Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/cpu/x86/vm/interp_masm_x86_64.cpp
32285 views
1
/*
2
* Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "interp_masm_x86.hpp"
27
#include "interpreter/interpreter.hpp"
28
#include "interpreter/interpreterRuntime.hpp"
29
#include "oops/arrayOop.hpp"
30
#include "oops/markOop.hpp"
31
#include "oops/methodData.hpp"
32
#include "oops/method.hpp"
33
#include "prims/jvmtiExport.hpp"
34
#include "prims/jvmtiRedefineClassesTrace.hpp"
35
#include "prims/jvmtiThreadState.hpp"
36
#include "runtime/basicLock.hpp"
37
#include "runtime/biasedLocking.hpp"
38
#include "runtime/sharedRuntime.hpp"
39
#include "runtime/thread.inline.hpp"
40
41
42
// Implementation of InterpreterMacroAssembler
43
44
#ifdef CC_INTERP
45
void InterpreterMacroAssembler::get_method(Register reg) {
46
movptr(reg, Address(rbp, -((int)sizeof(BytecodeInterpreter) + 2 * wordSize)));
47
movptr(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method)));
48
}
49
#endif // CC_INTERP
50
51
#ifndef CC_INTERP
52
53
void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
54
int number_of_arguments) {
55
// interpreter specific
56
//
57
// Note: No need to save/restore bcp & locals (r13 & r14) pointer
58
// since these are callee saved registers and no blocking/
59
// GC can happen in leaf calls.
60
// Further Note: DO NOT save/restore bcp/locals. If a caller has
61
// already saved them so that it can use esi/edi as temporaries
62
// then a save/restore here will DESTROY the copy the caller
63
// saved! There used to be a save_bcp() that only happened in
64
// the ASSERT path (no restore_bcp). Which caused bizarre failures
65
// when jvm built with ASSERTs.
66
#ifdef ASSERT
67
{
68
Label L;
69
cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
70
jcc(Assembler::equal, L);
71
stop("InterpreterMacroAssembler::call_VM_leaf_base:"
72
" last_sp != NULL");
73
bind(L);
74
}
75
#endif
76
// super call
77
MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
78
// interpreter specific
79
// Used to ASSERT that r13/r14 were equal to frame's bcp/locals
80
// but since they may not have been saved (and we don't want to
81
// save thme here (see note above) the assert is invalid.
82
}
83
84
void InterpreterMacroAssembler::call_VM_base(Register oop_result,
85
Register java_thread,
86
Register last_java_sp,
87
address entry_point,
88
int number_of_arguments,
89
bool check_exceptions) {
90
// interpreter specific
91
//
92
// Note: Could avoid restoring locals ptr (callee saved) - however doesn't
93
// really make a difference for these runtime calls, since they are
94
// slow anyway. Btw., bcp must be saved/restored since it may change
95
// due to GC.
96
// assert(java_thread == noreg , "not expecting a precomputed java thread");
97
save_bcp();
98
#ifdef ASSERT
99
{
100
Label L;
101
cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
102
jcc(Assembler::equal, L);
103
stop("InterpreterMacroAssembler::call_VM_leaf_base:"
104
" last_sp != NULL");
105
bind(L);
106
}
107
#endif /* ASSERT */
108
// super call
109
MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
110
entry_point, number_of_arguments,
111
check_exceptions);
112
// interpreter specific
113
restore_bcp();
114
restore_locals();
115
}
116
117
118
void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
119
if (JvmtiExport::can_pop_frame()) {
120
Label L;
121
// Initiate popframe handling only if it is not already being
122
// processed. If the flag has the popframe_processing bit set, it
123
// means that this code is called *during* popframe handling - we
124
// don't want to reenter.
125
// This method is only called just after the call into the vm in
126
// call_VM_base, so the arg registers are available.
127
movl(c_rarg0, Address(r15_thread, JavaThread::popframe_condition_offset()));
128
testl(c_rarg0, JavaThread::popframe_pending_bit);
129
jcc(Assembler::zero, L);
130
testl(c_rarg0, JavaThread::popframe_processing_bit);
131
jcc(Assembler::notZero, L);
132
// Call Interpreter::remove_activation_preserving_args_entry() to get the
133
// address of the same-named entrypoint in the generated interpreter code.
134
call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
135
jmp(rax);
136
bind(L);
137
}
138
}
139
140
141
void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
142
movptr(rcx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
143
const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
144
const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
145
const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
146
switch (state) {
147
case atos: movptr(rax, oop_addr);
148
movptr(oop_addr, (int32_t)NULL_WORD);
149
verify_oop(rax, state); break;
150
case ltos: movptr(rax, val_addr); break;
151
case btos: // fall through
152
case ztos: // fall through
153
case ctos: // fall through
154
case stos: // fall through
155
case itos: movl(rax, val_addr); break;
156
case ftos: movflt(xmm0, val_addr); break;
157
case dtos: movdbl(xmm0, val_addr); break;
158
case vtos: /* nothing to do */ break;
159
default : ShouldNotReachHere();
160
}
161
// Clean up tos value in the thread object
162
movl(tos_addr, (int) ilgl);
163
movl(val_addr, (int32_t) NULL_WORD);
164
}
165
166
167
void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
168
if (JvmtiExport::can_force_early_return()) {
169
Label L;
170
movptr(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
171
testptr(c_rarg0, c_rarg0);
172
jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
173
174
// Initiate earlyret handling only if it is not already being processed.
175
// If the flag has the earlyret_processing bit set, it means that this code
176
// is called *during* earlyret handling - we don't want to reenter.
177
movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_state_offset()));
178
cmpl(c_rarg0, JvmtiThreadState::earlyret_pending);
179
jcc(Assembler::notEqual, L);
180
181
// Call Interpreter::remove_activation_early_entry() to get the address of the
182
// same-named entrypoint in the generated interpreter code.
