Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/cpu/x86/vm/frame_x86.cpp
32285 views
1
/*
2
* Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "interpreter/interpreter.hpp"
27
#include "memory/resourceArea.hpp"
28
#include "oops/markOop.hpp"
29
#include "oops/method.hpp"
30
#include "oops/oop.inline.hpp"
31
#include "prims/methodHandles.hpp"
32
#include "runtime/frame.inline.hpp"
33
#include "runtime/handles.inline.hpp"
34
#include "runtime/javaCalls.hpp"
35
#include "runtime/monitorChunk.hpp"
36
#include "runtime/os.hpp"
37
#include "runtime/signature.hpp"
38
#include "runtime/stubCodeGenerator.hpp"
39
#include "runtime/stubRoutines.hpp"
40
#include "vmreg_x86.inline.hpp"
41
#ifdef COMPILER1
42
#include "c1/c1_Runtime1.hpp"
43
#include "runtime/vframeArray.hpp"
44
#endif
45
46
#ifdef ASSERT
47
void RegisterMap::check_location_valid() {
48
}
49
#endif
50
51
PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
52
53
// Profiling/safepoint support
54
55
bool frame::safe_for_sender(JavaThread *thread) {
56
address sp = (address)_sp;
57
address fp = (address)_fp;
58
address unextended_sp = (address)_unextended_sp;
59
60
// consider stack guards when trying to determine "safe" stack pointers
61
static size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
62
size_t usable_stack_size = thread->stack_size() - stack_guard_size;
63
64
// sp must be within the usable part of the stack (not in guards)
65
bool sp_safe = (sp < thread->stack_base()) &&
66
(sp >= thread->stack_base() - usable_stack_size);
67
68
69
if (!sp_safe) {
70
return false;
71
}
72
73
// unextended sp must be within the stack and above or equal sp
74
bool unextended_sp_safe = (unextended_sp < thread->stack_base()) &&
75
(unextended_sp >= sp);
76
77
if (!unextended_sp_safe) {
78
return false;
79
}
80
81
// an fp must be within the stack and above (but not equal) sp
82
// second evaluation on fp+ is added to handle situation where fp is -1
83
bool fp_safe = (fp < thread->stack_base() && (fp > sp) && (((fp + (return_addr_offset * sizeof(void*))) < thread->stack_base())));
84
85
// We know sp/unextended_sp are safe only fp is questionable here
86
87
// If the current frame is known to the code cache then we can attempt to
88
// to construct the sender and do some validation of it. This goes a long way
89
// toward eliminating issues when we get in frame construction code
90
91
if (_cb != NULL ) {
92
93
// First check if frame is complete and tester is reliable
94
// Unfortunately we can only check frame complete for runtime stubs and nmethod
95
// other generic buffer blobs are more problematic so we just assume they are
96
// ok. adapter blobs never have a frame complete and are never ok.
97
98
if (!_cb->is_frame_complete_at(_pc)) {
99
if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) {
100
return false;
101
}
102
}
103
104
// Could just be some random pointer within the codeBlob
105
if (!_cb->code_contains(_pc)) {
106
return false;
107
}
108
109
// Entry frame checks
110
if (is_entry_frame()) {
111
// an entry frame must have a valid fp.
112
113
if (!fp_safe) return false;
114
115
// Validate the JavaCallWrapper an entry frame must have
116
117
address jcw = (address)entry_frame_call_wrapper();
118
119
bool jcw_safe = (jcw < thread->stack_base()) && ( jcw > fp);
120
121
return jcw_safe;
122
123
}
124
125
intptr_t* sender_sp = NULL;
126
address sender_pc = NULL;
127
128
if (is_interpreted_frame()) {
129
// fp must be safe
130
if (!fp_safe) {
131
return false;
132
}
133
134
sender_pc = (address) this->fp()[return_addr_offset];
135
sender_sp = (intptr_t*) addr_at(sender_sp_offset);
136
137
} else {
138
// must be some sort of compiled/runtime frame
139
// fp does not have to be safe (although it could be check for c1?)
140
141
// check for a valid frame_size, otherwise we are unlikely to get a valid sender_pc
142
if (_cb->frame_size() <= 0) {
143
return false;
144
}
145
146
sender_sp = _unextended_sp + _cb->frame_size();
147
// On Intel the return_address is always the word on the stack
148
sender_pc = (address) *(sender_sp-1);
149
}
150
151
152
// If the potential sender is the interpreter then we can do some more checking
153
if (Interpreter::contains(sender_pc)) {
154
155
// ebp is always saved in a recognizable place in any code we generate. However
156
// only if the sender is interpreted/call_stub (c1 too?) are we certain that the saved ebp
157
// is really a frame pointer.
