Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/cpu/x86/vm/cppInterpreter_x86.cpp
32285 views
1
/*
2
* Copyright (c) 2007, 2016, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "asm/macroAssembler.hpp"
27
#include "interpreter/bytecodeHistogram.hpp"
28
#include "interpreter/cppInterpreter.hpp"
29
#include "interpreter/interpreter.hpp"
30
#include "interpreter/interpreterGenerator.hpp"
31
#include "interpreter/interpreterRuntime.hpp"
32
#include "oops/arrayOop.hpp"
33
#include "oops/methodData.hpp"
34
#include "oops/method.hpp"
35
#include "oops/oop.inline.hpp"
36
#include "prims/jvmtiExport.hpp"
37
#include "prims/jvmtiThreadState.hpp"
38
#include "runtime/arguments.hpp"
39
#include "runtime/deoptimization.hpp"
40
#include "runtime/frame.inline.hpp"
41
#include "runtime/interfaceSupport.hpp"
42
#include "runtime/sharedRuntime.hpp"
43
#include "runtime/stubRoutines.hpp"
44
#include "runtime/synchronizer.hpp"
45
#include "runtime/timer.hpp"
46
#include "runtime/vframeArray.hpp"
47
#include "utilities/debug.hpp"
48
#include "utilities/macros.hpp"
49
#ifdef SHARK
50
#include "shark/shark_globals.hpp"
51
#endif
52
53
#ifdef CC_INTERP
54
55
// Routine exists to make tracebacks look decent in debugger
56
// while we are recursed in the frame manager/c++ interpreter.
57
// We could use an address in the frame manager but having
58
// frames look natural in the debugger is a plus.
59
extern "C" void RecursiveInterpreterActivation(interpreterState istate )
60
{
61
//
62
ShouldNotReachHere();
63
}
64
65
66
#define __ _masm->
67
#define STATE(field_name) (Address(state, byte_offset_of(BytecodeInterpreter, field_name)))
68
69
Label fast_accessor_slow_entry_path; // fast accessor methods need to be able to jmp to unsynchronized
70
// c++ interpreter entry point this holds that entry point label.
71
72
// default registers for state and sender_sp
73
// state and sender_sp are the same on 32bit because we have no choice.
74
// state could be rsi on 64bit but it is an arg reg and not callee save
75
// so r13 is better choice.
76
77
const Register state = NOT_LP64(rsi) LP64_ONLY(r13);
78
const Register sender_sp_on_entry = NOT_LP64(rsi) LP64_ONLY(r13);
79
80
// NEEDED for JVMTI?
81
// address AbstractInterpreter::_remove_activation_preserving_args_entry;
82
83
static address unctrap_frame_manager_entry = NULL;
84
85
static address deopt_frame_manager_return_atos = NULL;
86
static address deopt_frame_manager_return_btos = NULL;
87
static address deopt_frame_manager_return_itos = NULL;
88
static address deopt_frame_manager_return_ltos = NULL;
89
static address deopt_frame_manager_return_ftos = NULL;
90
static address deopt_frame_manager_return_dtos = NULL;
91
static address deopt_frame_manager_return_vtos = NULL;
92
93
int AbstractInterpreter::BasicType_as_index(BasicType type) {
94
int i = 0;
95
switch (type) {
96
case T_BOOLEAN: i = 0; break;
97
case T_CHAR : i = 1; break;
98
case T_BYTE : i = 2; break;
99
case T_SHORT : i = 3; break;
100
case T_INT : i = 4; break;
101
case T_VOID : i = 5; break;
102
case T_FLOAT : i = 8; break;
103
case T_LONG : i = 9; break;
104
case T_DOUBLE : i = 6; break;
105
case T_OBJECT : // fall through
106
case T_ARRAY : i = 7; break;
107
default : ShouldNotReachHere();
108
}
109
assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
110
return i;
111
}
112
113
// Is this pc anywhere within code owned by the interpreter?
114
// This only works for pc that might possibly be exposed to frame
115
// walkers. It clearly misses all of the actual c++ interpreter
116
// implementation
117
bool CppInterpreter::contains(address pc) {
118
return (_code->contains(pc) ||
119
pc == CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation));
120
}
121
122
123
address CppInterpreterGenerator::generate_result_handler_for(BasicType type) {
124
address entry = __ pc();
125
switch (type) {
126
case T_BOOLEAN: __ c2bool(rax); break;
127
case T_CHAR : __ andl(rax, 0xFFFF); break;
128
case T_BYTE : __ sign_extend_byte (rax); break;
129
case T_SHORT : __ sign_extend_short(rax); break;
130
case T_VOID : // fall thru
131
case T_LONG : // fall thru
132
case T_INT : /* nothing to do */ break;
133
134
case T_DOUBLE :
135
case T_FLOAT :
136
{
137
const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
138
__ pop(t); // remove return address first
139
// Must return a result for interpreter or compiler. In SSE
140
// mode, results are returned in xmm0 and the FPU stack must
141
// be empty.
142
if (type == T_FLOAT && UseSSE >= 1) {
143
#ifndef _LP64
144
// Load ST0
145
__ fld_d(Address(rsp, 0));
146
// Store as float and empty fpu stack
147
__ fstp_s(Address(rsp, 0));
148
#endif // !_LP64
149
// and reload
150
__ movflt(xmm0, Address(rsp, 0));
151
} else if (type == T_DOUBLE && UseSSE >= 2 ) {
152
__ movdbl(xmm0, Address(rsp, 0));
153
} else {
154
// restore ST0
155
__ fld_d(Address(rsp, 0));
156
}
157
// and pop the temp
158
__ addptr(rsp, 2 * wordSize);
159
__ push(t); // restore return address
160
}
161
break;
162
case T_OBJECT :
163
// retrieve result from frame
164
__ movptr(rax, STATE(_oop_temp));
165
// and verify it
166
__ verify_oop(rax);
167
break;
168
default : ShouldNotReachHere();
169
}
170
__ ret(0); // return from result handler
171
return entry;
172
}
173
174
// tosca based result to c++ interpreter stack based result.
175
// Result goes to top of native stack.
176
177
#undef EXTEND // SHOULD NOT BE NEEDED
178
address CppInterpreterGenerator::generate_tosca_to_stack_converter(BasicType type) {
179
// A result is in the tosca (abi result) from either a native method call or compiled
180
// code. Place this result on the java expression stack so C++ interpreter can use it.
181
address entry = __ pc();
182
183
const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
184
__ pop(t); // remove return address first
185
switch (type) {
186
case T_VOID:
187
break;
188
case T_BOOLEAN:
189
#ifdef EXTEND
190
__ c2bool(rax);
191
#endif
192
__ push(rax);
193
break;
194
case T_CHAR :
195
#ifdef EXTEND
196
__ andl(rax, 0xFFFF);
197
#endif
198
__ push(rax);
199
break;
200
case T_BYTE :
201
#ifdef EXTEND
202
__ sign_extend_byte (rax);
203
#endif
204
__ push(rax);
205
break;
206
case T_SHORT :
207
#ifdef EXTEND
208
__ sign_extend_short(rax);
209
#endif
210
__ push(rax);
211
break;
212
case T_LONG :
213
__ push(rdx); // pushes useless junk on 64bit
214
__ push(rax);
215
break;
216
case T_INT :
217
__ push(rax);
218
break;
219
case T_FLOAT :
220
// Result is in ST(0)/xmm0
221
__ subptr(rsp, wordSize);
222
if ( UseSSE < 1) {
223
__ fstp_s(Address(rsp, 0));
224
} else {
225
__ movflt(Address(rsp, 0), xmm0);
226
}
227
break;
228
case T_DOUBLE :
229
__ subptr(rsp, 2*wordSize);
230
if ( UseSSE < 2 ) {
231
__ fstp_d(Address(rsp, 0));
232
} else {
233
__ movdbl(Address(rsp, 0), xmm0);
234
}
235
break;
236
case T_OBJECT :
237
__ verify_oop(rax); // verify it
238
__ push(rax);
239
break;
240
default : ShouldNotReachHere();
241
}
242
__ jmp(t); // return from result handler
243
return entry;
244
}
245
246
address CppInterpreterGenerator::generate_stack_to_stack_converter(BasicType type) {
247
// A result is in the java expression stack of the interpreted method that has just
248
// returned. Place this result on the java expression stack of the caller.
249
//
250
// The current interpreter activation in rsi/r13 is for the method just returning its
251
// result. So we know that the result of this method is on the top of the current
252
// execution stack (which is pre-pushed) and will be return to the top of the caller
253
// stack. The top of the callers stack is the bottom of the locals of the current
254
// activation.
255
// Because of the way activation are managed by the frame manager the value of rsp is
256
// below both the stack top of the current activation and naturally the stack top
257
// of the calling activation. This enable this routine to leave the return address
258
// to the frame manager on the stack and do a vanilla return.
259
//
260
// On entry: rsi/r13 - interpreter state of activation returning a (potential) result
261
// On Return: rsi/r13 - unchanged
262
// rax - new stack top for caller activation (i.e. activation in _prev_link)
263
//
264
// Can destroy rdx, rcx.
265
//
266
267
address entry = __ pc();
268
const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
269
switch (type) {
270
case T_VOID:
271
__ movptr(rax, STATE(_locals)); // pop parameters get new stack value
272
__ addptr(rax, wordSize); // account for prepush before we return
273
break;
274
case T_FLOAT :
275
case T_BOOLEAN:
276
case T_CHAR :
277
case T_BYTE :
278
case T_SHORT :
279
case T_INT :
280
// 1 word result
281
__ movptr(rdx, STATE(_stack));
282
__ movptr(rax, STATE(_locals)); // address for result
283
__ movl(rdx, Address(rdx, wordSize)); // get result
284
__ movptr(Address(rax, 0), rdx); // and store it
285
break;
286
case T_LONG :
287
case T_DOUBLE :
288
// return top two words on current expression stack to caller's expression stack
289
// The caller's expression stack is adjacent to the current frame manager's intepretState
290
// except we allocated one extra word for this intepretState so we won't overwrite it
291
// when we return a two word result.
292
293
__ movptr(rax, STATE(_locals)); // address for result
294
__ movptr(rcx, STATE(_stack));
295
__ subptr(rax, wordSize); // need addition word besides locals[0]
296
__ movptr(rdx, Address(rcx, 2*wordSize)); // get result word (junk in 64bit)
297
__ movptr(Address(rax, wordSize), rdx); // and store it
298
__ movptr(rdx, Address(rcx, wordSize)); // get result word
299
__ movptr(Address(rax, 0), rdx); // and store it
300
break;
301
case T_OBJECT :
302
__ movptr(rdx, STATE(_stack));
303
__ movptr(rax, STATE(_locals)); // address for result
304
__ movptr(rdx, Address(rdx, wordSize)); // get result
305
__ verify_oop(rdx); // verify it
306
__ movptr(Address(rax, 0), rdx); // and store it
307
break;
308
default : ShouldNotReachHere();
309
}
310
__ ret(0);
311
return entry;
312
}
313
314
address CppInterpreterGenerator::generate_stack_to_native_abi_converter(BasicType type) {
315
// A result is in the java expression stack of the interpreted method that has just
316
// returned. Place this result in the native abi that the caller expects.
317
//
318
// Similar to generate_stack_to_stack_converter above. Called at a similar time from the
319
// frame manager execept in this situation the caller is native code (c1/c2/call_stub)
320
// and so rather than return result onto caller's java expression stack we return the
321
// result in the expected location based on the native abi.