183
movptr(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
184
movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_tos_offset()));
185
call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), c_rarg0);
186
jmp(rax);
187
bind(L);
188
}
189
}
190
191
192
void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
193
Register reg,
194
int bcp_offset) {
195
assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
196
load_unsigned_short(reg, Address(r13, bcp_offset));
197
bswapl(reg);
198
shrl(reg, 16);
199
}
200
201
202
void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
203
int bcp_offset,
204
size_t index_size) {
205
assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
206
if (index_size == sizeof(u2)) {
207
load_unsigned_short(index, Address(r13, bcp_offset));
208
} else if (index_size == sizeof(u4)) {
209
assert(EnableInvokeDynamic, "giant index used only for JSR 292");
210
movl(index, Address(r13, bcp_offset));
211
// Check if the secondary index definition is still ~x, otherwise
212
// we have to change the following assembler code to calculate the
213
// plain index.
214
assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
215
notl(index); // convert to plain index
216
} else if (index_size == sizeof(u1)) {
217
load_unsigned_byte(index, Address(r13, bcp_offset));
218
} else {
219
ShouldNotReachHere();
220
}
221
}
222
223
224
void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
225
Register index,
226
int bcp_offset,
227
size_t index_size) {
228
assert_different_registers(cache, index);
229
get_cache_index_at_bcp(index, bcp_offset, index_size);
230
movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
231
assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
232
// convert from field index to ConstantPoolCacheEntry index
233
assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line");
234
shll(index, 2);
235
}
236
237
238
void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
239
Register index,
240
Register bytecode,
241
int byte_no,
242
int bcp_offset,
243
size_t index_size) {
244
get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
245
// We use a 32-bit load here since the layout of 64-bit words on
246
// little-endian machines allow us that.
247
movl(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
248
const int shift_count = (1 + byte_no) * BitsPerByte;
249
assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
250
(byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
251
"correct shift count");
252
shrl(bytecode, shift_count);
253
assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
254
andl(bytecode, ConstantPoolCacheEntry::bytecode_1_mask);
255
}
256
257
258
void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
259
Register tmp,
260
int bcp_offset,
261
size_t index_size) {
262
assert(cache != tmp, "must use different register");
263
get_cache_index_at_bcp(tmp, bcp_offset, index_size);
264
assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
265
// convert from field index to ConstantPoolCacheEntry index
266
// and from word offset to byte offset
267
assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
268
shll(tmp, 2 + LogBytesPerWord);
269
movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
270
// skip past the header
271
addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
272
addptr(cache, tmp); // construct pointer to cache entry
273
}
274
275
void InterpreterMacroAssembler::get_method_counters(Register method,
276
Register mcs, Label& skip) {
277
Label has_counters;
278
movptr(mcs, Address(method, Method::method_counters_offset()));
279
testptr(mcs, mcs);
280
jcc(Assembler::notZero, has_counters);
281
call_VM(noreg, CAST_FROM_FN_PTR(address,
282
InterpreterRuntime::build_method_counters), method);
283
movptr(mcs, Address(method,Method::method_counters_offset()));
284
testptr(mcs, mcs);
285
jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory
286
bind(has_counters);
287
}
288
289
// Load object from cpool->resolved_references(index)
290
void InterpreterMacroAssembler::load_resolved_reference_at_index(
291
Register result, Register index) {
292
assert_different_registers(result, index);
293
// convert from field index to resolved_references() index and from
294
// word index to byte offset. Since this is a java object, it can be compressed
295
Register tmp = index; // reuse
296
shll(tmp, LogBytesPerHeapOop);
297
298
get_constant_pool(result);
299
// load pointer for resolved_references[] objArray
300
movptr(result, Address(result, ConstantPool::resolved_references_offset_in_bytes()));
301
// JNIHandles::resolve(obj);
302
movptr(result, Address(result, 0));
303
// Add in the index
304
addptr(result, tmp);
305
load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
306
}
307
308
// Generate a subtype check: branch to ok_is_subtype if sub_klass is a
309
// subtype of super_klass.
310
//
311
// Args:
312
// rax: superklass
313
// Rsub_klass: subklass
314
//
315
// Kills:
316
// rcx, rdi
317
void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
318
Label& ok_is_subtype) {
319
assert(Rsub_klass != rax, "rax holds superklass");
320
assert(Rsub_klass != r14, "r14 holds locals");
321
assert(Rsub_klass != r13, "r13 holds bcp");
322
assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
323
assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
324
325
// Profile the not-null value's klass.
326
profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
327
328
// Do the check.
329
check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
330
331
// Profile the failure of the check.
