Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/os/solaris/vm/perfMemory_solaris.cpp
32285 views
1
/*
2
* Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "classfile/vmSymbols.hpp"
27
#include "memory/allocation.inline.hpp"
28
#include "memory/resourceArea.hpp"
29
#include "oops/oop.inline.hpp"
30
#include "os_solaris.inline.hpp"
31
#include "runtime/handles.inline.hpp"
32
#include "runtime/perfMemory.hpp"
33
#include "services/memTracker.hpp"
34
#include "utilities/exceptions.hpp"
35
36
// put OS-includes here
37
# include <sys/types.h>
38
# include <sys/mman.h>
39
# include <errno.h>
40
# include <stdio.h>
41
# include <unistd.h>
42
# include <sys/stat.h>
43
# include <signal.h>
44
# include <pwd.h>
45
# include <procfs.h>
46
47
48
static char* backing_store_file_name = NULL; // name of the backing store
49
// file, if successfully created.
50
51
// Standard Memory Implementation Details
52
53
// create the PerfData memory region in standard memory.
54
//
55
static char* create_standard_memory(size_t size) {
56
57
// allocate an aligned chuck of memory
58
char* mapAddress = os::reserve_memory(size);
59
60
if (mapAddress == NULL) {
61
return NULL;
62
}
63
64
// commit memory
65
if (!os::commit_memory(mapAddress, size, !ExecMem)) {
66
if (PrintMiscellaneous && Verbose) {
67
warning("Could not commit PerfData memory\n");
68
}
69
os::release_memory(mapAddress, size);
70
return NULL;
71
}
72
73
return mapAddress;
74
}
75
76
// delete the PerfData memory region
77
//
78
static void delete_standard_memory(char* addr, size_t size) {
79
80
// there are no persistent external resources to cleanup for standard
81
// memory. since DestroyJavaVM does not support unloading of the JVM,
82
// cleanup of the memory resource is not performed. The memory will be
83
// reclaimed by the OS upon termination of the process.
84
//
85
return;
86
}
87
88
// save the specified memory region to the given file
89
//
90
// Note: this function might be called from signal handler (by os::abort()),
91
// don't allocate heap memory.
92
//
93
static void save_memory_to_file(char* addr, size_t size) {
94
95
const char* destfile = PerfMemory::get_perfdata_file_path();
96
assert(destfile[0] != '\0', "invalid PerfData file path");
97
98
int result;
99
100
RESTARTABLE(::open(destfile, O_CREAT|O_WRONLY|O_TRUNC, S_IREAD|S_IWRITE),
101
result);;
102
if (result == OS_ERR) {
103
if (PrintMiscellaneous && Verbose) {
104
warning("Could not create Perfdata save file: %s: %s\n",
105
destfile, strerror(errno));
106
}
107
} else {
108
109
int fd = result;
110
111
for (size_t remaining = size; remaining > 0;) {
112
113
RESTARTABLE(::write(fd, addr, remaining), result);
114
if (result == OS_ERR) {
115
if (PrintMiscellaneous && Verbose) {
116
warning("Could not write Perfdata save file: %s: %s\n",
117
destfile, strerror(errno));
118
}
119
break;
120
}
121
remaining -= (size_t)result;
122
addr += result;
123
}
124
125
result = ::close(fd);
126
if (PrintMiscellaneous && Verbose) {
127
if (result == OS_ERR) {
128
warning("Could not close %s: %s\n", destfile, strerror(errno));
129
}
130
}
131
}
132
FREE_C_HEAP_ARRAY(char, destfile, mtInternal);
133
}
134
135
136
// Shared Memory Implementation Details
137
138
// Note: the solaris and linux shared memory implementation uses the mmap
139
// interface with a backing store file to implement named shared memory.
140
// Using the file system as the name space for shared memory allows a
141
// common name space to be supported across a variety of platforms. It
142
// also provides a name space that Java applications can deal with through
143
// simple file apis.
144
//
145
// The solaris and linux implementations store the backing store file in
146
// a user specific temporary directory located in the /tmp file system,
147
// which is always a local file system and is sometimes a RAM based file
148
// system.
149
150
// return the user specific temporary directory name.
151
//
152
// the caller is expected to free the allocated memory.
153
//
154
static char* get_user_tmp_dir(const char* user) {
155
156
const char* tmpdir = os::get_temp_directory();
157
const char* perfdir = PERFDATA_NAME;
158
size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
159
char* dirname = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
160
161
// construct the path name to user specific tmp directory
162
snprintf(dirname, nbytes, "%s/%s_%s", tmpdir, perfdir, user);
163
164
return dirname;
165
}
166
167
// convert the given file name into a process id. if the file
168
// does not meet the file naming constraints, return 0.
169
//
170
static pid_t filename_to_pid(const char* filename) {
171
172
// a filename that doesn't begin with a digit is not a
173
// candidate for conversion.
174
//
175
if (!isdigit(*filename)) {
176
return 0;
177
}
178
179
// check if file name can be converted to an integer without
180
// any leftover characters.
181
//
182
char* remainder = NULL;
183
errno = 0;
184
pid_t pid = (pid_t)strtol(filename, &remainder, 10);
185
186
if (errno != 0) {
187
return 0;
188
}
189
190
// check for left over characters. If any, then the filename is
191
// not a candidate for conversion.