322
// On entry: rsi/r13 - interpreter state of activation returning a (potential) result
323
// On Return: rsi/r13 - unchanged
324
// Other registers changed [rax/rdx/ST(0) as needed for the result returned]
325
326
address entry = __ pc();
327
switch (type) {
328
case T_VOID:
329
break;
330
case T_BOOLEAN:
331
case T_CHAR :
332
case T_BYTE :
333
case T_SHORT :
334
case T_INT :
335
__ movptr(rdx, STATE(_stack)); // get top of stack
336
__ movl(rax, Address(rdx, wordSize)); // get result word 1
337
break;
338
case T_LONG :
339
__ movptr(rdx, STATE(_stack)); // get top of stack
340
__ movptr(rax, Address(rdx, wordSize)); // get result low word
341
NOT_LP64(__ movl(rdx, Address(rdx, 2*wordSize));) // get result high word
342
break;
343
case T_FLOAT :
344
__ movptr(rdx, STATE(_stack)); // get top of stack
345
if ( UseSSE >= 1) {
346
__ movflt(xmm0, Address(rdx, wordSize));
347
} else {
348
__ fld_s(Address(rdx, wordSize)); // pushd float result
349
}
350
break;
351
case T_DOUBLE :
352
__ movptr(rdx, STATE(_stack)); // get top of stack
353
if ( UseSSE > 1) {
354
__ movdbl(xmm0, Address(rdx, wordSize));
355
} else {
356
__ fld_d(Address(rdx, wordSize)); // push double result
357
}
358
break;
359
case T_OBJECT :
360
__ movptr(rdx, STATE(_stack)); // get top of stack
361
__ movptr(rax, Address(rdx, wordSize)); // get result word 1
362
__ verify_oop(rax); // verify it
363
break;
364
default : ShouldNotReachHere();
365
}
366
__ ret(0);
367
return entry;
368
}
369
370
address CppInterpreter::return_entry(TosState state, int length, Bytecodes::Code code) {
371
// make it look good in the debugger
372
return CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation);
373
}
374
375
address CppInterpreter::deopt_entry(TosState state, int length) {
376
address ret = NULL;
377
if (length != 0) {
378
switch (state) {
379
case atos: ret = deopt_frame_manager_return_atos; break;
380
case btos: ret = deopt_frame_manager_return_btos; break;
381
case ctos:
382
case stos:
383
case itos: ret = deopt_frame_manager_return_itos; break;
384
case ltos: ret = deopt_frame_manager_return_ltos; break;
385
case ftos: ret = deopt_frame_manager_return_ftos; break;
386
case dtos: ret = deopt_frame_manager_return_dtos; break;
387
case vtos: ret = deopt_frame_manager_return_vtos; break;
388
}
389
} else {
390
ret = unctrap_frame_manager_entry; // re-execute the bytecode ( e.g. uncommon trap)
391
}
392
assert(ret != NULL, "Not initialized");
393
return ret;
394
}
395
396
// C++ Interpreter
397
void CppInterpreterGenerator::generate_compute_interpreter_state(const Register state,
398
const Register locals,
399
const Register sender_sp,
400
bool native) {
401
402
// On entry the "locals" argument points to locals[0] (or where it would be in case no locals in
403
// a static method). "state" contains any previous frame manager state which we must save a link
404
// to in the newly generated state object. On return "state" is a pointer to the newly allocated
405
// state object. We must allocate and initialize a new interpretState object and the method
406
// expression stack. Because the returned result (if any) of the method will be placed on the caller's
407
// expression stack and this will overlap with locals[0] (and locals[1] if double/long) we must
408
// be sure to leave space on the caller's stack so that this result will not overwrite values when
409
// locals[0] and locals[1] do not exist (and in fact are return address and saved rbp). So when
410
// we are non-native we in essence ensure that locals[0-1] exist. We play an extra trick in
411
// non-product builds and initialize this last local with the previous interpreterState as
412
// this makes things look real nice in the debugger.
413
414
// State on entry
415
// Assumes locals == &locals[0]
416
// Assumes state == any previous frame manager state (assuming call path from c++ interpreter)
417
// Assumes rax = return address
418
// rcx == senders_sp
419
// rbx == method
420
// Modifies rcx, rdx, rax
421
// Returns:
422
// state == address of new interpreterState
423
// rsp == bottom of method's expression stack.
424
425
const Address const_offset (rbx, Method::const_offset());
426
427
428
// On entry sp is the sender's sp. This includes the space for the arguments
429
// that the sender pushed. If the sender pushed no args (a static) and the
430
// caller returns a long then we need two words on the sender's stack which
431
// are not present (although when we return a restore full size stack the
432
// space will be present). If we didn't allocate two words here then when
433
// we "push" the result of the caller's stack we would overwrite the return
434
// address and the saved rbp. Not good. So simply allocate 2 words now
435
// just to be safe. This is the "static long no_params() method" issue.
436
// See Lo.java for a testcase.
437
// We don't need this for native calls because they return result in
438
// register and the stack is expanded in the caller before we store
439
// the results on the stack.
440
441
if (!native) {
442
#ifdef PRODUCT
443
__ subptr(rsp, 2*wordSize);
444
#else /* PRODUCT */
445
__ push((int32_t)NULL_WORD);
446
__ push(state); // make it look like a real argument
447
#endif /* PRODUCT */
448
}
449
450
// Now that we are assure of space for stack result, setup typical linkage
451
452
__ push(rax);
453
__ enter();
454
455
__ mov(rax, state); // save current state
456
457
__ lea(rsp, Address(rsp, -(int)sizeof(BytecodeInterpreter)));
458
__ mov(state, rsp);
459
460
// rsi/r13 == state/locals rax == prevstate
461
462
// initialize the "shadow" frame so that use since C++ interpreter not directly
463
// recursive. Simpler to recurse but we can't trim expression stack as we call
464
// new methods.
465
__ movptr(STATE(_locals), locals); // state->_locals = locals()
466
__ movptr(STATE(_self_link), state); // point to self
467
__ movptr(STATE(_prev_link), rax); // state->_link = state on entry (NULL or previous state)
468
__ movptr(STATE(_sender_sp), sender_sp); // state->_sender_sp = sender_sp
469
#ifdef _LP64
470
__ movptr(STATE(_thread), r15_thread); // state->_bcp = codes()
471
#else
472
__ get_thread(rax); // get vm's javathread*
473
__ movptr(STATE(_thread), rax); // state->_bcp = codes()
474
#endif // _LP64
475
__ movptr(rdx, Address(rbx, Method::const_offset())); // get constantMethodOop
476
__ lea(rdx, Address(rdx, ConstMethod::codes_offset())); // get code base
477
if (native) {
478
__ movptr(STATE(_bcp), (int32_t)NULL_WORD); // state->_bcp = NULL
479
} else {
480
__ movptr(STATE(_bcp), rdx); // state->_bcp = codes()
481
}
482
__ xorptr(rdx, rdx);
483
__ movptr(STATE(_oop_temp), rdx); // state->_oop_temp = NULL (only really needed for native)
484
__ movptr(STATE(_mdx), rdx); // state->_mdx = NULL
485
__ movptr(rdx, Address(rbx, Method::const_offset()));
486
__ movptr(rdx, Address(rdx, ConstMethod::constants_offset()));
487
__ movptr(rdx, Address(rdx, ConstantPool::cache_offset_in_bytes()));
488
__ movptr(STATE(_constants), rdx); // state->_constants = constants()
489
490
__ movptr(STATE(_method), rbx); // state->_method = method()
491
__ movl(STATE(_msg), (int32_t) BytecodeInterpreter::method_entry); // state->_msg = initial method entry
492
__ movptr(STATE(_result._to_call._callee), (int32_t) NULL_WORD); // state->_result._to_call._callee_callee = NULL
493
494
495
__ movptr(STATE(_monitor_base), rsp); // set monitor block bottom (grows down) this would point to entry [0]
496
// entries run from -1..x where &monitor[x] ==
497
498
{
499
// Must not attempt to lock method until we enter interpreter as gc won't be able to find the
500
// initial frame. However we allocate a free monitor so we don't have to shuffle the expression stack
501
// immediately.
502
503
// synchronize method
504
const Address access_flags (rbx, Method::access_flags_offset());
505
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
506
Label not_synced;
507
508
__ movl(rax, access_flags);
509
__ testl(rax, JVM_ACC_SYNCHRONIZED);
510
__ jcc(Assembler::zero, not_synced);
511
512
// Allocate initial monitor and pre initialize it
513
// get synchronization object
514
515
Label done;
516
const int mirror_offset = in_bytes(Klass::java_mirror_offset());
517
__ movl(rax, access_flags);
518
__ testl(rax, JVM_ACC_STATIC);
519
__ movptr(rax, Address(locals, 0)); // get receiver (assume this is frequent case)
520
__ jcc(Assembler::zero, done);
521
__ movptr(rax, Address(rbx, Method::const_offset()));
522
__ movptr(rax, Address(rax, ConstMethod::constants_offset()));
523
__ movptr(rax, Address(rax, ConstantPool::pool_holder_offset_in_bytes()));
524
__ movptr(rax, Address(rax, mirror_offset));
525
__ bind(done);
526
// add space for monitor & lock
527
__ subptr(rsp, entry_size); // add space for a monitor entry
528
__ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax); // store object
529
__ bind(not_synced);
530
}
531
532
__ movptr(STATE(_stack_base), rsp); // set expression stack base ( == &monitors[-count])
533
if (native) {
534
__ movptr(STATE(_stack), rsp); // set current expression stack tos
535
__ movptr(STATE(_stack_limit), rsp);
536
} else {
537
__ subptr(rsp, wordSize); // pre-push stack
538
__ movptr(STATE(_stack), rsp); // set current expression stack tos
539
540
// compute full expression stack limit
541
542
__ movptr(rdx, Address(rbx, Method::const_offset()));
543
__ load_unsigned_short(rdx, Address(rdx, ConstMethod::max_stack_offset())); // get size of expression stack in words
544
__ negptr(rdx); // so we can subtract in next step
545
// Allocate expression stack
546
__ lea(rsp, Address(rsp, rdx, Address::times_ptr, -Method::extra_stack_words()));
547
__ movptr(STATE(_stack_limit), rsp);
548
}
549
550
#ifdef _LP64
551
// Make sure stack is properly aligned and sized for the abi
552
__ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
553
__ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
554
#endif // _LP64
555
556
557
558
}
559
560
// Helpers for commoning out cases in the various type of method entries.
561
//
562
563
// increment invocation count & check for overflow
564
//
565
// Note: checking for negative value instead of overflow
566
// so we have a 'sticky' overflow test
567
//
568
// rbx,: method
569
// rcx: invocation counter
570
//
571
void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
572
Label done;
573
const Address invocation_counter(rax,
574
MethodCounters::invocation_counter_offset() +
575
InvocationCounter::counter_offset());
576
const Address backedge_counter (rax,
577
MethodCounter::backedge_counter_offset() +
578
InvocationCounter::counter_offset());
579
580
__ get_method_counters(rbx, rax, done);
581
582
if (ProfileInterpreter) {
583
__ incrementl(Address(rax,
584
MethodCounters::interpreter_invocation_counter_offset()));
585
}
586
// Update standard invocation counters
587
__ movl(rcx, invocation_counter);
588
__ increment(rcx, InvocationCounter::count_increment);
589
__ movl(invocation_counter, rcx); // save invocation count
590
591
__ movl(rax, backedge_counter); // load backedge counter
592
__ andl(rax, InvocationCounter::count_mask_value); // mask out the status bits
593
594
__ addl(rcx, rax); // add both counters
595
596
// profile_method is non-null only for interpreted method so
597
// profile_method != NULL == !native_call
598
// BytecodeInterpreter only calls for native so code is elided.
599
600
__ cmp32(rcx,
601
ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
602
__ jcc(Assembler::aboveEqual, *overflow);
603
__ bind(done);
604
}
605
606
void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
607
608
// C++ interpreter on entry
609
// rsi/r13 - new interpreter state pointer
610
// rbp - interpreter frame pointer
611
// rbx - method
612
613
// On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
614
// rbx, - method
615
// rcx - rcvr (assuming there is one)
616
// top of stack return address of interpreter caller
617
// rsp - sender_sp
618
619
// C++ interpreter only
620
// rsi/r13 - previous interpreter state pointer
621
622
// InterpreterRuntime::frequency_counter_overflow takes one argument
623
// indicating if the counter overflow occurs at a backwards branch (non-NULL bcp).
624
// The call returns the address of the verified entry point for the method or NULL
625
// if the compilation did not complete (either went background or bailed out).
626
__ movptr(rax, (int32_t)false);
627
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rax);
628
629
// for c++ interpreter can rsi really be munged?
630
__ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter))); // restore state
631
__ movptr(rbx, Address(state, byte_offset_of(BytecodeInterpreter, _method))); // restore method
632
__ movptr(rdi, Address(state, byte_offset_of(BytecodeInterpreter, _locals))); // get locals pointer
633
634
__ jmp(*do_continue, relocInfo::none);
635
636
}
637
638
void InterpreterGenerator::generate_stack_overflow_check(void) {
639
// see if we've got enough room on the stack for locals plus overhead.
