Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/cpu/x86/vm/interp_masm_x86_32.cpp
32285 views
1
/*
2
* Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "interp_masm_x86.hpp"
27
#include "interpreter/interpreter.hpp"
28
#include "interpreter/interpreterRuntime.hpp"
29
#include "oops/arrayOop.hpp"
30
#include "oops/markOop.hpp"
31
#include "oops/methodData.hpp"
32
#include "oops/method.hpp"
33
#include "prims/jvmtiExport.hpp"
34
#include "prims/jvmtiRedefineClassesTrace.hpp"
35
#include "prims/jvmtiThreadState.hpp"
36
#include "runtime/basicLock.hpp"
37
#include "runtime/biasedLocking.hpp"
38
#include "runtime/sharedRuntime.hpp"
39
#include "runtime/thread.inline.hpp"
40
41
42
// Implementation of InterpreterMacroAssembler
43
#ifdef CC_INTERP
44
void InterpreterMacroAssembler::get_method(Register reg) {
45
movptr(reg, Address(rbp, -(sizeof(BytecodeInterpreter) + 2 * wordSize)));
46
movptr(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method)));
47
}
48
#endif // CC_INTERP
49
50
51
#ifndef CC_INTERP
52
void InterpreterMacroAssembler::call_VM_leaf_base(
53
address entry_point,
54
int number_of_arguments
55
) {
56
// interpreter specific
57
//
58
// Note: No need to save/restore bcp & locals (rsi & rdi) pointer
59
// since these are callee saved registers and no blocking/
60
// GC can happen in leaf calls.
61
// Further Note: DO NOT save/restore bcp/locals. If a caller has
62
// already saved them so that it can use rsi/rdi as temporaries
63
// then a save/restore here will DESTROY the copy the caller
64
// saved! There used to be a save_bcp() that only happened in
65
// the ASSERT path (no restore_bcp). Which caused bizarre failures
66
// when jvm built with ASSERTs.
67
#ifdef ASSERT
68
{ Label L;
69
cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
70
jcc(Assembler::equal, L);
71
stop("InterpreterMacroAssembler::call_VM_leaf_base: last_sp != NULL");
72
bind(L);
73
}
74
#endif
75
// super call
76
MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
77
// interpreter specific
78
79
// Used to ASSERT that rsi/rdi were equal to frame's bcp/locals
80
// but since they may not have been saved (and we don't want to
81
// save them here (see note above) the assert is invalid.
82
}
83
84
85
void InterpreterMacroAssembler::call_VM_base(
86
Register oop_result,
87
Register java_thread,
88
Register last_java_sp,
89
address entry_point,
90
int number_of_arguments,
91
bool check_exceptions
92
) {
93
#ifdef ASSERT
94
{ Label L;
95
cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
96
jcc(Assembler::equal, L);
97
stop("InterpreterMacroAssembler::call_VM_base: last_sp != NULL");
98
bind(L);
99
}
100
#endif /* ASSERT */
101
// interpreter specific
102
//
103
// Note: Could avoid restoring locals ptr (callee saved) - however doesn't
104
// really make a difference for these runtime calls, since they are
105
// slow anyway. Btw., bcp must be saved/restored since it may change
106
// due to GC.
107
assert(java_thread == noreg , "not expecting a precomputed java thread");
108
save_bcp();
109
// super call
110
MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
111
// interpreter specific
112
restore_bcp();
113
restore_locals();
114
}
115
116
117
void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
118
if (JvmtiExport::can_pop_frame()) {
119
Label L;
120
// Initiate popframe handling only if it is not already being processed. If the flag
121
// has the popframe_processing bit set, it means that this code is called *during* popframe
122
// handling - we don't want to reenter.
123
Register pop_cond = java_thread; // Not clear if any other register is available...
124
movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset()));
125
testl(pop_cond, JavaThread::popframe_pending_bit);
126
jcc(Assembler::zero, L);
127
testl(pop_cond, JavaThread::popframe_processing_bit);
128
jcc(Assembler::notZero, L);
129
// Call Interpreter::remove_activation_preserving_args_entry() to get the
130
// address of the same-named entrypoint in the generated interpreter code.
131
call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
132
jmp(rax);
133
bind(L);
134
get_thread(java_thread);
135
}
136
}
137
138
139
void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
140
get_thread(rcx);
141
movl(rcx, Address(rcx, JavaThread::jvmti_thread_state_offset()));
142
const Address tos_addr (rcx, JvmtiThreadState::earlyret_tos_offset());
143
const Address oop_addr (rcx, JvmtiThreadState::earlyret_oop_offset());
144
const Address val_addr (rcx, JvmtiThreadState::earlyret_value_offset());
145
const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset()
146
+ in_ByteSize(wordSize));
147
switch (state) {
148
case atos: movptr(rax, oop_addr);
149
movptr(oop_addr, NULL_WORD);
150
verify_oop(rax, state); break;
151
case ltos:
152
movl(rdx, val_addr1); // fall through
153
case btos: // fall through
154
case ztos: // fall through
155
case ctos: // fall through
156
case stos: // fall through
157
case itos: movl(rax, val_addr); break;
158
case ftos: fld_s(val_addr); break;
159
case dtos: fld_d(val_addr); break;
160
case vtos: /* nothing to do */ break;
161
default : ShouldNotReachHere();
162
}
163
// Clean up tos value in the thread object
164
movl(tos_addr, (int32_t) ilgl);
165
movptr(val_addr, NULL_WORD);
166
NOT_LP64(movptr(val_addr1, NULL_WORD));
167
}
168
169
170
void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
171
if (JvmtiExport::can_force_early_return()) {
172
Label L;
173
Register tmp = java_thread;
174
movptr(tmp, Address(tmp, JavaThread::jvmti_thread_state_offset()));
175
testptr(tmp, tmp);
176
jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
177
178
// Initiate earlyret handling only if it is not already being processed.