332
profile_typecheck_failed(rcx); // blows rcx
333
}
334
335
336
337
// Java Expression Stack
338
339
void InterpreterMacroAssembler::pop_ptr(Register r) {
340
pop(r);
341
}
342
343
void InterpreterMacroAssembler::pop_i(Register r) {
344
// XXX can't use pop currently, upper half non clean
345
movl(r, Address(rsp, 0));
346
addptr(rsp, wordSize);
347
}
348
349
void InterpreterMacroAssembler::pop_l(Register r) {
350
movq(r, Address(rsp, 0));
351
addptr(rsp, 2 * Interpreter::stackElementSize);
352
}
353
354
void InterpreterMacroAssembler::pop_f(XMMRegister r) {
355
movflt(r, Address(rsp, 0));
356
addptr(rsp, wordSize);
357
}
358
359
void InterpreterMacroAssembler::pop_d(XMMRegister r) {
360
movdbl(r, Address(rsp, 0));
361
addptr(rsp, 2 * Interpreter::stackElementSize);
362
}
363
364
void InterpreterMacroAssembler::push_ptr(Register r) {
365
push(r);
366
}
367
368
void InterpreterMacroAssembler::push_i(Register r) {
369
push(r);
370
}
371
372
void InterpreterMacroAssembler::push_l(Register r) {
373
subptr(rsp, 2 * wordSize);
374
movq(Address(rsp, 0), r);
375
}
376
377
void InterpreterMacroAssembler::push_f(XMMRegister r) {
378
subptr(rsp, wordSize);
379
movflt(Address(rsp, 0), r);
380
}
381
382
void InterpreterMacroAssembler::push_d(XMMRegister r) {
383
subptr(rsp, 2 * wordSize);
384
movdbl(Address(rsp, 0), r);
385
}
386
387
void InterpreterMacroAssembler::pop(TosState state) {
388
switch (state) {
389
case atos: pop_ptr(); break;
390
case btos:
391
case ztos:
392
case ctos:
393
case stos:
394
case itos: pop_i(); break;
395
case ltos: pop_l(); break;
396
case ftos: pop_f(); break;
397
case dtos: pop_d(); break;
398
case vtos: /* nothing to do */ break;
399
default: ShouldNotReachHere();
400
}
401
verify_oop(rax, state);
402
}
403
404
void InterpreterMacroAssembler::push(TosState state) {
405
verify_oop(rax, state);
406
switch (state) {
407
case atos: push_ptr(); break;
408
case btos:
409
case ztos:
410
case ctos:
411
case stos:
412
case itos: push_i(); break;
413
case ltos: push_l(); break;
414
case ftos: push_f(); break;
415
case dtos: push_d(); break;
416
case vtos: /* nothing to do */ break;
417
default : ShouldNotReachHere();
418
}
419
}
420
421
422
// Helpers for swap and dup
423
void InterpreterMacroAssembler::load_ptr(int n, Register val) {
424
movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
425
}
426
427
void InterpreterMacroAssembler::store_ptr(int n, Register val) {
428
movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
429
}
430
431
432
void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
433
// set sender sp
434
lea(r13, Address(rsp, wordSize));
435
// record last_sp
436
movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), r13);
437
}
438
439
440
// Jump to from_interpreted entry of a call unless single stepping is possible
441
// in this thread in which case we must call the i2i entry
442
void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
443
prepare_to_jump_from_interpreted();
444
445
if (JvmtiExport::can_post_interpreter_events()) {
446
Label run_compiled_code;
447
// JVMTI events, such as single-stepping, are implemented partly by avoiding running
448
// compiled code in threads for which the event is enabled. Check here for
449
// interp_only_mode if these events CAN be enabled.
450
// interp_only is an int, on little endian it is sufficient to test the byte only
451
// Is a cmpl faster?
452
cmpb(Address(r15_thread, JavaThread::interp_only_mode_offset()), 0);
453
jccb(Assembler::zero, run_compiled_code);
454
jmp(Address(method, Method::interpreter_entry_offset()));
455
bind(run_compiled_code);
456
}
457
458
jmp(Address(method, Method::from_interpreted_offset()));
459
460
}
461
462
463
// The following two routines provide a hook so that an implementation
464
// can schedule the dispatch in two parts. amd64 does not do this.
465
void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
466
// Nothing amd64 specific to be done here
467
}
468
469
void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
470
dispatch_next(state, step);
471
}
472
473
void InterpreterMacroAssembler::dispatch_base(TosState state,
474
address* table,
475
bool verifyoop) {
476
verify_FPU(1, state);
477
if (VerifyActivationFrameSize) {
478
Label L;
479
mov(rcx, rbp);
480
subptr(rcx, rsp);
481
int32_t min_frame_size =
482
(frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
483
wordSize;
484
cmpptr(rcx, (int32_t)min_frame_size);
485
jcc(Assembler::greaterEqual, L);
486
stop("broken stack frame");
487
bind(L);
488
}
489
if (verifyoop) {
490
verify_oop(rax, state);
491
}
492
lea(rscratch1, ExternalAddress((address)table));
493
jmp(Address(rscratch1, rbx, Address::times_8));
494
}
495
496
void InterpreterMacroAssembler::dispatch_only(TosState state) {
497
dispatch_base(state, Interpreter::dispatch_table(state));
498
}
499
500
void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
501
dispatch_base(state, Interpreter::normal_table(state));
502
}
503
504
void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
505
dispatch_base(state, Interpreter::normal_table(state), false);
506
}
507
508
509
void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
510
// load next bytecode (load before advancing r13 to prevent AGI)
511
load_unsigned_byte(rbx, Address(r13, step));
512
// advance r13
513
increment(r13, step);
514
dispatch_base(state, Interpreter::dispatch_table(state));
515
}
516
517
void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
518
// load current bytecode
519
load_unsigned_byte(rbx, Address(r13, 0));
520
dispatch_base(state, table);
521
}
522
523
// remove activation
524
//
525
// Unlock the receiver if this is a synchronized method.
526
// Unlock any Java monitors from syncronized blocks.
527
// Remove the activation from the stack.
528
//
529
// If there are locked Java monitors
530
// If throw_monitor_exception
531
// throws IllegalMonitorStateException
532
// Else if install_monitor_exception
533
// installs IllegalMonitorStateException
534
// Else
535
// no error processing
536
void InterpreterMacroAssembler::remove_activation(
537
TosState state,
538
Register ret_addr,
539
bool throw_monitor_exception,
540
bool install_monitor_exception,
541
bool notify_jvmdi) {
542
// Note: Registers rdx xmm0 may be in use for the
543
// result check if synchronized method
544
Label unlocked, unlock, no_unlock;
545
546
// get the value of _do_not_unlock_if_synchronized into rdx
547
const Address do_not_unlock_if_synchronized(r15_thread,
548
in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
549
movbool(rdx, do_not_unlock_if_synchronized);
550
movbool(do_not_unlock_if_synchronized, false); // reset the flag
551
552
// get method access flags
553
movptr(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
554
movl(rcx, Address(rbx, Method::access_flags_offset()));
555
testl(rcx, JVM_ACC_SYNCHRONIZED);
556
jcc(Assembler::zero, unlocked);
557
558
// Don't unlock anything if the _do_not_unlock_if_synchronized flag
559
// is set.
560
testbool(rdx);
561
jcc(Assembler::notZero, no_unlock);
562
563
// unlock monitor
564
push(state); // save result
565
566
// BasicObjectLock will be first in list, since this is a
567
// synchronized method. However, need to check that the object has
568
// not been unlocked by an explicit monitorexit bytecode.