158
159
intptr_t *saved_fp = (intptr_t*)*(sender_sp - frame::sender_sp_offset);
160
bool saved_fp_safe = ((address)saved_fp < thread->stack_base()) && (saved_fp > sender_sp);
161
162
if (!saved_fp_safe) {
163
return false;
164
}
165
166
// construct the potential sender
167
168
frame sender(sender_sp, saved_fp, sender_pc);
169
170
return sender.is_interpreted_frame_valid(thread);
171
172
}
173
174
// We must always be able to find a recognizable pc
175
CodeBlob* sender_blob = CodeCache::find_blob_unsafe(sender_pc);
176
if (sender_pc == NULL || sender_blob == NULL) {
177
return false;
178
}
179
180
// Could be a zombie method
181
if (sender_blob->is_zombie() || sender_blob->is_unloaded()) {
182
return false;
183
}
184
185
// Could just be some random pointer within the codeBlob
186
if (!sender_blob->code_contains(sender_pc)) {
187
return false;
188
}
189
190
// We should never be able to see an adapter if the current frame is something from code cache
191
if (sender_blob->is_adapter_blob()) {
192
return false;
193
}
194
195
// Could be the call_stub
196
if (StubRoutines::returns_to_call_stub(sender_pc)) {
197
intptr_t *saved_fp = (intptr_t*)*(sender_sp - frame::sender_sp_offset);
198
bool saved_fp_safe = ((address)saved_fp < thread->stack_base()) && (saved_fp > sender_sp);
199
200
if (!saved_fp_safe) {
201
return false;
202
}
203
204
// construct the potential sender
205
206
frame sender(sender_sp, saved_fp, sender_pc);
207
208
// Validate the JavaCallWrapper an entry frame must have
209
address jcw = (address)sender.entry_frame_call_wrapper();
210
211
bool jcw_safe = (jcw < thread->stack_base()) && ( jcw > (address)sender.fp());
212
213
return jcw_safe;
214
}
215
216
if (sender_blob->is_nmethod()) {
217
nmethod* nm = sender_blob->as_nmethod_or_null();
218
if (nm != NULL) {
219
if (nm->is_deopt_mh_entry(sender_pc) || nm->is_deopt_entry(sender_pc) ||
220
nm->method()->is_method_handle_intrinsic()) {
221
return false;
222
}
223
}
224
}
225
226
// If the frame size is 0 something (or less) is bad because every nmethod has a non-zero frame size
227
// because the return address counts against the callee's frame.
228
229
if (sender_blob->frame_size() <= 0) {
230
assert(!sender_blob->is_nmethod(), "should count return address at least");
231
return false;
232
}
233
234
// We should never be able to see anything here except an nmethod. If something in the
235
// code cache (current frame) is called by an entity within the code cache that entity
236
// should not be anything but the call stub (already covered), the interpreter (already covered)
237
// or an nmethod.
238
239
if (!sender_blob->is_nmethod()) {
240
return false;
241
}
242
243
// Could put some more validation for the potential non-interpreted sender
244
// frame we'd create by calling sender if I could think of any. Wait for next crash in forte...
245
246
// One idea is seeing if the sender_pc we have is one that we'd expect to call to current cb
247
248
// We've validated the potential sender that would be created
249
return true;
250
}
251
252
// Must be native-compiled frame. Since sender will try and use fp to find
253
// linkages it must be safe
254
255
if (!fp_safe) {
256
return false;
257
}
258
259
// Will the pc we fetch be non-zero (which we'll find at the oldest frame)
260
261
if ( (address) this->fp()[return_addr_offset] == NULL) return false;
262
263
264
// could try and do some more potential verification of native frame if we could think of some...
265
266
return true;
267
268
}
269
270
271
void frame::patch_pc(Thread* thread, address pc) {
272
address* pc_addr = &(((address*) sp())[-1]);
273
if (TracePcPatching) {
274
tty->print_cr("patch_pc at address " INTPTR_FORMAT " [" INTPTR_FORMAT " -> " INTPTR_FORMAT "]",
275
pc_addr, *pc_addr, pc);
276
}
277
// Either the return address is the original one or we are going to
278
// patch in the same address that's already there.