640
// the expression stack grows down incrementally, so the normal guard
641
// page mechanism will work for that.
642
//
643
// Registers live on entry:
644
//
645
// Asm interpreter
646
// rdx: number of additional locals this frame needs (what we must check)
647
// rbx,: Method*
648
649
// C++ Interpreter
650
// rsi/r13: previous interpreter frame state object
651
// rdi: &locals[0]
652
// rcx: # of locals
653
// rdx: number of additional locals this frame needs (what we must check)
654
// rbx: Method*
655
656
// destroyed on exit
657
// rax,
658
659
// NOTE: since the additional locals are also always pushed (wasn't obvious in
660
// generate_method_entry) so the guard should work for them too.
661
//
662
663
// monitor entry size: see picture of stack set (generate_method_entry) and frame_i486.hpp
664
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
665
666
// total overhead size: entry_size + (saved rbp, thru expr stack bottom).
667
// be sure to change this if you add/subtract anything to/from the overhead area
668
const int overhead_size = (int)sizeof(BytecodeInterpreter);
669
670
const int page_size = os::vm_page_size();
671
672
Label after_frame_check;
673
674
// compute rsp as if this were going to be the last frame on
675
// the stack before the red zone
676
677
Label after_frame_check_pop;
678
679
// save rsi == caller's bytecode ptr (c++ previous interp. state)
680
// QQQ problem here?? rsi overload????
681
__ push(state);
682
683
const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rsi);
684
685
NOT_LP64(__ get_thread(thread));
686
687
const Address stack_base(thread, Thread::stack_base_offset());
688
const Address stack_size(thread, Thread::stack_size_offset());
689
690
// locals + overhead, in bytes
691
// Always give one monitor to allow us to start interp if sync method.
692
// Any additional monitors need a check when moving the expression stack
693
const int one_monitor = frame::interpreter_frame_monitor_size() * wordSize;
694
__ movptr(rax, Address(rbx, Method::const_offset()));
695
__ load_unsigned_short(rax, Address(rax, ConstMethod::max_stack_offset())); // get size of expression stack in words
696
__ lea(rax, Address(noreg, rax, Interpreter::stackElementScale(), one_monitor+Method::extra_stack_words()));
697
__ lea(rax, Address(rax, rdx, Interpreter::stackElementScale(), overhead_size));
698
699
#ifdef ASSERT
700
Label stack_base_okay, stack_size_okay;
701
// verify that thread stack base is non-zero
702
__ cmpptr(stack_base, (int32_t)0);
703
__ jcc(Assembler::notEqual, stack_base_okay);
704
__ stop("stack base is zero");
705
__ bind(stack_base_okay);
706
// verify that thread stack size is non-zero
707
__ cmpptr(stack_size, (int32_t)0);
708
__ jcc(Assembler::notEqual, stack_size_okay);
709
__ stop("stack size is zero");
710
__ bind(stack_size_okay);
711
#endif
712
713
// Add stack base to locals and subtract stack size
714
__ addptr(rax, stack_base);
715
__ subptr(rax, stack_size);
716
717
// We should have a magic number here for the size of the c++ interpreter frame.
718
// We can't actually tell this ahead of time. The debug version size is around 3k
719
// product is 1k and fastdebug is 4k
720
const int slop = 6 * K;
721
722
// Use the maximum number of pages we might bang.
723
const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
724
(StackRedPages+StackYellowPages);
725
// Only need this if we are stack banging which is temporary while
726
// we're debugging.
727
__ addptr(rax, slop + 2*max_pages * page_size);
728
729
// check against the current stack bottom
730
__ cmpptr(rsp, rax);
731
__ jcc(Assembler::above, after_frame_check_pop);
732
733
__ pop(state); // get c++ prev state.
734
735
// throw exception return address becomes throwing pc
736
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
737
738
// all done with frame size check
739
__ bind(after_frame_check_pop);
740
__ pop(state);
741
742
__ bind(after_frame_check);
743
}
744
745
// Find preallocated monitor and lock method (C++ interpreter)
746
// rbx - Method*
747
//
748
void InterpreterGenerator::lock_method(void) {
749
// assumes state == rsi/r13 == pointer to current interpreterState
750
// minimally destroys rax, rdx|c_rarg1, rdi
751
//
752
// synchronize method
753
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
754
const Address access_flags (rbx, Method::access_flags_offset());
755
756
const Register monitor = NOT_LP64(rdx) LP64_ONLY(c_rarg1);
757
758
// find initial monitor i.e. monitors[-1]
759
__ movptr(monitor, STATE(_monitor_base)); // get monitor bottom limit
760
__ subptr(monitor, entry_size); // point to initial monitor
761
762
#ifdef ASSERT
763
{ Label L;
764
__ movl(rax, access_flags);
765
__ testl(rax, JVM_ACC_SYNCHRONIZED);
766
__ jcc(Assembler::notZero, L);
767
__ stop("method doesn't need synchronization");
768
__ bind(L);
769
}
770
#endif // ASSERT
771
// get synchronization object
772
{ Label done;
773
const int mirror_offset = in_bytes(Klass::java_mirror_offset());
774
__ movl(rax, access_flags);
775
__ movptr(rdi, STATE(_locals)); // prepare to get receiver (assume common case)
776
__ testl(rax, JVM_ACC_STATIC);
777
__ movptr(rax, Address(rdi, 0)); // get receiver (assume this is frequent case)
778
__ jcc(Assembler::zero, done);
779
__ movptr(rax, Address(rbx, Method::const_offset()));
780
__ movptr(rax, Address(rax, ConstMethod::constants_offset()));
781
__ movptr(rax, Address(rax, ConstantPool::pool_holder_offset_in_bytes()));
782
__ movptr(rax, Address(rax, mirror_offset));
783
__ bind(done);
784
}
785
#ifdef ASSERT
786
{ Label L;
787
__ cmpptr(rax, Address(monitor, BasicObjectLock::obj_offset_in_bytes())); // correct object?
788
__ jcc(Assembler::equal, L);
789
__ stop("wrong synchronization lobject");
790
__ bind(L);
791
}
792
#endif // ASSERT
793
// can destroy rax, rdx|c_rarg1, rcx, and (via call_VM) rdi!
794
__ lock_object(monitor);
795
}
796
797
// Call an accessor method (assuming it is resolved, otherwise drop into vanilla (slow path) entry
798
799
address InterpreterGenerator::generate_accessor_entry(void) {
800
801
// rbx: Method*
802
803
// rsi/r13: senderSP must preserved for slow path, set SP to it on fast path
804
805
Label xreturn_path;
806
807
// do fastpath for resolved accessor methods
808
if (UseFastAccessorMethods) {
809
810
address entry_point = __ pc();
811
812
Label slow_path;
813
// If we need a safepoint check, generate full interpreter entry.
814
ExternalAddress state(SafepointSynchronize::address_of_state());
815
__ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
816
SafepointSynchronize::_not_synchronized);
817
818
__ jcc(Assembler::notEqual, slow_path);
819
// ASM/C++ Interpreter
820
// Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof; parameter size = 1
821
// Note: We can only use this code if the getfield has been resolved
822
// and if we don't have a null-pointer exception => check for
823
// these conditions first and use slow path if necessary.
824
// rbx,: method
825
// rcx: receiver
826
__ movptr(rax, Address(rsp, wordSize));
827
828
// check if local 0 != NULL and read field
829
__ testptr(rax, rax);
830
__ jcc(Assembler::zero, slow_path);
831
832
// read first instruction word and extract bytecode @ 1 and index @ 2
833
__ movptr(rdx, Address(rbx, Method::const_offset()));
834
__ movptr(rdi, Address(rdx, ConstMethod::constants_offset()));
835
__ movl(rdx, Address(rdx, ConstMethod::codes_offset()));
836
// Shift codes right to get the index on the right.
837
// The bytecode fetched looks like <index><0xb4><0x2a>
838
__ shrl(rdx, 2*BitsPerByte);
839
__ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
840
__ movptr(rdi, Address(rdi, ConstantPool::cache_offset_in_bytes()));
841
842
// rax,: local 0
843
// rbx,: method
844
// rcx: receiver - do not destroy since it is needed for slow path!
845
// rcx: scratch
846
// rdx: constant pool cache index
847
// rdi: constant pool cache
848
// rsi/r13: sender sp
849
850
// check if getfield has been resolved and read constant pool cache entry
851
// check the validity of the cache entry by testing whether _indices field
852
// contains Bytecode::_getfield in b1 byte.
853
assert(in_words(ConstantPoolCacheEntry::size()) == 4, "adjust shift below");
854
__ movl(rcx,
855
Address(rdi,
856
rdx,
857
Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
858
__ shrl(rcx, 2*BitsPerByte);
859
__ andl(rcx, 0xFF);
860
__ cmpl(rcx, Bytecodes::_getfield);
861
__ jcc(Assembler::notEqual, slow_path);
862
863
// Note: constant pool entry is not valid before bytecode is resolved
864
__ movptr(rcx,
865
Address(rdi,
866
rdx,
867
Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()));
868
__ movl(rdx,
869
Address(rdi,
870
rdx,
871
Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
872
873
Label notByte, notBool, notShort, notChar;
874
const Address field_address (rax, rcx, Address::times_1);
875
876
// Need to differentiate between igetfield, agetfield, bgetfield etc.
877
// because they are different sizes.
878
// Use the type from the constant pool cache
879
__ shrl(rdx, ConstantPoolCacheEntry::tos_state_shift);
880
// Make sure we don't need to mask rdx after the above shift
881
ConstantPoolCacheEntry::verify_tos_state_shift();
882
#ifdef _LP64
883
Label notObj;
884
__ cmpl(rdx, atos);
885
__ jcc(Assembler::notEqual, notObj);
886
// atos
887
__ movptr(rax, field_address);
888
__ jmp(xreturn_path);
889
890
__ bind(notObj);
891
#endif // _LP64
892
__ cmpl(rdx, ztos);
893
__ jcc(Assembler::notEqual, notBool);
894
__ load_signed_byte(rax, field_address);
895
__ jmp(xreturn_path);
896
897
__ cmpl(rdx, btos);
898
__ jcc(Assembler::notEqual, notByte);
899
__ load_signed_byte(rax, field_address);
900
__ jmp(xreturn_path);
901
902
__ bind(notByte);
903
__ cmpl(rdx, stos);
904
__ jcc(Assembler::notEqual, notShort);
905
__ load_signed_short(rax, field_address);
906
__ jmp(xreturn_path);
907
908
__ bind(notShort);
909
__ cmpl(rdx, ctos);
910
__ jcc(Assembler::notEqual, notChar);
911
__ load_unsigned_short(rax, field_address);
912
__ jmp(xreturn_path);
913
914
__ bind(notChar);
915
#ifdef ASSERT
916
Label okay;
917
#ifndef _LP64
918
__ cmpl(rdx, atos);
919
__ jcc(Assembler::equal, okay);
920
#endif // _LP64
921
__ cmpl(rdx, itos);
922
__ jcc(Assembler::equal, okay);
923
__ stop("what type is this?");
924
__ bind(okay);
925
#endif // ASSERT
926
// All the rest are a 32 bit wordsize
927
__ movl(rax, field_address);
928
929
__ bind(xreturn_path);
930
931
// _ireturn/_areturn
932
__ pop(rdi); // get return address
933
__ mov(rsp, sender_sp_on_entry); // set sp to sender sp
934
__ jmp(rdi);
935
936
// generate a vanilla interpreter entry as the slow path
937
__ bind(slow_path);
938
// We will enter c++ interpreter looking like it was
939
// called by the call_stub this will cause it to return
940
// a tosca result to the invoker which might have been
941
// the c++ interpreter itself.
942
943
__ jmp(fast_accessor_slow_entry_path);
944
return entry_point;
945
946
} else {
947
return NULL;
948
}
949
950
}
951
952
address InterpreterGenerator::generate_Reference_get_entry(void) {
953
#if INCLUDE_ALL_GCS
954
if (UseG1GC) {
955
// We need to generate have a routine that generates code to:
956
// * load the value in the referent field
957
// * passes that value to the pre-barrier.
958
//
959
// In the case of G1 this will record the value of the
960
// referent in an SATB buffer if marking is active.
961
// This will cause concurrent marking to mark the referent
962
// field as live.