569
const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
570
wordSize - (int) sizeof(BasicObjectLock));
571
// We use c_rarg1 so that if we go slow path it will be the correct
572
// register for unlock_object to pass to VM directly
573
lea(c_rarg1, monitor); // address of first monitor
574
575
movptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
576
testptr(rax, rax);
577
jcc(Assembler::notZero, unlock);
578
579
pop(state);
580
if (throw_monitor_exception) {
581
// Entry already unlocked, need to throw exception
582
call_VM(noreg, CAST_FROM_FN_PTR(address,
583
InterpreterRuntime::throw_illegal_monitor_state_exception));
584
should_not_reach_here();
585
} else {
586
// Monitor already unlocked during a stack unroll. If requested,
587
// install an illegal_monitor_state_exception. Continue with
588
// stack unrolling.
589
if (install_monitor_exception) {
590
call_VM(noreg, CAST_FROM_FN_PTR(address,
591
InterpreterRuntime::new_illegal_monitor_state_exception));
592
}
593
jmp(unlocked);
594
}
595
596
bind(unlock);
597
unlock_object(c_rarg1);
598
pop(state);
599
600
// Check that for block-structured locking (i.e., that all locked
601
// objects has been unlocked)
602
bind(unlocked);
603
604
// rax: Might contain return value
605
606
// Check that all monitors are unlocked
607
{
608
Label loop, exception, entry, restart;
609
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
610
const Address monitor_block_top(
611
rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
612
const Address monitor_block_bot(
613
rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
614
615
bind(restart);
616
// We use c_rarg1 so that if we go slow path it will be the correct
617
// register for unlock_object to pass to VM directly
618
movptr(c_rarg1, monitor_block_top); // points to current entry, starting
619
// with top-most entry
620
lea(rbx, monitor_block_bot); // points to word before bottom of
621
// monitor block
622
jmp(entry);
623
624
// Entry already locked, need to throw exception
625
bind(exception);
626
627
if (throw_monitor_exception) {
628
// Throw exception
629
MacroAssembler::call_VM(noreg,
630
CAST_FROM_FN_PTR(address, InterpreterRuntime::
631
throw_illegal_monitor_state_exception));
632
should_not_reach_here();
633
} else {
634
// Stack unrolling. Unlock object and install illegal_monitor_exception.
635
// Unlock does not block, so don't have to worry about the frame.
636
// We don't have to preserve c_rarg1 since we are going to throw an exception.
637
638
push(state);
639
unlock_object(c_rarg1);
640
pop(state);
641
642
if (install_monitor_exception) {
643
call_VM(noreg, CAST_FROM_FN_PTR(address,
644
InterpreterRuntime::
645
new_illegal_monitor_state_exception));
646
}
647
648
jmp(restart);
649
}
650
651
bind(loop);
652
// check if current entry is used
653
cmpptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL);
654
jcc(Assembler::notEqual, exception);
655
656
addptr(c_rarg1, entry_size); // otherwise advance to next entry
657
bind(entry);
658
cmpptr(c_rarg1, rbx); // check if bottom reached
659
jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
660
}
661
662
bind(no_unlock);
663
664
// jvmti support
665
if (notify_jvmdi) {
666
notify_method_exit(state, NotifyJVMTI); // preserve TOSCA
667
} else {
668
notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
669
}
670
671
// remove activation
672
// get sender sp
673
movptr(rbx,
674
Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
675
leave(); // remove frame anchor
676
pop(ret_addr); // get return address
677
mov(rsp, rbx); // set sp to sender sp
678
}
679
680
#endif // C_INTERP
681
682
// Lock object
683
//
684
// Args:
685
// c_rarg1: BasicObjectLock to be used for locking
686
//
687
// Kills:
688
// rax
689
// c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs)
690
// rscratch1, rscratch2 (scratch regs)
691
void InterpreterMacroAssembler::lock_object(Register lock_reg) {
692
assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
693
694
if (UseHeavyMonitors) {
695
call_VM(noreg,
696
CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
697
lock_reg);
698
} else {
699
Label done;
700
701
const Register swap_reg = rax; // Must use rax for cmpxchg instruction
702
const Register obj_reg = c_rarg3; // Will contain the oop
703
704
const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
705
const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
706
const int mark_offset = lock_offset +
707
BasicLock::displaced_header_offset_in_bytes();
708
709
Label slow_case;
710
711
// Load object pointer into obj_reg %c_rarg3
712
movptr(obj_reg, Address(lock_reg, obj_offset));
713
714
if (UseBiasedLocking) {
715
biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, done, &slow_case);
716
}
717
718
// Load immediate 1 into swap_reg %rax
719
movl(swap_reg, 1);
720
721
// Load (object->mark() | 1) into swap_reg %rax
722
orptr(swap_reg, Address(obj_reg, 0));
723
724
// Save (object->mark() | 1) into BasicLock's displaced header
725
movptr(Address(lock_reg, mark_offset), swap_reg);
726
727
assert(lock_offset == 0,
728
"displached header must be first word in BasicObjectLock");
729
730
if (os::is_MP()) lock();
731
cmpxchgptr(lock_reg, Address(obj_reg, 0));
732
if (PrintBiasedLockingStatistics) {
733
cond_inc32(Assembler::zero,
734
ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
735
}
736
jcc(Assembler::zero, done);
737
738
// Test if the oopMark is an obvious stack pointer, i.e.,
739
// 1) (mark & 7) == 0, and
740
// 2) rsp <= mark < mark + os::pagesize()
741
//
742
// These 3 tests can be done by evaluating the following
743
// expression: ((mark - rsp) & (7 - os::vm_page_size())),
744
// assuming both stack pointer and pagesize have their
745
// least significant 3 bits clear.
