Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/os/linux/vm/perfMemory_linux.cpp
32285 views
1
/*
2
* Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "classfile/vmSymbols.hpp"
27
#include "memory/allocation.inline.hpp"
28
#include "memory/resourceArea.hpp"
29
#include "oops/oop.inline.hpp"
30
#include "os_linux.inline.hpp"
31
#include "runtime/handles.inline.hpp"
32
#include "runtime/perfMemory.hpp"
33
#include "services/memTracker.hpp"
34
#include "utilities/exceptions.hpp"
35
36
// put OS-includes here
37
# include <sys/types.h>
38
# include <sys/mman.h>
39
# include <errno.h>
40
# include <stdio.h>
41
# include <unistd.h>
42
# include <sys/stat.h>
43
# include <signal.h>
44
# include <pwd.h>
45
46
#ifdef __ANDROID__
47
# define S_IREAD S_IRUSR
48
# define S_IWRITE S_IWUSR
49
# define S_IEXEC S_IXUSR
50
#endif // __ANDROID__
51
52
static char* backing_store_file_name = NULL; // name of the backing store
53
// file, if successfully created.
54
55
// Standard Memory Implementation Details
56
57
// create the PerfData memory region in standard memory.
58
//
59
static char* create_standard_memory(size_t size) {
60
61
// allocate an aligned chuck of memory
62
char* mapAddress = os::reserve_memory(size);
63
64
if (mapAddress == NULL) {
65
return NULL;
66
}
67
68
// commit memory
69
if (!os::commit_memory(mapAddress, size, !ExecMem)) {
70
if (PrintMiscellaneous && Verbose) {
71
warning("Could not commit PerfData memory\n");
72
}
73
os::release_memory(mapAddress, size);
74
return NULL;
75
}
76
77
return mapAddress;
78
}
79
80
// delete the PerfData memory region
81
//
82
static void delete_standard_memory(char* addr, size_t size) {
83
84
// there are no persistent external resources to cleanup for standard
85
// memory. since DestroyJavaVM does not support unloading of the JVM,
86
// cleanup of the memory resource is not performed. The memory will be
87
// reclaimed by the OS upon termination of the process.
88
//
89
return;
90
}
91
92
// save the specified memory region to the given file
93
//
94
// Note: this function might be called from signal handler (by os::abort()),
95
// don't allocate heap memory.
96
//
97
static void save_memory_to_file(char* addr, size_t size) {
98
99
const char* destfile = PerfMemory::get_perfdata_file_path();
100
assert(destfile[0] != '\0', "invalid PerfData file path");
101
102
int result;
103
104
RESTARTABLE(::open(destfile, O_CREAT|O_WRONLY|O_TRUNC, S_IREAD|S_IWRITE),
105
result);;
106
if (result == OS_ERR) {
107
if (PrintMiscellaneous && Verbose) {
108
warning("Could not create Perfdata save file: %s: %s\n",
109
destfile, strerror(errno));
110
}
111
} else {
112
int fd = result;
113
114
for (size_t remaining = size; remaining > 0;) {
115
116
RESTARTABLE(::write(fd, addr, remaining), result);
117
if (result == OS_ERR) {
118
if (PrintMiscellaneous && Verbose) {
119
warning("Could not write Perfdata save file: %s: %s\n",
120
destfile, strerror(errno));
121
}
122
break;
123
}
124
125
remaining -= (size_t)result;
126
addr += result;
127
}
128
129
result = ::close(fd);
130
if (PrintMiscellaneous && Verbose) {
131
if (result == OS_ERR) {
132
warning("Could not close %s: %s\n", destfile, strerror(errno));
133
}
134
}
135
}
136
FREE_C_HEAP_ARRAY(char, destfile, mtInternal);
137
}
138
139
140
// Shared Memory Implementation Details
141
142
// Note: the solaris and linux shared memory implementation uses the mmap
143
// interface with a backing store file to implement named shared memory.
144
// Using the file system as the name space for shared memory allows a
145
// common name space to be supported across a variety of platforms. It
146
// also provides a name space that Java applications can deal with through
147
// simple file apis.
148
//
149
// The solaris and linux implementations store the backing store file in
150
// a user specific temporary directory located in the /tmp file system,
151
// which is always a local file system and is sometimes a RAM based file
152
// system.
153
154
// return the user specific temporary directory name.
155
//
156
// the caller is expected to free the allocated memory.
157
//
158
static char* get_user_tmp_dir(const char* user) {
159
160
const char* tmpdir = os::get_temp_directory();
161
const char* perfdir = PERFDATA_NAME;
162
size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
163
char* dirname = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
164
165
// construct the path name to user specific tmp directory
166
snprintf(dirname, nbytes, "%s/%s_%s", tmpdir, perfdir, user);
167
168
return dirname;
169
}
170
171
// convert the given file name into a process id. if the file
172
// does not meet the file naming constraints, return 0.
173
//
174
static pid_t filename_to_pid(const char* filename) {
175
176
// a filename that doesn't begin with a digit is not a
177
// candidate for conversion.
178
//
179
if (!isdigit(*filename)) {
180
return 0;
181
}
182
183
// check if file name can be converted to an integer without
184
// any leftover characters.