179
// If the flag has the earlyret_processing bit set, it means that this code
180
// is called *during* earlyret handling - we don't want to reenter.
181
movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
182
cmpl(tmp, JvmtiThreadState::earlyret_pending);
183
jcc(Assembler::notEqual, L);
184
185
// Call Interpreter::remove_activation_early_entry() to get the address of the
186
// same-named entrypoint in the generated interpreter code.
187
get_thread(java_thread);
188
movptr(tmp, Address(java_thread, JavaThread::jvmti_thread_state_offset()));
189
pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
190
call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1);
191
jmp(rax);
192
bind(L);
193
get_thread(java_thread);
194
}
195
}
196
197
198
void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
199
assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
200
load_unsigned_short(reg, Address(rsi, bcp_offset));
201
bswapl(reg);
202
shrl(reg, 16);
203
}
204
205
206
void InterpreterMacroAssembler::get_cache_index_at_bcp(Register reg, int bcp_offset, size_t index_size) {
207
assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
208
if (index_size == sizeof(u2)) {
209
load_unsigned_short(reg, Address(rsi, bcp_offset));
210
} else if (index_size == sizeof(u4)) {
211
assert(EnableInvokeDynamic, "giant index used only for JSR 292");
212
movl(reg, Address(rsi, bcp_offset));
213
// Check if the secondary index definition is still ~x, otherwise
214
// we have to change the following assembler code to calculate the
215
// plain index.
216
assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
217
notl(reg); // convert to plain index
218
} else if (index_size == sizeof(u1)) {
219
load_unsigned_byte(reg, Address(rsi, bcp_offset));
220
} else {
221
ShouldNotReachHere();
222
}
223
}
224
225
226
void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register index,
227
int bcp_offset, size_t index_size) {
228
assert_different_registers(cache, index);
229
get_cache_index_at_bcp(index, bcp_offset, index_size);
230
movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
231
assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
232
assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line");
233
shlptr(index, 2); // convert from field index to ConstantPoolCacheEntry index
234
}
235
236
237
void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
238
Register index,
239
Register bytecode,
240
int byte_no,
241
int bcp_offset,
242
size_t index_size) {
243
get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
244
movptr(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
245
const int shift_count = (1 + byte_no) * BitsPerByte;
246
assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
247
(byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
248
"correct shift count");
249
shrptr(bytecode, shift_count);
250
assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
251
andptr(bytecode, ConstantPoolCacheEntry::bytecode_1_mask);
252
}
253
254
255
void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
256
int bcp_offset, size_t index_size) {
257
assert(cache != tmp, "must use different register");
258
get_cache_index_at_bcp(tmp, bcp_offset, index_size);
259
assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
260
// convert from field index to ConstantPoolCacheEntry index
261
// and from word offset to byte offset
262
assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
263
shll(tmp, 2 + LogBytesPerWord);
264
movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
265
// skip past the header
266
addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
267
addptr(cache, tmp); // construct pointer to cache entry
268
}
269
270
void InterpreterMacroAssembler::get_method_counters(Register method,
271
Register mcs, Label& skip) {
272
Label has_counters;
273
movptr(mcs, Address(method, Method::method_counters_offset()));
274
testptr(mcs, mcs);
275
jcc(Assembler::notZero, has_counters);
276
call_VM(noreg, CAST_FROM_FN_PTR(address,
277
InterpreterRuntime::build_method_counters), method);
278
movptr(mcs, Address(method,Method::method_counters_offset()));
279
testptr(mcs, mcs);
280
jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory
281
bind(has_counters);
282
}
283
284
// Load object from cpool->resolved_references(index)
285
void InterpreterMacroAssembler::load_resolved_reference_at_index(
286
Register result, Register index) {
287
assert_different_registers(result, index);
288
// convert from field index to resolved_references() index and from
289
// word index to byte offset. Since this is a java object, it can be compressed
290
Register tmp = index; // reuse
291
shll(tmp, LogBytesPerHeapOop);
292
293
get_constant_pool(result);
294
// load pointer for resolved_references[] objArray
295
movptr(result, Address(result, ConstantPool::resolved_references_offset_in_bytes()));
296
// JNIHandles::resolve(obj);
297
movptr(result, Address(result, 0));
298
// Add in the index
299
addptr(result, tmp);
300
load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
301
}
302
303
// Generate a subtype check: branch to ok_is_subtype if sub_klass is
304
// a subtype of super_klass. EAX holds the super_klass. Blows ECX.
305
// Resets EDI to locals. Register sub_klass cannot be any of the above.
306
void InterpreterMacroAssembler::gen_subtype_check( Register Rsub_klass, Label &ok_is_subtype ) {
307
assert( Rsub_klass != rax, "rax, holds superklass" );
308
assert( Rsub_klass != rcx, "used as a temp" );
309
assert( Rsub_klass != rdi, "used as a temp, restored from locals" );
310
311
// Profile the not-null value's klass.
312
profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
313
314
// Do the check.
315
check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
316
317
// Profile the failure of the check.