192
//
193
if (remainder != NULL && *remainder != '\0') {
194
return 0;
195
}
196
197
// successful conversion, return the pid
198
return pid;
199
}
200
201
202
// Check if the given statbuf is considered a secure directory for
203
// the backing store files. Returns true if the directory is considered
204
// a secure location. Returns false if the statbuf is a symbolic link or
205
// if an error occurred.
206
//
207
static bool is_statbuf_secure(struct stat *statp) {
208
if (S_ISLNK(statp->st_mode) || !S_ISDIR(statp->st_mode)) {
209
// The path represents a link or some non-directory file type,
210
// which is not what we expected. Declare it insecure.
211
//
212
return false;
213
}
214
// We have an existing directory, check if the permissions are safe.
215
//
216
if ((statp->st_mode & (S_IWGRP|S_IWOTH)) != 0) {
217
// The directory is open for writing and could be subjected
218
// to a symlink or a hard link attack. Declare it insecure.
219
//
220
return false;
221
}
222
// If user is not root then see if the uid of the directory matches the effective uid of the process.
223
uid_t euid = geteuid();
224
if ((euid != 0) && (statp->st_uid != euid)) {
225
// The directory was not created by this user, declare it insecure.
226
//
227
return false;
228
}
229
return true;
230
}
231
232
233
// Check if the given path is considered a secure directory for
234
// the backing store files. Returns true if the directory exists
235
// and is considered a secure location. Returns false if the path
236
// is a symbolic link or if an error occurred.
237
//
238
static bool is_directory_secure(const char* path) {
239
struct stat statbuf;
240
int result = 0;
241
242
RESTARTABLE(::lstat(path, &statbuf), result);
243
if (result == OS_ERR) {
244
return false;
245
}
246
247
// The path exists, see if it is secure.
248
return is_statbuf_secure(&statbuf);
249
}
250
251
252
// Check if the given directory file descriptor is considered a secure
253
// directory for the backing store files. Returns true if the directory
254
// exists and is considered a secure location. Returns false if the path
255
// is a symbolic link or if an error occurred.
256
//
257
static bool is_dirfd_secure(int dir_fd) {
258
struct stat statbuf;
259
int result = 0;
260
261
RESTARTABLE(::fstat(dir_fd, &statbuf), result);
262
if (result == OS_ERR) {
263
return false;
264
}
265
266
// The path exists, now check its mode.
267
return is_statbuf_secure(&statbuf);
268
}
269
270
271
// Check to make sure fd1 and fd2 are referencing the same file system object.
272
//
273
static bool is_same_fsobject(int fd1, int fd2) {
274
struct stat statbuf1;
275
struct stat statbuf2;
276
int result = 0;
277
278
RESTARTABLE(::fstat(fd1, &statbuf1), result);
279
if (result == OS_ERR) {
280
return false;
281
}
282
RESTARTABLE(::fstat(fd2, &statbuf2), result);
283
if (result == OS_ERR) {
284
return false;
285
}
286
287
if ((statbuf1.st_ino == statbuf2.st_ino) &&
288
(statbuf1.st_dev == statbuf2.st_dev)) {
289
return true;
290
} else {
291
return false;
292
}
293
}
294
295
296
// Open the directory of the given path and validate it.
297
// Return a DIR * of the open directory.
298
//
299
static DIR *open_directory_secure(const char* dirname) {
300
// Open the directory using open() so that it can be verified
301
// to be secure by calling is_dirfd_secure(), opendir() and then check
302
// to see if they are the same file system object. This method does not
303
// introduce a window of opportunity for the directory to be attacked that
304
// calling opendir() and is_directory_secure() does.
305
int result;
306
DIR *dirp = NULL;
307
RESTARTABLE(::open(dirname, O_RDONLY|O_NOFOLLOW), result);
308
if (result == OS_ERR) {
309
// Directory doesn't exist or is a symlink, so there is nothing to cleanup.
310
if (PrintMiscellaneous && Verbose) {
311
if (errno == ELOOP) {
312
warning("directory %s is a symlink and is not secure\n", dirname);
313
} else {
314
warning("could not open directory %s: %s\n", dirname, strerror(errno));
315
}
316
}
317
return dirp;
318
}
319
int fd = result;
320
321
// Determine if the open directory is secure.
322
if (!is_dirfd_secure(fd)) {
323
// The directory is not a secure directory.
324
os::close(fd);
325
return dirp;
326
}
327
328
// Open the directory.
329
dirp = ::opendir(dirname);
330
if (dirp == NULL) {
331
// The directory doesn't exist, close fd and return.
332
os::close(fd);
333
return dirp;
334
}
335
336
// Check to make sure fd and dirp are referencing the same file system object.
337
if (!is_same_fsobject(fd, dirp->dd_fd)) {
338
// The directory is not secure.
339
os::close(fd);
340
os::closedir(dirp);
341
dirp = NULL;
342
return dirp;
343
}
344
345
// Close initial open now that we know directory is secure
346
os::close(fd);
347
348
return dirp;
349
}
350
351
// NOTE: The code below uses fchdir(), open() and unlink() because
352
// fdopendir(), openat() and unlinkat() are not supported on all
353
// versions. Once the support for fdopendir(), openat() and unlinkat()
354
// is available on all supported versions the code can be changed
355
// to use these functions.