746
// NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
747
subptr(swap_reg, rsp);
748
andptr(swap_reg, 7 - os::vm_page_size());
749
750
// Save the test result, for recursive case, the result is zero
751
movptr(Address(lock_reg, mark_offset), swap_reg);
752
753
if (PrintBiasedLockingStatistics) {
754
cond_inc32(Assembler::zero,
755
ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
756
}
757
jcc(Assembler::zero, done);
758
759
bind(slow_case);
760
761
// Call the runtime routine for slow case
762
call_VM(noreg,
763
CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
764
lock_reg);
765
766
bind(done);
767
}
768
}
769
770
771
// Unlocks an object. Used in monitorexit bytecode and
772
// remove_activation. Throws an IllegalMonitorException if object is
773
// not locked by current thread.
774
//
775
// Args:
776
// c_rarg1: BasicObjectLock for lock
777
//
778
// Kills:
779
// rax
780
// c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
781
// rscratch1, rscratch2 (scratch regs)
782
void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
783
assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
784
785
if (UseHeavyMonitors) {
786
call_VM(noreg,
787
CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
788
lock_reg);
789
} else {
790
Label done;
791
792
const Register swap_reg = rax; // Must use rax for cmpxchg instruction
793
const Register header_reg = c_rarg2; // Will contain the old oopMark
794
const Register obj_reg = c_rarg3; // Will contain the oop
795
796
save_bcp(); // Save in case of exception
797
798
// Convert from BasicObjectLock structure to object and BasicLock
799
// structure Store the BasicLock address into %rax
800
lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
801
802
// Load oop into obj_reg(%c_rarg3)
803
movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
804
805
// Free entry
806
movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);
807
808
if (UseBiasedLocking) {
809
biased_locking_exit(obj_reg, header_reg, done);
810
}
811
812
// Load the old header from BasicLock structure
813
movptr(header_reg, Address(swap_reg,
814
BasicLock::displaced_header_offset_in_bytes()));
815
816
// Test for recursion
817
testptr(header_reg, header_reg);
818
819
// zero for recursive case
820
jcc(Assembler::zero, done);
821
822
// Atomic swap back the old header
823
if (os::is_MP()) lock();
824
cmpxchgptr(header_reg, Address(obj_reg, 0));
825
826
// zero for recursive case
827
jcc(Assembler::zero, done);
828
829
// Call the runtime routine for slow case.
830
movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()),
831
obj_reg); // restore obj
832
call_VM(noreg,
833
CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
834
lock_reg);
835
836
bind(done);
837
838
restore_bcp();
839
}
840
}
841
842
#ifndef CC_INTERP
843
844
void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
845
Label& zero_continue) {
846
assert(ProfileInterpreter, "must be profiling interpreter");
847
movptr(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
848
testptr(mdp, mdp);
849
jcc(Assembler::zero, zero_continue);
850
}
851
852
853
// Set the method data pointer for the current bcp.
854
void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
855
assert(ProfileInterpreter, "must be profiling interpreter");
856
Label set_mdp;
857
push(rax);
858
push(rbx);
859
860
get_method(rbx);
861
// Test MDO to avoid the call if it is NULL.
862
movptr(rax, Address(rbx, in_bytes(Method::method_data_offset())));
863
testptr(rax, rax);
864
jcc(Assembler::zero, set_mdp);
865
// rbx: method
866
// r13: bcp
867
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, r13);
868
// rax: mdi
869
// mdo is guaranteed to be non-zero here, we checked for it before the call.
870
movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset())));
871
addptr(rbx, in_bytes(MethodData::data_offset()));
872
addptr(rax, rbx);
873
bind(set_mdp);
874
movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rax);
875
pop(rbx);
876
pop(rax);
877
}
878
879
void InterpreterMacroAssembler::verify_method_data_pointer() {
880
assert(ProfileInterpreter, "must be profiling interpreter");
881
#ifdef ASSERT
882
Label verify_continue;
883
push(rax);
884
push(rbx);
885
push(c_rarg3);
886
push(c_rarg2);
887
test_method_data_pointer(c_rarg3, verify_continue); // If mdp is zero, continue
888
get_method(rbx);
889
890
// If the mdp is valid, it will point to a DataLayout header which is
891
// consistent with the bcp. The converse is highly probable also.
892
load_unsigned_short(c_rarg2,
893
Address(c_rarg3, in_bytes(DataLayout::bci_offset())));
894
addptr(c_rarg2, Address(rbx, Method::const_offset()));
895
lea(c_rarg2, Address(c_rarg2, ConstMethod::codes_offset()));
896
cmpptr(c_rarg2, r13);
897
jcc(Assembler::equal, verify_continue);
898
// rbx: method
899
// r13: bcp
900
// c_rarg3: mdp
901
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
902
rbx, r13, c_rarg3);
903
bind(verify_continue);
904
pop(c_rarg2);
905
pop(c_rarg3);
906
pop(rbx);
907
pop(rax);
908
#endif // ASSERT
909
}
910
911
912
void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
913
int constant,
914
Register value) {
915
assert(ProfileInterpreter, "must be profiling interpreter");
916
Address data(mdp_in, constant);
917
movptr(data, value);
918
}
919
920
921
void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
922
int constant,
923
bool decrement) {
924
// Counter address
925
Address data(mdp_in, constant);
926
927
increment_mdp_data_at(data, decrement);
928
}
929
930
void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
931
bool decrement) {
932
assert(ProfileInterpreter, "must be profiling interpreter");
933
// %%% this does 64bit counters at best it is wasting space
934
// at worst it is a rare bug when counters overflow
935
936
if (decrement) {
937
// Decrement the register. Set condition codes.
938
addptr(data, (int32_t) -DataLayout::counter_increment);
939
// If the decrement causes the counter to overflow, stay negative
940
Label L;
941
jcc(Assembler::negative, L);
942
addptr(data, (int32_t) DataLayout::counter_increment);
943
bind(L);
944
} else {
945
assert(DataLayout::counter_increment == 1,
946
"flow-free idiom only works with 1");
947
// Increment the register. Set carry flag.
948
addptr(data, DataLayout::counter_increment);
949
// If the increment causes the counter to overflow, pull back by 1.