318
profile_typecheck_failed(rcx); // blows rcx
319
}
320
321
void InterpreterMacroAssembler::f2ieee() {
322
if (IEEEPrecision) {
323
fstp_s(Address(rsp, 0));
324
fld_s(Address(rsp, 0));
325
}
326
}
327
328
329
void InterpreterMacroAssembler::d2ieee() {
330
if (IEEEPrecision) {
331
fstp_d(Address(rsp, 0));
332
fld_d(Address(rsp, 0));
333
}
334
}
335
336
// Java Expression Stack
337
338
void InterpreterMacroAssembler::pop_ptr(Register r) {
339
pop(r);
340
}
341
342
void InterpreterMacroAssembler::pop_i(Register r) {
343
pop(r);
344
}
345
346
void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
347
pop(lo);
348
pop(hi);
349
}
350
351
void InterpreterMacroAssembler::pop_f() {
352
fld_s(Address(rsp, 0));
353
addptr(rsp, 1 * wordSize);
354
}
355
356
void InterpreterMacroAssembler::pop_d() {
357
fld_d(Address(rsp, 0));
358
addptr(rsp, 2 * wordSize);
359
}
360
361
362
void InterpreterMacroAssembler::pop(TosState state) {
363
switch (state) {
364
case atos: pop_ptr(rax); break;
365
case btos: // fall through
366
case ztos: // fall through
367
case ctos: // fall through
368
case stos: // fall through
369
case itos: pop_i(rax); break;
370
case ltos: pop_l(rax, rdx); break;
371
case ftos: pop_f(); break;
372
case dtos: pop_d(); break;
373
case vtos: /* nothing to do */ break;
374
default : ShouldNotReachHere();
375
}
376
verify_oop(rax, state);
377
}
378
379
void InterpreterMacroAssembler::push_ptr(Register r) {
380
push(r);
381
}
382
383
void InterpreterMacroAssembler::push_i(Register r) {
384
push(r);
385
}
386
387
void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
388
push(hi);
389
push(lo);
390
}
391
392
void InterpreterMacroAssembler::push_f() {
393
// Do not schedule for no AGI! Never write beyond rsp!
394
subptr(rsp, 1 * wordSize);
395
fstp_s(Address(rsp, 0));
396
}
397
398
void InterpreterMacroAssembler::push_d(Register r) {
399
// Do not schedule for no AGI! Never write beyond rsp!
400
subptr(rsp, 2 * wordSize);
401
fstp_d(Address(rsp, 0));
402
}
403
404
405
void InterpreterMacroAssembler::push(TosState state) {
406
verify_oop(rax, state);
407
switch (state) {
408
case atos: push_ptr(rax); break;
409
case btos: // fall through
410
case ztos: // fall through
411
case ctos: // fall through
412
case stos: // fall through
413
case itos: push_i(rax); break;
414
case ltos: push_l(rax, rdx); break;
415
case ftos: push_f(); break;
416
case dtos: push_d(rax); break;
417
case vtos: /* nothing to do */ break;
418
default : ShouldNotReachHere();
419
}
420
}
421
422
423
// Helpers for swap and dup
424
void InterpreterMacroAssembler::load_ptr(int n, Register val) {
425
movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
426
}
427
428
void InterpreterMacroAssembler::store_ptr(int n, Register val) {
429
movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
430
}
431
432
void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
433
// set sender sp
434
lea(rsi, Address(rsp, wordSize));
435
// record last_sp
436
movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rsi);
437
}
438
439
440
// Jump to from_interpreted entry of a call unless single stepping is possible
441
// in this thread in which case we must call the i2i entry
442
void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
443
prepare_to_jump_from_interpreted();
444
445
if (JvmtiExport::can_post_interpreter_events()) {
446
Label run_compiled_code;
447
// JVMTI events, such as single-stepping, are implemented partly by avoiding running
448
// compiled code in threads for which the event is enabled. Check here for
449
// interp_only_mode if these events CAN be enabled.
450
get_thread(temp);
451
// interp_only is an int, on little endian it is sufficient to test the byte only
452
// Is a cmpl faster?
453
cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
454
jccb(Assembler::zero, run_compiled_code);
455
jmp(Address(method, Method::interpreter_entry_offset()));
456
bind(run_compiled_code);
457
}
458
459
jmp(Address(method, Method::from_interpreted_offset()));
460
461
}
462
463
464
// The following two routines provide a hook so that an implementation
465
// can schedule the dispatch in two parts. Intel does not do this.
466
void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
467
// Nothing Intel-specific to be done here.
468
}
469
470
void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
471
dispatch_next(state, step);
472
}
473
474
void InterpreterMacroAssembler::dispatch_base(TosState state, address* table,
475
bool verifyoop) {
476
verify_FPU(1, state);
477
if (VerifyActivationFrameSize) {
478
Label L;
479
mov(rcx, rbp);
480
subptr(rcx, rsp);
481
int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize;
482
cmpptr(rcx, min_frame_size);
483
jcc(Assembler::greaterEqual, L);
484
stop("broken stack frame");
485
bind(L);
486
}
487
if (verifyoop) verify_oop(rax, state);
488
Address index(noreg, rbx, Address::times_ptr);
489
ExternalAddress tbl((address)table);
490
ArrayAddress dispatch(tbl, index);
491
jump(dispatch);
492
}
493
494
495
void InterpreterMacroAssembler::dispatch_only(TosState state) {
496
dispatch_base(state, Interpreter::dispatch_table(state));
497
}
498
499
500
void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
501
dispatch_base(state, Interpreter::normal_table(state));
502
}
503
504
void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
505
dispatch_base(state, Interpreter::normal_table(state), false);
506
}
507
508
509
void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
510
// load next bytecode (load before advancing rsi to prevent AGI)
511
load_unsigned_byte(rbx, Address(rsi, step));
512
// advance rsi
513
increment(rsi, step);
514
dispatch_base(state, Interpreter::dispatch_table(state));
515
}
516
517
518
void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
519
// load current bytecode
520
load_unsigned_byte(rbx, Address(rsi, 0));
521
dispatch_base(state, table);
522
}
523
524
// remove activation
525
//
526
// Unlock the receiver if this is a synchronized method.
527
// Unlock any Java monitors from syncronized blocks.
528
// Remove the activation from the stack.
