Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/os/posix/vm/os_posix.cpp
32285 views
1
/*
2
* Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "utilities/globalDefinitions.hpp"
26
#include "prims/jvm.h"
27
#include "runtime/frame.inline.hpp"
28
#include "runtime/os.hpp"
29
#include "utilities/vmError.hpp"
30
31
#include <signal.h>
32
#include <unistd.h>
33
#include <sys/resource.h>
34
#include <sys/utsname.h>
35
#include <pthread.h>
36
#include <signal.h>
37
38
PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
39
40
// Todo: provide a os::get_max_process_id() or similar. Number of processes
41
// may have been configured, can be read more accurately from proc fs etc.
42
#ifndef MAX_PID
43
#define MAX_PID INT_MAX
44
#endif
45
#define IS_VALID_PID(p) (p > 0 && p < MAX_PID)
46
47
// Check core dump limit and report possible place where core can be found
48
void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
49
int n;
50
struct rlimit rlim;
51
bool success;
52
53
n = get_core_path(buffer, bufferSize);
54
55
if (getrlimit(RLIMIT_CORE, &rlim) != 0) {
56
jio_snprintf(buffer + n, bufferSize - n, "/core or core.%d (may not exist)", current_process_id());
57
success = true;
58
} else {
59
switch(rlim.rlim_cur) {
60
case RLIM_INFINITY:
61
jio_snprintf(buffer + n, bufferSize - n, "/core or core.%d", current_process_id());
62
success = true;
63
break;
64
case 0:
65
jio_snprintf(buffer, bufferSize, "Core dumps have been disabled. To enable core dumping, try \"ulimit -c unlimited\" before starting Java again");
66
success = false;
67
break;
68
default:
69
jio_snprintf(buffer + n, bufferSize - n, "/core or core.%d (max size %lu kB). To ensure a full core dump, try \"ulimit -c unlimited\" before starting Java again", current_process_id(), (unsigned long)(rlim.rlim_cur >> 10));
70
success = true;
71
break;
72
}
73
}
74
VMError::report_coredump_status(buffer, success);
75
}
76
77
int os::get_native_stack(address* stack, int frames, int toSkip) {
78
#ifdef _NMT_NOINLINE_
79
toSkip++;
80
#endif
81
82
int frame_idx = 0;
83
int num_of_frames; // number of frames captured
84
frame fr = os::current_frame();
85
while (fr.pc() && frame_idx < frames) {
86
if (toSkip > 0) {
87
toSkip --;
88
} else {
89
stack[frame_idx ++] = fr.pc();
90
}
91
if (fr.fp() == NULL || os::is_first_C_frame(&fr)
92
||fr.sender_pc() == NULL || fr.cb() != NULL) break;
93
94
if (fr.sender_pc() && !os::is_first_C_frame(&fr)) {
95
fr = os::get_sender_for_C_frame(&fr);
96
} else {
97
break;
98
}
99
}
100
num_of_frames = frame_idx;
101
for (; frame_idx < frames; frame_idx ++) {
102
stack[frame_idx] = NULL;
103
}
104
105
return num_of_frames;
106
}
107
108
109
bool os::unsetenv(const char* name) {
110
assert(name != NULL, "Null pointer");
111
return (::unsetenv(name) == 0);
112
}
113
114
int os::get_last_error() {
115
return errno;
116
}
117
118
bool os::is_debugger_attached() {
119
// not implemented
120
return false;
121
}
122
123
void os::wait_for_keypress_at_exit(void) {
124
// don't do anything on posix platforms
125
return;
126
}
127
128
// Multiple threads can race in this code, and can remap over each other with MAP_FIXED,
129
// so on posix, unmap the section at the start and at the end of the chunk that we mapped
130
// rather than unmapping and remapping the whole chunk to get requested alignment.
131
char* os::reserve_memory_aligned(size_t size, size_t alignment MACOS_AARCH64_ONLY(, bool exec)) {
132
assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
133
"Alignment must be a multiple of allocation granularity (page size)");
134
assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
135
136
size_t extra_size = size + alignment;
137
assert(extra_size >= size, "overflow, size is too large to allow alignment");
138
139
char* extra_base = os::reserve_memory(extra_size, NULL, alignment MACOS_AARCH64_ONLY(, exec));
140
141
if (extra_base == NULL) {
142
return NULL;
143
}
144
145
// Do manual alignment
146
char* aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
147
148
// [ | | ]
149
// ^ extra_base
150
// ^ extra_base + begin_offset == aligned_base
151
// extra_base + begin_offset + size ^
152
// extra_base + extra_size ^
153
// |<>| == begin_offset
154
// end_offset == |<>|
155
size_t begin_offset = aligned_base - extra_base;
156
size_t end_offset = (extra_base + extra_size) - (aligned_base + size);
157
158
if (begin_offset > 0) {
159
os::release_memory(extra_base, begin_offset);
160
}
161
162
if (end_offset > 0) {
163
os::release_memory(extra_base + begin_offset + size, end_offset);
164
}
165
166
return aligned_base;
167
}
168
169
int os::vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
170
int result = ::vsnprintf(buf, len, fmt, args);
171
// If an encoding error occurred (result < 0) then it's not clear
172
// whether the buffer is NUL terminated, so ensure it is.