963
Unimplemented();
964
}
965
#endif // INCLUDE_ALL_GCS
966
967
// If G1 is not enabled then attempt to go through the accessor entry point
968
// Reference.get is an accessor
969
return generate_accessor_entry();
970
}
971
972
//
973
// C++ Interpreter stub for calling a native method.
974
// This sets up a somewhat different looking stack for calling the native method
975
// than the typical interpreter frame setup but still has the pointer to
976
// an interpreter state.
977
//
978
979
address InterpreterGenerator::generate_native_entry(bool synchronized) {
980
// determine code generation flags
981
bool inc_counter = UseCompiler || CountCompiledCalls;
982
983
// rbx: Method*
984
// rcx: receiver (unused)
985
// rsi/r13: previous interpreter state (if called from C++ interpreter) must preserve
986
// in any case. If called via c1/c2/call_stub rsi/r13 is junk (to use) but harmless
987
// to save/restore.
988
address entry_point = __ pc();
989
990
const Address constMethod (rbx, Method::const_offset());
991
const Address access_flags (rbx, Method::access_flags_offset());
992
const Address size_of_parameters(rcx, ConstMethod::size_of_parameters_offset());
993
994
// rsi/r13 == state/locals rdi == prevstate
995
const Register locals = rdi;
996
997
// get parameter size (always needed)
998
__ movptr(rcx, constMethod);
999
__ load_unsigned_short(rcx, size_of_parameters);
1000
1001
// rbx: Method*
1002
// rcx: size of parameters
1003
__ pop(rax); // get return address
1004
// for natives the size of locals is zero
1005
1006
// compute beginning of parameters /locals
1007
1008
__ lea(locals, Address(rsp, rcx, Address::times_ptr, -wordSize));
1009
1010
// initialize fixed part of activation frame
1011
1012
// Assumes rax = return address
1013
1014
// allocate and initialize new interpreterState and method expression stack
1015
// IN(locals) -> locals
1016
// IN(state) -> previous frame manager state (NULL from stub/c1/c2)
1017
// destroys rax, rcx, rdx
1018
// OUT (state) -> new interpreterState
1019
// OUT(rsp) -> bottom of methods expression stack
1020
1021
// save sender_sp
1022
__ mov(rcx, sender_sp_on_entry);
1023
// start with NULL previous state
1024
__ movptr(state, (int32_t)NULL_WORD);
1025
generate_compute_interpreter_state(state, locals, rcx, true);
1026
1027
#ifdef ASSERT
1028
{ Label L;
1029
__ movptr(rax, STATE(_stack_base));
1030
#ifdef _LP64
1031
// duplicate the alignment rsp got after setting stack_base
1032
__ subptr(rax, frame::arg_reg_save_area_bytes); // windows
1033
__ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
1034
#endif // _LP64
1035
__ cmpptr(rax, rsp);
1036
__ jcc(Assembler::equal, L);
1037
__ stop("broken stack frame setup in interpreter");
1038
__ bind(L);
1039
}
1040
#endif
1041
1042
const Register unlock_thread = LP64_ONLY(r15_thread) NOT_LP64(rax);
1043
NOT_LP64(__ movptr(unlock_thread, STATE(_thread));) // get thread
1044
// Since at this point in the method invocation the exception handler
1045
// would try to exit the monitor of synchronized methods which hasn't
1046
// been entered yet, we set the thread local variable
1047
// _do_not_unlock_if_synchronized to true. The remove_activation will
1048
// check this flag.
1049
1050
const Address do_not_unlock_if_synchronized(unlock_thread,
1051
in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1052
__ movbool(do_not_unlock_if_synchronized, true);
1053
1054
// make sure method is native & not abstract
1055
#ifdef ASSERT
1056
__ movl(rax, access_flags);
1057
{
1058
Label L;
1059
__ testl(rax, JVM_ACC_NATIVE);
1060
__ jcc(Assembler::notZero, L);
1061
__ stop("tried to execute non-native method as native");
1062
__ bind(L);
1063
}
1064
{ Label L;
1065
__ testl(rax, JVM_ACC_ABSTRACT);
1066
__ jcc(Assembler::zero, L);
1067
__ stop("tried to execute abstract method in interpreter");
1068
__ bind(L);
1069
}
1070
#endif
1071
1072
1073
// increment invocation count & check for overflow
1074
Label invocation_counter_overflow;
1075
if (inc_counter) {
1076
generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
1077
}
1078
1079
Label continue_after_compile;
1080
1081
__ bind(continue_after_compile);
1082
1083
bang_stack_shadow_pages(true);
1084
1085
// reset the _do_not_unlock_if_synchronized flag
1086
NOT_LP64(__ movl(rax, STATE(_thread));) // get thread
1087
__ movbool(do_not_unlock_if_synchronized, false);
1088
1089
1090
// check for synchronized native methods
1091
//
1092
// Note: This must happen *after* invocation counter check, since
1093
// when overflow happens, the method should not be locked.
1094
if (synchronized) {
1095
// potentially kills rax, rcx, rdx, rdi
1096
lock_method();
1097
} else {
1098
// no synchronization necessary
1099
#ifdef ASSERT
1100
{ Label L;
1101
__ movl(rax, access_flags);
1102
__ testl(rax, JVM_ACC_SYNCHRONIZED);
1103
__ jcc(Assembler::zero, L);
1104
__ stop("method needs synchronization");
1105
__ bind(L);
1106
}
1107
#endif
1108
}
1109
1110
// start execution
1111
1112
// jvmti support
1113
__ notify_method_entry();
1114
1115
// work registers
1116
const Register method = rbx;
1117
const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rdi);
1118
const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp(); // rcx|rscratch1
1119
const Address constMethod (method, Method::const_offset());
1120
const Address size_of_parameters(t, ConstMethod::size_of_parameters_offset());
1121
1122
// allocate space for parameters
1123
__ movptr(method, STATE(_method));
1124
__ verify_method_ptr(method);
1125
__ movptr(t, constMethod);
1126
__ load_unsigned_short(t, size_of_parameters);
1127
__ shll(t, 2);
1128
#ifdef _LP64
1129
__ subptr(rsp, t);
1130
__ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1131
__ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
1132
#else
1133
__ addptr(t, 2*wordSize); // allocate two more slots for JNIEnv and possible mirror
1134
__ subptr(rsp, t);
1135
__ andptr(rsp, -(StackAlignmentInBytes)); // gcc needs 16 byte aligned stacks to do XMM intrinsics
1136
#endif // _LP64
1137
1138
// get signature handler
1139
Label pending_exception_present;
1140
1141
{ Label L;
1142
__ movptr(t, Address(method, Method::signature_handler_offset()));
1143
__ testptr(t, t);
1144
__ jcc(Assembler::notZero, L);
1145
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method, false);
1146
__ movptr(method, STATE(_method));
1147
__ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
1148
__ jcc(Assembler::notEqual, pending_exception_present);
1149
__ verify_method_ptr(method);
1150
__ movptr(t, Address(method, Method::signature_handler_offset()));
1151
__ bind(L);
1152
}
1153
#ifdef ASSERT
1154
{
1155
Label L;
1156
__ push(t);
1157
__ get_thread(t); // get vm's javathread*
1158
__ cmpptr(t, STATE(_thread));
1159
__ jcc(Assembler::equal, L);
1160
__ int3();
1161
__ bind(L);
1162
__ pop(t);
1163
}
1164
#endif //
1165
1166
const Register from_ptr = InterpreterRuntime::SignatureHandlerGenerator::from();
1167
// call signature handler
1168
assert(InterpreterRuntime::SignatureHandlerGenerator::to () == rsp, "adjust this code");
1169
1170
// The generated handlers do not touch RBX (the method oop).
1171
// However, large signatures cannot be cached and are generated
1172
// each time here. The slow-path generator will blow RBX
1173
// sometime, so we must reload it after the call.
1174
__ movptr(from_ptr, STATE(_locals)); // get the from pointer
1175
__ call(t);
1176
__ movptr(method, STATE(_method));
1177
__ verify_method_ptr(method);
1178
1179
// result handler is in rax
1180
// set result handler
1181
__ movptr(STATE(_result_handler), rax);
1182
1183
1184
// get native function entry point
1185
{ Label L;
1186
__ movptr(rax, Address(method, Method::native_function_offset()));
1187
__ testptr(rax, rax);
1188
__ jcc(Assembler::notZero, L);
1189
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
1190
__ movptr(method, STATE(_method));
1191
__ verify_method_ptr(method);
1192
__ movptr(rax, Address(method, Method::native_function_offset()));
1193
__ bind(L);
1194
}
1195
1196
// pass mirror handle if static call
1197
{ Label L;
1198
const int mirror_offset = in_bytes(Klass::java_mirror_offset());
1199
__ movl(t, Address(method, Method::access_flags_offset()));
1200
__ testl(t, JVM_ACC_STATIC);
1201
__ jcc(Assembler::zero, L);
1202
// get mirror
1203
__ movptr(t, Address(method, Method:: const_offset()));
1204
__ movptr(t, Address(t, ConstMethod::constants_offset()));
1205
__ movptr(t, Address(t, ConstantPool::pool_holder_offset_in_bytes()));
1206
__ movptr(t, Address(t, mirror_offset));
1207
// copy mirror into activation object
1208
__ movptr(STATE(_oop_temp), t);
1209
// pass handle to mirror
1210
#ifdef _LP64
1211
__ lea(c_rarg1, STATE(_oop_temp));
1212
#else
1213
__ lea(t, STATE(_oop_temp));
1214
__ movptr(Address(rsp, wordSize), t);
1215
#endif // _LP64
1216
__ bind(L);
1217
}
1218
#ifdef ASSERT
1219
{
1220
Label L;
1221
__ push(t);
1222
__ get_thread(t); // get vm's javathread*
1223
__ cmpptr(t, STATE(_thread));
1224
__ jcc(Assembler::equal, L);
1225
__ int3();
1226
__ bind(L);
1227
__ pop(t);
1228
}
1229
#endif //
1230
1231
// pass JNIEnv
1232
#ifdef _LP64
1233
__ lea(c_rarg0, Address(thread, JavaThread::jni_environment_offset()));
1234
#else
1235
__ movptr(thread, STATE(_thread)); // get thread
1236
__ lea(t, Address(thread, JavaThread::jni_environment_offset()));
1237
1238
__ movptr(Address(rsp, 0), t);
1239
#endif // _LP64
1240
1241
#ifdef ASSERT
1242
{
1243
Label L;
1244
__ push(t);
1245
__ get_thread(t); // get vm's javathread*
1246
__ cmpptr(t, STATE(_thread));
1247
__ jcc(Assembler::equal, L);
1248
__ int3();
1249
__ bind(L);
1250
__ pop(t);
1251
}
1252
#endif //
1253
1254
#ifdef ASSERT
1255
{ Label L;
1256
__ movl(t, Address(thread, JavaThread::thread_state_offset()));
1257
__ cmpl(t, _thread_in_Java);
1258
__ jcc(Assembler::equal, L);
1259
__ stop("Wrong thread state in native stub");
1260
__ bind(L);
1261
}
1262
#endif
1263
1264
// Change state to native (we save the return address in the thread, since it might not
1265
// be pushed on the stack when we do a a stack traversal). It is enough that the pc()
1266
// points into the right code segment. It does not have to be the correct return pc.
1267
1268
__ set_last_Java_frame(thread, noreg, rbp, __ pc());
1269
1270
__ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
1271
1272
__ call(rax);
1273
1274
// result potentially in rdx:rax or ST0
1275
__ movptr(method, STATE(_method));
1276
NOT_LP64(__ movptr(thread, STATE(_thread));) // get thread
1277
1278
// The potential result is in ST(0) & rdx:rax
1279
// With C++ interpreter we leave any possible result in ST(0) until we are in result handler and then
1280
// we do the appropriate stuff for returning the result. rdx:rax must always be saved because just about
1281
// anything we do here will destroy it, st(0) is only saved if we re-enter the vm where it would
1282
// be destroyed.
