_sim) {
968
int reg = cur_sim->get_slot(0);
969
970
LIR_Op* fpop = new LIR_Op0(lir_fpop_raw);
971
instrs->instructions_list()->push(fpop);
972
cur_sim->pop(reg);
973
974
#ifndef PRODUCT
975
if (TraceFPUStack) {
976
tty->print("Removed register: %d New state: ", reg); cur_sim->print(); tty->cr();
977
}
978
#endif
979
}
980
981
bool FpuStackAllocator::merge_rename(FpuStackSim* cur_sim, FpuStackSim* sux_sim, int start_slot, int change_slot) {
982
int reg = cur_sim->get_slot(change_slot);
983
984
for (int slot = start_slot; slot >= 0; slot--) {
985
int new_reg = sux_sim->get_slot(slot);
986
987
if (!cur_sim->contains(new_reg)) {
988
cur_sim->set_slot(change_slot, new_reg);
989
990
#ifndef PRODUCT
991
if (TraceFPUStack) {
992
tty->print("Renamed register %d to %d New state: ", reg, new_reg); cur_sim->print(); tty->cr();
993
}
994
#endif
995
996
return true;
997
}
998
}
999
return false;
1000
}
1001
1002
1003
void FpuStackAllocator::merge_fpu_stack(LIR_List* instrs, FpuStackSim* cur_sim, FpuStackSim* sux_sim) {
1004
#ifndef PRODUCT
1005
if (TraceFPUStack) {
1006
tty->cr();
1007
tty->print("before merging: pred: "); cur_sim->print(); tty->cr();
1008
tty->print(" sux: "); sux_sim->print(); tty->cr();
1009
}
1010
1011
int slot;
1012
for (slot = 0; slot < cur_sim->stack_size(); slot++) {
1013
assert(!cur_sim->slot_is_empty(slot), "not handled by algorithm");
1014
}
1015
for (slot = 0; slot < sux_sim->stack_size(); slot++) {
1016
assert(!sux_sim->slot_is_empty(slot), "not handled by algorithm");
1017
}
1018
#endif
1019
1020
// size difference between cur and sux that must be resolved by adding or removing values form the stack
1021
int size_diff = cur_sim->stack_size() - sux_sim->stack_size();
1022
1023
if (!ComputeExactFPURegisterUsage) {
1024
// add slots that are currently free, but used in successor
1025
// When the exact FPU register usage is computed, the stack does
1026
// not contain dead values at merging -> no values must be added
1027
1028
int sux_slot = sux_sim->stack_size() - 1;
1029
while (size_diff < 0) {
1030
assert(sux_slot >= 0, "slot out of bounds -> error in algorithm");
1031
1032
int reg = sux_sim->get_slot(sux_slot);
1033
if (!cur_sim->contains(reg)) {
1034
merge_insert_add(instrs, cur_sim, reg);
1035
size_diff++;
1036
1037
if (sux_slot + size_diff != 0) {
1038
merge_insert_xchg(instrs, cur_sim, sux_slot + size_diff);
1039
}
1040
}
1041
sux_slot--;
1042
}
1043
}
1044
1045
assert(cur_sim->stack_size() >= sux_sim->stack_size(), "stack size must be equal or greater now");
1046
assert(size_diff == cur_sim->stack_size() - sux_sim->stack_size(), "must be");
1047
1048
// stack merge algorithm:
1049
// 1) as long as the current stack top is not in the right location (that meens
1050
// it should not be on the stack top), exchange it into the right location
1051
// 2) if the stack top is right, but the remaining stack is not ordered correctly,
1052
// the stack top is exchanged away to get another value on top ->
1053
// now step 1) can be continued
1054
// the stack can also contain unused items -> these items are removed from stack
1055
1056
int finished_slot = sux_sim->stack_size() - 1;
1057
while (finished_slot >= 0 || size_diff > 0) {