529
//
530
// If there are locked Java monitors
531
// If throw_monitor_exception
532
// throws IllegalMonitorStateException
533
// Else if install_monitor_exception
534
// installs IllegalMonitorStateException
535
// Else
536
// no error processing
537
void InterpreterMacroAssembler::remove_activation(TosState state, Register ret_addr,
538
bool throw_monitor_exception,
539
bool install_monitor_exception,
540
bool notify_jvmdi) {
541
// Note: Registers rax, rdx and FPU ST(0) may be in use for the result
542
// check if synchronized method
543
Label unlocked, unlock, no_unlock;
544
545
get_thread(rcx);
546
const Address do_not_unlock_if_synchronized(rcx,
547
in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
548
549
movbool(rbx, do_not_unlock_if_synchronized);
550
mov(rdi,rbx);
551
movbool(do_not_unlock_if_synchronized, false); // reset the flag
552
553
movptr(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); // get method access flags
554
movl(rcx, Address(rbx, Method::access_flags_offset()));
555
556
testl(rcx, JVM_ACC_SYNCHRONIZED);
557
jcc(Assembler::zero, unlocked);
558
559
// Don't unlock anything if the _do_not_unlock_if_synchronized flag
560
// is set.
561
mov(rcx,rdi);
562
testbool(rcx);
563
jcc(Assembler::notZero, no_unlock);
564
565
// unlock monitor
566
push(state); // save result
567
568
// BasicObjectLock will be first in list, since this is a synchronized method. However, need
569
// to check that the object has not been unlocked by an explicit monitorexit bytecode.
570
const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
571
lea (rdx, monitor); // address of first monitor
572
573
movptr (rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));
574
testptr(rax, rax);
575
jcc (Assembler::notZero, unlock);
576
577
pop(state);
578
if (throw_monitor_exception) {
579
empty_FPU_stack(); // remove possible return value from FPU-stack, otherwise stack could overflow
580
581
// Entry already unlocked, need to throw exception
582
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
583
should_not_reach_here();
584
} else {
585
// Monitor already unlocked during a stack unroll.
586
// If requested, install an illegal_monitor_state_exception.
587
// Continue with stack unrolling.
588
if (install_monitor_exception) {
589
empty_FPU_stack(); // remove possible return value from FPU-stack, otherwise stack could overflow
590
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
591
}
592
jmp(unlocked);
593
}
594
595
bind(unlock);
596
unlock_object(rdx);
597
pop(state);
598
599
// Check that for block-structured locking (i.e., that all locked objects has been unlocked)
600
bind(unlocked);
601
602
// rax, rdx: Might contain return value
603
604
// Check that all monitors are unlocked
605
{
606
Label loop, exception, entry, restart;
607
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
608
const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
609
const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
610
611
bind(restart);
612
movptr(rcx, monitor_block_top); // points to current entry, starting with top-most entry
613
lea(rbx, monitor_block_bot); // points to word before bottom of monitor block
614
jmp(entry);
615
616
// Entry already locked, need to throw exception
617
bind(exception);
618
619
if (throw_monitor_exception) {
620
empty_FPU_stack(); // remove possible return value from FPU-stack, otherwise stack could overflow
621
622
// Throw exception
623
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
624
should_not_reach_here();
625
} else {
626
// Stack unrolling. Unlock object and install illegal_monitor_exception
627
// Unlock does not block, so don't have to worry about the frame
628
629
push(state);
630
mov(rdx, rcx);
631
unlock_object(rdx);
632
pop(state);
633
634
if (install_monitor_exception) {
635
empty_FPU_stack(); // remove possible return value from FPU-stack, otherwise stack could overflow
636
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
637
}
638
639
jmp(restart);
640
}
641
642
bind(loop);
643
cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD); // check if current entry is used
644
jcc(Assembler::notEqual, exception);
645
646
addptr(rcx, entry_size); // otherwise advance to next entry
647
bind(entry);
648
cmpptr(rcx, rbx); // check if bottom reached
649
jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
650
}
651
652
bind(no_unlock);
653
654
// jvmti support
655
if (notify_jvmdi) {
656
notify_method_exit(state, NotifyJVMTI); // preserve TOSCA
657
} else {
658
notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
659
}
660
661
// remove activation
662
movptr(rbx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
663
leave(); // remove frame anchor
664
pop(ret_addr); // get return address
665
mov(rsp, rbx); // set sp to sender sp
666
if (UseSSE) {
667
// float and double are returned in xmm register in SSE-mode
668
if (state == ftos && UseSSE >= 1) {
669
subptr(rsp, wordSize);
670
fstp_s(Address(rsp, 0));
671
movflt(xmm0, Address(rsp, 0));
672
addptr(rsp, wordSize);
673
} else if (state == dtos && UseSSE >= 2) {
674
subptr(rsp, 2*wordSize);
675
fstp_d(Address(rsp, 0));
676
movdbl(xmm0, Address(rsp, 0));
677
addptr(rsp, 2*wordSize);
678
}
679
}
680
}
681
682
#endif /* !CC_INTERP */
683
684
685
// Lock object
686
//
687
// Argument: rdx : Points to BasicObjectLock to be used for locking. Must
688
// be initialized with object to lock
689
void InterpreterMacroAssembler::lock_object(Register lock_reg) {
690
assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");
691
692
if (UseHeavyMonitors) {
693
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
694
} else {
695
696
Label done;
697
698
const Register swap_reg = rax; // Must use rax, for cmpxchg instruction
699
const Register obj_reg = rcx; // Will contain the oop
700
701
const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
702
const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
703
const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes();
704
705
Label slow_case;
706
707
// Load object pointer into obj_reg %rcx
708
movptr(obj_reg, Address(lock_reg, obj_offset));
709
710
if (UseBiasedLocking) {
711
// Note: we use noreg for the temporary register since it's hard
712
// to come up with a free register on all incoming code paths
713
biased_locking_enter(lock_reg, obj_reg, swap_reg, noreg, false, done, &slow_case);
714
}
715
716
// Load immediate 1 into swap_reg %rax,
717
movptr(swap_reg, (int32_t)1);
718
719
// Load (object->mark() | 1) into swap_reg %rax,
720
orptr(swap_reg, Address(obj_reg, 0));
721
722
// Save (object->mark() | 1) into BasicLock's displaced header
723
movptr(Address(lock_reg, mark_offset), swap_reg);
724
725
assert(lock_offset == 0, "displached header must be first word in BasicObjectLock");
726
if (os::is_MP()) {
727
lock();
728
}
729
cmpxchgptr(lock_reg, Address(obj_reg, 0));
730
if (PrintBiasedLockingStatistics) {
731
cond_inc32(Assembler::zero,
732
ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
733
}
734
jcc(Assembler::zero, done);
735
736
// Test if the oopMark is an obvious stack pointer, i.e.,
737
// 1) (mark & 3) == 0, and
738
// 2) rsp <= mark < mark + os::pagesize()
739
//
740
// These 3 tests can be done by evaluating the following
741
// expression: ((mark - rsp) & (3 - os::vm_page_size())),
742
// assuming both stack pointer and pagesize have their
743
// least significant 2 bits clear.