185
//
186
char* remainder = NULL;
187
errno = 0;
188
pid_t pid = (pid_t)strtol(filename, &remainder, 10);
189
190
if (errno != 0) {
191
return 0;
192
}
193
194
// check for left over characters. If any, then the filename is
195
// not a candidate for conversion.
196
//
197
if (remainder != NULL && *remainder != '\0') {
198
return 0;
199
}
200
201
// successful conversion, return the pid
202
return pid;
203
}
204
205
206
// Check if the given statbuf is considered a secure directory for
207
// the backing store files. Returns true if the directory is considered
208
// a secure location. Returns false if the statbuf is a symbolic link or
209
// if an error occurred.
210
//
211
static bool is_statbuf_secure(struct stat *statp) {
212
if (S_ISLNK(statp->st_mode) || !S_ISDIR(statp->st_mode)) {
213
// The path represents a link or some non-directory file type,
214
// which is not what we expected. Declare it insecure.
215
//
216
return false;
217
}
218
// We have an existing directory, check if the permissions are safe.
219
//
220
if ((statp->st_mode & (S_IWGRP|S_IWOTH)) != 0) {
221
// The directory is open for writing and could be subjected
222
// to a symlink or a hard link attack. Declare it insecure.
223
//
224
return false;
225
}
226
// If user is not root then see if the uid of the directory matches the effective uid of the process.
227
uid_t euid = geteuid();
228
if ((euid != 0) && (statp->st_uid != euid)) {
229
// The directory was not created by this user, declare it insecure.
230
//
231
return false;
232
}
233
return true;
234
}
235
236
237
// Check if the given path is considered a secure directory for
238
// the backing store files. Returns true if the directory exists
239
// and is considered a secure location. Returns false if the path
240
// is a symbolic link or if an error occurred.
241
//
242
static bool is_directory_secure(const char* path) {
243
struct stat statbuf;
244
int result = 0;
245
246
RESTARTABLE(::lstat(path, &statbuf), result);
247
if (result == OS_ERR) {
248
return false;
249
}
250
251
// The path exists, see if it is secure.
252
return is_statbuf_secure(&statbuf);
253
}
254
255
256
// Check if the given directory file descriptor is considered a secure
257
// directory for the backing store files. Returns true if the directory
258
// exists and is considered a secure location. Returns false if the path
259
// is a symbolic link or if an error occurred.
260
//
261
static bool is_dirfd_secure(int dir_fd) {
262
struct stat statbuf;
263
int result = 0;
264
265
RESTARTABLE(::fstat(dir_fd, &statbuf), result);
266
if (result == OS_ERR) {
267
return false;
268
}
269
270
// The path exists, now check its mode.
271
return is_statbuf_secure(&statbuf);
272
}
273
274
275
// Check to make sure fd1 and fd2 are referencing the same file system object.
276
//
277
static bool is_same_fsobject(int fd1, int fd2) {
278
struct stat statbuf1;
279
struct stat statbuf2;
280
int result = 0;
281
282
RESTARTABLE(::fstat(fd1, &statbuf1), result);
283
if (result == OS_ERR) {
284
return false;
285
}
286
RESTARTABLE(::fstat(fd2, &statbuf2), result);
287
if (result == OS_ERR) {
288
return false;
289
}
290
291
if ((statbuf1.st_ino == statbuf2.st_ino) &&
292
(statbuf1.st_dev == statbuf2.st_dev)) {
293
return true;
294
} else {
295
return false;
296
}
297
}
298
299
300
// Open the directory of the given path and validate it.
301
// Return a DIR * of the open directory.
302
//
303
static DIR *open_directory_secure(const char* dirname) {
304
// Open the directory using open() so that it can be verified
305
// to be secure by calling is_dirfd_secure(), opendir() and then check
306
// to see if they are the same file system object. This method does not
307
// introduce a window of opportunity for the directory to be attacked that
308
// calling opendir() and is_directory_secure() does.
309
int result;
310
DIR *dirp = NULL;
311
RESTARTABLE(::open(dirname, O_RDONLY|O_NOFOLLOW), result);
312
if (result == OS_ERR) {
313
if (PrintMiscellaneous && Verbose) {
314
if (errno == ELOOP) {
315
warning("directory %s is a symlink and is not secure\n", dirname);
316
} else {
317
warning("could not open directory %s: %s\n", dirname, strerror(errno));
318
}
319
}
320
return dirp;
321
}
322
int fd = result;
323
324
// Determine if the open directory is secure.
325
if (!is_dirfd_secure(fd)) {
326
// The directory is not a secure directory.
327
os::close(fd);
328
return dirp;
329
}
330
331
// Open the directory.
332
dirp = ::opendir(dirname);
333
if (dirp == NULL) {
334
// The directory doesn't exist, close fd and return.
335
os::close(fd);
336
return dirp;
337
}
338
339
// Check to make sure fd and dirp are referencing the same file system object.
340
if (!is_same_fsobject(fd, dirfd(dirp))) {
341
// The directory is not secure.