1058
while (size_diff > 0 || (cur_sim->stack_size() > 0 && cur_sim->get_slot(0) != sux_sim->get_slot(0))) {
1059
int reg = cur_sim->get_slot(0);
1060
if (sux_sim->contains(reg)) {
1061
int sux_slot = sux_sim->offset_from_tos(reg);
1062
merge_insert_xchg(instrs, cur_sim, sux_slot + size_diff);
1063
1064
} else if (!merge_rename(cur_sim, sux_sim, finished_slot, 0)) {
1065
assert(size_diff > 0, "must be");
1066
1067
merge_insert_pop(instrs, cur_sim);
1068
size_diff--;
1069
}
1070
assert(cur_sim->stack_size() == 0 || cur_sim->get_slot(0) != reg, "register must have been changed");
1071
}
1072
1073
while (finished_slot >= 0 && cur_sim->get_slot(finished_slot) == sux_sim->get_slot(finished_slot)) {
1074
finished_slot--;
1075
}
1076
1077
if (finished_slot >= 0) {
1078
int reg = cur_sim->get_slot(finished_slot);
1079
1080
if (sux_sim->contains(reg) || !merge_rename(cur_sim, sux_sim, finished_slot, finished_slot)) {
1081
assert(sux_sim->contains(reg) || size_diff > 0, "must be");
1082
merge_insert_xchg(instrs, cur_sim, finished_slot);
1083
}
1084
assert(cur_sim->get_slot(finished_slot) != reg, "register must have been changed");
1085
}
1086
}
1087
1088
#ifndef PRODUCT
1089
if (TraceFPUStack) {
1090
tty->print("after merging: pred: "); cur_sim->print(); tty->cr();
1091
tty->print(" sux: "); sux_sim->print(); tty->cr();
1092
tty->cr();
1093
}
1094
#endif
1095
assert(cur_sim->stack_size() == sux_sim->stack_size(), "stack size must be equal now");
1096
}
1097
1098
1099
void FpuStackAllocator::merge_cleanup_fpu_stack(LIR_List* instrs, FpuStackSim* cur_sim, BitMap& live_fpu_regs) {
1100
#ifndef PRODUCT
1101
if (TraceFPUStack) {
1102
tty->cr();
1103
tty->print("before cleanup: state: "); cur_sim->print(); tty->cr();
1104
tty->print(" live: "); live_fpu_regs.print_on(tty); tty->cr();
1105
}
1106
#endif
1107
1108
int slot = 0;
1109
while (slot < cur_sim->stack_size()) {
1110
int reg = cur_sim->get_slot(slot);
1111
if (!live_fpu_regs.at(reg)) {
1112
if (slot != 0) {
1113
merge_insert_xchg(instrs, cur_sim, slot);
1114
}
1115
merge_insert_pop(instrs, cur_sim);
1116
} else {
1117
slot++;
1118
}
1119
}
1120
1121
#ifndef PRODUCT
1122
if (TraceFPUStack) {
1123
tty->print("after cleanup: state: "); cur_sim->print(); tty->cr();
1124
tty->print(" live: "); live_fpu_regs.print_on(tty); tty->cr();
1125
tty->cr();
1126
}
1127
1128
// check if fpu stack only contains live registers
1129
for (unsigned int i = 0; i < live_fpu_regs.size(); i++) {
1130
if (live_fpu_regs.at(i) != cur_sim->contains(i)) {
1131
tty->print_cr("mismatch between required and actual stack content");
1132
break;
1133
}
1134
}
1135
#endif
1136
}
1137
1138
1139
bool FpuStackAllocator::merge_fpu_stack_with_successors(BlockBegin* block) {
1140
#ifndef PRODUCT
1141
if (TraceFPUStack) {
1142
tty->print_cr("Propagating FPU stack state for B%d at LIR_Op position %d to successors:",
1143
block->block_id(), pos());
1144
sim()->print();
1145
tty->cr();
1146
}
1147
#endif
1148
1149
bool changed = false;
1150
int number_of_sux = block->number_of_sux();
1151
1152
if (number_of_sux == 1 && block->sux_at(0)->number_of_preds() > 1) {
1153
// The successor has at least two incoming edges, so a stack merge will be necessary