950
sbbptr(data, (int32_t)0);
951
}
952
}
953
954
955
void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
956
Register reg,
957
int constant,
958
bool decrement) {
959
Address data(mdp_in, reg, Address::times_1, constant);
960
961
increment_mdp_data_at(data, decrement);
962
}
963
964
void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
965
int flag_byte_constant) {
966
assert(ProfileInterpreter, "must be profiling interpreter");
967
int header_offset = in_bytes(DataLayout::header_offset());
968
int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
969
// Set the flag
970
orl(Address(mdp_in, header_offset), header_bits);
971
}
972
973
974
975
void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
976
int offset,
977
Register value,
978
Register test_value_out,
979
Label& not_equal_continue) {
980
assert(ProfileInterpreter, "must be profiling interpreter");
981
if (test_value_out == noreg) {
982
cmpptr(value, Address(mdp_in, offset));
983
} else {
984
// Put the test value into a register, so caller can use it:
985
movptr(test_value_out, Address(mdp_in, offset));
986
cmpptr(test_value_out, value);
987
}
988
jcc(Assembler::notEqual, not_equal_continue);
989
}
990
991
992
void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
993
int offset_of_disp) {
994
assert(ProfileInterpreter, "must be profiling interpreter");
995
Address disp_address(mdp_in, offset_of_disp);
996
addptr(mdp_in, disp_address);
997
movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
998
}
999
1000
1001
void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1002
Register reg,
1003
int offset_of_disp) {
1004
assert(ProfileInterpreter, "must be profiling interpreter");
1005
Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
1006
addptr(mdp_in, disp_address);
1007
movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
1008
}
1009
1010
1011
void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1012
int constant) {
1013
assert(ProfileInterpreter, "must be profiling interpreter");
1014
addptr(mdp_in, constant);
1015
movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
1016
}
1017
1018
1019
void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1020
assert(ProfileInterpreter, "must be profiling interpreter");
1021
push(return_bci); // save/restore across call_VM
1022
call_VM(noreg,
1023
CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1024
return_bci);
1025
pop(return_bci);
1026
}
1027
1028
1029
void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
1030
Register bumped_count) {
1031
if (ProfileInterpreter) {
1032
Label profile_continue;
1033
1034
// If no method data exists, go to profile_continue.
1035
// Otherwise, assign to mdp
1036
test_method_data_pointer(mdp, profile_continue);
1037
1038
// We are taking a branch. Increment the taken count.
1039
// We inline increment_mdp_data_at to return bumped_count in a register
1040
//increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1041
Address data(mdp, in_bytes(JumpData::taken_offset()));
1042
movptr(bumped_count, data);
1043
assert(DataLayout::counter_increment == 1,
1044
"flow-free idiom only works with 1");
1045
addptr(bumped_count, DataLayout::counter_increment);
1046
sbbptr(bumped_count, 0);
1047
movptr(data, bumped_count); // Store back out
1048
1049
// The method data pointer needs to be updated to reflect the new target.
1050
update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1051
bind(profile_continue);
1052
}
1053
}
1054
1055
1056
void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1057
if (ProfileInterpreter) {
1058
Label profile_continue;
1059
1060
// If no method data exists, go to profile_continue.
1061
test_method_data_pointer(mdp, profile_continue);
1062
1063
// We are taking a branch. Increment the not taken count.
1064
increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1065
1066
// The method data pointer needs to be updated to correspond to
1067
// the next bytecode
1068
update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1069
bind(profile_continue);
1070
}
1071
}
1072
1073
void InterpreterMacroAssembler::profile_call(Register mdp) {
1074
if (ProfileInterpreter) {
1075
Label profile_continue;
1076
1077
// If no method data exists, go to profile_continue.
1078
test_method_data_pointer(mdp, profile_continue);
1079
1080
// We are making a call. Increment the count.
1081
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1082
1083
// The method data pointer needs to be updated to reflect the new target.
1084
update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1085
bind(profile_continue);
1086
}
1087
}
1088
1089
1090
void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1091
if (ProfileInterpreter) {
1092
Label profile_continue;
1093
1094
// If no method data exists, go to profile_continue.
1095
test_method_data_pointer(mdp, profile_continue);
1096
1097
// We are making a call. Increment the count.
1098
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1099
1100
// The method data pointer needs to be updated to reflect the new target.
1101
update_mdp_by_constant(mdp,
1102
in_bytes(VirtualCallData::
1103
virtual_call_data_size()));
1104
bind(profile_continue);
1105
}
1106
}
1107
1108
1109
void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1110
Register mdp,
1111
Register reg2,
1112
bool receiver_can_be_null) {
1113
if (ProfileInterpreter) {
1114
Label profile_continue;
1115
1116
// If no method data exists, go to profile_continue.
1117
test_method_data_pointer(mdp, profile_continue);
1118
1119
Label skip_receiver_profile;
1120
if (receiver_can_be_null) {
1121
Label not_null;
1122
testptr(receiver, receiver);
1123
jccb(Assembler::notZero, not_null);
1124
// We are making a call. Increment the count for null receiver.
1125
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1126
jmp(skip_receiver_profile);
1127
bind(not_null);
1128
}
1129
1130
// Record the receiver type.
1131
record_klass_in_profile(receiver, mdp, reg2, true);
1132
bind(skip_receiver_profile);
1133
1134
// The method data pointer needs to be updated to reflect the new target.
1135
update_mdp_by_constant(mdp,
1136
in_bytes(VirtualCallData::
1137
virtual_call_data_size()));
1138
bind(profile_continue);
1139
}
1140
}
1141
1142
// This routine creates a state machine for updating the multi-row
1143
// type profile at a virtual call site (or other type-sensitive bytecode).
1144
// The machine visits each row (of receiver/count) until the receiver type
1145
// is found, or until it runs out of rows. At the same time, it remembers
1146
// the location of the first empty row. (An empty row records null for its
1147
// receiver, and can be allocated for a newly-observed receiver type.)