342
os::close(fd);
343
os::closedir(dirp);
344
dirp = NULL;
345
return dirp;
346
}
347
348
// Close initial open now that we know directory is secure
349
os::close(fd);
350
351
return dirp;
352
}
353
354
// NOTE: The code below uses fchdir(), open() and unlink() because
355
// fdopendir(), openat() and unlinkat() are not supported on all
356
// versions. Once the support for fdopendir(), openat() and unlinkat()
357
// is available on all supported versions the code can be changed
358
// to use these functions.
359
360
// Open the directory of the given path, validate it and set the
361
// current working directory to it.
362
// Return a DIR * of the open directory and the saved cwd fd.
363
//
364
static DIR *open_directory_secure_cwd(const char* dirname, int *saved_cwd_fd) {
365
366
// Open the directory.
367
DIR* dirp = open_directory_secure(dirname);
368
if (dirp == NULL) {
369
// Directory doesn't exist or is insecure, so there is nothing to cleanup.
370
return dirp;
371
}
372
int fd = dirfd(dirp);
373
374
// Open a fd to the cwd and save it off.
375
int result;
376
RESTARTABLE(::open(".", O_RDONLY), result);
377
if (result == OS_ERR) {
378
*saved_cwd_fd = -1;
379
} else {
380
*saved_cwd_fd = result;
381
}
382
383
// Set the current directory to dirname by using the fd of the directory and
384
// handle errors, otherwise shared memory files will be created in cwd.
385
result = fchdir(fd);
386
if (result == OS_ERR) {
387
if (PrintMiscellaneous && Verbose) {
388
warning("could not change to directory %s", dirname);
389
}
390
if (*saved_cwd_fd != -1) {
391
::close(*saved_cwd_fd);
392
*saved_cwd_fd = -1;
393
}
394
// Close the directory.
395
os::closedir(dirp);
396
return NULL;
397
} else {
398
return dirp;
399
}
400
}
401
402
// Close the directory and restore the current working directory.
403
//
404
static void close_directory_secure_cwd(DIR* dirp, int saved_cwd_fd) {
405
406
int result;
407
// If we have a saved cwd change back to it and close the fd.
408
if (saved_cwd_fd != -1) {
409
result = fchdir(saved_cwd_fd);
410
::close(saved_cwd_fd);
411
}
412
413
// Close the directory.
414
os::closedir(dirp);
415
}
416
417
// Check if the given file descriptor is considered a secure.
418
//
419
static bool is_file_secure(int fd, const char *filename) {
420
421
int result;
422
struct stat statbuf;
423
424
// Determine if the file is secure.
425
RESTARTABLE(::fstat(fd, &statbuf), result);
426
if (result == OS_ERR) {
427
if (PrintMiscellaneous && Verbose) {
428
warning("fstat failed on %s: %s\n", filename, strerror(errno));
429
}
430
return false;
431
}
432
if (statbuf.st_nlink > 1) {
433
// A file with multiple links is not expected.
434
if (PrintMiscellaneous && Verbose) {
435
warning("file %s has multiple links\n", filename);
436
}
437
return false;
438
}
439
return true;
440
}
441
442
443
// return the user name for the given user id
444
//
445
// the caller is expected to free the allocated memory.
446
//
447
static char* get_user_name(uid_t uid) {
448
449
struct passwd pwent;
450
451
// determine the max pwbuf size from sysconf, and hardcode
452
// a default if this not available through sysconf.
453
//
454
long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
455
if (bufsize == -1)
456
bufsize = 1024;
457
458
char* pwbuf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
459
460
// POSIX interface to getpwuid_r is used on LINUX
461
struct passwd* p;
462
int result = getpwuid_r(uid, &pwent, pwbuf, (size_t)bufsize, &p);
463
464
if (result != 0 || p == NULL || p->pw_name == NULL || *(p->pw_name) == '\0') {
465
if (PrintMiscellaneous && Verbose) {
466
if (result != 0) {
467
warning("Could not retrieve passwd entry: %s\n",
468
strerror(result));
469
}
470
else if (p == NULL) {
471
// this check is added to protect against an observed problem
472
// with getpwuid_r() on RedHat 9 where getpwuid_r returns 0,
473
// indicating success, but has p == NULL. This was observed when
474
// inserting a file descriptor exhaustion fault prior to the call
475
// getpwuid_r() call. In this case, error is set to the appropriate
476
// error condition, but this is undocumented behavior. This check
477
// is safe under any condition, but the use of errno in the output
478
// message may result in an erroneous message.
479
// Bug Id 89052 was opened with RedHat.
480
//
481
warning("Could not retrieve passwd entry: %s\n",
482
strerror(errno));
483
}
484
else {
485
warning("Could not determine user name: %s\n",
486
p->pw_name == NULL ? "pw_name = NULL" :
487
"pw_name zero length");
488
}
489
}
490
FREE_C_HEAP_ARRAY(char, pwbuf, mtInternal);
491
return NULL;
492
}
493
494
char* user_name = NEW_C_HEAP_ARRAY(char, strlen(p->pw_name) + 1, mtInternal);
495
strcpy(user_name, p->pw_name);
496
497
FREE_C_HEAP_ARRAY(char, pwbuf, mtInternal);
498
return user_name;
499
}
500
501
// return the name of the user that owns the process identified by vmid.