356
357
// Open the directory of the given path, validate it and set the
358
// current working directory to it.
359
// Return a DIR * of the open directory and the saved cwd fd.
360
//
361
static DIR *open_directory_secure_cwd(const char* dirname, int *saved_cwd_fd) {
362
363
// Open the directory.
364
DIR* dirp = open_directory_secure(dirname);
365
if (dirp == NULL) {
366
// Directory doesn't exist or is insecure, so there is nothing to cleanup.
367
return dirp;
368
}
369
int fd = dirp->dd_fd;
370
371
// Open a fd to the cwd and save it off.
372
int result;
373
RESTARTABLE(::open(".", O_RDONLY), result);
374
if (result == OS_ERR) {
375
*saved_cwd_fd = -1;
376
} else {
377
*saved_cwd_fd = result;
378
}
379
380
// Set the current directory to dirname by using the fd of the directory and
381
// handle errors, otherwise shared memory files will be created in cwd.
382
result = fchdir(fd);
383
if (result == OS_ERR) {
384
if (PrintMiscellaneous && Verbose) {
385
warning("could not change to directory %s", dirname);
386
}
387
if (*saved_cwd_fd != -1) {
388
::close(*saved_cwd_fd);
389
*saved_cwd_fd = -1;
390
}
391
// Close the directory.
392
os::closedir(dirp);
393
return NULL;
394
} else {
395
return dirp;
396
}
397
}
398
399
// Close the directory and restore the current working directory.
400
//
401
static void close_directory_secure_cwd(DIR* dirp, int saved_cwd_fd) {
402
403
int result;
404
// If we have a saved cwd change back to it and close the fd.
405
if (saved_cwd_fd != -1) {
406
result = fchdir(saved_cwd_fd);
407
::close(saved_cwd_fd);
408
}
409
410
// Close the directory.
411
os::closedir(dirp);
412
}
413
414
// Check if the given file descriptor is considered a secure.
415
//
416
static bool is_file_secure(int fd, const char *filename) {
417
418
int result;
419
struct stat statbuf;
420
421
// Determine if the file is secure.
422
RESTARTABLE(::fstat(fd, &statbuf), result);
423
if (result == OS_ERR) {
424
if (PrintMiscellaneous && Verbose) {
425
warning("fstat failed on %s: %s\n", filename, strerror(errno));
426
}
427
return false;
428
}
429
if (statbuf.st_nlink > 1) {
430
// A file with multiple links is not expected.
431
if (PrintMiscellaneous && Verbose) {
432
warning("file %s has multiple links\n", filename);
433
}
434
return false;
435
}
436
return true;
437
}
438
439
// return the user name for the given user id
440
//
441
// the caller is expected to free the allocated memory.
442
//
443
static char* get_user_name(uid_t uid) {
444
445
struct passwd pwent;
446
447
// determine the max pwbuf size from sysconf, and hardcode
448
// a default if this not available through sysconf.
449
//
450
long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
451
if (bufsize == -1)
452
bufsize = 1024;
453
454
char* pwbuf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
455
456
#ifdef _GNU_SOURCE
457
struct passwd* p = NULL;
458
int result = getpwuid_r(uid, &pwent, pwbuf, (size_t)bufsize, &p);
459
#else // _GNU_SOURCE
460
struct passwd* p = getpwuid_r(uid, &pwent, pwbuf, (int)bufsize);
461
#endif // _GNU_SOURCE
462
463
if (p == NULL || p->pw_name == NULL || *(p->pw_name) == '\0') {
464
if (PrintMiscellaneous && Verbose) {
465
if (p == NULL) {
466
warning("Could not retrieve passwd entry: %s\n",
467
strerror(errno));
468
}
469
else {
470
warning("Could not determine user name: %s\n",
471
p->pw_name == NULL ? "pw_name = NULL" :
472
"pw_name zero length");
473
}
474
}
475
FREE_C_HEAP_ARRAY(char, pwbuf, mtInternal);
476
return NULL;
477
}
478
479
char* user_name = NEW_C_HEAP_ARRAY(char, strlen(p->pw_name) + 1, mtInternal);
480
strcpy(user_name, p->pw_name);
481
482
FREE_C_HEAP_ARRAY(char, pwbuf, mtInternal);
483
return user_name;
484
}
485
486
// return the name of the user that owns the process identified by vmid.
487
//
488
// This method uses a slow directory search algorithm to find the backing
489
// store file for the specified vmid and returns the user name, as determined
490
// by the user name suffix of the hsperfdata_<username> directory name.
491
//
492
// the caller is expected to free the allocated memory.
493
//
494
static char* get_user_name_slow(int vmid, TRAPS) {
495
496
// short circuit the directory search if the process doesn't even exist.