1283
// It is safe to do these pushes because state is _thread_in_native and return address will be found
1284
// via _last_native_pc and not via _last_jave_sp
1285
1286
// Must save the value of ST(0)/xmm0 since it could be destroyed before we get to result handler
1287
{ Label Lpush, Lskip;
1288
ExternalAddress float_handler(AbstractInterpreter::result_handler(T_FLOAT));
1289
ExternalAddress double_handler(AbstractInterpreter::result_handler(T_DOUBLE));
1290
__ cmpptr(STATE(_result_handler), float_handler.addr());
1291
__ jcc(Assembler::equal, Lpush);
1292
__ cmpptr(STATE(_result_handler), double_handler.addr());
1293
__ jcc(Assembler::notEqual, Lskip);
1294
__ bind(Lpush);
1295
__ subptr(rsp, 2*wordSize);
1296
if ( UseSSE < 2 ) {
1297
__ fstp_d(Address(rsp, 0));
1298
} else {
1299
__ movdbl(Address(rsp, 0), xmm0);
1300
}
1301
__ bind(Lskip);
1302
}
1303
1304
// save rax:rdx for potential use by result handler.
1305
__ push(rax);
1306
#ifndef _LP64
1307
__ push(rdx);
1308
#endif // _LP64
1309
1310
// Verify or restore cpu control state after JNI call
1311
__ restore_cpu_control_state_after_jni();
1312
1313
// change thread state
1314
__ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
1315
if(os::is_MP()) {
1316
// Write serialization page so VM thread can do a pseudo remote membar.
1317
// We use the current thread pointer to calculate a thread specific
1318
// offset to write to within the page. This minimizes bus traffic
1319
// due to cache line collision.
1320
__ serialize_memory(thread, rcx);
1321
}
1322
1323
// check for safepoint operation in progress and/or pending suspend requests
1324
{ Label Continue;
1325
1326
__ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
1327
SafepointSynchronize::_not_synchronized);
1328
1329
// threads running native code and they are expected to self-suspend
1330
// when leaving the _thread_in_native state. We need to check for
1331
// pending suspend requests here.
1332
Label L;
1333
__ jcc(Assembler::notEqual, L);
1334
__ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
1335
__ jcc(Assembler::equal, Continue);
1336
__ bind(L);
1337
1338
// Don't use call_VM as it will see a possible pending exception and forward it
1339
// and never return here preventing us from clearing _last_native_pc down below.
1340
// Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
1341
// preserved and correspond to the bcp/locals pointers.
1342
//
1343
1344
((MacroAssembler*)_masm)->call_VM_leaf(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
1345
thread);
1346
__ increment(rsp, wordSize);
1347
1348
__ movptr(method, STATE(_method));
1349
__ verify_method_ptr(method);
1350
__ movptr(thread, STATE(_thread)); // get thread
1351
1352
__ bind(Continue);
1353
}
1354
1355
// change thread state
1356
__ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
1357
1358
__ reset_last_Java_frame(thread, true, true);
1359
1360
// reset handle block
1361
__ movptr(t, Address(thread, JavaThread::active_handles_offset()));
1362
__ movl(Address(t, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
1363
1364
// If result was an oop then unbox and save it in the frame
1365
{ Label L;
1366
Label no_oop, store_result;
1367
ExternalAddress oop_handler(AbstractInterpreter::result_handler(T_OBJECT));
1368
__ cmpptr(STATE(_result_handler), oop_handler.addr());
1369
__ jcc(Assembler::notEqual, no_oop);
1370
#ifndef _LP64
1371
__ pop(rdx);
1372
#endif // _LP64
1373
__ pop(rax);
1374
__ testptr(rax, rax);
1375
__ jcc(Assembler::zero, store_result);
1376
// unbox
1377
__ movptr(rax, Address(rax, 0));
1378
__ bind(store_result);
1379
__ movptr(STATE(_oop_temp), rax);
1380
// keep stack depth as expected by pushing oop which will eventually be discarded
1381
__ push(rax);
1382
#ifndef _LP64
1383
__ push(rdx);
1384
#endif // _LP64
1385
__ bind(no_oop);
1386
}
1387
1388
{
1389
Label no_reguard;
1390
__ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
1391
__ jcc(Assembler::notEqual, no_reguard);
1392
1393
__ pusha();
1394
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
1395
__ popa();
1396
1397
__ bind(no_reguard);
1398
}
1399
1400
1401
// QQQ Seems like for native methods we simply return and the caller will see the pending
1402
// exception and do the right thing. Certainly the interpreter will, don't know about
1403
// compiled methods.
1404
// Seems that the answer to above is no this is wrong. The old code would see the exception
1405
// and forward it before doing the unlocking and notifying jvmdi that method has exited.
1406
// This seems wrong need to investigate the spec.
1407
1408
// handle exceptions (exception handling will handle unlocking!)
1409
{ Label L;
1410
__ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
1411
__ jcc(Assembler::zero, L);
1412
__ bind(pending_exception_present);
1413
1414
// There are potential results on the stack (rax/rdx, ST(0)) we ignore these and simply
1415
// return and let caller deal with exception. This skips the unlocking here which
1416
// seems wrong but seems to be what asm interpreter did. Can't find this in the spec.
1417
// Note: must preverve method in rbx
1418
//
1419
1420
// remove activation
1421
1422
__ movptr(t, STATE(_sender_sp));
1423
__ leave(); // remove frame anchor
1424
__ pop(rdi); // get return address
1425
__ movptr(state, STATE(_prev_link)); // get previous state for return
1426
__ mov(rsp, t); // set sp to sender sp
1427
__ push(rdi); // push throwing pc
1428
// The skips unlocking!! This seems to be what asm interpreter does but seems
1429
// very wrong. Not clear if this violates the spec.
1430
__ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
1431
__ bind(L);
1432
}
1433
1434
// do unlocking if necessary
1435
{ Label L;
1436
__ movl(t, Address(method, Method::access_flags_offset()));
1437
__ testl(t, JVM_ACC_SYNCHRONIZED);
1438
__ jcc(Assembler::zero, L);
1439
// the code below should be shared with interpreter macro assembler implementation
1440
{ Label unlock;
1441
const Register monitor = NOT_LP64(rdx) LP64_ONLY(c_rarg1);
1442
// BasicObjectLock will be first in list, since this is a synchronized method. However, need
1443
// to check that the object has not been unlocked by an explicit monitorexit bytecode.
1444
__ movptr(monitor, STATE(_monitor_base));
1445
__ subptr(monitor, frame::interpreter_frame_monitor_size() * wordSize); // address of initial monitor
1446
1447
__ movptr(t, Address(monitor, BasicObjectLock::obj_offset_in_bytes()));
1448
__ testptr(t, t);
1449
__ jcc(Assembler::notZero, unlock);
1450
1451
// Entry already unlocked, need to throw exception
1452
__ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1453
__ should_not_reach_here();
1454
1455
__ bind(unlock);
1456
__ unlock_object(monitor);
1457
// unlock can blow rbx so restore it for path that needs it below
1458
__ movptr(method, STATE(_method));
1459
}
1460
__ bind(L);
1461
}
1462
1463
// jvmti support
1464
// Note: This must happen _after_ handling/throwing any exceptions since
1465
// the exception handler code notifies the runtime of method exits
1466
// too. If this happens before, method entry/exit notifications are
1467
// not properly paired (was bug - gri 11/22/99).
1468
__ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
1469
1470
// restore potential result in rdx:rax, call result handler to restore potential result in ST0 & handle result
1471
#ifndef _LP64
1472
__ pop(rdx);
1473
#endif // _LP64
1474
__ pop(rax);
1475
__ movptr(t, STATE(_result_handler)); // get result handler
1476
__ call(t); // call result handler to convert to tosca form
1477
1478
// remove activation
1479
1480
__ movptr(t, STATE(_sender_sp));
1481
1482
__ leave(); // remove frame anchor
1483
__ pop(rdi); // get return address
1484
__ movptr(state, STATE(_prev_link)); // get previous state for return (if c++ interpreter was caller)
1485
__ mov(rsp, t); // set sp to sender sp
1486
__ jmp(rdi);
1487
1488
// invocation counter overflow
1489
if (inc_counter) {
1490
// Handle overflow of counter and compile method
1491
__ bind(invocation_counter_overflow);
1492
generate_counter_overflow(&continue_after_compile);
1493
}
1494
1495
return entry_point;
1496
}
1497
1498
// Generate entries that will put a result type index into rcx
1499
void CppInterpreterGenerator::generate_deopt_handling() {
1500
1501
Label return_from_deopt_common;
1502
1503
// Generate entries that will put a result type index into rcx
1504
// deopt needs to jump to here to enter the interpreter (return a result)
1505
deopt_frame_manager_return_atos = __ pc();
1506
1507
// rax is live here
1508
__ movl(rcx, AbstractInterpreter::BasicType_as_index(T_OBJECT)); // Result stub address array index
1509
__ jmp(return_from_deopt_common);
1510
1511
1512
// deopt needs to jump to here to enter the interpreter (return a result)
1513
deopt_frame_manager_return_btos = __ pc();
1514
1515
// rax is live here
1516
__ movl(rcx, AbstractInterpreter::BasicType_as_index(T_BOOLEAN)); // Result stub address array index
1517
__ jmp(return_from_deopt_common);
1518
1519
// deopt needs to jump to here to enter the interpreter (return a result)
1520
deopt_frame_manager_return_itos = __ pc();
1521
1522
// rax is live here
1523
__ movl(rcx, AbstractInterpreter::BasicType_as_index(T_INT)); // Result stub address array index
1524
__ jmp(return_from_deopt_common);
1525
1526
// deopt needs to jump to here to enter the interpreter (return a result)
1527
1528
deopt_frame_manager_return_ltos = __ pc();
1529
// rax,rdx are live here
1530
__ movl(rcx, AbstractInterpreter::BasicType_as_index(T_LONG)); // Result stub address array index
1531
__ jmp(return_from_deopt_common);
1532
1533
// deopt needs to jump to here to enter the interpreter (return a result)
1534
1535
deopt_frame_manager_return_ftos = __ pc();
1536
// st(0) is live here
1537
__ movl(rcx, AbstractInterpreter::BasicType_as_index(T_FLOAT)); // Result stub address array index
1538
__ jmp(return_from_deopt_common);
1539
1540
// deopt needs to jump to here to enter the interpreter (return a result)
1541
deopt_frame_manager_return_dtos = __ pc();
1542
1543
// st(0) is live here
1544
__ movl(rcx, AbstractInterpreter::BasicType_as_index(T_DOUBLE)); // Result stub address array index
1545
__ jmp(return_from_deopt_common);
1546
1547
// deopt needs to jump to here to enter the interpreter (return a result)
1548
deopt_frame_manager_return_vtos = __ pc();
1549
1550
__ movl(rcx, AbstractInterpreter::BasicType_as_index(T_VOID));
1551
1552
// Deopt return common
1553
// an index is present in rcx that lets us move any possible result being
1554
// return to the interpreter's stack
1555
//
1556
// Because we have a full sized interpreter frame on the youngest
1557
// activation the stack is pushed too deep to share the tosca to
1558
// stack converters directly. We shrink the stack to the desired
1559
// amount and then push result and then re-extend the stack.
1560
// We could have the code in size_activation layout a short
1561
// frame for the top activation but that would look different
1562
// than say sparc (which needs a full size activation because
1563
// the windows are in the way. Really it could be short? QQQ
1564
//
1565
__ bind(return_from_deopt_common);
1566
1567
__ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
1568
1569
// setup rsp so we can push the "result" as needed.