744
// NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
745
subptr(swap_reg, rsp);
746
andptr(swap_reg, 3 - os::vm_page_size());
747
748
// Save the test result, for recursive case, the result is zero
749
movptr(Address(lock_reg, mark_offset), swap_reg);
750
751
if (PrintBiasedLockingStatistics) {
752
cond_inc32(Assembler::zero,
753
ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
754
}
755
jcc(Assembler::zero, done);
756
757
bind(slow_case);
758
759
// Call the runtime routine for slow case
760
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
761
762
bind(done);
763
}
764
}
765
766
767
// Unlocks an object. Used in monitorexit bytecode and remove_activation.
768
//
769
// Argument: rdx : Points to BasicObjectLock structure for lock
770
// Throw an IllegalMonitorException if object is not locked by current thread
771
//
772
// Uses: rax, rbx, rcx, rdx
773
void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
774
assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");
775
776
if (UseHeavyMonitors) {
777
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
778
} else {
779
Label done;
780
781
const Register swap_reg = rax; // Must use rax, for cmpxchg instruction
782
const Register header_reg = rbx; // Will contain the old oopMark
783
const Register obj_reg = rcx; // Will contain the oop
784
785
save_bcp(); // Save in case of exception
786
787
// Convert from BasicObjectLock structure to object and BasicLock structure
788
// Store the BasicLock address into %rax,
789
lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
790
791
// Load oop into obj_reg(%rcx)
792
movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes ()));
793
794
// Free entry
795
movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD);
796
797
if (UseBiasedLocking) {
798
biased_locking_exit(obj_reg, header_reg, done);
799
}
800
801
// Load the old header from BasicLock structure
802
movptr(header_reg, Address(swap_reg, BasicLock::displaced_header_offset_in_bytes()));
803
804
// Test for recursion
805
testptr(header_reg, header_reg);
806
807
// zero for recursive case
808
jcc(Assembler::zero, done);
809
810
// Atomic swap back the old header
811
if (os::is_MP()) lock();
812
cmpxchgptr(header_reg, Address(obj_reg, 0));
813
814
// zero for recursive case
815
jcc(Assembler::zero, done);
816
817
// Call the runtime routine for slow case.
818
movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), obj_reg); // restore obj
819
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
820
821
bind(done);
822
823
restore_bcp();
824
}
825
}
826
827
828
#ifndef CC_INTERP
829
830
// Test ImethodDataPtr. If it is null, continue at the specified label
831
void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) {
832
assert(ProfileInterpreter, "must be profiling interpreter");
833
movptr(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
834
testptr(mdp, mdp);
835
jcc(Assembler::zero, zero_continue);
836
}
837
838
839
// Set the method data pointer for the current bcp.
840
void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
841
assert(ProfileInterpreter, "must be profiling interpreter");
842
Label set_mdp;
843
push(rax);
844
push(rbx);
845
846
get_method(rbx);
847
// Test MDO to avoid the call if it is NULL.
848
movptr(rax, Address(rbx, in_bytes(Method::method_data_offset())));
849
testptr(rax, rax);
850
jcc(Assembler::zero, set_mdp);
851
// rbx,: method
852
// rsi: bcp
853
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, rsi);
854
// rax,: mdi
855
// mdo is guaranteed to be non-zero here, we checked for it before the call.
856
movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset())));
857
addptr(rbx, in_bytes(MethodData::data_offset()));
858
addptr(rax, rbx);
859
bind(set_mdp);
860
movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rax);
861
pop(rbx);
862
pop(rax);
863
}
864
865
void InterpreterMacroAssembler::verify_method_data_pointer() {
866
assert(ProfileInterpreter, "must be profiling interpreter");
867
#ifdef ASSERT
868
Label verify_continue;
869
push(rax);
870
push(rbx);
871
push(rcx);
872
push(rdx);
873
test_method_data_pointer(rcx, verify_continue); // If mdp is zero, continue
874
get_method(rbx);
875
876
// If the mdp is valid, it will point to a DataLayout header which is
877
// consistent with the bcp. The converse is highly probable also.