497
if (kill(vmid, 0) == OS_ERR) {
498
if (errno == ESRCH) {
499
THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(),
500
"Process not found");
501
}
502
else /* EPERM */ {
503
THROW_MSG_0(vmSymbols::java_io_IOException(), strerror(errno));
504
}
505
}
506
507
// directory search
508
char* oldest_user = NULL;
509
time_t oldest_ctime = 0;
510
511
const char* tmpdirname = os::get_temp_directory();
512
513
// open the temp directory
514
DIR* tmpdirp = os::opendir(tmpdirname);
515
516
if (tmpdirp == NULL) {
517
// Cannot open the directory to get the user name, return.
518
return NULL;
519
}
520
521
// for each entry in the directory that matches the pattern hsperfdata_*,
522
// open the directory and check if the file for the given vmid exists.
523
// The file with the expected name and the latest creation date is used
524
// to determine the user name for the process id.
525
//
526
struct dirent* dentry;
527
errno = 0;
528
while ((dentry = os::readdir(tmpdirp)) != NULL) {
529
530
// check if the directory entry is a hsperfdata file
531
if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
532
continue;
533
}
534
535
char* usrdir_name = NEW_C_HEAP_ARRAY(char,
536
strlen(tmpdirname) + strlen(dentry->d_name) + 2, mtInternal);
537
strcpy(usrdir_name, tmpdirname);
538
strcat(usrdir_name, "/");
539
strcat(usrdir_name, dentry->d_name);
540
541
// open the user directory
542
DIR* subdirp = open_directory_secure(usrdir_name);
543
544
if (subdirp == NULL) {
545
FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
546
continue;
547
}
548
549
// Since we don't create the backing store files in directories
550
// pointed to by symbolic links, we also don't follow them when
551
// looking for the files. We check for a symbolic link after the
552
// call to opendir in order to eliminate a small window where the
553
// symlink can be exploited.
554
//
555
if (!is_directory_secure(usrdir_name)) {
556
FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
557
os::closedir(subdirp);
558
continue;
559
}
560
561
struct dirent* udentry;
562
errno = 0;
563
while ((udentry = os::readdir(subdirp)) != NULL) {
564
565
if (filename_to_pid(udentry->d_name) == vmid) {
566
struct stat statbuf;
567
int result;
568
569
char* filename = NEW_C_HEAP_ARRAY(char,
570
strlen(usrdir_name) + strlen(udentry->d_name) + 2, mtInternal);
571
572
strcpy(filename, usrdir_name);
573
strcat(filename, "/");
574
strcat(filename, udentry->d_name);
575
576
// don't follow symbolic links for the file
577
RESTARTABLE(::lstat(filename, &statbuf), result);
578
if (result == OS_ERR) {
579
FREE_C_HEAP_ARRAY(char, filename, mtInternal);
580
continue;
581
}
582
583
// skip over files that are not regular files.
584
if (!S_ISREG(statbuf.st_mode)) {
585
FREE_C_HEAP_ARRAY(char, filename, mtInternal);
586
continue;
587
}
588
589
// compare and save filename with latest creation time
590
if (statbuf.st_size > 0 && statbuf.st_ctime > oldest_ctime) {
591
592
if (statbuf.st_ctime > oldest_ctime) {
593
char* user = strchr(dentry->d_name, '_') + 1;
594
595
if (oldest_user != NULL) FREE_C_HEAP_ARRAY(char, oldest_user, mtInternal);
596
oldest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
597
598
strcpy(oldest_user, user);
599
oldest_ctime = statbuf.st_ctime;
600
}
601
}
602
603
FREE_C_HEAP_ARRAY(char, filename, mtInternal);
604
}
605
}
606
os::closedir(subdirp);
607
FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
608
}
609
os::closedir(tmpdirp);
610
611
return(oldest_user);
612
}
613
614
// return the name of the user that owns the JVM indicated by the given vmid.
615
//
616
static char* get_user_name(int vmid, TRAPS) {
617
618
char psinfo_name[PATH_MAX];
619
int result;
620
621
snprintf(psinfo_name, PATH_MAX, "/proc/%d/psinfo", vmid);
622
623
RESTARTABLE(::open(psinfo_name, O_RDONLY), result);
624
625
if (result != OS_ERR) {
626
int fd = result;
627
628
psinfo_t psinfo;
629
char* addr = (char*)&psinfo;
630
631
for (size_t remaining = sizeof(psinfo_t); remaining > 0;) {
632
633
RESTARTABLE(::read(fd, addr, remaining), result);
634
if (result == OS_ERR) {
635
::close(fd);
636
THROW_MSG_0(vmSymbols::java_io_IOException(), "Read error");
637
} else {
638
remaining-=result;
639
addr+=result;
640
}
641
}
642
643
::close(fd);
644
645
// get the user name for the effective user id of the process
646
char* user_name = get_user_name(psinfo.pr_euid);
647
648
return user_name;
649
}
650
651
if (result == OS_ERR && errno == EACCES) {
652
653
// In this case, the psinfo file for the process id existed,
654
// but we didn't have permission to access it.
655
THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(),
656
strerror(errno));
657
}
658
659
// at this point, we don't know if the process id itself doesn't
660
// exist or if the psinfo file doesn't exit. If the psinfo file
661
// doesn't exist, then we are running on Solaris 2.5.1 or earlier.
662
// since the structured procfs and old procfs interfaces can't be
663
// mixed, we attempt to find the file through a directory search.