1570
__ movptr(rsp, STATE(_stack)); // trim stack (is prepushed)
1571
__ addptr(rsp, wordSize); // undo prepush
1572
1573
ExternalAddress tosca_to_stack((address)CppInterpreter::_tosca_to_stack);
1574
// Address index(noreg, rcx, Address::times_ptr);
1575
__ movptr(rcx, ArrayAddress(tosca_to_stack, Address(noreg, rcx, Address::times_ptr)));
1576
// __ movl(rcx, Address(noreg, rcx, Address::times_ptr, int(AbstractInterpreter::_tosca_to_stack)));
1577
__ call(rcx); // call result converter
1578
1579
__ movl(STATE(_msg), (int)BytecodeInterpreter::deopt_resume);
1580
__ lea(rsp, Address(rsp, -wordSize)); // prepush stack (result if any already present)
1581
__ movptr(STATE(_stack), rsp); // inform interpreter of new stack depth (parameters removed,
1582
// result if any on stack already )
1583
__ movptr(rsp, STATE(_stack_limit)); // restore expression stack to full depth
1584
}
1585
1586
// Generate the code to handle a more_monitors message from the c++ interpreter
1587
void CppInterpreterGenerator::generate_more_monitors() {
1588
1589
1590
Label entry, loop;
1591
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
1592
// 1. compute new pointers // rsp: old expression stack top
1593
__ movptr(rdx, STATE(_stack_base)); // rdx: old expression stack bottom
1594
__ subptr(rsp, entry_size); // move expression stack top limit
1595
__ subptr(STATE(_stack), entry_size); // update interpreter stack top
1596
__ subptr(STATE(_stack_limit), entry_size); // inform interpreter
1597
__ subptr(rdx, entry_size); // move expression stack bottom
1598
__ movptr(STATE(_stack_base), rdx); // inform interpreter
1599
__ movptr(rcx, STATE(_stack)); // set start value for copy loop
1600
__ jmp(entry);
1601
// 2. move expression stack contents
1602
__ bind(loop);
1603
__ movptr(rbx, Address(rcx, entry_size)); // load expression stack word from old location
1604
__ movptr(Address(rcx, 0), rbx); // and store it at new location
1605
__ addptr(rcx, wordSize); // advance to next word
1606
__ bind(entry);
1607
__ cmpptr(rcx, rdx); // check if bottom reached
1608
__ jcc(Assembler::notEqual, loop); // if not at bottom then copy next word
1609
// now zero the slot so we can find it.
1610
__ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
1611
__ movl(STATE(_msg), (int)BytecodeInterpreter::got_monitors);
1612
}
1613
1614
1615
// Initial entry to C++ interpreter from the call_stub.
1616
// This entry point is called the frame manager since it handles the generation
1617
// of interpreter activation frames via requests directly from the vm (via call_stub)
1618
// and via requests from the interpreter. The requests from the call_stub happen
1619
// directly thru the entry point. Requests from the interpreter happen via returning
1620
// from the interpreter and examining the message the interpreter has returned to
1621
// the frame manager. The frame manager can take the following requests:
1622
1623
// NO_REQUEST - error, should never happen.
1624
// MORE_MONITORS - need a new monitor. Shuffle the expression stack on down and
1625
// allocate a new monitor.
1626
// CALL_METHOD - setup a new activation to call a new method. Very similar to what
1627
// happens during entry during the entry via the call stub.
1628
// RETURN_FROM_METHOD - remove an activation. Return to interpreter or call stub.
1629
//
1630
// Arguments:
1631
//
1632
// rbx: Method*
1633
// rcx: receiver - unused (retrieved from stack as needed)
1634
// rsi/r13: previous frame manager state (NULL from the call_stub/c1/c2)
1635
//
1636
//
1637
// Stack layout at entry
1638
//
1639
// [ return address ] <--- rsp
1640
// [ parameter n ]
1641
// ...
1642
// [ parameter 1 ]
1643
// [ expression stack ]
1644
//
1645
//
1646
// We are free to blow any registers we like because the call_stub which brought us here
1647
// initially has preserved the callee save registers already.
1648
//
1649
//
1650
1651
static address interpreter_frame_manager = NULL;
1652
1653
address InterpreterGenerator::generate_normal_entry(bool synchronized) {
1654
1655
// rbx: Method*
1656
// rsi/r13: sender sp
1657
1658
// Because we redispatch "recursive" interpreter entries thru this same entry point
1659
// the "input" register usage is a little strange and not what you expect coming
1660
// from the call_stub. From the call stub rsi/rdi (current/previous) interpreter
1661
// state are NULL but on "recursive" dispatches they are what you'd expect.
1662
// rsi: current interpreter state (C++ interpreter) must preserve (null from call_stub/c1/c2)
1663
1664
1665
// A single frame manager is plenty as we don't specialize for synchronized. We could and
1666
// the code is pretty much ready. Would need to change the test below and for good measure
1667
// modify generate_interpreter_state to only do the (pre) sync stuff stuff for synchronized
1668
// routines. Not clear this is worth it yet.
1669
1670
if (interpreter_frame_manager) return interpreter_frame_manager;
1671
1672
address entry_point = __ pc();
1673
1674
// Fast accessor methods share this entry point.
1675
// This works because frame manager is in the same codelet
1676
if (UseFastAccessorMethods && !synchronized) __ bind(fast_accessor_slow_entry_path);
1677
1678
Label dispatch_entry_2;
1679
__ movptr(rcx, sender_sp_on_entry);
1680
__ movptr(state, (int32_t)NULL_WORD); // no current activation
1681
1682
__ jmp(dispatch_entry_2);
1683
1684
const Register locals = rdi;
1685
1686
Label re_dispatch;
1687
1688
__ bind(re_dispatch);
1689
1690
// save sender sp (doesn't include return address
1691
__ lea(rcx, Address(rsp, wordSize));
1692
1693
__ bind(dispatch_entry_2);
1694
1695
// save sender sp
1696
__ push(rcx);
1697
1698
const Address constMethod (rbx, Method::const_offset());
1699
const Address access_flags (rbx, Method::access_flags_offset());
1700
const Address size_of_parameters(rdx, ConstMethod::size_of_parameters_offset());
1701
const Address size_of_locals (rdx, ConstMethod::size_of_locals_offset());
1702
1703
// const Address monitor_block_top (rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
1704
// const Address monitor_block_bot (rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
1705
// const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
1706
1707
// get parameter size (always needed)
1708
__ movptr(rdx, constMethod);
1709
__ load_unsigned_short(rcx, size_of_parameters);
1710
1711
// rbx: Method*
1712
// rcx: size of parameters
1713
__ load_unsigned_short(rdx, size_of_locals); // get size of locals in words
1714
1715
__ subptr(rdx, rcx); // rdx = no. of additional locals
1716
1717
// see if we've got enough room on the stack for locals plus overhead.
1718
generate_stack_overflow_check(); // C++
1719
1720
// c++ interpreter does not use stack banging or any implicit exceptions
1721
// leave for now to verify that check is proper.
1722
bang_stack_shadow_pages(false);
1723
1724
1725
1726
// compute beginning of parameters (rdi)
1727
__ lea(locals, Address(rsp, rcx, Address::times_ptr, wordSize));
1728
1729
// save sender's sp
1730
// __ movl(rcx, rsp);
1731
1732
// get sender's sp
1733
__ pop(rcx);
1734
1735
// get return address
1736
__ pop(rax);
1737
1738
// rdx - # of additional locals
1739
// allocate space for locals
1740
// explicitly initialize locals
1741
{
1742
Label exit, loop;
1743
__ testl(rdx, rdx); // (32bit ok)
1744
__ jcc(Assembler::lessEqual, exit); // do nothing if rdx <= 0
1745
__ bind(loop);
1746
__ push((int32_t)NULL_WORD); // initialize local variables
1747
__ decrement(rdx); // until everything initialized
1748
__ jcc(Assembler::greater, loop);
1749
__ bind(exit);
1750
}
1751
1752
1753
// Assumes rax = return address
1754
1755
// allocate and initialize new interpreterState and method expression stack
1756
// IN(locals) -> locals
1757
// IN(state) -> any current interpreter activation
1758
// destroys rax, rcx, rdx, rdi
1759
// OUT (state) -> new interpreterState
1760
// OUT(rsp) -> bottom of methods expression stack
1761
1762
generate_compute_interpreter_state(state, locals, rcx, false);
1763
1764
// Call interpreter
1765
1766
Label call_interpreter;
1767
__ bind(call_interpreter);
1768
1769
// c++ interpreter does not use stack banging or any implicit exceptions
1770
// leave for now to verify that check is proper.
1771
bang_stack_shadow_pages(false);
1772
1773
1774
// Call interpreter enter here if message is
1775
// set and we know stack size is valid
1776
1777
Label call_interpreter_2;
1778
1779
__ bind(call_interpreter_2);
1780
1781
{
1782
const Register thread = NOT_LP64(rcx) LP64_ONLY(r15_thread);
1783
1784
#ifdef _LP64
1785
__ mov(c_rarg0, state);
1786
#else
1787
__ push(state); // push arg to interpreter
1788
__ movptr(thread, STATE(_thread));
1789
#endif // _LP64
1790
1791
// We can setup the frame anchor with everything we want at this point
1792
// as we are thread_in_Java and no safepoints can occur until we go to
1793
// vm mode. We do have to clear flags on return from vm but that is it
1794
//
1795
__ movptr(Address(thread, JavaThread::last_Java_fp_offset()), rbp);
1796
__ movptr(Address(thread, JavaThread::last_Java_sp_offset()), rsp);
1797
1798
// Call the interpreter
1799
1800
RuntimeAddress normal(CAST_FROM_FN_PTR(address, BytecodeInterpreter::run));
1801
RuntimeAddress checking(CAST_FROM_FN_PTR(address, BytecodeInterpreter::runWithChecks));
1802
1803
__ call(JvmtiExport::can_post_interpreter_events() ? checking : normal);
1804
NOT_LP64(__ pop(rax);) // discard parameter to run
1805
//
1806
// state is preserved since it is callee saved
1807
//
1808
1809
// reset_last_Java_frame
1810
1811
NOT_LP64(__ movl(thread, STATE(_thread));)
1812
__ reset_last_Java_frame(thread, true, true);
1813
}
1814
1815
// examine msg from interpreter to determine next action
1816
1817
__ movl(rdx, STATE(_msg)); // Get new message
1818
1819
Label call_method;
1820
Label return_from_interpreted_method;
1821
Label throw_exception;
1822
Label bad_msg;
1823
Label do_OSR;
1824
1825
__ cmpl(rdx, (int32_t)BytecodeInterpreter::call_method);
1826
__ jcc(Assembler::equal, call_method);
1827
__ cmpl(rdx, (int32_t)BytecodeInterpreter::return_from_method);
1828
__ jcc(Assembler::equal, return_from_interpreted_method);
1829
__ cmpl(rdx, (int32_t)BytecodeInterpreter::do_osr);
1830
__ jcc(Assembler::equal, do_OSR);
1831
__ cmpl(rdx, (int32_t)BytecodeInterpreter::throwing_exception);
1832
__ jcc(Assembler::equal, throw_exception);
1833
__ cmpl(rdx, (int32_t)BytecodeInterpreter::more_monitors);
1834
__ jcc(Assembler::notEqual, bad_msg);
1835
1836
// Allocate more monitor space, shuffle expression stack....
1837
1838
generate_more_monitors();
1839
1840
__ jmp(call_interpreter);
1841
1842
// uncommon trap needs to jump to here to enter the interpreter (re-execute current bytecode)
1843
unctrap_frame_manager_entry = __ pc();
1844
//
1845
// Load the registers we need.
1846
__ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
1847
__ movptr(rsp, STATE(_stack_limit)); // restore expression stack to full depth
1848
__ jmp(call_interpreter_2);
1849
1850
1851
1852
//=============================================================================
1853
// Returning from a compiled method into a deopted method. The bytecode at the
1854
// bcp has completed. The result of the bytecode is in the native abi (the tosca
1855
// for the template based interpreter). Any stack space that was used by the
1856
// bytecode that has completed has been removed (e.g. parameters for an invoke)
1857
// so all that we have to do is place any pending result on the expression stack
1858
// and resume execution on the next bytecode.
1859
1860
1861
generate_deopt_handling();
1862
__ jmp(call_interpreter);
1863
1864
1865
// Current frame has caught an exception we need to dispatch to the
1866
// handler. We can get here because a native interpreter frame caught
1867
// an exception in which case there is no handler and we must rethrow
1868
// If it is a vanilla interpreted frame the we simply drop into the
1869
// interpreter and let it do the lookup.
1870
1871
Interpreter::_rethrow_exception_entry = __ pc();
1872
// rax: exception
1873
// rdx: return address/pc that threw exception
1874
1875
Label return_with_exception;
1876
Label unwind_and_forward;
1877
1878
// restore state pointer.
1879
__ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
1880
1881
__ movptr(rbx, STATE(_method)); // get method
1882
#ifdef _LP64
1883
__ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
1884
#else
1885
__ movl(rcx, STATE(_thread)); // get thread
1886
1887
// Store exception with interpreter will expect it
1888
__ movptr(Address(rcx, Thread::pending_exception_offset()), rax);
1889
#endif // _LP64
1890
1891
// is current frame vanilla or native?