173
if ((result < 0) && (len > 0)) {
174
buf[len - 1] = '\0';
175
}
176
return result;
177
}
178
179
void os::Posix::print_load_average(outputStream* st) {
180
st->print("load average:");
181
double loadavg[3];
182
os::loadavg(loadavg, 3);
183
st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
184
st->cr();
185
}
186
187
void os::Posix::print_rlimit_info(outputStream* st) {
188
st->print("rlimit:");
189
struct rlimit rlim;
190
191
st->print(" STACK ");
192
getrlimit(RLIMIT_STACK, &rlim);
193
if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
194
else st->print("%uk", rlim.rlim_cur >> 10);
195
196
st->print(", CORE ");
197
getrlimit(RLIMIT_CORE, &rlim);
198
if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
199
else st->print("%uk", rlim.rlim_cur >> 10);
200
201
// Isn't there on solaris
202
#if !defined(TARGET_OS_FAMILY_solaris) && !defined(TARGET_OS_FAMILY_aix)
203
st->print(", NPROC ");
204
getrlimit(RLIMIT_NPROC, &rlim);
205
if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
206
else st->print("%d", rlim.rlim_cur);
207
#endif
208
209
st->print(", NOFILE ");
210
getrlimit(RLIMIT_NOFILE, &rlim);
211
if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
212
else st->print("%d", rlim.rlim_cur);
213
214
st->print(", AS ");
215
getrlimit(RLIMIT_AS, &rlim);
216
if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
217
else st->print("%uk", rlim.rlim_cur >> 10);
218
st->cr();
219
}
220
221
void os::Posix::print_uname_info(outputStream* st) {
222
// kernel
223
st->print("uname:");
224
struct utsname name;
225
uname(&name);
226
st->print("%s ", name.sysname);
227
st->print("%s ", name.release);
228
st->print("%s ", name.version);
229
st->print("%s", name.machine);
230
st->cr();
231
}
232
233
bool os::has_allocatable_memory_limit(julong* limit) {
234
struct rlimit rlim;
235
int getrlimit_res = getrlimit(RLIMIT_AS, &rlim);
236
// if there was an error when calling getrlimit, assume that there is no limitation
237
// on virtual memory.
238
bool result;
239
if ((getrlimit_res != 0) || (rlim.rlim_cur == RLIM_INFINITY)) {
240
result = false;
241
} else {
242
*limit = (julong)rlim.rlim_cur;
243
result = true;
244
}
245
#ifdef _LP64
246
return result;
247
#else
248
// arbitrary virtual space limit for 32 bit Unices found by testing. If
249
// getrlimit above returned a limit, bound it with this limit. Otherwise
250
// directly use it.
251
const julong max_virtual_limit = (julong)3800*M;
252
if (result) {
253
*limit = MIN2(*limit, max_virtual_limit);
254
} else {
255
*limit = max_virtual_limit;
256
}
257
258
// bound by actually allocatable memory. The algorithm uses two bounds, an
259
// upper and a lower limit. The upper limit is the current highest amount of
260
// memory that could not be allocated, the lower limit is the current highest
261
// amount of memory that could be allocated.
262
// The algorithm iteratively refines the result by halving the difference
263
// between these limits, updating either the upper limit (if that value could
264
// not be allocated) or the lower limit (if the that value could be allocated)
265
// until the difference between these limits is "small".
266
267
// the minimum amount of memory we care about allocating.
268
const julong min_allocation_size = M;
269
270
julong upper_limit = *limit;
271
272
// first check a few trivial cases
273
if (is_allocatable(upper_limit) || (upper_limit <= min_allocation_size)) {
274
*limit = upper_limit;
275
} else if (!is_allocatable(min_allocation_size)) {
276
// we found that not even min_allocation_size is allocatable. Return it
277
// anyway. There is no point to search for a better value any more.
278
*limit = min_allocation_size;
279
} else {
280
// perform the binary search.