502
//
503
// This method uses a slow directory search algorithm to find the backing
504
// store file for the specified vmid and returns the user name, as determined
505
// by the user name suffix of the hsperfdata_<username> directory name.
506
//
507
// the caller is expected to free the allocated memory.
508
//
509
static char* get_user_name_slow(int vmid, TRAPS) {
510
511
// short circuit the directory search if the process doesn't even exist.
512
if (kill(vmid, 0) == OS_ERR) {
513
if (errno == ESRCH) {
514
THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(),
515
"Process not found");
516
}
517
else /* EPERM */ {
518
THROW_MSG_0(vmSymbols::java_io_IOException(), strerror(errno));
519
}
520
}
521
522
// directory search
523
char* oldest_user = NULL;
524
time_t oldest_ctime = 0;
525
526
const char* tmpdirname = os::get_temp_directory();
527
528
// open the temp directory
529
DIR* tmpdirp = os::opendir(tmpdirname);
530
531
if (tmpdirp == NULL) {
532
// Cannot open the directory to get the user name, return.
533
return NULL;
534
}
535
536
// for each entry in the directory that matches the pattern hsperfdata_*,
537
// open the directory and check if the file for the given vmid exists.
538
// The file with the expected name and the latest creation date is used
539
// to determine the user name for the process id.
540
//
541
struct dirent* dentry;
542
errno = 0;
543
while ((dentry = os::readdir(tmpdirp)) != NULL) {
544
545
// check if the directory entry is a hsperfdata file
546
if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
547
continue;
548
}
549
550
char* usrdir_name = NEW_C_HEAP_ARRAY(char,
551
strlen(tmpdirname) + strlen(dentry->d_name) + 2, mtInternal);
552
strcpy(usrdir_name, tmpdirname);
553
strcat(usrdir_name, "/");
554
strcat(usrdir_name, dentry->d_name);
555
556
// open the user directory
557
DIR* subdirp = open_directory_secure(usrdir_name);
558
559
if (subdirp == NULL) {
560
FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
561
continue;
562
}
563
564
// Since we don't create the backing store files in directories
565
// pointed to by symbolic links, we also don't follow them when
566
// looking for the files. We check for a symbolic link after the
567
// call to opendir in order to eliminate a small window where the
568
// symlink can be exploited.
569
//
570
if (!is_directory_secure(usrdir_name)) {
571
FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
572
os::closedir(subdirp);
573
continue;
574
}
575
576
struct dirent* udentry;
577
errno = 0;
578
while ((udentry = os::readdir(subdirp)) != NULL) {
579
580
if (filename_to_pid(udentry->d_name) == vmid) {
581
struct stat statbuf;
582
int result;
583
584
char* filename = NEW_C_HEAP_ARRAY(char,
585
strlen(usrdir_name) + strlen(udentry->d_name) + 2, mtInternal);
586
587
strcpy(filename, usrdir_name);
588
strcat(filename, "/");
589
strcat(filename, udentry->d_name);
590
591
// don't follow symbolic links for the file
592
RESTARTABLE(::lstat(filename, &statbuf), result);
593
if (result == OS_ERR) {
594
FREE_C_HEAP_ARRAY(char, filename, mtInternal);
595
continue;
596
}
597
598
// skip over files that are not regular files.
599
if (!S_ISREG(statbuf.st_mode)) {
600
FREE_C_HEAP_ARRAY(char, filename, mtInternal);
601
continue;
602
}
603
604
// compare and save filename with latest creation time
605
if (statbuf.st_size > 0 && statbuf.st_ctime > oldest_ctime) {
606
607
if (statbuf.st_ctime > oldest_ctime) {
608
char* user = strchr(dentry->d_name, '_') + 1;
609
610
if (oldest_user != NULL) FREE_C_HEAP_ARRAY(char, oldest_user, mtInternal);
611
oldest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
612
613
strcpy(oldest_user, user);
614
oldest_ctime = statbuf.st_ctime;
615
}
616
}
617
618
FREE_C_HEAP_ARRAY(char, filename, mtInternal);
619
}
620
}
621
os::closedir(subdirp);
622
FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
623
}
624
os::closedir(tmpdirp);
625
626
return(oldest_user);
627
}
628
629
// return the name of the user that owns the JVM indicated by the given vmid.
630
//
631
static char* get_user_name(int vmid, TRAPS) {
632
return get_user_name_slow(vmid, THREAD);
633
}
634
635
// return the file name of the backing store file for the named
636
// shared memory region for the given user name and vmid.
637
//
638
// the caller is expected to free the allocated memory.
639
//
640
static char* get_sharedmem_filename(const char* dirname, int vmid) {
641
642
// add 2 for the file separator and a null terminator.
643
size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
644
645
char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
646
snprintf(name, nbytes, "%s/%d", dirname, vmid);
647
648
return name;
649
}
650
651
652
// remove file
653
//
654
// this method removes the file specified by the given path
655
//
656
static void remove_file(const char* path) {
657
658
int result;
659
660
// if the file is a directory, the following unlink will fail. since
661
// we don't expect to find directories in the user temp directory, we
662
// won't try to handle this situation. even if accidentially or
663
// maliciously planted, the directory's presence won't hurt anything.