279
assert(_pc == *pc_addr || pc == *pc_addr, "must be");
280
*pc_addr = pc;
281
_cb = CodeCache::find_blob(pc);
282
address original_pc = nmethod::get_deopt_original_pc(this);
283
if (original_pc != NULL) {
284
assert(original_pc == _pc, "expected original PC to be stored before patching");
285
_deopt_state = is_deoptimized;
286
// leave _pc as is
287
} else {
288
_deopt_state = not_deoptimized;
289
_pc = pc;
290
}
291
}
292
293
bool frame::is_interpreted_frame() const {
294
return Interpreter::contains(pc());
295
}
296
297
int frame::frame_size(RegisterMap* map) const {
298
frame sender = this->sender(map);
299
return sender.sp() - sp();
300
}
301
302
intptr_t* frame::entry_frame_argument_at(int offset) const {
303
// convert offset to index to deal with tsi
304
int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
305
// Entry frame's arguments are always in relation to unextended_sp()
306
return &unextended_sp()[index];
307
}
308
309
// sender_sp
310
#ifdef CC_INTERP
311
intptr_t* frame::interpreter_frame_sender_sp() const {
312
assert(is_interpreted_frame(), "interpreted frame expected");
313
// QQQ why does this specialize method exist if frame::sender_sp() does same thing?
314
// seems odd and if we always know interpreted vs. non then sender_sp() is really
315
// doing too much work.
316
return get_interpreterState()->sender_sp();
317
}
318
319
// monitor elements
320
321
BasicObjectLock* frame::interpreter_frame_monitor_begin() const {
322
return get_interpreterState()->monitor_base();
323
}
324
325
BasicObjectLock* frame::interpreter_frame_monitor_end() const {
326
return (BasicObjectLock*) get_interpreterState()->stack_base();
327
}
328
329
#else // CC_INTERP
330
331
intptr_t* frame::interpreter_frame_sender_sp() const {
332
assert(is_interpreted_frame(), "interpreted frame expected");
333
return (intptr_t*) at(interpreter_frame_sender_sp_offset);
334
}
335
336
void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) {
337
assert(is_interpreted_frame(), "interpreted frame expected");
338
ptr_at_put(interpreter_frame_sender_sp_offset, (intptr_t) sender_sp);
339
}
340
341
342
// monitor elements
343
344
BasicObjectLock* frame::interpreter_frame_monitor_begin() const {
345
return (BasicObjectLock*) addr_at(interpreter_frame_monitor_block_bottom_offset);
346
}
347
348
BasicObjectLock* frame::interpreter_frame_monitor_end() const {
349
BasicObjectLock* result = (BasicObjectLock*) *addr_at(interpreter_frame_monitor_block_top_offset);
350
// make sure the pointer points inside the frame
351
assert(sp() <= (intptr_t*) result, "monitor end should be above the stack pointer");
352
assert((intptr_t*) result < fp(), "monitor end should be strictly below the frame pointer");
353
return result;
354
}
355
356
void frame::interpreter_frame_set_monitor_end(BasicObjectLock* value) {
357
*((BasicObjectLock**)addr_at(interpreter_frame_monitor_block_top_offset)) = value;
358
}
359
360
// Used by template based interpreter deoptimization
361
void frame::interpreter_frame_set_last_sp(intptr_t* sp) {
362
*((intptr_t**)addr_at(interpreter_frame_last_sp_offset)) = sp;
363
}
364
#endif // CC_INTERP
365
366
frame frame::sender_for_entry_frame(RegisterMap* map) const {
367
assert(map != NULL, "map must be set");
368
// Java frame called from C; skip all C frames and return top C
369
// frame of that chunk as the sender
370
JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor();
371
assert(!entry_frame_is_first(), "next Java fp must be non zero");
372
assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack");
373
// Since we are walking the stack now this nested anchor is obviously walkable
374
// even if it wasn't when it was stacked.
375
if (!jfa->walkable()) {
376
// Capture _last_Java_pc (if needed) and mark anchor walkable.
377
jfa->capture_last_Java_pc();
378
}
379
map->clear();
380
assert(map->include_argument_oops(), "should be set by clear");
381
assert(jfa->last_Java_pc() != NULL, "not walkable");
382
frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc());
383
return fr;
384
}
385
386
//------------------------------------------------------------------------------
387
// frame::verify_deopt_original_pc
388
//
389
// Verifies the calculated original PC of a deoptimization PC for the
390
// given unextended SP.