281
julong lower_limit = min_allocation_size;
282
while ((upper_limit - lower_limit) > min_allocation_size) {
283
julong temp_limit = ((upper_limit - lower_limit) / 2) + lower_limit;
284
temp_limit = align_size_down_(temp_limit, min_allocation_size);
285
if (is_allocatable(temp_limit)) {
286
lower_limit = temp_limit;
287
} else {
288
upper_limit = temp_limit;
289
}
290
}
291
*limit = lower_limit;
292
}
293
return true;
294
#endif
295
}
296
297
const char* os::get_current_directory(char *buf, size_t buflen) {
298
return getcwd(buf, buflen);
299
}
300
301
FILE* os::open(int fd, const char* mode) {
302
return ::fdopen(fd, mode);
303
}
304
305
DIR* os::opendir(const char* dirname) {
306
assert(dirname != NULL, "just checking");
307
return ::opendir(dirname);
308
}
309
310
struct dirent* os::readdir(DIR* dirp) {
311
assert(dirp != NULL, "just checking");
312
return ::readdir(dirp);
313
}
314
315
int os::closedir(DIR *dirp) {
316
assert(dirp != NULL, "just checking");
317
return ::closedir(dirp);
318
}
319
320
// Builds a platform dependent Agent_OnLoad_<lib_name> function name
321
// which is used to find statically linked in agents.
322
// Parameters:
323
// sym_name: Symbol in library we are looking for
324
// lib_name: Name of library to look in, NULL for shared libs.
325
// is_absolute_path == true if lib_name is absolute path to agent
326
// such as "/a/b/libL.so"
327
// == false if only the base name of the library is passed in
328
// such as "L"
329
char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
330
bool is_absolute_path) {
331
char *agent_entry_name;
332
size_t len;
333
size_t name_len;
334
size_t prefix_len = strlen(JNI_LIB_PREFIX);
335
size_t suffix_len = strlen(JNI_LIB_SUFFIX);
336
const char *start;
337
338
if (lib_name != NULL) {
339
len = name_len = strlen(lib_name);
340
if (is_absolute_path) {
341
// Need to strip path, prefix and suffix
342
if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
343
lib_name = ++start;
344
}
345
if (len <= (prefix_len + suffix_len)) {
346
return NULL;
347
}
348
lib_name += prefix_len;
349
name_len = strlen(lib_name) - suffix_len;
350
}
351
}
352
len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
353
agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
354
if (agent_entry_name == NULL) {
355
return NULL;
356
}
357
strcpy(agent_entry_name, sym_name);
358
if (lib_name != NULL) {
359
strcat(agent_entry_name, "_");
360
strncat(agent_entry_name, lib_name, name_len);
361
}
362
return agent_entry_name;
363
}
364
365
// Returned string is a constant. For unknown signals "UNKNOWN" is returned.
366
const char* os::Posix::get_signal_name(int sig, char* out, size_t outlen) {
367
368
static const struct {
369
int sig; const char* name;
370
}
371
info[] =
372
{
373
{ SIGABRT, "SIGABRT" },
374
#ifdef SIGAIO
375
{ SIGAIO, "SIGAIO" },
376
#endif
377
{ SIGALRM, "SIGALRM" },
378
#ifdef SIGALRM1
379
{ SIGALRM1, "SIGALRM1" },
380
#endif
381
{ SIGBUS, "SIGBUS" },
382
#ifdef SIGCANCEL
383
{ SIGCANCEL, "SIGCANCEL" },
384
#endif
385
{ SIGCHLD, "SIGCHLD" },
386
#ifdef SIGCLD
387
{ SIGCLD, "SIGCLD" },
388
#endif
389
{ SIGCONT, "SIGCONT" },
390
#ifdef SIGCPUFAIL
391
{ SIGCPUFAIL, "SIGCPUFAIL" },
392
#endif
393
#ifdef SIGDANGER
394
{ SIGDANGER, "SIGDANGER" },
395
#endif
396
#ifdef SIGDIL
397
{ SIGDIL, "SIGDIL" },
398
#endif
399
#ifdef SIGEMT
400
{ SIGEMT, "SIGEMT" },
401
#endif
402
{ SIGFPE, "SIGFPE" },
403
#ifdef SIGFREEZE
404
{ SIGFREEZE, "SIGFREEZE" },
405
#endif
406
#ifdef SIGGFAULT
407
{ SIGGFAULT, "SIGGFAULT" },
408
#endif
409
#ifdef SIGGRANT
410
{ SIGGRANT, "SIGGRANT" },
411
#endif
412
{ SIGHUP, "SIGHUP" },
413
{ SIGILL, "SIGILL" },
414
{ SIGINT, "SIGINT" },
415
#ifdef SIGIO
416
{ SIGIO, "SIGIO" },
417
#endif
418
#ifdef SIGIOINT
419
{ SIGIOINT, "SIGIOINT" },
420
#endif
421
#ifdef SIGIOT
422
// SIGIOT is there for BSD compatibility, but on most Unices just a
423
// synonym for SIGABRT. The result should be "SIGABRT", not
424
// "SIGIOT".