664
//
665
RESTARTABLE(::unlink(path), result);
666
if (PrintMiscellaneous && Verbose && result == OS_ERR) {
667
if (errno != ENOENT) {
668
warning("Could not unlink shared memory backing"
669
" store file %s : %s\n", path, strerror(errno));
670
}
671
}
672
}
673
674
675
// cleanup stale shared memory resources
676
//
677
// This method attempts to remove all stale shared memory files in
678
// the named user temporary directory. It scans the named directory
679
// for files matching the pattern ^$[0-9]*$. For each file found, the
680
// process id is extracted from the file name and a test is run to
681
// determine if the process is alive. If the process is not alive,
682
// any stale file resources are removed.
683
//
684
static void cleanup_sharedmem_resources(const char* dirname) {
685
686
int saved_cwd_fd;
687
// open the directory
688
DIR* dirp = open_directory_secure_cwd(dirname, &saved_cwd_fd);
689
if (dirp == NULL) {
690
// directory doesn't exist or is insecure, so there is nothing to cleanup
691
return;
692
}
693
694
// for each entry in the directory that matches the expected file
695
// name pattern, determine if the file resources are stale and if
696
// so, remove the file resources. Note, instrumented HotSpot processes
697
// for this user may start and/or terminate during this search and
698
// remove or create new files in this directory. The behavior of this
699
// loop under these conditions is dependent upon the implementation of
700
// opendir/readdir.
701
//
702
struct dirent* entry;
703
errno = 0;
704
while ((entry = os::readdir(dirp)) != NULL) {
705
706
pid_t pid = filename_to_pid(entry->d_name);
707
708
if (pid == 0) {
709
710
if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
711
// attempt to remove all unexpected files, except "." and ".."
712
unlink(entry->d_name);
713
}
714
715
errno = 0;
716
continue;
717
}
718
719
// we now have a file name that converts to a valid integer
720
// that could represent a process id . if this process id
721
// matches the current process id or the process is not running,
722
// then remove the stale file resources.
723
//
724
// process liveness is detected by sending signal number 0 to
725
// the process id (see kill(2)). if kill determines that the
726
// process does not exist, then the file resources are removed.
727
// if kill determines that that we don't have permission to
728
// signal the process, then the file resources are assumed to
729
// be stale and are removed because the resources for such a
730
// process should be in a different user specific directory.
731
//
732
if ((pid == os::current_process_id()) ||
733
(kill(pid, 0) == OS_ERR && (errno == ESRCH || errno == EPERM))) {
734
unlink(entry->d_name);
735
}
736
errno = 0;
737
}
738
739
// close the directory and reset the current working directory
740
close_directory_secure_cwd(dirp, saved_cwd_fd);
741
}
742
743
// make the user specific temporary directory. Returns true if
744
// the directory exists and is secure upon return. Returns false
745
// if the directory exists but is either a symlink, is otherwise
746
// insecure, or if an error occurred.
747
//
748
static bool make_user_tmp_dir(const char* dirname) {
749
750
// create the directory with 0755 permissions. note that the directory
751
// will be owned by euid::egid, which may not be the same as uid::gid.
752
//
753
if (mkdir(dirname, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH) == OS_ERR) {
754
if (errno == EEXIST) {
755
// The directory already exists and was probably created by another
756
// JVM instance. However, this could also be the result of a
757
// deliberate symlink. Verify that the existing directory is safe.
758
//
759
if (!is_directory_secure(dirname)) {
760
// directory is not secure
761
if (PrintMiscellaneous && Verbose) {
762
warning("%s directory is insecure\n", dirname);
763
}
764
return false;
765
}
766
}
767
else {
768
// we encountered some other failure while attempting
769
// to create the directory
770
//
771
if (PrintMiscellaneous && Verbose) {
772
warning("could not create directory %s: %s\n",
773
dirname, strerror(errno));
774
}
775
return false;
776
}
777
}
778
return true;
779
}
780
781
// create the shared memory file resources
782
//
783
// This method creates the shared memory file with the given size
784
// This method also creates the user specific temporary directory, if
785
// it does not yet exist.
786
//
787
static int create_sharedmem_resources(const char* dirname, const char* filename, size_t size) {
788
789
// make the user temporary directory
790
if (!make_user_tmp_dir(dirname)) {
791
// could not make/find the directory or the found directory
792
// was not secure
793
return -1;
794
}
795
796
int saved_cwd_fd;
797
// open the directory and set the current working directory to it
798
DIR* dirp = open_directory_secure_cwd(dirname, &saved_cwd_fd);
799
if (dirp == NULL) {
800
// Directory doesn't exist or is insecure, so cannot create shared
801
// memory file.
802
return -1;
803
}
804
805
// Open the filename in the current directory.
806
// Cannot use O_TRUNC here; truncation of an existing file has to happen
807
// after the is_file_secure() check below.