664
665
return get_user_name_slow(vmid, THREAD);
666
}
667
668
// return the file name of the backing store file for the named
669
// shared memory region for the given user name and vmid.
670
//
671
// the caller is expected to free the allocated memory.
672
//
673
static char* get_sharedmem_filename(const char* dirname, int vmid) {
674
675
// add 2 for the file separator and a NULL terminator.
676
size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
677
678
char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
679
snprintf(name, nbytes, "%s/%d", dirname, vmid);
680
681
return name;
682
}
683
684
685
// remove file
686
//
687
// this method removes the file specified by the given path
688
//
689
static void remove_file(const char* path) {
690
691
int result;
692
693
// if the file is a directory, the following unlink will fail. since
694
// we don't expect to find directories in the user temp directory, we
695
// won't try to handle this situation. even if accidentially or
696
// maliciously planted, the directory's presence won't hurt anything.
697
//
698
RESTARTABLE(::unlink(path), result);
699
if (PrintMiscellaneous && Verbose && result == OS_ERR) {
700
if (errno != ENOENT) {
701
warning("Could not unlink shared memory backing"
702
" store file %s : %s\n", path, strerror(errno));
703
}
704
}
705
}
706
707
708
// cleanup stale shared memory resources
709
//
710
// This method attempts to remove all stale shared memory files in
711
// the named user temporary directory. It scans the named directory
712
// for files matching the pattern ^$[0-9]*$. For each file found, the
713
// process id is extracted from the file name and a test is run to
714
// determine if the process is alive. If the process is not alive,
715
// any stale file resources are removed.
716
//
717
static void cleanup_sharedmem_resources(const char* dirname) {
718
719
int saved_cwd_fd;
720
// open the directory
721
DIR* dirp = open_directory_secure_cwd(dirname, &saved_cwd_fd);
722
if (dirp == NULL) {
723
// directory doesn't exist or is insecure, so there is nothing to cleanup
724
return;
725
}
726
727
// for each entry in the directory that matches the expected file
728
// name pattern, determine if the file resources are stale and if
729
// so, remove the file resources. Note, instrumented HotSpot processes
730
// for this user may start and/or terminate during this search and
731
// remove or create new files in this directory. The behavior of this
732
// loop under these conditions is dependent upon the implementation of
733
// opendir/readdir.
734
//
735
struct dirent* entry;
736
errno = 0;
737
while ((entry = os::readdir(dirp)) != NULL) {
738
739
pid_t pid = filename_to_pid(entry->d_name);
740
741
if (pid == 0) {
742
743
if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
744
745
// attempt to remove all unexpected files, except "." and ".."
746
unlink(entry->d_name);
747
}
748
749
errno = 0;
750
continue;
751
}
752
753
// we now have a file name that converts to a valid integer
754
// that could represent a process id . if this process id
755
// matches the current process id or the process is not running,
756
// then remove the stale file resources.
757
//
758
// process liveness is detected by sending signal number 0 to
759
// the process id (see kill(2)). if kill determines that the
760
// process does not exist, then the file resources are removed.
761
// if kill determines that that we don't have permission to
762
// signal the process, then the file resources are assumed to
763
// be stale and are removed because the resources for such a
764
// process should be in a different user specific directory.
765
//
766
if ((pid == os::current_process_id()) ||
767
(kill(pid, 0) == OS_ERR && (errno == ESRCH || errno == EPERM))) {
768
769
unlink(entry->d_name);
770
}
771
errno = 0;
772
}
773
774
// close the directory and reset the current working directory
775
close_directory_secure_cwd(dirp, saved_cwd_fd);
776
777
}
778
779
// make the user specific temporary directory. Returns true if
780
// the directory exists and is secure upon return. Returns false
781
// if the directory exists but is either a symlink, is otherwise
782
// insecure, or if an error occurred.
783
//
784
static bool make_user_tmp_dir(const char* dirname) {
785
786
// create the directory with 0755 permissions. note that the directory
787
// will be owned by euid::egid, which may not be the same as uid::gid.
788
//
789
if (mkdir(dirname, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH) == OS_ERR) {
790
if (errno == EEXIST) {
791
// The directory already exists and was probably created by another
792
// JVM instance. However, this could also be the result of a
793
// deliberate symlink. Verify that the existing directory is safe.
794
//
795
if (!is_directory_secure(dirname)) {
796
// directory is not secure
797
if (PrintMiscellaneous && Verbose) {
798
warning("%s directory is insecure\n", dirname);
799
}
800
return false;
801
}
802
}
803
else {
804
// we encountered some other failure while attempting
805
// to create the directory
806
//
807
if (PrintMiscellaneous && Verbose) {
808
warning("could not create directory %s: %s\n",
809
dirname, strerror(errno));
810
}
811
return false;
812
}
813
}
814
return true;
815
}
816
817
// create the shared memory file resources
818
//
819
// This method creates the shared memory file with the given size
820
// This method also creates the user specific temporary directory, if
821
// it does not yet exist.