391
#ifdef ASSERT
392
void frame::verify_deopt_original_pc(nmethod* nm, intptr_t* unextended_sp) {
393
frame fr;
394
395
// This is ugly but it's better than to change {get,set}_original_pc
396
// to take an SP value as argument. And it's only a debugging
397
// method anyway.
398
fr._unextended_sp = unextended_sp;
399
400
address original_pc = nm->get_original_pc(&fr);
401
assert(nm->insts_contains(original_pc), "original PC must be in nmethod");
402
}
403
#endif
404
405
//------------------------------------------------------------------------------
406
// frame::adjust_unextended_sp
407
void frame::adjust_unextended_sp() {
408
// On x86, sites calling method handle intrinsics and lambda forms are treated
409
// as any other call site. Therefore, no special action is needed when we are
410
// returning to any of these call sites.
411
412
nmethod* sender_nm = (_cb == NULL) ? NULL : _cb->as_nmethod_or_null();
413
if (sender_nm != NULL) {
414
// If the sender PC is a deoptimization point, get the original PC.
415
if (sender_nm->is_deopt_entry(_pc) ||
416
sender_nm->is_deopt_mh_entry(_pc)) {
417
DEBUG_ONLY(verify_deopt_original_pc(sender_nm, _unextended_sp));
418
}
419
}
420
}
421
422
//------------------------------------------------------------------------------
423
// frame::update_map_with_saved_link
424
void frame::update_map_with_saved_link(RegisterMap* map, intptr_t** link_addr) {
425
// The interpreter and compiler(s) always save EBP/RBP in a known
426
// location on entry. We must record where that location is
427
// so this if EBP/RBP was live on callout from c2 we can find
428
// the saved copy no matter what it called.
429
430
// Since the interpreter always saves EBP/RBP if we record where it is then
431
// we don't have to always save EBP/RBP on entry and exit to c2 compiled
432
// code, on entry will be enough.
433
map->set_location(rbp->as_VMReg(), (address) link_addr);
434
#ifdef AMD64
435
// this is weird "H" ought to be at a higher address however the
436
// oopMaps seems to have the "H" regs at the same address and the
437
// vanilla register.
438
// XXXX make this go away
439
if (true) {
440
map->set_location(rbp->as_VMReg()->next(), (address) link_addr);
441
}
442
#endif // AMD64
443
}
444
445
446
//------------------------------------------------------------------------------
447
// frame::sender_for_interpreter_frame
448
frame frame::sender_for_interpreter_frame(RegisterMap* map) const {
449
// SP is the raw SP from the sender after adapter or interpreter
450
// extension.
451
intptr_t* sender_sp = this->sender_sp();
452
453
// This is the sp before any possible extension (adapter/locals).
454
intptr_t* unextended_sp = interpreter_frame_sender_sp();
455
456
#ifdef COMPILER2
457
if (map->update_map()) {
458
update_map_with_saved_link(map, (intptr_t**) addr_at(link_offset));
459
}
460
#endif // COMPILER2
461
462
return frame(sender_sp, unextended_sp, link(), sender_pc());
463
}
464
465
466
//------------------------------------------------------------------------------
467
// frame::sender_for_compiled_frame
468
frame frame::sender_for_compiled_frame(RegisterMap* map) const {
469
assert(map != NULL, "map must be set");
470
471
// frame owned by optimizing compiler
472
assert(_cb->frame_size() >= 0, "must have non-zero frame size");
473
intptr_t* sender_sp = unextended_sp() + _cb->frame_size();
474
intptr_t* unextended_sp = sender_sp;
475
476
// On Intel the return_address is always the word on the stack
477
address sender_pc = (address) *(sender_sp-1);
478
479
// This is the saved value of EBP which may or may not really be an FP.
480
// It is only an FP if the sender is an interpreter frame (or C1?).
481
intptr_t** saved_fp_addr = (intptr_t**) (sender_sp - frame::sender_sp_offset);
482
483
if (map->update_map()) {
484
// Tell GC to use argument oopmaps for some runtime stubs that need it.
485
// For C1, the runtime stub might not have oop maps, so set this flag
486
// outside of update_register_map.
487
map->set_include_argument_oops(_cb->caller_must_gc_arguments(map->thread()));
488
if (_cb->oop_maps() != NULL) {
489
OopMapSet::update_register_map(this, map);
490
}
491
492
// Since the prolog does the save and restore of EBP there is no oopmap
493
// for it so we must fill in its location as if there was an oopmap entry
494
// since if our caller was compiled code there could be live jvm state in it.