878
load_unsigned_short(rdx, Address(rcx, in_bytes(DataLayout::bci_offset())));
879
addptr(rdx, Address(rbx, Method::const_offset()));
880
lea(rdx, Address(rdx, ConstMethod::codes_offset()));
881
cmpptr(rdx, rsi);
882
jcc(Assembler::equal, verify_continue);
883
// rbx,: method
884
// rsi: bcp
885
// rcx: mdp
886
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), rbx, rsi, rcx);
887
bind(verify_continue);
888
pop(rdx);
889
pop(rcx);
890
pop(rbx);
891
pop(rax);
892
#endif // ASSERT
893
}
894
895
896
void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) {
897
// %%% this seems to be used to store counter data which is surely 32bits
898
// however 64bit side stores 64 bits which seems wrong
899
assert(ProfileInterpreter, "must be profiling interpreter");
900
Address data(mdp_in, constant);
901
movptr(data, value);
902
}
903
904
905
void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
906
int constant,
907
bool decrement) {
908
// Counter address
909
Address data(mdp_in, constant);
910
911
increment_mdp_data_at(data, decrement);
912
}
913
914
915
void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
916
bool decrement) {
917
918
assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
919
assert(ProfileInterpreter, "must be profiling interpreter");
920
921
// %%% 64bit treats this as 64 bit which seems unlikely
922
if (decrement) {
923
// Decrement the register. Set condition codes.
924
addl(data, -DataLayout::counter_increment);
925
// If the decrement causes the counter to overflow, stay negative
926
Label L;
927
jcc(Assembler::negative, L);
928
addl(data, DataLayout::counter_increment);
929
bind(L);
930
} else {
931
assert(DataLayout::counter_increment == 1,
932
"flow-free idiom only works with 1");
933
// Increment the register. Set carry flag.
934
addl(data, DataLayout::counter_increment);
935
// If the increment causes the counter to overflow, pull back by 1.
936
sbbl(data, 0);
937
}
938
}
939
940
941
void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
942
Register reg,
943
int constant,
944
bool decrement) {
945
Address data(mdp_in, reg, Address::times_1, constant);
946
947
increment_mdp_data_at(data, decrement);
948
}
949
950
951
void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, int flag_byte_constant) {
952
assert(ProfileInterpreter, "must be profiling interpreter");
953
int header_offset = in_bytes(DataLayout::header_offset());
954
int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
955
// Set the flag
956
orl(Address(mdp_in, header_offset), header_bits);
957
}
958
959
960
961
void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
962
int offset,
963
Register value,
964
Register test_value_out,
965
Label& not_equal_continue) {
966
assert(ProfileInterpreter, "must be profiling interpreter");
967
if (test_value_out == noreg) {
968
cmpptr(value, Address(mdp_in, offset));
969
} else {
970
// Put the test value into a register, so caller can use it:
971
movptr(test_value_out, Address(mdp_in, offset));
972
cmpptr(test_value_out, value);
973
}
974
jcc(Assembler::notEqual, not_equal_continue);
975
}
976
977
978
void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) {
979
assert(ProfileInterpreter, "must be profiling interpreter");
980
Address disp_address(mdp_in, offset_of_disp);
981
addptr(mdp_in,disp_address);
982
movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
983
}
984
985
986
void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, Register reg, int offset_of_disp) {
987
assert(ProfileInterpreter, "must be profiling interpreter");
988
Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
989
addptr(mdp_in, disp_address);
990
movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
991
}
992
993
994
void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) {
995
assert(ProfileInterpreter, "must be profiling interpreter");
996
addptr(mdp_in, constant);
997
movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
998
}
999
1000
1001
void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1002
assert(ProfileInterpreter, "must be profiling interpreter");
1003
push(return_bci); // save/restore across call_VM
1004
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
1005
pop(return_bci);
1006
}
1007
1008
1009
void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) {
1010
if (ProfileInterpreter) {
1011
Label profile_continue;
1012
1013
// If no method data exists, go to profile_continue.
1014
// Otherwise, assign to mdp
1015
test_method_data_pointer(mdp, profile_continue);
1016
1017
// We are taking a branch. Increment the taken count.
1018
// We inline increment_mdp_data_at to return bumped_count in a register
1019
//increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1020
Address data(mdp, in_bytes(JumpData::taken_offset()));
1021
1022
// %%% 64bit treats these cells as 64 bit but they seem to be 32 bit
1023
movl(bumped_count,data);
1024
assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
1025
addl(bumped_count, DataLayout::counter_increment);
1026
sbbl(bumped_count, 0);
1027
movl(data,bumped_count); // Store back out
1028
1029
// The method data pointer needs to be updated to reflect the new target.
1030
update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1031
bind (profile_continue);
1032
}
1033
}
1034
1035
1036
void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1037
if (ProfileInterpreter) {
1038
Label profile_continue;
1039
1040
// If no method data exists, go to profile_continue.
1041
test_method_data_pointer(mdp, profile_continue);
1042
1043
// We are taking a branch. Increment the not taken count.
1044
increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1045
1046
// The method data pointer needs to be updated to correspond to the next bytecode
1047
update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1048
bind (profile_continue);
1049
}
1050
}
1051
1052
void InterpreterMacroAssembler::profile_call(Register mdp) {
1053
if (ProfileInterpreter) {
1054
Label profile_continue;
1055
1056
// If no method data exists, go to profile_continue.
1057
test_method_data_pointer(mdp, profile_continue);
1058
1059
// We are making a call. Increment the count.
1060
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1061
1062
// The method data pointer needs to be updated to reflect the new target.
1063
update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1064
bind (profile_continue);
1065
}
1066
}
1067
1068
1069
void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1070
if (ProfileInterpreter) {
1071
Label profile_continue;
1072
1073
// If no method data exists, go to profile_continue.
1074
test_method_data_pointer(mdp, profile_continue);
1075
1076
// We are making a call. Increment the count.
1077
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1078
1079
// The method data pointer needs to be updated to reflect the new target.