822
//
823
static int create_sharedmem_resources(const char* dirname, const char* filename, size_t size) {
824
825
// make the user temporary directory
826
if (!make_user_tmp_dir(dirname)) {
827
// could not make/find the directory or the found directory
828
// was not secure
829
return -1;
830
}
831
832
int saved_cwd_fd;
833
// open the directory and set the current working directory to it
834
DIR* dirp = open_directory_secure_cwd(dirname, &saved_cwd_fd);
835
if (dirp == NULL) {
836
// Directory doesn't exist or is insecure, so cannot create shared
837
// memory file.
838
return -1;
839
}
840
841
// Open the filename in the current directory.
842
// Cannot use O_TRUNC here; truncation of an existing file has to happen
843
// after the is_file_secure() check below.
844
int result;
845
RESTARTABLE(::open(filename, O_RDWR|O_CREAT|O_NOFOLLOW, S_IREAD|S_IWRITE), result);
846
if (result == OS_ERR) {
847
if (PrintMiscellaneous && Verbose) {
848
if (errno == ELOOP) {
849
warning("file %s is a symlink and is not secure\n", filename);
850
} else {
851
warning("could not create file %s: %s\n", filename, strerror(errno));
852
}
853
}
854
// close the directory and reset the current working directory
855
close_directory_secure_cwd(dirp, saved_cwd_fd);
856
857
return -1;
858
}
859
// close the directory and reset the current working directory
860
close_directory_secure_cwd(dirp, saved_cwd_fd);
861
862
// save the file descriptor
863
int fd = result;
864
865
// check to see if the file is secure
866
if (!is_file_secure(fd, filename)) {
867
::close(fd);
868
return -1;
869
}
870
871
// truncate the file to get rid of any existing data
872
RESTARTABLE(::ftruncate(fd, (off_t)0), result);
873
if (result == OS_ERR) {
874
if (PrintMiscellaneous && Verbose) {
875
warning("could not truncate shared memory file: %s\n", strerror(errno));
876
}
877
::close(fd);
878
return -1;
879
}
880
// set the file size
881
RESTARTABLE(::ftruncate(fd, (off_t)size), result);
882
if (result == OS_ERR) {
883
if (PrintMiscellaneous && Verbose) {
884
warning("could not set shared memory file size: %s\n", strerror(errno));
885
}
886
::close(fd);
887
return -1;
888
}
889
890
return fd;
891
}
892
893
// open the shared memory file for the given user and vmid. returns
894
// the file descriptor for the open file or -1 if the file could not
895
// be opened.
896
//
897
static int open_sharedmem_file(const char* filename, int oflags, TRAPS) {
898
899
// open the file
900
int result;
901
RESTARTABLE(::open(filename, oflags), result);
902
if (result == OS_ERR) {
903
if (errno == ENOENT) {
904
THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
905
"Process not found", OS_ERR);
906
}
907
else if (errno == EACCES) {
908
THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
909
"Permission denied", OS_ERR);
910
}
911
else {
912
THROW_MSG_(vmSymbols::java_io_IOException(), strerror(errno), OS_ERR);
913
}
914
}
915
int fd = result;
916
917
// check to see if the file is secure
918
if (!is_file_secure(fd, filename)) {
919
::close(fd);
920
return -1;
921
}
922
923
return fd;
924
}
925
926
// create a named shared memory region. returns the address of the
927
// memory region on success or NULL on failure. A return value of
928
// NULL will ultimately disable the shared memory feature.
929
//
930
// On Solaris and Linux, the name space for shared memory objects
931
// is the file system name space.
932
//
933
// A monitoring application attaching to a JVM does not need to know
934
// the file system name of the shared memory object. However, it may
935
// be convenient for applications to discover the existence of newly
936
// created and terminating JVMs by watching the file system name space
937
// for files being created or removed.
938
//
939
static char* mmap_create_shared(size_t size) {
940
941
int result;
942
int fd;
943
char* mapAddress;
944
945
int vmid = os::current_process_id();
946
947
char* user_name = get_user_name(geteuid());
948
949
if (user_name == NULL)
950
return NULL;
951
952
char* dirname = get_user_tmp_dir(user_name);
953
char* filename = get_sharedmem_filename(dirname, vmid);
954
955
// get the short filename
956
char* short_filename = strrchr(filename, '/');
957
if (short_filename == NULL) {
958
short_filename = filename;
959
} else {
960
short_filename++;
961
}
962
963
// cleanup any stale shared memory files
964
cleanup_sharedmem_resources(dirname);
965
966
assert(((size > 0) && (size % os::vm_page_size() == 0)),
967
"unexpected PerfMemory region size");
968
969
fd = create_sharedmem_resources(dirname, short_filename, size);
970
971
FREE_C_HEAP_ARRAY(char, user_name, mtInternal);
972
FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
973
974
if (fd == -1) {
975
FREE_C_HEAP_ARRAY(char, filename, mtInternal);
976
return NULL;
977
}
978
979
mapAddress = (char*)::mmap((char*)0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
980
981
result = ::close(fd);
982
assert(result != OS_ERR, "could not close file");
983
984
if (mapAddress == MAP_FAILED) {
985
if (PrintMiscellaneous && Verbose) {
986
warning("mmap failed - %s\n", strerror(errno));
987
}
988
remove_file(filename);
989
FREE_C_HEAP_ARRAY(char, filename, mtInternal);
990
return NULL;
991
}
992
993
// save the file name for use in delete_shared_memory()
994
backing_store_file_name = filename;
995
996
// clear the shared memory region
997
(void)::memset((void*) mapAddress, 0, size);
998
999
// it does not go through os api, the operation has to record from here
1000
MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress,
1001
size, CURRENT_PC, mtInternal);
1002
1003
return mapAddress;
1004
}
1005
1006
// release a named shared memory region
1007
//
1008
static void unmap_shared(char* addr, size_t bytes) {
1009
os::release_memory(addr, bytes);
1010
}
1011
1012
// create the PerfData memory region in shared memory.