495
update_map_with_saved_link(map, saved_fp_addr);
496
}
497
498
assert(sender_sp != sp(), "must have changed");
499
return frame(sender_sp, unextended_sp, *saved_fp_addr, sender_pc);
500
}
501
502
503
//------------------------------------------------------------------------------
504
// frame::sender
505
frame frame::sender(RegisterMap* map) const {
506
// Default is we done have to follow them. The sender_for_xxx will
507
// update it accordingly
508
map->set_include_argument_oops(false);
509
510
if (is_entry_frame()) return sender_for_entry_frame(map);
511
if (is_interpreted_frame()) return sender_for_interpreter_frame(map);
512
assert(_cb == CodeCache::find_blob(pc()),"Must be the same");
513
514
if (_cb != NULL) {
515
return sender_for_compiled_frame(map);
516
}
517
// Must be native-compiled frame, i.e. the marshaling code for native
518
// methods that exists in the core system.
519
return frame(sender_sp(), link(), sender_pc());
520
}
521
522
523
bool frame::interpreter_frame_equals_unpacked_fp(intptr_t* fp) {
524
assert(is_interpreted_frame(), "must be interpreter frame");
525
Method* method = interpreter_frame_method();
526
// When unpacking an optimized frame the frame pointer is
527
// adjusted with:
528
int diff = (method->max_locals() - method->size_of_parameters()) *
529
Interpreter::stackElementWords;
530
return _fp == (fp - diff);
531
}
532
533
void frame::pd_gc_epilog() {
534
// nothing done here now
535
}
536
537
bool frame::is_interpreted_frame_valid(JavaThread* thread) const {
538
// QQQ
539
#ifdef CC_INTERP
540
#else
541
assert(is_interpreted_frame(), "Not an interpreted frame");
542
// These are reasonable sanity checks
543
if (fp() == 0 || (intptr_t(fp()) & (wordSize-1)) != 0) {
544
return false;
545
}
546
if (sp() == 0 || (intptr_t(sp()) & (wordSize-1)) != 0) {
547
return false;
548
}
549
if (fp() + interpreter_frame_initial_sp_offset < sp()) {
550
return false;
551
}
552
// These are hacks to keep us out of trouble.
553
// The problem with these is that they mask other problems
554
if (fp() <= sp()) { // this attempts to deal with unsigned comparison above
555
return false;
556
}
557
558
// do some validation of frame elements
559
560
// first the method
561
562
Method* m = *interpreter_frame_method_addr();
563
564
// validate the method we'd find in this potential sender
565
if (!m->is_valid_method()) return false;
566
567
// stack frames shouldn't be much larger than max_stack elements
568
569
if (fp() - sp() > 1024 + m->max_stack()*Interpreter::stackElementSize) {
570
return false;
571
}
572
573
// validate bci/bcx
574
575
intptr_t bcx = interpreter_frame_bcx();
576
if (m->validate_bci_from_bcx(bcx) < 0) {
577
return false;
578
}
579
580
// validate ConstantPoolCache*
581
ConstantPoolCache* cp = *interpreter_frame_cache_addr();
582
if (cp == NULL || !cp->is_metaspace_object()) return false;
583
584
// validate locals
585
586
address locals = (address) *interpreter_frame_locals_addr();
587
588
if (locals > thread->stack_base() || locals < (address) fp()) return false;
589
590
// We'd have to be pretty unlucky to be mislead at this point
591
592
#endif // CC_INTERP
593
return true;
594
}
595
596
BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) {
597
#ifdef CC_INTERP
598
// Needed for JVMTI. The result should always be in the
599
// interpreterState object
600
interpreterState istate = get_interpreterState();
601
#endif // CC_INTERP
602
assert(is_interpreted_frame(), "interpreted frame expected");
603
Method* method = interpreter_frame_method();
604
BasicType type = method->result_type();
605
606
intptr_t* tos_addr;
607
if (method->is_native()) {
608
// Prior to calling into the runtime to report the method_exit the possible
609
// return value is pushed to the native stack. If the result is a jfloat/jdouble
610
// then ST0 is saved before EAX/EDX. See the note in generate_native_result
611
tos_addr = (intptr_t*)sp();
612
if (type == T_FLOAT || type == T_DOUBLE) {
613
// QQQ seems like this code is equivalent on the two platforms
614
#ifdef AMD64
615
// This is times two because we do a push(ltos) after pushing XMM0
616
// and that takes two interpreter stack slots.