425
#if (SIGIOT != SIGABRT )
426
{ SIGIOT, "SIGIOT" },
427
#endif
428
#endif
429
#ifdef SIGKAP
430
{ SIGKAP, "SIGKAP" },
431
#endif
432
{ SIGKILL, "SIGKILL" },
433
#ifdef SIGLOST
434
{ SIGLOST, "SIGLOST" },
435
#endif
436
#ifdef SIGLWP
437
{ SIGLWP, "SIGLWP" },
438
#endif
439
#ifdef SIGLWPTIMER
440
{ SIGLWPTIMER, "SIGLWPTIMER" },
441
#endif
442
#ifdef SIGMIGRATE
443
{ SIGMIGRATE, "SIGMIGRATE" },
444
#endif
445
#ifdef SIGMSG
446
{ SIGMSG, "SIGMSG" },
447
#endif
448
{ SIGPIPE, "SIGPIPE" },
449
#ifdef SIGPOLL
450
{ SIGPOLL, "SIGPOLL" },
451
#endif
452
#ifdef SIGPRE
453
{ SIGPRE, "SIGPRE" },
454
#endif
455
{ SIGPROF, "SIGPROF" },
456
#ifdef SIGPTY
457
{ SIGPTY, "SIGPTY" },
458
#endif
459
#ifdef SIGPWR
460
{ SIGPWR, "SIGPWR" },
461
#endif
462
{ SIGQUIT, "SIGQUIT" },
463
#ifdef SIGRECONFIG
464
{ SIGRECONFIG, "SIGRECONFIG" },
465
#endif
466
#ifdef SIGRECOVERY
467
{ SIGRECOVERY, "SIGRECOVERY" },
468
#endif
469
#ifdef SIGRESERVE
470
{ SIGRESERVE, "SIGRESERVE" },
471
#endif
472
#ifdef SIGRETRACT
473
{ SIGRETRACT, "SIGRETRACT" },
474
#endif
475
#ifdef SIGSAK
476
{ SIGSAK, "SIGSAK" },
477
#endif
478
{ SIGSEGV, "SIGSEGV" },
479
#ifdef SIGSOUND
480
{ SIGSOUND, "SIGSOUND" },
481
#endif
482
{ SIGSTOP, "SIGSTOP" },
483
{ SIGSYS, "SIGSYS" },
484
#ifdef SIGSYSERROR
485
{ SIGSYSERROR, "SIGSYSERROR" },
486
#endif
487
#ifdef SIGTALRM
488
{ SIGTALRM, "SIGTALRM" },
489
#endif
490
{ SIGTERM, "SIGTERM" },
491
#ifdef SIGTHAW
492
{ SIGTHAW, "SIGTHAW" },
493
#endif
494
{ SIGTRAP, "SIGTRAP" },
495
#ifdef SIGTSTP
496
{ SIGTSTP, "SIGTSTP" },
497
#endif
498
{ SIGTTIN, "SIGTTIN" },
499
{ SIGTTOU, "SIGTTOU" },
500
#ifdef SIGURG
501
{ SIGURG, "SIGURG" },
502
#endif
503
{ SIGUSR1, "SIGUSR1" },
504
{ SIGUSR2, "SIGUSR2" },
505
#ifdef SIGVIRT
506
{ SIGVIRT, "SIGVIRT" },
507
#endif
508
{ SIGVTALRM, "SIGVTALRM" },
509
#ifdef SIGWAITING
510
{ SIGWAITING, "SIGWAITING" },
511
#endif
512
#ifdef SIGWINCH
513
{ SIGWINCH, "SIGWINCH" },
514
#endif
515
#ifdef SIGWINDOW
516
{ SIGWINDOW, "SIGWINDOW" },
517
#endif
518
{ SIGXCPU, "SIGXCPU" },
519
{ SIGXFSZ, "SIGXFSZ" },
520
#ifdef SIGXRES
521
{ SIGXRES, "SIGXRES" },
522
#endif
523
{ -1, NULL }
524
};
525
526
const char* ret = NULL;
527
528
#ifdef SIGRTMIN
529
if (sig >= SIGRTMIN && sig <= SIGRTMAX) {
530
if (sig == SIGRTMIN) {
531
ret = "SIGRTMIN";
532
} else if (sig == SIGRTMAX) {
533
ret = "SIGRTMAX";
534
} else {
535
jio_snprintf(out, outlen, "SIGRTMIN+%d", sig - SIGRTMIN);
536
return out;
537
}
538
}
539
#endif
540
541
if (sig > 0) {
542
for (int idx = 0; info[idx].sig != -1; idx ++) {
543
if (info[idx].sig == sig) {
544
ret = info[idx].name;
545
break;
546
}
547
}
548
}
549
550
if (!ret) {
551
if (!is_valid_signal(sig)) {
552
ret = "INVALID";
553
} else {
554
ret = "UNKNOWN";
555
}
556
}
557
558
jio_snprintf(out, outlen, ret);
559
return out;
560
}
561
562
// Returns true if signal number is valid.