1013
//
1014
static char* create_shared_memory(size_t size) {
1015
1016
// create the shared memory region.
1017
return mmap_create_shared(size);
1018
}
1019
1020
// delete the shared PerfData memory region
1021
//
1022
static void delete_shared_memory(char* addr, size_t size) {
1023
1024
// cleanup the persistent shared memory resources. since DestroyJavaVM does
1025
// not support unloading of the JVM, unmapping of the memory resource is
1026
// not performed. The memory will be reclaimed by the OS upon termination of
1027
// the process. The backing store file is deleted from the file system.
1028
1029
assert(!PerfDisableSharedMem, "shouldn't be here");
1030
1031
if (backing_store_file_name != NULL) {
1032
remove_file(backing_store_file_name);
1033
// Don't.. Free heap memory could deadlock os::abort() if it is called
1034
// from signal handler. OS will reclaim the heap memory.
1035
// FREE_C_HEAP_ARRAY(char, backing_store_file_name);
1036
backing_store_file_name = NULL;
1037
}
1038
}
1039
1040
// return the size of the file for the given file descriptor
1041
// or 0 if it is not a valid size for a shared memory file
1042
//
1043
static size_t sharedmem_filesize(int fd, TRAPS) {
1044
1045
struct stat statbuf;
1046
int result;
1047
1048
RESTARTABLE(::fstat(fd, &statbuf), result);
1049
if (result == OS_ERR) {
1050
if (PrintMiscellaneous && Verbose) {
1051
warning("fstat failed: %s\n", strerror(errno));
1052
}
1053
THROW_MSG_0(vmSymbols::java_io_IOException(),
1054
"Could not determine PerfMemory size");
1055
}
1056
1057
if ((statbuf.st_size == 0) ||
1058
((size_t)statbuf.st_size % os::vm_page_size() != 0)) {
1059
THROW_MSG_0(vmSymbols::java_lang_Exception(),
1060
"Invalid PerfMemory size");
1061
}
1062
1063
return (size_t)statbuf.st_size;
1064
}
1065
1066
// attach to a named shared memory region.
1067
//
1068
static void mmap_attach_shared(const char* user, int vmid, PerfMemory::PerfMemoryMode mode, char** addr, size_t* sizep, TRAPS) {
1069
1070
char* mapAddress;
1071
int result;
1072
int fd;
1073
size_t size = 0;
1074
const char* luser = NULL;
1075
1076
int mmap_prot;
1077
int file_flags;
1078
1079
ResourceMark rm;
1080
1081
// map the high level access mode to the appropriate permission
1082
// constructs for the file and the shared memory mapping.
1083
if (mode == PerfMemory::PERF_MODE_RO) {
1084
mmap_prot = PROT_READ;
1085
file_flags = O_RDONLY | O_NOFOLLOW;
1086
}
1087
else if (mode == PerfMemory::PERF_MODE_RW) {
1088
#ifdef LATER
1089
mmap_prot = PROT_READ | PROT_WRITE;
1090
file_flags = O_RDWR | O_NOFOLLOW;
1091
#else
1092
THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1093
"Unsupported access mode");
1094
#endif
1095
}
1096
else {
1097
THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1098
"Illegal access mode");
1099
}
1100
1101
if (user == NULL || strlen(user) == 0) {
1102
luser = get_user_name(vmid, CHECK);
1103
}
1104
else {
1105
luser = user;
1106
}
1107
1108
if (luser == NULL) {
1109
THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1110
"Could not map vmid to user Name");
1111
}
1112
1113
char* dirname = get_user_tmp_dir(luser);
1114
1115
// since we don't follow symbolic links when creating the backing
1116
// store file, we don't follow them when attaching either.
1117
//
1118
if (!is_directory_secure(dirname)) {
1119
FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
1120
THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1121
"Process not found");
1122
}
1123
1124
char* filename = get_sharedmem_filename(dirname, vmid);
1125
1126
// copy heap memory to resource memory. the open_sharedmem_file
1127
// method below need to use the filename, but could throw an
1128
// exception. using a resource array prevents the leak that
1129
// would otherwise occur.