617
tos_addr += 2 * Interpreter::stackElementWords;
618
#else
619
tos_addr += 2;
620
#endif // AMD64
621
}
622
} else {
623
tos_addr = (intptr_t*)interpreter_frame_tos_address();
624
}
625
626
switch (type) {
627
case T_OBJECT :
628
case T_ARRAY : {
629
oop obj;
630
if (method->is_native()) {
631
#ifdef CC_INTERP
632
obj = istate->_oop_temp;
633
#else
634
obj = cast_to_oop(at(interpreter_frame_oop_temp_offset));
635
#endif // CC_INTERP
636
} else {
637
oop* obj_p = (oop*)tos_addr;
638
obj = (obj_p == NULL) ? (oop)NULL : *obj_p;
639
}
640
assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check");
641
*oop_result = obj;
642
break;
643
}
644
case T_BOOLEAN : value_result->z = *(jboolean*)tos_addr; break;
645
case T_BYTE : value_result->b = *(jbyte*)tos_addr; break;
646
case T_CHAR : value_result->c = *(jchar*)tos_addr; break;
647
case T_SHORT : value_result->s = *(jshort*)tos_addr; break;
648
case T_INT : value_result->i = *(jint*)tos_addr; break;
649
case T_LONG : value_result->j = *(jlong*)tos_addr; break;
650
case T_FLOAT : {
651
#ifdef AMD64
652
value_result->f = *(jfloat*)tos_addr;
653
#else
654
if (method->is_native()) {
655
jdouble d = *(jdouble*)tos_addr; // Result was in ST0 so need to convert to jfloat
656
value_result->f = (jfloat)d;
657
} else {
658
value_result->f = *(jfloat*)tos_addr;
659
}
660
#endif // AMD64
661
break;
662
}
663
case T_DOUBLE : value_result->d = *(jdouble*)tos_addr; break;
664
case T_VOID : /* Nothing to do */ break;
665
default : ShouldNotReachHere();
666
}
667
668
return type;
669
}
670
671
672
intptr_t* frame::interpreter_frame_tos_at(jint offset) const {
673
int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
674
return &interpreter_frame_tos_address()[index];
675
}
676
677
#ifndef PRODUCT
678
679
#define DESCRIBE_FP_OFFSET(name) \
680
values.describe(frame_no, fp() + frame::name##_offset, #name)
681
682
void frame::describe_pd(FrameValues& values, int frame_no) {
683
if (is_interpreted_frame()) {
684
DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp);
685
DESCRIBE_FP_OFFSET(interpreter_frame_last_sp);
686
DESCRIBE_FP_OFFSET(interpreter_frame_method);
687
DESCRIBE_FP_OFFSET(interpreter_frame_mdx);
688
DESCRIBE_FP_OFFSET(interpreter_frame_cache);
689
DESCRIBE_FP_OFFSET(interpreter_frame_locals);
690
DESCRIBE_FP_OFFSET(interpreter_frame_bcx);
691
DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp);
692
}
693
}
694
#endif
695
696
intptr_t *frame::initial_deoptimization_info() {
697
// used to reset the saved FP
698
return fp();
699
}
700
701
intptr_t* frame::real_fp() const {
702
if (_cb != NULL) {
703
// use the frame size if valid
704
int size = _cb->frame_size();
705
if (size > 0) {
706
return unextended_sp() + size;
707
}
708
}
709
// else rely on fp()
710
assert(! is_compiled_frame(), "unknown compiled frame size");
711
return fp();
712
}
713
714
#ifndef PRODUCT
715
// This is a generic constructor which is only used by pns() in debug.cpp.
716
frame::frame(void* sp, void* fp, void* pc) {
717
init((intptr_t*)sp, (intptr_t*)fp, (address)pc);
718
}
719
#endif
720
721
void JavaFrameAnchor::make_walkable(JavaThread* thread) {
722
// last frame set?
723
if (last_Java_sp() == NULL) return;
724
// already walkable?
725
if (walkable()) return;
726
assert(Thread::current() == (Thread*)thread, "not current thread");
727
assert(last_Java_sp() != NULL, "not called from Java code?");
728
assert(last_Java_pc() == NULL, "already walkable");
729
capture_last_Java_pc();
730
assert(walkable(), "something went wrong");
731
}
732
733
void JavaFrameAnchor::capture_last_Java_pc() {
734
assert(_last_Java_sp != NULL, "no last frame set");
735
assert(_last_Java_pc == NULL, "already walkable");
736
_last_Java_pc = (address)_last_Java_sp[-1];
737
}
738
739