808
int result;
809
RESTARTABLE(::open(filename, O_RDWR|O_CREAT|O_NOFOLLOW, S_IREAD|S_IWRITE), result);
810
if (result == OS_ERR) {
811
if (PrintMiscellaneous && Verbose) {
812
if (errno == ELOOP) {
813
warning("file %s is a symlink and is not secure\n", filename);
814
} else {
815
warning("could not create file %s: %s\n", filename, strerror(errno));
816
}
817
}
818
// close the directory and reset the current working directory
819
close_directory_secure_cwd(dirp, saved_cwd_fd);
820
821
return -1;
822
}
823
// close the directory and reset the current working directory
824
close_directory_secure_cwd(dirp, saved_cwd_fd);
825
826
// save the file descriptor
827
int fd = result;
828
829
// check to see if the file is secure
830
if (!is_file_secure(fd, filename)) {
831
::close(fd);
832
return -1;
833
}
834
835
// truncate the file to get rid of any existing data
836
RESTARTABLE(::ftruncate(fd, (off_t)0), result);
837
if (result == OS_ERR) {
838
if (PrintMiscellaneous && Verbose) {
839
warning("could not truncate shared memory file: %s\n", strerror(errno));
840
}
841
::close(fd);
842
return -1;
843
}
844
// set the file size
845
RESTARTABLE(::ftruncate(fd, (off_t)size), result);
846
if (result == OS_ERR) {
847
if (PrintMiscellaneous && Verbose) {
848
warning("could not set shared memory file size: %s\n", strerror(errno));
849
}
850
::close(fd);
851
return -1;
852
}
853
854
// Verify that we have enough disk space for this file.
855
// We'll get random SIGBUS crashes on memory accesses if
856
// we don't.
857
858
for (size_t seekpos = 0; seekpos < size; seekpos += os::vm_page_size()) {
859
int zero_int = 0;
860
result = (int)os::seek_to_file_offset(fd, (jlong)(seekpos));
861
if (result == -1 ) break;
862
RESTARTABLE(::write(fd, &zero_int, 1), result);
863
if (result != 1) {
864
if (errno == ENOSPC) {
865
warning("Insufficient space for shared memory file:\n %s\nTry using the -Djava.io.tmpdir= option to select an alternate temp location.\n", filename);
866
}
867
break;
868
}
869
}
870
871
if (result != -1) {
872
return fd;
873
} else {
874
::close(fd);
875
return -1;
876
}
877
}
878
879
// open the shared memory file for the given user and vmid. returns
880
// the file descriptor for the open file or -1 if the file could not
881
// be opened.
882
//
883
static int open_sharedmem_file(const char* filename, int oflags, TRAPS) {
884
885
// open the file
886
int result;
887
RESTARTABLE(::open(filename, oflags), result);
888
if (result == OS_ERR) {
889
if (errno == ENOENT) {
890
THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
891
"Process not found", OS_ERR);
892
}
893
else if (errno == EACCES) {
894
THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
895
"Permission denied", OS_ERR);
896
}
897
else {
898
THROW_MSG_(vmSymbols::java_io_IOException(), strerror(errno), OS_ERR);
899
}
900
}
901
int fd = result;
902
903
// check to see if the file is secure
904
if (!is_file_secure(fd, filename)) {
905
::close(fd);
906
return -1;
907
}
908
909
return fd;
910
}
911
912
// create a named shared memory region. returns the address of the
913
// memory region on success or NULL on failure. A return value of
914
// NULL will ultimately disable the shared memory feature.
915
//
916
// On Solaris and Linux, the name space for shared memory objects
917
// is the file system name space.
918
//
919
// A monitoring application attaching to a JVM does not need to know
920
// the file system name of the shared memory object. However, it may
921
// be convenient for applications to discover the existence of newly
922
// created and terminating JVMs by watching the file system name space
923
// for files being created or removed.
924
//
925
static char* mmap_create_shared(size_t size) {
926
927
int result;
928
int fd;
929
char* mapAddress;
930
931
int vmid = os::current_process_id();
932
933
char* user_name = get_user_name(geteuid());
934
935
if (user_name == NULL)
936
return NULL;
937
938
char* dirname = get_user_tmp_dir(user_name);
939
char* filename = get_sharedmem_filename(dirname, vmid);
940
// get the short filename
941
char* short_filename = strrchr(filename, '/');
942
if (short_filename == NULL) {
943
short_filename = filename;
944
} else {
945
short_filename++;
946
}
947
948
// cleanup any stale shared memory files
949
cleanup_sharedmem_resources(dirname);
950
951
assert(((size > 0) && (size % os::vm_page_size() == 0)),
952
"unexpected PerfMemory region size");
953
954
fd = create_sharedmem_resources(dirname, short_filename, size);
955
956
FREE_C_HEAP_ARRAY(char, user_name, mtInternal);
957
FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
958
959
if (fd == -1) {
960
FREE_C_HEAP_ARRAY(char, filename, mtInternal);
961
return NULL;
962
}
963
964
mapAddress = (char*)::mmap((char*)0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
965
966
result = ::close(fd);
967
assert(result != OS_ERR, "could not close file");
968
969
if (mapAddress == MAP_FAILED) {
970
if (PrintMiscellaneous && Verbose) {
971
warning("mmap failed - %s\n", strerror(errno));
972
}
973
remove_file(filename);
974
FREE_C_HEAP_ARRAY(char, filename, mtInternal);
975
return NULL;
976
}
977
978
// save the file name for use in delete_shared_memory()
979
backing_store_file_name = filename;
980
981
// clear the shared memory region
982
(void)::memset((void*) mapAddress, 0, size);
983
984
// it does not go through os api, the operation has to record from here
985
MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress, size, CURRENT_PC, mtInternal);
986
987
return mapAddress;
988
}
989
990
// release a named shared memory region
991
//
992
static void unmap_shared(char* addr, size_t bytes) {
993
os::release_memory(addr, bytes);
994
}
995
996
// create the PerfData memory region in shared memory.