1154
// If this block is the first predecessor, cleanup the current stack and propagate it
1155
// If this block is not the first predecessor, a stack merge will be necessary
1156
1157
BlockBegin* sux = block->sux_at(0);
1158
intArray* state = sux->fpu_stack_state();
1159
LIR_List* instrs = new LIR_List(_compilation);
1160
1161
if (state != NULL) {
1162
// Merge with a successors that already has a FPU stack state
1163
// the block must only have one successor because critical edges must been split
1164
FpuStackSim* cur_sim = sim();
1165
FpuStackSim* sux_sim = temp_sim();
1166
sux_sim->read_state(state);
1167
1168
merge_fpu_stack(instrs, cur_sim, sux_sim);
1169
1170
} else {
1171
// propagate current FPU stack state to successor without state
1172
// clean up stack first so that there are no dead values on the stack
1173
if (ComputeExactFPURegisterUsage) {
1174
FpuStackSim* cur_sim = sim();
1175
BitMap live_fpu_regs = block->sux_at(0)->fpu_register_usage();
1176
assert(live_fpu_regs.size() == FrameMap::nof_fpu_regs, "missing register usage");
1177
1178
merge_cleanup_fpu_stack(instrs, cur_sim, live_fpu_regs);
1179
}
1180
1181
intArray* state = sim()->write_state();
1182
if (TraceFPUStack) {
1183
tty->print_cr("Setting FPU stack state of B%d (merge path)", sux->block_id());
1184
sim()->print(); tty->cr();
1185
}
1186
sux->set_fpu_stack_state(state);
1187
}
1188
1189
if (instrs->instructions_list()->length() > 0) {
1190
lir()->insert_before(pos(), instrs);
1191
set_pos(instrs->instructions_list()->length() + pos());
1192
changed = true;
1193
}
1194
1195
} else {
1196
// Propagate unmodified Stack to successors where a stack merge is not necessary
1197
intArray* state = sim()->write_state();
1198
for (int i = 0; i < number_of_sux; i++) {
1199
BlockBegin* sux = block->sux_at(i);
1200
1201
#ifdef ASSERT
1202
for (int j = 0; j < sux->number_of_preds(); j++) {
1203
assert(block == sux->pred_at(j), "all critical edges must be broken");
1204
}
1205
1206
// check if new state is same
1207
if (sux->fpu_stack_state() != NULL) {
1208
intArray* sux_state = sux->fpu_stack_state();
1209
assert(state->length() == sux_state->length(), "overwriting existing stack state");
1210
for (int j = 0; j < state->length(); j++) {
1211
assert(state->at(j) == sux_state->at(j), "overwriting existing stack state");
1212
}
1213
}
1214
#endif
1215
#ifndef PRODUCT
1216
if (TraceFPUStack) {
1217
tty->print_cr("Setting FPU stack state of B%d", sux->block_id());
1218
sim()->print(); tty->cr();
1219
}
1220
#endif
1221
1222
sux->set_fpu_stack_state(state);
1223
}
1224
}
1225
1226
#ifndef PRODUCT
1227
// assertions that FPU stack state conforms to all successors' states
1228
intArray* cur_state = sim()->write_state();
1229
for (int i = 0; i < number_of_sux; i++) {
1230
BlockBegin* sux = block->sux_at(i);
1231
intArray* sux_state = sux->fpu_stack_state();
1232
1233
assert(sux_state != NULL, "no fpu state");
1234
assert(cur_state->length() == sux_state->length(), "incorrect length");
1235
for (int i = 0; i < cur_state->length(); i++) {
1236
assert(cur_state->at(i) == sux_state->at(i), "element not equal");
1237
}
1238
}
1239
#endif
1240
1241
return changed;
1242
}
1243
1244