1080
update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1081
bind (profile_continue);
1082
}
1083
}
1084
1085
1086
void InterpreterMacroAssembler::profile_virtual_call(Register receiver, Register mdp,
1087
Register reg2,
1088
bool receiver_can_be_null) {
1089
if (ProfileInterpreter) {
1090
Label profile_continue;
1091
1092
// If no method data exists, go to profile_continue.
1093
test_method_data_pointer(mdp, profile_continue);
1094
1095
Label skip_receiver_profile;
1096
if (receiver_can_be_null) {
1097
Label not_null;
1098
testptr(receiver, receiver);
1099
jccb(Assembler::notZero, not_null);
1100
// We are making a call. Increment the count for null receiver.
1101
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1102
jmp(skip_receiver_profile);
1103
bind(not_null);
1104
}
1105
1106
// Record the receiver type.
1107
record_klass_in_profile(receiver, mdp, reg2, true);
1108
bind(skip_receiver_profile);
1109
1110
// The method data pointer needs to be updated to reflect the new target.
1111
update_mdp_by_constant(mdp,
1112
in_bytes(VirtualCallData::
1113
virtual_call_data_size()));
1114
bind(profile_continue);
1115
}
1116
}
1117
1118
1119
void InterpreterMacroAssembler::record_klass_in_profile_helper(
1120
Register receiver, Register mdp,
1121
Register reg2, int start_row,
1122
Label& done, bool is_virtual_call) {
1123
if (TypeProfileWidth == 0) {
1124
if (is_virtual_call) {
1125
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1126
}
1127
return;
1128
}
1129
1130
int last_row = VirtualCallData::row_limit() - 1;
1131
assert(start_row <= last_row, "must be work left to do");
1132
// Test this row for both the receiver and for null.
1133
// Take any of three different outcomes:
1134
// 1. found receiver => increment count and goto done
1135
// 2. found null => keep looking for case 1, maybe allocate this cell
1136
// 3. found something else => keep looking for cases 1 and 2
1137
// Case 3 is handled by a recursive call.
1138
for (int row = start_row; row <= last_row; row++) {
1139
Label next_test;
1140
bool test_for_null_also = (row == start_row);
1141
1142
// See if the receiver is receiver[n].
1143
int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1144
test_mdp_data_at(mdp, recvr_offset, receiver,
1145
(test_for_null_also ? reg2 : noreg),
1146
next_test);
1147
// (Reg2 now contains the receiver from the CallData.)
1148
1149
// The receiver is receiver[n]. Increment count[n].
1150
int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1151
increment_mdp_data_at(mdp, count_offset);
1152
jmp(done);
1153
bind(next_test);
1154
1155
if (row == start_row) {
1156
Label found_null;
1157
// Failed the equality check on receiver[n]... Test for null.
1158
testptr(reg2, reg2);
1159
if (start_row == last_row) {
1160
// The only thing left to do is handle the null case.
1161
if (is_virtual_call) {
1162
jccb(Assembler::zero, found_null);
1163
// Receiver did not match any saved receiver and there is no empty row for it.
1164
// Increment total counter to indicate polymorphic case.
1165
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1166
jmp(done);
1167
bind(found_null);
1168
} else {
1169
jcc(Assembler::notZero, done);
1170
}
1171
break;
1172
}
1173
// Since null is rare, make it be the branch-taken case.
1174
jcc(Assembler::zero, found_null);
1175
1176
// Put all the "Case 3" tests here.
1177
record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call);
1178
1179
// Found a null. Keep searching for a matching receiver,
1180
// but remember that this is an empty (unused) slot.
1181
bind(found_null);
1182
}
1183
}
1184
1185
// In the fall-through case, we found no matching receiver, but we
1186
// observed the receiver[start_row] is NULL.
1187
1188
// Fill in the receiver field and increment the count.
1189
int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1190
set_mdp_data_at(mdp, recvr_offset, receiver);
1191
int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1192
movptr(reg2, (intptr_t)DataLayout::counter_increment);
1193
set_mdp_data_at(mdp, count_offset, reg2);
1194
if (start_row > 0) {
1195
jmp(done);
1196
}
1197
}
1198
1199
void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1200
Register mdp, Register reg2,
1201
bool is_virtual_call) {
1202
assert(ProfileInterpreter, "must be profiling");
1203
Label done;
1204
1205
record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1206
1207
bind (done);
1208
}
1209
1210
void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) {
1211
if (ProfileInterpreter) {
1212
Label profile_continue;
1213
uint row;
1214
1215
// If no method data exists, go to profile_continue.
1216
test_method_data_pointer(mdp, profile_continue);
1217
1218
// Update the total ret count.
1219
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1220
1221
for (row = 0; row < RetData::row_limit(); row++) {
1222
Label next_test;
1223
1224
// See if return_bci is equal to bci[n]:
1225
test_mdp_data_at(mdp, in_bytes(RetData::bci_offset(row)), return_bci,
1226
noreg, next_test);
1227
1228
// return_bci is equal to bci[n]. Increment the count.
1229
increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1230
1231
// The method data pointer needs to be updated to reflect the new target.
1232
update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row)));
1233
jmp(profile_continue);
1234
bind(next_test);
1235
}
1236
1237
update_mdp_for_ret(return_bci);
1238
1239
bind (profile_continue);
1240
}
1241
}
1242
1243
1244
void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1245
if (ProfileInterpreter) {
1246
Label profile_continue;
1247
1248
// If no method data exists, go to profile_continue.
1249
test_method_data_pointer(mdp, profile_continue);
1250
1251
set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1252
1253
// The method data pointer needs to be updated.