1892
1893
__ movl(rdx, access_flags);
1894
__ testl(rdx, JVM_ACC_NATIVE);
1895
__ jcc(Assembler::zero, return_with_exception); // vanilla interpreted frame, handle directly
1896
1897
// We drop thru to unwind a native interpreted frame with a pending exception
1898
// We jump here for the initial interpreter frame with exception pending
1899
// We unwind the current acivation and forward it to our caller.
1900
1901
__ bind(unwind_and_forward);
1902
1903
// unwind rbp, return stack to unextended value and re-push return address
1904
1905
__ movptr(rcx, STATE(_sender_sp));
1906
__ leave();
1907
__ pop(rdx);
1908
__ mov(rsp, rcx);
1909
__ push(rdx);
1910
__ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
1911
1912
// Return point from a call which returns a result in the native abi
1913
// (c1/c2/jni-native). This result must be processed onto the java
1914
// expression stack.
1915
//
1916
// A pending exception may be present in which case there is no result present
1917
1918
Label resume_interpreter;
1919
Label do_float;
1920
Label do_double;
1921
Label done_conv;
1922
1923
// The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
1924
if (UseSSE < 2) {
1925
__ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
1926
__ movptr(rbx, STATE(_result._to_call._callee)); // get method just executed
1927
__ movl(rcx, Address(rbx, Method::result_index_offset()));
1928
__ cmpl(rcx, AbstractInterpreter::BasicType_as_index(T_FLOAT)); // Result stub address array index
1929
__ jcc(Assembler::equal, do_float);
1930
__ cmpl(rcx, AbstractInterpreter::BasicType_as_index(T_DOUBLE)); // Result stub address array index
1931
__ jcc(Assembler::equal, do_double);
1932
#if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
1933
__ empty_FPU_stack();
1934
#endif // COMPILER2
1935
__ jmp(done_conv);
1936
1937
__ bind(do_float);
1938
#ifdef COMPILER2
1939
for (int i = 1; i < 8; i++) {
1940
__ ffree(i);
1941
}
1942
#endif // COMPILER2
1943
__ jmp(done_conv);
1944
__ bind(do_double);
1945
#ifdef COMPILER2
1946
for (int i = 1; i < 8; i++) {
1947
__ ffree(i);
1948
}
1949
#endif // COMPILER2
1950
__ jmp(done_conv);
1951
} else {
1952
__ MacroAssembler::verify_FPU(0, "generate_return_entry_for compiled");
1953
__ jmp(done_conv);
1954
}
1955
1956
// Return point to interpreter from compiled/native method
1957
InternalAddress return_from_native_method(__ pc());
1958
1959
__ bind(done_conv);
1960
1961
1962
// Result if any is in tosca. The java expression stack is in the state that the
1963
// calling convention left it (i.e. params may or may not be present)
1964
// Copy the result from tosca and place it on java expression stack.
1965
1966
// Restore rsi/r13 as compiled code may not preserve it
1967
1968
__ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
1969
1970
// restore stack to what we had when we left (in case i2c extended it)
1971
1972
__ movptr(rsp, STATE(_stack));
1973
__ lea(rsp, Address(rsp, wordSize));
1974
1975
// If there is a pending exception then we don't really have a result to process
1976
1977
#ifdef _LP64
1978
__ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
1979
#else
1980
__ movptr(rcx, STATE(_thread)); // get thread
1981
__ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
1982
#endif // _LP64
1983
__ jcc(Assembler::notZero, return_with_exception);
1984
1985
// get method just executed
1986
__ movptr(rbx, STATE(_result._to_call._callee));
1987
1988
// callee left args on top of expression stack, remove them
1989
__ movptr(rcx, constMethod);
1990
__ load_unsigned_short(rcx, Address(rcx, ConstMethod::size_of_parameters_offset()));
1991
1992
__ lea(rsp, Address(rsp, rcx, Address::times_ptr));
1993
1994
__ movl(rcx, Address(rbx, Method::result_index_offset()));
1995
ExternalAddress tosca_to_stack((address)CppInterpreter::_tosca_to_stack);
1996
// Address index(noreg, rax, Address::times_ptr);
1997
__ movptr(rcx, ArrayAddress(tosca_to_stack, Address(noreg, rcx, Address::times_ptr)));
1998
// __ movl(rcx, Address(noreg, rcx, Address::times_ptr, int(AbstractInterpreter::_tosca_to_stack)));
1999
__ call(rcx); // call result converter
2000
__ jmp(resume_interpreter);
2001
2002
// An exception is being caught on return to a vanilla interpreter frame.
2003
// Empty the stack and resume interpreter
2004
2005
__ bind(return_with_exception);
2006
2007
// Exception present, empty stack
2008
__ movptr(rsp, STATE(_stack_base));
2009
__ jmp(resume_interpreter);
2010
2011
// Return from interpreted method we return result appropriate to the caller (i.e. "recursive"
2012
// interpreter call, or native) and unwind this interpreter activation.
2013
// All monitors should be unlocked.
2014
2015
__ bind(return_from_interpreted_method);
2016
2017
Label return_to_initial_caller;
2018
2019
__ movptr(rbx, STATE(_method)); // get method just executed
2020
__ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD); // returning from "recursive" interpreter call?
2021
__ movl(rax, Address(rbx, Method::result_index_offset())); // get result type index
2022
__ jcc(Assembler::equal, return_to_initial_caller); // back to native code (call_stub/c1/c2)
2023
2024
// Copy result to callers java stack
2025
ExternalAddress stack_to_stack((address)CppInterpreter::_stack_to_stack);
2026
// Address index(noreg, rax, Address::times_ptr);
2027
2028
__ movptr(rax, ArrayAddress(stack_to_stack, Address(noreg, rax, Address::times_ptr)));
2029
// __ movl(rax, Address(noreg, rax, Address::times_ptr, int(AbstractInterpreter::_stack_to_stack)));
2030
__ call(rax); // call result converter
2031
2032
Label unwind_recursive_activation;
2033
__ bind(unwind_recursive_activation);
2034
2035
// returning to interpreter method from "recursive" interpreter call
2036
// result converter left rax pointing to top of the java stack for method we are returning
2037
// to. Now all we must do is unwind the state from the completed call
2038
2039
__ movptr(state, STATE(_prev_link)); // unwind state
2040
__ leave(); // pop the frame
2041
__ mov(rsp, rax); // unwind stack to remove args
2042
2043
// Resume the interpreter. The current frame contains the current interpreter
2044
// state object.
2045
//
2046
2047
__ bind(resume_interpreter);
2048
2049
// state == interpreterState object for method we are resuming
2050
2051
__ movl(STATE(_msg), (int)BytecodeInterpreter::method_resume);
2052
__ lea(rsp, Address(rsp, -wordSize)); // prepush stack (result if any already present)
2053
__ movptr(STATE(_stack), rsp); // inform interpreter of new stack depth (parameters removed,
2054
// result if any on stack already )
2055
__ movptr(rsp, STATE(_stack_limit)); // restore expression stack to full depth
2056
__ jmp(call_interpreter_2); // No need to bang
2057
2058
// interpreter returning to native code (call_stub/c1/c2)
2059
// convert result and unwind initial activation
2060
// rax - result index
2061
2062
__ bind(return_to_initial_caller);
2063
ExternalAddress stack_to_native((address)CppInterpreter::_stack_to_native_abi);
2064
// Address index(noreg, rax, Address::times_ptr);
2065
2066
__ movptr(rax, ArrayAddress(stack_to_native, Address(noreg, rax, Address::times_ptr)));
2067
__ call(rax); // call result converter
2068
2069
Label unwind_initial_activation;
2070
__ bind(unwind_initial_activation);
2071
2072
// RETURN TO CALL_STUB/C1/C2 code (result if any in rax/rdx ST(0))
2073
2074
/* Current stack picture
2075
2076
[ incoming parameters ]
2077
[ extra locals ]
2078
[ return address to CALL_STUB/C1/C2]
2079
fp -> [ CALL_STUB/C1/C2 fp ]
2080
BytecodeInterpreter object
2081
expression stack
2082
sp ->
2083
2084
*/
2085
2086
// return restoring the stack to the original sender_sp value
2087
2088
__ movptr(rcx, STATE(_sender_sp));
2089
__ leave();
2090
__ pop(rdi); // get return address
2091
// set stack to sender's sp
2092
__ mov(rsp, rcx);
2093
__ jmp(rdi); // return to call_stub
2094
2095
// OSR request, adjust return address to make current frame into adapter frame
2096
// and enter OSR nmethod
2097
2098
__ bind(do_OSR);
2099
2100
Label remove_initial_frame;
2101
2102
// We are going to pop this frame. Is there another interpreter frame underneath
2103
// it or is it callstub/compiled?
2104
2105
// Move buffer to the expected parameter location
2106
__ movptr(rcx, STATE(_result._osr._osr_buf));
2107
2108
__ movptr(rax, STATE(_result._osr._osr_entry));
2109
2110
__ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD); // returning from "recursive" interpreter call?
2111
__ jcc(Assembler::equal, remove_initial_frame); // back to native code (call_stub/c1/c2)
2112
2113
__ movptr(sender_sp_on_entry, STATE(_sender_sp)); // get sender's sp in expected register
2114
__ leave(); // pop the frame
2115
__ mov(rsp, sender_sp_on_entry); // trim any stack expansion
2116
2117
2118
// We know we are calling compiled so push specialized return
2119
// method uses specialized entry, push a return so we look like call stub setup
2120
// this path will handle fact that result is returned in registers and not
2121
// on the java stack.
2122
2123
__ pushptr(return_from_native_method.addr());
2124
2125
__ jmp(rax);
2126
2127
__ bind(remove_initial_frame);
2128
2129
__ movptr(rdx, STATE(_sender_sp));
2130
__ leave();
2131
// get real return
2132
__ pop(rsi);
2133
// set stack to sender's sp
2134
__ mov(rsp, rdx);
2135
// repush real return
2136
__ push(rsi);
2137
// Enter OSR nmethod
2138
__ jmp(rax);
2139
2140
2141
2142
2143
// Call a new method. All we do is (temporarily) trim the expression stack
2144
// push a return address to bring us back to here and leap to the new entry.
2145
2146
__ bind(call_method);
2147
2148
// stack points to next free location and not top element on expression stack
2149
// method expects sp to be pointing to topmost element
2150
2151
__ movptr(rsp, STATE(_stack)); // pop args to c++ interpreter, set sp to java stack top
2152
__ lea(rsp, Address(rsp, wordSize));
2153
2154
__ movptr(rbx, STATE(_result._to_call._callee)); // get method to execute
2155
2156
// don't need a return address if reinvoking interpreter
2157
2158
// Make it look like call_stub calling conventions
2159
2160
// Get (potential) receiver
2161
// get size of parameters in words
2162
__ movptr(rcx, constMethod);
2163
__ load_unsigned_short(rcx, Address(rcx, ConstMethod::size_of_parameters_offset()));
2164
2165
ExternalAddress recursive(CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation));
2166
__ pushptr(recursive.addr()); // make it look good in the debugger
2167
2168
InternalAddress entry(entry_point);
2169
__ cmpptr(STATE(_result._to_call._callee_entry_point), entry.addr()); // returning to interpreter?
2170
__ jcc(Assembler::equal, re_dispatch); // yes
2171
2172
__ pop(rax); // pop dummy address
2173
2174
2175
// get specialized entry
2176
__ movptr(rax, STATE(_result._to_call._callee_entry_point));
2177
// set sender SP
2178
__ mov(sender_sp_on_entry, rsp);
2179
2180
// method uses specialized entry, push a return so we look like call stub setup
2181
// this path will handle fact that result is returned in registers and not
2182
// on the java stack.
2183
2184
__ pushptr(return_from_native_method.addr());
2185
2186
__ jmp(rax);
2187
2188
__ bind(bad_msg);
2189
__ stop("Bad message from interpreter");
2190
2191
// Interpreted method "returned" with an exception pass it on...
2192
// Pass result, unwind activation and continue/return to interpreter/call_stub
2193
// We handle result (if any) differently based on return to interpreter or call_stub
2194
2195
Label unwind_initial_with_pending_exception;
2196
2197
__ bind(throw_exception);
2198
__ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD); // returning from recursive interpreter call?
2199
__ jcc(Assembler::equal, unwind_initial_with_pending_exception); // no, back to native code (call_stub/c1/c2)
2200
__ movptr(rax, STATE(_locals)); // pop parameters get new stack value
2201
__ addptr(rax, wordSize); // account for prepush before we return
2202
__ jmp(unwind_recursive_activation);
2203
2204
__ bind(unwind_initial_with_pending_exception);
2205
2206
// We will unwind the current (initial) interpreter frame and forward
2207
// the exception to the caller. We must put the exception in the
2208
// expected register and clear pending exception and then forward.