563
bool os::Posix::is_valid_signal(int sig) {
564
// MacOS not really POSIX compliant: sigaddset does not return
565
// an error for invalid signal numbers. However, MacOS does not
566
// support real time signals and simply seems to have just 33
567
// signals with no holes in the signal range.
568
#ifdef __APPLE__
569
return sig >= 1 && sig < NSIG;
570
#else
571
// Use sigaddset to check for signal validity.
572
sigset_t set;
573
if (sigaddset(&set, sig) == -1 && errno == EINVAL) {
574
return false;
575
}
576
return true;
577
#endif
578
}
579
580
#define NUM_IMPORTANT_SIGS 32
581
// Returns one-line short description of a signal set in a user provided buffer.
582
const char* os::Posix::describe_signal_set_short(const sigset_t* set, char* buffer, size_t buf_size) {
583
assert(buf_size == (NUM_IMPORTANT_SIGS + 1), "wrong buffer size");
584
// Note: for shortness, just print out the first 32. That should
585
// cover most of the useful ones, apart from realtime signals.
586
for (int sig = 1; sig <= NUM_IMPORTANT_SIGS; sig++) {
587
const int rc = sigismember((sigset_t*)set, sig);
588
if (rc == -1 && errno == EINVAL) {
589
buffer[sig-1] = '?';
590
} else {
591
buffer[sig-1] = rc == 0 ? '0' : '1';
592
}
593
}
594
buffer[NUM_IMPORTANT_SIGS] = 0;
595
return buffer;
596
}
597
598
// Prints one-line description of a signal set.
599
void os::Posix::print_signal_set_short(outputStream* st, const sigset_t* set) {
600
char buf[NUM_IMPORTANT_SIGS + 1];
601
os::Posix::describe_signal_set_short(set, buf, sizeof(buf));
602
st->print("%s", buf);
603
}
604
605
// Writes one-line description of a combination of sigaction.sa_flags into a user
606
// provided buffer. Returns that buffer.
607
const char* os::Posix::describe_sa_flags(int flags, char* buffer, size_t size) {
608
char* p = buffer;
609
size_t remaining = size;
610
bool first = true;
611
int idx = 0;
612
613
assert(buffer, "invalid argument");
614
615
if (size == 0) {
616
return buffer;
617
}
618
619
strncpy(buffer, "none", size);
620
621
const struct {
622
// NB: i is an unsigned int here because SA_RESETHAND is on some
623
// systems 0x80000000, which is implicitly unsigned. Assignining
624
// it to an int field would be an overflow in unsigned-to-signed
625
// conversion.
626
unsigned int i;
627
const char* s;
628
} flaginfo [] = {
629
{ SA_NOCLDSTOP, "SA_NOCLDSTOP" },
630
{ SA_ONSTACK, "SA_ONSTACK" },
631
{ SA_RESETHAND, "SA_RESETHAND" },
632
{ SA_RESTART, "SA_RESTART" },
633
{ SA_SIGINFO, "SA_SIGINFO" },
634
{ SA_NOCLDWAIT, "SA_NOCLDWAIT" },
635
{ SA_NODEFER, "SA_NODEFER" },
636
#ifdef AIX
637
{ SA_ONSTACK, "SA_ONSTACK" },
638
{ SA_OLDSTYLE, "SA_OLDSTYLE" },
639
#endif
640
{ 0, NULL }
641
};
642
643
for (idx = 0; flaginfo[idx].s && remaining > 1; idx++) {
644
if (flags & flaginfo[idx].i) {
645
if (first) {
646
jio_snprintf(p, remaining, "%s", flaginfo[idx].s);
647
first = false;
648
} else {
649
jio_snprintf(p, remaining, "|%s", flaginfo[idx].s);
650
}
651
const size_t len = strlen(p);
652
p += len;
653
remaining -= len;
654
}
655
}
656
657
buffer[size - 1] = '\0';
658
659
return buffer;
660
}
661
662
// Prints one-line description of a combination of sigaction.sa_flags.