1254
int mdp_delta = in_bytes(BitData::bit_data_size());
1255
if (TypeProfileCasts) {
1256
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1257
}
1258
update_mdp_by_constant(mdp, mdp_delta);
1259
1260
bind (profile_continue);
1261
}
1262
}
1263
1264
1265
void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1266
if (ProfileInterpreter && TypeProfileCasts) {
1267
Label profile_continue;
1268
1269
// If no method data exists, go to profile_continue.
1270
test_method_data_pointer(mdp, profile_continue);
1271
1272
int count_offset = in_bytes(CounterData::count_offset());
1273
// Back up the address, since we have already bumped the mdp.
1274
count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1275
1276
// *Decrement* the counter. We expect to see zero or small negatives.
1277
increment_mdp_data_at(mdp, count_offset, true);
1278
1279
bind (profile_continue);
1280
}
1281
}
1282
1283
1284
void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2)
1285
{
1286
if (ProfileInterpreter) {
1287
Label profile_continue;
1288
1289
// If no method data exists, go to profile_continue.
1290
test_method_data_pointer(mdp, profile_continue);
1291
1292
// The method data pointer needs to be updated.
1293
int mdp_delta = in_bytes(BitData::bit_data_size());
1294
if (TypeProfileCasts) {
1295
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1296
1297
// Record the object type.
1298
record_klass_in_profile(klass, mdp, reg2, false);
1299
assert(reg2 == rdi, "we know how to fix this blown reg");
1300
restore_locals(); // Restore EDI
1301
}
1302
update_mdp_by_constant(mdp, mdp_delta);
1303
1304
bind(profile_continue);
1305
}
1306
}
1307
1308
1309
void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1310
if (ProfileInterpreter) {
1311
Label profile_continue;
1312
1313
// If no method data exists, go to profile_continue.
1314
test_method_data_pointer(mdp, profile_continue);
1315
1316
// Update the default case count
1317
increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset()));
1318
1319
// The method data pointer needs to be updated.
1320
update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset()));
1321
1322
bind (profile_continue);
1323
}
1324
}
1325
1326
1327
void InterpreterMacroAssembler::profile_switch_case(Register index, Register mdp, Register reg2) {
1328
if (ProfileInterpreter) {
1329
Label profile_continue;
1330
1331
// If no method data exists, go to profile_continue.
1332
test_method_data_pointer(mdp, profile_continue);
1333
1334
// Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
1335
movptr(reg2, (intptr_t)in_bytes(MultiBranchData::per_case_size()));
1336
// index is positive and so should have correct value if this code were
1337
// used on 64bits
1338
imulptr(index, reg2);
1339
addptr(index, in_bytes(MultiBranchData::case_array_offset()));
1340
1341
// Update the case count
1342
increment_mdp_data_at(mdp, index, in_bytes(MultiBranchData::relative_count_offset()));
1343
1344
// The method data pointer needs to be updated.
1345
update_mdp_by_offset(mdp, index, in_bytes(MultiBranchData::relative_displacement_offset()));
1346
1347
bind (profile_continue);
1348
}
1349
}
1350
1351
#endif // !CC_INTERP
1352
1353
1354
1355
void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
1356
if (state == atos) MacroAssembler::verify_oop(reg);
1357
}
1358
1359
1360
#ifndef CC_INTERP
1361
void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
1362
if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
1363
}
1364
1365
#endif /* CC_INTERP */
1366
1367
1368
void InterpreterMacroAssembler::notify_method_entry() {
1369
// Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1370
// track stack depth. If it is possible to enter interp_only_mode we add
1371
// the code to check if the event should be sent.
1372
if (JvmtiExport::can_post_interpreter_events()) {
1373
Label L;
1374
get_thread(rcx);
1375
movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
1376
testl(rcx,rcx);
1377
jcc(Assembler::zero, L);
1378
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
1379
bind(L);
1380
}
1381
1382
{
1383
SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
1384
get_thread(rcx);
1385
get_method(rbx);
1386
call_VM_leaf(
1387
CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), rcx, rbx);
1388
}
1389
1390
// RedefineClasses() tracing support for obsolete method entry
1391
if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
1392
get_thread(rcx);
1393
get_method(rbx);
1394
call_VM_leaf(
1395
CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1396
rcx, rbx);
1397
}
1398
}
1399
1400
1401
void InterpreterMacroAssembler::notify_method_exit(
1402
TosState state, NotifyMethodExitMode mode) {
1403
// Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1404
// track stack depth. If it is possible to enter interp_only_mode we add
1405
// the code to check if the event should be sent.
1406
if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1407
Label L;
1408
// Note: frame::interpreter_frame_result has a dependency on how the
1409
// method result is saved across the call to post_method_exit. If this
1410
// is changed then the interpreter_frame_result implementation will
1411
// need to be updated too.
1412
1413
// For c++ interpreter the result is always stored at a known location in the frame
1414
// template interpreter will leave it on the top of the stack.
1415
NOT_CC_INTERP(push(state);)
1416
get_thread(rcx);
1417
movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
1418
testl(rcx,rcx);
1419
jcc(Assembler::zero, L);
1420
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1421
bind(L);
1422
NOT_CC_INTERP(pop(state);)
1423
}
1424
1425
{
1426
SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
1427
NOT_CC_INTERP(push(state));
1428
get_thread(rbx);
1429
get_method(rcx);
1430
call_VM_leaf(
1431
CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1432
rbx, rcx);
1433
NOT_CC_INTERP(pop(state));
1434
}
1435
}
1436
1437
// Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1438
void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1439
int increment, int mask,
1440
Register scratch, bool preloaded,
1441
Condition cond, Label* where) {
1442
if (!preloaded) {
1443
movl(scratch, counter_addr);
1444
}
1445
incrementl(scratch, increment);
1446
movl(counter_addr, scratch);
1447
andl(scratch, mask);
1448
if (where != NULL) {
1449
jcc(cond, *where);
1450
}
1451
}
1452
1453