997
//
998
static char* create_shared_memory(size_t size) {
999
1000
// create the shared memory region.
1001
return mmap_create_shared(size);
1002
}
1003
1004
// delete the shared PerfData memory region
1005
//
1006
static void delete_shared_memory(char* addr, size_t size) {
1007
1008
// cleanup the persistent shared memory resources. since DestroyJavaVM does
1009
// not support unloading of the JVM, unmapping of the memory resource is
1010
// not performed. The memory will be reclaimed by the OS upon termination of
1011
// the process. The backing store file is deleted from the file system.
1012
1013
assert(!PerfDisableSharedMem, "shouldn't be here");
1014
1015
if (backing_store_file_name != NULL) {
1016
remove_file(backing_store_file_name);
1017
// Don't.. Free heap memory could deadlock os::abort() if it is called
1018
// from signal handler. OS will reclaim the heap memory.
1019
// FREE_C_HEAP_ARRAY(char, backing_store_file_name);
1020
backing_store_file_name = NULL;
1021
}
1022
}
1023
1024
// return the size of the file for the given file descriptor
1025
// or 0 if it is not a valid size for a shared memory file
1026
//
1027
static size_t sharedmem_filesize(int fd, TRAPS) {
1028
1029
struct stat statbuf;
1030
int result;
1031
1032
RESTARTABLE(::fstat(fd, &statbuf), result);
1033
if (result == OS_ERR) {
1034
if (PrintMiscellaneous && Verbose) {
1035
warning("fstat failed: %s\n", strerror(errno));
1036
}
1037
THROW_MSG_0(vmSymbols::java_io_IOException(),
1038
"Could not determine PerfMemory size");
1039
}
1040
1041
if ((statbuf.st_size == 0) ||
1042
((size_t)statbuf.st_size % os::vm_page_size() != 0)) {
1043
THROW_MSG_0(vmSymbols::java_lang_Exception(),
1044
"Invalid PerfMemory size");
1045
}
1046
1047
return (size_t)statbuf.st_size;
1048
}
1049
1050
// attach to a named shared memory region.
1051
//
1052
static void mmap_attach_shared(const char* user, int vmid, PerfMemory::PerfMemoryMode mode, char** addr, size_t* sizep, TRAPS) {
1053
1054
char* mapAddress;
1055
int result;
1056
int fd;
1057
size_t size = 0;
1058
const char* luser = NULL;
1059
1060
int mmap_prot;
1061
int file_flags;
1062
1063
ResourceMark rm;
1064
1065
// map the high level access mode to the appropriate permission
1066
// constructs for the file and the shared memory mapping.
1067
if (mode == PerfMemory::PERF_MODE_RO) {
1068
mmap_prot = PROT_READ;
1069
file_flags = O_RDONLY | O_NOFOLLOW;
1070
}
1071
else if (mode == PerfMemory::PERF_MODE_RW) {
1072
#ifdef LATER
1073
mmap_prot = PROT_READ | PROT_WRITE;
1074
file_flags = O_RDWR | O_NOFOLLOW;
1075
#else
1076
THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1077
"Unsupported access mode");
1078
#endif
1079
}
1080
else {
1081
THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1082
"Illegal access mode");
1083
}
1084
1085
if (user == NULL || strlen(user) == 0) {
1086
luser = get_user_name(vmid, CHECK);
1087
}
1088
else {
1089
luser = user;
1090
}
1091
1092
if (luser == NULL) {
1093
THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1094
"Could not map vmid to user Name");
1095
}
1096
1097
char* dirname = get_user_tmp_dir(luser);
1098
1099
// since we don't follow symbolic links when creating the backing
1100
// store file, we don't follow them when attaching either.
1101
//
1102
if (!is_directory_secure(dirname)) {
1103
FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
1104
THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1105
"Process not found");
1106
}
1107
1108
char* filename = get_sharedmem_filename(dirname, vmid);
1109
1110
// copy heap memory to resource memory. the open_sharedmem_file
1111
// method below need to use the filename, but could throw an
1112
// exception. using a resource array prevents the leak that
1113
// would otherwise occur.