2209
2210
__ jmp(unwind_and_forward);
2211
2212
interpreter_frame_manager = entry_point;
2213
return entry_point;
2214
}
2215
2216
address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) {
2217
// determine code generation flags
2218
bool synchronized = false;
2219
address entry_point = NULL;
2220
2221
switch (kind) {
2222
case Interpreter::zerolocals : break;
2223
case Interpreter::zerolocals_synchronized: synchronized = true; break;
2224
case Interpreter::native : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false); break;
2225
case Interpreter::native_synchronized : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true); break;
2226
case Interpreter::empty : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry(); break;
2227
case Interpreter::accessor : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry(); break;
2228
case Interpreter::abstract : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry(); break;
2229
case Interpreter::method_handle : entry_point = ((InterpreterGenerator*)this)->generate_method_handle_entry(); break;
2230
2231
case Interpreter::java_lang_math_sin : // fall thru
2232
case Interpreter::java_lang_math_cos : // fall thru
2233
case Interpreter::java_lang_math_tan : // fall thru
2234
case Interpreter::java_lang_math_abs : // fall thru
2235
case Interpreter::java_lang_math_log : // fall thru
2236
case Interpreter::java_lang_math_log10 : // fall thru
2237
case Interpreter::java_lang_math_sqrt : entry_point = ((InterpreterGenerator*)this)->generate_math_entry(kind); break;
2238
case Interpreter::java_lang_ref_reference_get
2239
: entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break;
2240
default : ShouldNotReachHere(); break;
2241
}
2242
2243
if (entry_point) return entry_point;
2244
2245
return ((InterpreterGenerator*)this)->generate_normal_entry(synchronized);
2246
2247
}
2248
2249
InterpreterGenerator::InterpreterGenerator(StubQueue* code)
2250
: CppInterpreterGenerator(code) {
2251
generate_all(); // down here so it can be "virtual"
2252
}
2253
2254
// Deoptimization helpers for C++ interpreter
2255
2256
// How much stack a method activation needs in words.
2257
int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
2258
2259
const int stub_code = 4; // see generate_call_stub
2260
// Save space for one monitor to get into the interpreted method in case
2261
// the method is synchronized
2262
int monitor_size = method->is_synchronized() ?
2263
1*frame::interpreter_frame_monitor_size() : 0;
2264
2265
// total static overhead size. Account for interpreter state object, return
2266
// address, saved rbp and 2 words for a "static long no_params() method" issue.
2267
2268
const int overhead_size = sizeof(BytecodeInterpreter)/wordSize +
2269
( frame::sender_sp_offset - frame::link_offset) + 2;
2270
2271
const int method_stack = (method->max_locals() + method->max_stack()) *
2272
Interpreter::stackElementWords;
2273
return overhead_size + method_stack + stub_code;
2274
}
2275
2276
// returns the activation size.
2277
static int size_activation_helper(int extra_locals_size, int monitor_size) {
2278
return (extra_locals_size + // the addition space for locals
2279
2*BytesPerWord + // return address and saved rbp
2280
2*BytesPerWord + // "static long no_params() method" issue
2281
sizeof(BytecodeInterpreter) + // interpreterState
2282
monitor_size); // monitors
2283
}
2284
2285
void BytecodeInterpreter::layout_interpreterState(interpreterState to_fill,
2286
frame* caller,
2287
frame* current,
2288
Method* method,
2289
intptr_t* locals,
2290
intptr_t* stack,
2291
intptr_t* stack_base,
2292
intptr_t* monitor_base,
2293
intptr_t* frame_bottom,
2294
bool is_top_frame
2295
)
2296
{
2297
// What about any vtable?
2298
//
2299
to_fill->_thread = JavaThread::current();
2300
// This gets filled in later but make it something recognizable for now
2301
to_fill->_bcp = method->code_base();
2302
to_fill->_locals = locals;
2303
to_fill->_constants = method->constants()->cache();
2304
to_fill->_method = method;
2305
to_fill->_mdx = NULL;
2306
to_fill->_stack = stack;
2307
if (is_top_frame && JavaThread::current()->popframe_forcing_deopt_reexecution() ) {
2308
to_fill->_msg = deopt_resume2;
2309
} else {
2310
to_fill->_msg = method_resume;
2311
}
2312
to_fill->_result._to_call._bcp_advance = 0;
2313
to_fill->_result._to_call._callee_entry_point = NULL; // doesn't matter to anyone
2314
to_fill->_result._to_call._callee = NULL; // doesn't matter to anyone
2315
to_fill->_prev_link = NULL;
2316
2317
to_fill->_sender_sp = caller->unextended_sp();
2318
2319
if (caller->is_interpreted_frame()) {
2320
interpreterState prev = caller->get_interpreterState();
2321
to_fill->_prev_link = prev;
2322
// *current->register_addr(GR_Iprev_state) = (intptr_t) prev;
2323
// Make the prev callee look proper
2324
prev->_result._to_call._callee = method;
2325
if (*prev->_bcp == Bytecodes::_invokeinterface) {
2326
prev->_result._to_call._bcp_advance = 5;
2327
} else {
2328
prev->_result._to_call._bcp_advance = 3;
2329
}
2330
}
2331
to_fill->_oop_temp = NULL;
2332
to_fill->_stack_base = stack_base;
2333
// Need +1 here because stack_base points to the word just above the first expr stack entry
2334
// and stack_limit is supposed to point to the word just below the last expr stack entry.
2335
// See generate_compute_interpreter_state.
2336
to_fill->_stack_limit = stack_base - (method->max_stack() + 1);
2337
to_fill->_monitor_base = (BasicObjectLock*) monitor_base;
2338
2339
to_fill->_self_link = to_fill;
2340
assert(stack >= to_fill->_stack_limit && stack < to_fill->_stack_base,
2341
"Stack top out of range");
2342
}
2343
2344
2345
static int frame_size_helper(int max_stack,
2346
int tempcount,
2347
int moncount,
2348
int callee_param_count,
2349
int callee_locals,
2350
bool is_top_frame,
2351
int& monitor_size,
2352
int& full_frame_size) {
2353
int extra_locals_size = (callee_locals - callee_param_count) * BytesPerWord;
2354
monitor_size = sizeof(BasicObjectLock) * moncount;
2355
2356
// First calculate the frame size without any java expression stack
2357
int short_frame_size = size_activation_helper(extra_locals_size,
2358
monitor_size);
2359
2360
// Now with full size expression stack
2361
full_frame_size = short_frame_size + max_stack * BytesPerWord;
2362
2363
// and now with only live portion of the expression stack
2364
short_frame_size = short_frame_size + tempcount * BytesPerWord;
2365
2366
// the size the activation is right now. Only top frame is full size
2367
int frame_size = (is_top_frame ? full_frame_size : short_frame_size);
2368
return frame_size;
2369
}
2370
2371
int AbstractInterpreter::size_activation(int max_stack,
2372
int tempcount,
2373
int extra_args,
2374
int moncount,
2375
int callee_param_count,
2376
int callee_locals,
2377
bool is_top_frame) {
2378
assert(extra_args == 0, "FIX ME");
2379
// NOTE: return size is in words not bytes
2380
2381
// Calculate the amount our frame will be adjust by the callee. For top frame
2382
// this is zero.
2383
2384
// NOTE: ia64 seems to do this wrong (or at least backwards) in that it
2385
// calculates the extra locals based on itself. Not what the callee does
2386
// to it. So it ignores last_frame_adjust value. Seems suspicious as far
2387
// as getting sender_sp correct.
2388
2389
int unused_monitor_size = 0;
2390
int unused_full_frame_size = 0;
2391
return frame_size_helper(max_stack, tempcount, moncount, callee_param_count, callee_locals,
2392
is_top_frame, unused_monitor_size, unused_full_frame_size)/BytesPerWord;
2393
}
2394
2395
void AbstractInterpreter::layout_activation(Method* method,
2396
int tempcount, //
2397
int popframe_extra_args,
2398
int moncount,
2399
int caller_actual_parameters,
2400
int callee_param_count,
2401
int callee_locals,
2402
frame* caller,
2403
frame* interpreter_frame,
2404
bool is_top_frame,
2405
bool is_bottom_frame) {
2406
2407
assert(popframe_extra_args == 0, "FIX ME");
2408
// NOTE this code must exactly mimic what InterpreterGenerator::generate_compute_interpreter_state()
2409
// does as far as allocating an interpreter frame.
2410
// Set up the method, locals, and monitors.
2411
// The frame interpreter_frame is guaranteed to be the right size,
2412
// as determined by a previous call to the size_activation() method.
2413
// It is also guaranteed to be walkable even though it is in a skeletal state
2414
// NOTE: tempcount is the current size of the java expression stack. For top most
2415
// frames we will allocate a full sized expression stack and not the curback
2416
// version that non-top frames have.
2417
2418
int monitor_size = 0;
2419
int full_frame_size = 0;
2420
int frame_size = frame_size_helper(method->max_stack(), tempcount, moncount, callee_param_count, callee_locals,
2421
is_top_frame, monitor_size, full_frame_size);
2422
2423
#ifdef ASSERT
2424
assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
2425
#endif
2426
2427
// MUCHO HACK
2428
2429
intptr_t* frame_bottom = (intptr_t*) ((intptr_t)interpreter_frame->sp() - (full_frame_size - frame_size));
2430
2431
/* Now fillin the interpreterState object */
2432
2433
// The state object is the first thing on the frame and easily located
2434
2435
interpreterState cur_state = (interpreterState) ((intptr_t)interpreter_frame->fp() - sizeof(BytecodeInterpreter));
2436
2437
2438
// Find the locals pointer. This is rather simple on x86 because there is no
2439
// confusing rounding at the callee to account for. We can trivially locate
2440
// our locals based on the current fp().
2441
// Note: the + 2 is for handling the "static long no_params() method" issue.
2442
// (too bad I don't really remember that issue well...)
2443
2444
intptr_t* locals;
2445
// If the caller is interpreted we need to make sure that locals points to the first
2446
// argument that the caller passed and not in an area where the stack might have been extended.
2447
// because the stack to stack to converter needs a proper locals value in order to remove the
2448
// arguments from the caller and place the result in the proper location. Hmm maybe it'd be
2449
// simpler if we simply stored the result in the BytecodeInterpreter object and let the c++ code
2450
// adjust the stack?? HMMM QQQ
2451
//
2452
if (caller->is_interpreted_frame()) {
2453
// locals must agree with the caller because it will be used to set the
2454
// caller's tos when we return.
2455
interpreterState prev = caller->get_interpreterState();
2456
// stack() is prepushed.
2457
locals = prev->stack() + method->size_of_parameters();
2458
// locals = caller->unextended_sp() + (method->size_of_parameters() - 1);
2459
if (locals != interpreter_frame->fp() + frame::sender_sp_offset + (method->max_locals() - 1) + 2) {
2460
// os::breakpoint();
2461
}
2462
} else {
2463
// this is where a c2i would have placed locals (except for the +2)
2464
locals = interpreter_frame->fp() + frame::sender_sp_offset + (method->max_locals() - 1) + 2;
2465
}
2466
2467
intptr_t* monitor_base = (intptr_t*) cur_state;
2468
intptr_t* stack_base = (intptr_t*) ((intptr_t) monitor_base - monitor_size);
2469
/* +1 because stack is always prepushed */
2470
intptr_t* stack = (intptr_t*) ((intptr_t) stack_base - (tempcount + 1) * BytesPerWord);
2471
2472
2473
BytecodeInterpreter::layout_interpreterState(cur_state,
2474
caller,
2475
interpreter_frame,
2476
method,
2477
locals,
2478
stack,
2479
stack_base,
2480
monitor_base,
2481
frame_bottom,
2482
is_top_frame);
2483
2484
// BytecodeInterpreter::pd_layout_interpreterState(cur_state, interpreter_return_address, interpreter_frame->fp());
2485
}
2486
2487
#endif // CC_INTERP (all)
2488
2489