663
void os::Posix::print_sa_flags(outputStream* st, int flags) {
664
char buffer[0x100];
665
os::Posix::describe_sa_flags(flags, buffer, sizeof(buffer));
666
st->print("%s", buffer);
667
}
668
669
// Helper function for os::Posix::print_siginfo_...():
670
// return a textual description for signal code.
671
struct enum_sigcode_desc_t {
672
const char* s_name;
673
const char* s_desc;
674
};
675
676
static bool get_signal_code_description(const siginfo_t* si, enum_sigcode_desc_t* out) {
677
678
const struct {
679
int sig; int code; const char* s_code; const char* s_desc;
680
} t1 [] = {
681
{ SIGILL, ILL_ILLOPC, "ILL_ILLOPC", "Illegal opcode." },
682
{ SIGILL, ILL_ILLOPN, "ILL_ILLOPN", "Illegal operand." },
683
{ SIGILL, ILL_ILLADR, "ILL_ILLADR", "Illegal addressing mode." },
684
{ SIGILL, ILL_ILLTRP, "ILL_ILLTRP", "Illegal trap." },
685
{ SIGILL, ILL_PRVOPC, "ILL_PRVOPC", "Privileged opcode." },
686
{ SIGILL, ILL_PRVREG, "ILL_PRVREG", "Privileged register." },
687
{ SIGILL, ILL_COPROC, "ILL_COPROC", "Coprocessor error." },
688
{ SIGILL, ILL_BADSTK, "ILL_BADSTK", "Internal stack error." },
689
#if defined(IA64) && defined(LINUX)
690
{ SIGILL, ILL_BADIADDR, "ILL_BADIADDR", "Unimplemented instruction address" },
691
{ SIGILL, ILL_BREAK, "ILL_BREAK", "Application Break instruction" },
692
#endif
693
{ SIGFPE, FPE_INTDIV, "FPE_INTDIV", "Integer divide by zero." },
694
{ SIGFPE, FPE_INTOVF, "FPE_INTOVF", "Integer overflow." },
695
{ SIGFPE, FPE_FLTDIV, "FPE_FLTDIV", "Floating-point divide by zero." },
696
{ SIGFPE, FPE_FLTOVF, "FPE_FLTOVF", "Floating-point overflow." },
697
{ SIGFPE, FPE_FLTUND, "FPE_FLTUND", "Floating-point underflow." },
698
{ SIGFPE, FPE_FLTRES, "FPE_FLTRES", "Floating-point inexact result." },
699
{ SIGFPE, FPE_FLTINV, "FPE_FLTINV", "Invalid floating-point operation." },
700
{ SIGFPE, FPE_FLTSUB, "FPE_FLTSUB", "Subscript out of range." },
701
{ SIGSEGV, SEGV_MAPERR, "SEGV_MAPERR", "Address not mapped to object." },
702
{ SIGSEGV, SEGV_ACCERR, "SEGV_ACCERR", "Invalid permissions for mapped object." },
703
#ifdef AIX
704
// no explanation found what keyerr would be
705
{ SIGSEGV, SEGV_KEYERR, "SEGV_KEYERR", "key error" },
706
#endif
707
#if defined(IA64) && !defined(AIX)
708
{ SIGSEGV, SEGV_PSTKOVF, "SEGV_PSTKOVF", "Paragraph stack overflow" },
709
#endif
710
#if defined(__sparc) && defined(SOLARIS)
711
// define Solaris Sparc M7 ADI SEGV signals
712
#if !defined(SEGV_ACCADI)
713
#define SEGV_ACCADI 3
714
#endif
715
{ SIGSEGV, SEGV_ACCADI, "SEGV_ACCADI", "ADI not enabled for mapped object." },
716
#if !defined(SEGV_ACCDERR)
717
#define SEGV_ACCDERR 4
718
#endif
719
{ SIGSEGV, SEGV_ACCDERR, "SEGV_ACCDERR", "ADI disrupting exception." },
720
#if !defined(SEGV_ACCPERR)
721
#define SEGV_ACCPERR 5
722
#endif
723
{ SIGSEGV, SEGV_ACCPERR, "SEGV_ACCPERR", "ADI precise exception." },
724
#endif // defined(__sparc) && defined(SOLARIS)
725
{ SIGBUS, BUS_ADRALN, "BUS_ADRALN", "Invalid address alignment." },
726
{ SIGBUS, BUS_ADRERR, "BUS_ADRERR", "Nonexistent physical address." },
727
{ SIGBUS, BUS_OBJERR, "BUS_OBJERR", "Object-specific hardware error." },
728