1148
// Because there are two degrees of freedom in the state, a simple linear
1149
// search will not work; it must be a decision tree. Hence this helper
1150
// function is recursive, to generate the required tree structured code.
1151
// It's the interpreter, so we are trading off code space for speed.
1152
// See below for example code.
1153
void InterpreterMacroAssembler::record_klass_in_profile_helper(
1154
Register receiver, Register mdp,
1155
Register reg2, int start_row,
1156
Label& done, bool is_virtual_call) {
1157
if (TypeProfileWidth == 0) {
1158
if (is_virtual_call) {
1159
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1160
}
1161
return;
1162
}
1163
1164
int last_row = VirtualCallData::row_limit() - 1;
1165
assert(start_row <= last_row, "must be work left to do");
1166
// Test this row for both the receiver and for null.
1167
// Take any of three different outcomes:
1168
// 1. found receiver => increment count and goto done
1169
// 2. found null => keep looking for case 1, maybe allocate this cell
1170
// 3. found something else => keep looking for cases 1 and 2
1171
// Case 3 is handled by a recursive call.
1172
for (int row = start_row; row <= last_row; row++) {
1173
Label next_test;
1174
bool test_for_null_also = (row == start_row);
1175
1176
// See if the receiver is receiver[n].
1177
int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1178
test_mdp_data_at(mdp, recvr_offset, receiver,
1179
(test_for_null_also ? reg2 : noreg),
1180
next_test);
1181
// (Reg2 now contains the receiver from the CallData.)
1182
1183
// The receiver is receiver[n]. Increment count[n].
1184
int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1185
increment_mdp_data_at(mdp, count_offset);
1186
jmp(done);
1187
bind(next_test);
1188
1189
if (test_for_null_also) {
1190
Label found_null;
1191
// Failed the equality check on receiver[n]... Test for null.
1192
testptr(reg2, reg2);
1193
if (start_row == last_row) {
1194
// The only thing left to do is handle the null case.
1195
if (is_virtual_call) {
1196
jccb(Assembler::zero, found_null);
1197
// Receiver did not match any saved receiver and there is no empty row for it.
1198
// Increment total counter to indicate polymorphic case.
1199
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1200
jmp(done);
1201
bind(found_null);
1202
} else {
1203
jcc(Assembler::notZero, done);
1204
}
1205
break;
1206
}
1207
// Since null is rare, make it be the branch-taken case.
1208
jcc(Assembler::zero, found_null);
1209
1210
// Put all the "Case 3" tests here.
1211
record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call);
1212
1213
// Found a null. Keep searching for a matching receiver,
1214
// but remember that this is an empty (unused) slot.
1215
bind(found_null);
1216
}
1217
}
1218
1219
// In the fall-through case, we found no matching receiver, but we
1220
// observed the receiver[start_row] is NULL.
1221
1222
// Fill in the receiver field and increment the count.
1223
int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1224
set_mdp_data_at(mdp, recvr_offset, receiver);
1225
int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1226
movl(reg2, DataLayout::counter_increment);
1227
set_mdp_data_at(mdp, count_offset, reg2);
1228
if (start_row > 0) {
1229
jmp(done);
1230
}
1231
}
1232
1233
// Example state machine code for three profile rows:
1234
// // main copy of decision tree, rooted at row[1]
1235
// if (row[0].rec == rec) { row[0].incr(); goto done; }
1236
// if (row[0].rec != NULL) {
1237
// // inner copy of decision tree, rooted at row[1]
1238
// if (row[1].rec == rec) { row[1].incr(); goto done; }
1239
// if (row[1].rec != NULL) {
1240
// // degenerate decision tree, rooted at row[2]
1241
// if (row[2].rec == rec) { row[2].incr(); goto done; }
1242
// if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
1243
// row[2].init(rec); goto done;
1244
// } else {
1245
// // remember row[1] is empty
1246
// if (row[2].rec == rec) { row[2].incr(); goto done; }
1247
// row[1].init(rec); goto done;
1248
// }
1249
// } else {
1250
// // remember row[0] is empty
1251
// if (row[1].rec == rec) { row[1].incr(); goto done; }
1252
// if (row[2].rec == rec) { row[2].incr(); goto done; }
1253
// row[0].init(rec); goto done;
1254
// }
1255
// done:
1256
1257
void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1258
Register mdp, Register reg2,
1259
bool is_virtual_call) {
1260
assert(ProfileInterpreter, "must be profiling");
1261
Label done;
1262
1263
record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1264
1265
bind (done);
1266
}
1267
1268
void InterpreterMacroAssembler::profile_ret(Register return_bci,
1269
Register mdp) {
1270
if (ProfileInterpreter) {
1271
Label profile_continue;
1272
uint row;
1273
1274
// If no method data exists, go to profile_continue.
1275
test_method_data_pointer(mdp, profile_continue);
1276
1277
// Update the total ret count.
1278
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1279
1280
for (row = 0; row < RetData::row_limit(); row++) {
1281
Label next_test;
1282
1283
// See if return_bci is equal to bci[n]:
1284
test_mdp_data_at(mdp,
1285
in_bytes(RetData::bci_offset(row)),
1286
return_bci, noreg,
1287
next_test);
1288
1289
// return_bci is equal to bci[n]. Increment the count.
1290
increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1291
1292
// The method data pointer needs to be updated to reflect the new target.
1293
update_mdp_by_offset(mdp,
1294
in_bytes(RetData::bci_displacement_offset(row)));
1295
jmp(profile_continue);
1296
bind(next_test);
1297
}
1298
1299
update_mdp_for_ret(return_bci);
1300
1301
bind(profile_continue);
1302
}
1303
}
1304
1305
1306
void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1307
if (ProfileInterpreter) {
1308
Label profile_continue;
1309
1310
// If no method data exists, go to profile_continue.
1311
test_method_data_pointer(mdp, profile_continue);
1312
1313
set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1314
1315
// The method data pointer needs to be updated.