1114
char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
1115
strcpy(rfilename, filename);
1116
1117
// free the c heap resources that are no longer needed
1118
if (luser != user) FREE_C_HEAP_ARRAY(char, luser, mtInternal);
1119
FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
1120
FREE_C_HEAP_ARRAY(char, filename, mtInternal);
1121
1122
// open the shared memory file for the give vmid
1123
fd = open_sharedmem_file(rfilename, file_flags, THREAD);
1124
1125
if (fd == OS_ERR) {
1126
return;
1127
}
1128
1129
if (HAS_PENDING_EXCEPTION) {
1130
::close(fd);
1131
return;
1132
}
1133
1134
if (*sizep == 0) {
1135
size = sharedmem_filesize(fd, CHECK);
1136
} else {
1137
size = *sizep;
1138
}
1139
1140
assert(size > 0, "unexpected size <= 0");
1141
1142
mapAddress = (char*)::mmap((char*)0, size, mmap_prot, MAP_SHARED, fd, 0);
1143
1144
result = ::close(fd);
1145
assert(result != OS_ERR, "could not close file");
1146
1147
if (mapAddress == MAP_FAILED) {
1148
if (PrintMiscellaneous && Verbose) {
1149
warning("mmap failed: %s\n", strerror(errno));
1150
}
1151
THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
1152
"Could not map PerfMemory");
1153
}
1154
1155
// it does not go through os api, the operation has to record from here
1156
MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress, size, CURRENT_PC, mtInternal);
1157
1158
*addr = mapAddress;
1159
*sizep = size;
1160
1161
if (PerfTraceMemOps) {
1162
tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at "
1163
INTPTR_FORMAT "\n", size, vmid, p2i((void*)mapAddress));
1164
}
1165
}
1166
1167
1168
1169
1170
// create the PerfData memory region
1171
//
1172
// This method creates the memory region used to store performance
1173
// data for the JVM. The memory may be created in standard or
1174
// shared memory.
1175
//
1176
void PerfMemory::create_memory_region(size_t size) {
1177
1178
if (PerfDisableSharedMem) {
1179
// do not share the memory for the performance data.
1180
_start = create_standard_memory(size);
1181
}
1182
else {
1183
_start = create_shared_memory(size);
1184
if (_start == NULL) {
1185
1186
// creation of the shared memory region failed, attempt
1187
// to create a contiguous, non-shared memory region instead.
1188
//
1189
if (PrintMiscellaneous && Verbose) {
1190
warning("Reverting to non-shared PerfMemory region.\n");
1191
}
1192
PerfDisableSharedMem = true;
1193
_start = create_standard_memory(size);
1194
}
1195
}
1196
1197
if (_start != NULL) _capacity = size;
1198
1199
}
1200
1201
// delete the PerfData memory region
1202
//
1203
// This method deletes the memory region used to store performance
1204
// data for the JVM. The memory region indicated by the <address, size>
1205
// tuple will be inaccessible after a call to this method.
1206
//
1207
void PerfMemory::delete_memory_region() {
1208
1209
assert((start() != NULL && capacity() > 0), "verify proper state");
1210
1211
// If user specifies PerfDataSaveFile, it will save the performance data
1212
// to the specified file name no matter whether PerfDataSaveToFile is specified
1213
// or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
1214
// -XX:+PerfDataSaveToFile.
1215
if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
1216
save_memory_to_file(start(), capacity());
1217
}
1218
1219
if (PerfDisableSharedMem) {
1220
delete_standard_memory(start(), capacity());
1221
}
1222
else {
1223
delete_shared_memory(start(), capacity());
1224
}
1225
}
1226
1227
// attach to the PerfData memory region for another JVM
1228
//
1229
// This method returns an <address, size> tuple that points to
1230
// a memory buffer that is kept reasonably synchronized with
1231
// the PerfData memory region for the indicated JVM. This
1232
// buffer may be kept in synchronization via shared memory
1233
// or some other mechanism that keeps the buffer updated.
1234
//
1235
// If the JVM chooses not to support the attachability feature,
1236
// this method should throw an UnsupportedOperation exception.
1237
//
1238
// This implementation utilizes named shared memory to map
1239
// the indicated process's PerfData memory region into this JVMs
1240
// address space.
1241
//
1242
void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode, char** addrp, size_t* sizep, TRAPS) {
1243
1244
if (vmid == 0 || vmid == os::current_process_id()) {
1245
*addrp = start();
1246
*sizep = capacity();
1247
return;
1248
}
1249
1250
mmap_attach_shared(user, vmid, mode, addrp, sizep, CHECK);
1251
}
1252
1253
// detach from the PerfData memory region of another JVM
1254
//
1255
// This method detaches the PerfData memory region of another
1256
// JVM, specified as an <address, size> tuple of a buffer
1257
// in this process's address space. This method may perform
1258
// arbitrary actions to accomplish the detachment. The memory
1259
// region specified by <address, size> will be inaccessible after
1260
// a call to this method.
1261
//
1262
// If the JVM chooses not to support the attachability feature,
1263
// this method should throw an UnsupportedOperation exception.
1264
//
1265
// This implementation utilizes named shared memory to detach
1266
// the indicated process's PerfData memory region from this
1267
// process's address space.
1268
//
1269
void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
1270
1271
assert(addr != 0, "address sanity check");
1272
assert(bytes > 0, "capacity sanity check");
1273
1274
if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
1275
// prevent accidental detachment of this process's PerfMemory region
1276
return;
1277
}
1278
1279
unmap_shared(addr, bytes);
1280
}
1281
1282
char* PerfMemory::backing_store_filename() {
1283
return backing_store_file_name;
1284
}
1285
1286