{ SIGTRAP, TRAP_BRKPT, "TRAP_BRKPT", "Process breakpoint." },
729
{ SIGTRAP, TRAP_TRACE, "TRAP_TRACE", "Process trace trap." },
730
{ SIGCHLD, CLD_EXITED, "CLD_EXITED", "Child has exited." },
731
{ SIGCHLD, CLD_KILLED, "CLD_KILLED", "Child has terminated abnormally and did not create a core file." },
732
{ SIGCHLD, CLD_DUMPED, "CLD_DUMPED", "Child has terminated abnormally and created a core file." },
733
{ SIGCHLD, CLD_TRAPPED, "CLD_TRAPPED", "Traced child has trapped." },
734
{ SIGCHLD, CLD_STOPPED, "CLD_STOPPED", "Child has stopped." },
735
{ SIGCHLD, CLD_CONTINUED,"CLD_CONTINUED","Stopped child has continued." },
736
#ifdef SIGPOLL
737
{ SIGPOLL, POLL_OUT, "POLL_OUT", "Output buffers available." },
738
{ SIGPOLL, POLL_MSG, "POLL_MSG", "Input message available." },
739
{ SIGPOLL, POLL_ERR, "POLL_ERR", "I/O error." },
740
{ SIGPOLL, POLL_PRI, "POLL_PRI", "High priority input available." },
741
{ SIGPOLL, POLL_HUP, "POLL_HUP", "Device disconnected. [Option End]" },
742
#endif
743
{ -1, -1, NULL, NULL }
744
};
745
746
// Codes valid in any signal context.
747
const struct {
748
int code; const char* s_code; const char* s_desc;
749
} t2 [] = {
750
{ SI_USER, "SI_USER", "Signal sent by kill()." },
751
{ SI_QUEUE, "SI_QUEUE", "Signal sent by the sigqueue()." },
752
{ SI_TIMER, "SI_TIMER", "Signal generated by expiration of a timer set by timer_settime()." },
753
{ SI_ASYNCIO, "SI_ASYNCIO", "Signal generated by completion of an asynchronous I/O request." },
754
{ SI_MESGQ, "SI_MESGQ", "Signal generated by arrival of a message on an empty message queue." },
755
// Linux specific
756
#ifdef SI_TKILL
757
{ SI_TKILL, "SI_TKILL", "Signal sent by tkill (pthread_kill)" },
758
#endif
759
#ifdef SI_DETHREAD
760
{ SI_DETHREAD, "SI_DETHREAD", "Signal sent by execve() killing subsidiary threads" },
761
#endif
762
#ifdef SI_KERNEL
763
{ SI_KERNEL, "SI_KERNEL", "Signal sent by kernel." },
764
#endif
765
#ifdef SI_SIGIO
766
{ SI_SIGIO, "SI_SIGIO", "Signal sent by queued SIGIO" },
767
#endif
768
769
#ifdef AIX
770
{ SI_UNDEFINED, "SI_UNDEFINED","siginfo contains partial information" },
771
{ SI_EMPTY, "SI_EMPTY", "siginfo contains no useful information" },
772
#endif
773
774
#ifdef __sun
775
{ SI_NOINFO, "SI_NOINFO", "No signal information" },
776
{ SI_RCTL, "SI_RCTL", "kernel generated signal via rctl action" },
777
{ SI_LWP, "SI_LWP", "Signal sent via lwp_kill" },
778
#endif
779
780
{ -1, NULL, NULL }
781
};
782
783
const char* s_code = NULL;
784
const char* s_desc = NULL;
785
786
for (int i = 0; t1[i].sig != -1; i ++) {
787
if (t1[i].sig == si->si_signo && t1[i].code == si->si_code) {
788
s_code = t1[i].s_code;
789
s_desc = t1[i].s_desc;
790
break;
791
}
792
}
793
794
if (s_code == NULL) {
795
for (int i = 0; t2[i].s_code != NULL; i ++) {
796
if (t2[i].code == si->si_code) {
797
s_code = t2[i].s_code;
798
s_desc = t2[i].s_desc;
799
}
800
}
801
}
802
803
if (s_code == NULL) {
804
out->s_name = "unknown";
805
out->s_desc = "unknown";
806
return false;
807
}
808
809
out->s_name = s_code;
810
out->s_desc = s_desc;
811
812
return true;
813
}
814
815
// A POSIX conform, platform-independend siginfo print routine.