1316
int mdp_delta = in_bytes(BitData::bit_data_size());
1317
if (TypeProfileCasts) {
1318
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1319
}
1320
update_mdp_by_constant(mdp, mdp_delta);
1321
1322
bind(profile_continue);
1323
}
1324
}
1325
1326
1327
void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1328
if (ProfileInterpreter && TypeProfileCasts) {
1329
Label profile_continue;
1330
1331
// If no method data exists, go to profile_continue.
1332
test_method_data_pointer(mdp, profile_continue);
1333
1334
int count_offset = in_bytes(CounterData::count_offset());
1335
// Back up the address, since we have already bumped the mdp.
1336
count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1337
1338
// *Decrement* the counter. We expect to see zero or small negatives.
1339
increment_mdp_data_at(mdp, count_offset, true);
1340
1341
bind (profile_continue);
1342
}
1343
}
1344
1345
1346
void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1347
if (ProfileInterpreter) {
1348
Label profile_continue;
1349
1350
// If no method data exists, go to profile_continue.
1351
test_method_data_pointer(mdp, profile_continue);
1352
1353
// The method data pointer needs to be updated.
1354
int mdp_delta = in_bytes(BitData::bit_data_size());
1355
if (TypeProfileCasts) {
1356
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1357
1358
// Record the object type.
1359
record_klass_in_profile(klass, mdp, reg2, false);
1360
}
1361
update_mdp_by_constant(mdp, mdp_delta);
1362
1363
bind(profile_continue);
1364
}
1365
}
1366
1367
1368
void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1369
if (ProfileInterpreter) {
1370
Label profile_continue;
1371
1372
// If no method data exists, go to profile_continue.
1373
test_method_data_pointer(mdp, profile_continue);
1374
1375
// Update the default case count
1376
increment_mdp_data_at(mdp,
1377
in_bytes(MultiBranchData::default_count_offset()));
1378
1379
// The method data pointer needs to be updated.
1380
update_mdp_by_offset(mdp,
1381
in_bytes(MultiBranchData::
1382
default_displacement_offset()));
1383
1384
bind(profile_continue);
1385
}
1386
}
1387
1388
1389
void InterpreterMacroAssembler::profile_switch_case(Register index,
1390
Register mdp,
1391
Register reg2) {
1392
if (ProfileInterpreter) {
1393
Label profile_continue;
1394
1395
// If no method data exists, go to profile_continue.
1396
test_method_data_pointer(mdp, profile_continue);
1397
1398
// Build the base (index * per_case_size_in_bytes()) +
1399
// case_array_offset_in_bytes()
1400
movl(reg2, in_bytes(MultiBranchData::per_case_size()));
1401
imulptr(index, reg2); // XXX l ?
1402
addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
1403
1404
// Update the case count
1405
increment_mdp_data_at(mdp,
1406
index,
1407
in_bytes(MultiBranchData::relative_count_offset()));
1408
1409
// The method data pointer needs to be updated.
1410
update_mdp_by_offset(mdp,
1411
index,
1412
in_bytes(MultiBranchData::
1413
relative_displacement_offset()));
1414
1415
bind(profile_continue);
1416
}
1417
}
1418
1419
1420
1421
void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
1422
if (state == atos) {
1423
MacroAssembler::verify_oop(reg);
1424
}
1425
}
1426
1427
void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
1428
}
1429
#endif // !CC_INTERP
1430
1431
1432
void InterpreterMacroAssembler::notify_method_entry() {
1433
// Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1434
// track stack depth. If it is possible to enter interp_only_mode we add
1435
// the code to check if the event should be sent.
1436
if (JvmtiExport::can_post_interpreter_events()) {
1437
Label L;
1438
movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
1439
testl(rdx, rdx);
1440
jcc(Assembler::zero, L);
1441
call_VM(noreg, CAST_FROM_FN_PTR(address,
1442
InterpreterRuntime::post_method_entry));
1443
bind(L);
1444
}
1445
1446
{
1447
SkipIfEqual skip(this, &DTraceMethodProbes, false);
1448
get_method(c_rarg1);
1449
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1450
r15_thread, c_rarg1);
1451
}
1452
1453
// RedefineClasses() tracing support for obsolete method entry
1454
if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
1455
get_method(c_rarg1);
1456
call_VM_leaf(
1457
CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1458
r15_thread, c_rarg1);
1459
}
1460
}
1461
1462
1463
void InterpreterMacroAssembler::notify_method_exit(
1464
TosState state, NotifyMethodExitMode mode) {
1465
// Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1466
// track stack depth. If it is possible to enter interp_only_mode we add
1467
// the code to check if the event should be sent.
1468
if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1469
Label L;
1470
// Note: frame::interpreter_frame_result has a dependency on how the
1471
// method result is saved across the call to post_method_exit. If this
1472
// is changed then the interpreter_frame_result implementation will
1473
// need to be updated too.
1474
1475
// For c++ interpreter the result is always stored at a known location in the frame
1476
// template interpreter will leave it on the top of the stack.
1477
NOT_CC_INTERP(push(state);)
1478
movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
1479
testl(rdx, rdx);
1480
jcc(Assembler::zero, L);
1481
call_VM(noreg,
1482
CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1483
bind(L);
1484
NOT_CC_INTERP(pop(state));
1485
}
1486
1487
{
1488
SkipIfEqual skip(this, &DTraceMethodProbes, false);
1489
NOT_CC_INTERP(push(state));
1490
get_method(c_rarg1);
1491
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1492
r15_thread, c_rarg1);
1493
NOT_CC_INTERP(pop(state));
1494
}
1495
}
1496
1497
// Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1498
void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1499
int increment, int mask,
1500
Register scratch, bool preloaded,
1501
Condition cond, Label* where) {
1502
if (!preloaded) {
1503
movl(scratch, counter_addr);
1504
}
1505
incrementl(scratch, increment);
1506
movl(counter_addr, scratch);
1507
andl(scratch, mask);
1508
if (where != NULL) {
1509
jcc(cond, *where);
1510
}
1511
}
1512
1513