816
// Short print out on one line.
817
void os::Posix::print_siginfo_brief(outputStream* os, const siginfo_t* si) {
818
char buf[20];
819
os->print("siginfo: ");
820
821
if (!si) {
822
os->print("<null>");
823
return;
824
}
825
826
// See print_siginfo_full() for details.
827
const int sig = si->si_signo;
828
829
os->print("si_signo: %d (%s)", sig, os::Posix::get_signal_name(sig, buf, sizeof(buf)));
830
831
enum_sigcode_desc_t ed;
832
if (get_signal_code_description(si, &ed)) {
833
os->print(", si_code: %d (%s)", si->si_code, ed.s_name);
834
} else {
835
os->print(", si_code: %d (unknown)", si->si_code);
836
}
837
838
if (si->si_errno) {
839
os->print(", si_errno: %d", si->si_errno);
840
}
841
842
const int me = (int) ::getpid();
843
const int pid = (int) si->si_pid;
844
845
if (si->si_code == SI_USER || si->si_code == SI_QUEUE) {
846
if (IS_VALID_PID(pid) && pid != me) {
847
os->print(", sent from pid: %d (uid: %d)", pid, (int) si->si_uid);
848
}
849
} else if (sig == SIGSEGV || sig == SIGBUS || sig == SIGILL ||
850
sig == SIGTRAP || sig == SIGFPE) {
851
os->print(", si_addr: " PTR_FORMAT, si->si_addr);
852
#ifdef SIGPOLL
853
} else if (sig == SIGPOLL) {
854
os->print(", si_band: " PTR64_FORMAT, (uint64_t)si->si_band);
855
#endif
856
} else if (sig == SIGCHLD) {
857
os->print_cr(", si_pid: %d, si_uid: %d, si_status: %d", (int) si->si_pid, si->si_uid, si->si_status);
858
}
859
}
860
861
Thread* os::ThreadCrashProtection::_protected_thread = NULL;
862
os::ThreadCrashProtection* os::ThreadCrashProtection::_crash_protection = NULL;
863
volatile intptr_t os::ThreadCrashProtection::_crash_mux = 0;
864
865
os::ThreadCrashProtection::ThreadCrashProtection() {
866
}
867
868
/*
869
* See the caveats for this class in os_posix.hpp
870
* Protects the callback call so that SIGSEGV / SIGBUS jumps back into this
871
* method and returns false. If none of the signals are raised, returns true.
872
* The callback is supposed to provide the method that should be protected.
873
*/
874
bool os::ThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
875
sigset_t saved_sig_mask;
876
877
Thread::muxAcquire(&_crash_mux, "CrashProtection");
878
879
_protected_thread = ThreadLocalStorage::thread();
880
assert(_protected_thread != NULL, "Cannot crash protect a NULL thread");
881
882
// we cannot rely on sigsetjmp/siglongjmp to save/restore the signal mask
883
// since on at least some systems (OS X) siglongjmp will restore the mask
884
// for the process, not the thread
885
pthread_sigmask(0, NULL, &saved_sig_mask);
886
if (sigsetjmp(_jmpbuf, 0) == 0) {
887
// make sure we can see in the signal handler that we have crash protection
888
// installed
889
_crash_protection = this;
890
cb.call();
891
// and clear the crash protection
892
_crash_protection = NULL;
893
_protected_thread = NULL;
894
Thread::muxRelease(&_crash_mux);
895
return true;
896
}
897
// this happens when we siglongjmp() back
898
pthread_sigmask(SIG_SETMASK, &saved_sig_mask, NULL);
899
_crash_protection = NULL;
900
_protected_thread = NULL;
901
Thread::muxRelease(&_crash_mux);
902
return false;
903
}
904
905
void os::ThreadCrashProtection::restore() {
906
assert(_crash_protection != NULL, "must have crash protection");
907
siglongjmp(_jmpbuf, 1);
908
}
909
910
void os::ThreadCrashProtection::check_crash_protection(int sig,
911
Thread* thread) {
912
913
if (thread != NULL &&
914
thread == _protected_thread &&
915
_crash_protection != NULL) {
916
917
if (sig == SIGSEGV || sig == SIGBUS) {
918
_crash_protection->restore();
919
}
920
}
921
}
922
923