1130
char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
1131
strcpy(rfilename, filename);
1132
1133
// free the c heap resources that are no longer needed
1134
if (luser != user) FREE_C_HEAP_ARRAY(char, luser, mtInternal);
1135
FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
1136
FREE_C_HEAP_ARRAY(char, filename, mtInternal);
1137
1138
// open the shared memory file for the give vmid
1139
fd = open_sharedmem_file(rfilename, file_flags, THREAD);
1140
1141
if (fd == OS_ERR) {
1142
return;
1143
}
1144
1145
if (HAS_PENDING_EXCEPTION) {
1146
::close(fd);
1147
return;
1148
}
1149
1150
if (*sizep == 0) {
1151
size = sharedmem_filesize(fd, CHECK);
1152
} else {
1153
size = *sizep;
1154
}
1155
1156
assert(size > 0, "unexpected size <= 0");
1157
1158
mapAddress = (char*)::mmap((char*)0, size, mmap_prot, MAP_SHARED, fd, 0);
1159
1160
result = ::close(fd);
1161
assert(result != OS_ERR, "could not close file");
1162
1163
if (mapAddress == MAP_FAILED) {
1164
if (PrintMiscellaneous && Verbose) {
1165
warning("mmap failed: %s\n", strerror(errno));
1166
}
1167
THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
1168
"Could not map PerfMemory");
1169
}
1170
1171
// it does not go through os api, the operation has to record from here
1172
MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress,
1173
size, CURRENT_PC, mtInternal);
1174
1175
*addr = mapAddress;
1176
*sizep = size;
1177
1178
if (PerfTraceMemOps) {
1179
tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at "
1180
INTPTR_FORMAT "\n", size, vmid, (void*)mapAddress);
1181
}
1182
}
1183
1184
1185
1186
1187
// create the PerfData memory region
1188
//
1189
// This method creates the memory region used to store performance
1190
// data for the JVM. The memory may be created in standard or
1191
// shared memory.
1192
//
1193
void PerfMemory::create_memory_region(size_t size) {
1194
1195
if (PerfDisableSharedMem) {
1196
// do not share the memory for the performance data.
1197
_start = create_standard_memory(size);
1198
}
1199
else {
1200
_start = create_shared_memory(size);
1201
if (_start == NULL) {
1202
1203
// creation of the shared memory region failed, attempt
1204
// to create a contiguous, non-shared memory region instead.
1205
//
1206
if (PrintMiscellaneous && Verbose) {
1207
warning("Reverting to non-shared PerfMemory region.\n");
1208
}
1209
PerfDisableSharedMem = true;
1210
_start = create_standard_memory(size);
1211
}
1212
}
1213
1214
if (_start != NULL) _capacity = size;
1215
1216
}
1217
1218
// delete the PerfData memory region
1219
//
1220
// This method deletes the memory region used to store performance
1221
// data for the JVM. The memory region indicated by the <address, size>
1222
// tuple will be inaccessible after a call to this method.
1223
//
1224
void PerfMemory::delete_memory_region() {
1225
1226
assert((start() != NULL && capacity() > 0), "verify proper state");
1227
1228
// If user specifies PerfDataSaveFile, it will save the performance data
1229
// to the specified file name no matter whether PerfDataSaveToFile is specified
1230
// or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
1231
// -XX:+PerfDataSaveToFile.
1232
if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
1233
save_memory_to_file(start(), capacity());
1234
}
1235
1236
if (PerfDisableSharedMem) {
1237
delete_standard_memory(start(), capacity());
1238
}
1239
else {
1240
delete_shared_memory(start(), capacity());
1241
}
1242
}
1243
1244
// attach to the PerfData memory region for another JVM
1245
//
1246
// This method returns an <address, size> tuple that points to
1247
// a memory buffer that is kept reasonably synchronized with
1248
// the PerfData memory region for the indicated JVM. This
1249
// buffer may be kept in synchronization via shared memory
1250
// or some other mechanism that keeps the buffer updated.
1251
//
1252
// If the JVM chooses not to support the attachability feature,
1253
// this method should throw an UnsupportedOperation exception.
1254
//
1255
// This implementation utilizes named shared memory to map
1256
// the indicated process's PerfData memory region into this JVMs
1257
// address space.
1258
//
1259
void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode, char** addrp, size_t* sizep, TRAPS) {
1260
1261
if (vmid == 0 || vmid == os::current_process_id()) {
1262
*addrp = start();
1263
*sizep = capacity();
1264
return;
1265
}
1266
1267
mmap_attach_shared(user, vmid, mode, addrp, sizep, CHECK);
1268
}
1269
1270
// detach from the PerfData memory region of another JVM
1271
//
1272
// This method detaches the PerfData memory region of another
1273
// JVM, specified as an <address, size> tuple of a buffer
1274
// in this process's address space. This method may perform
1275
// arbitrary actions to accomplish the detachment. The memory
1276
// region specified by <address, size> will be inaccessible after
1277
// a call to this method.
1278
//
1279
// If the JVM chooses not to support the attachability feature,
1280
// this method should throw an UnsupportedOperation exception.
1281
//
1282
// This implementation utilizes named shared memory to detach
1283
// the indicated process's PerfData memory region from this
1284
// process's address space.
1285
//
1286
void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
1287
1288
assert(addr != 0, "address sanity check");
1289
assert(bytes > 0, "capacity sanity check");
1290
1291
if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
1292
// prevent accidental detachment of this process's PerfMemory region
1293
return;
1294
}
1295
1296
unmap_shared(addr, bytes);
1297
}
1298
1299
char* PerfMemory::backing_store_filename() {
1300
return backing_store_file_name;
1301
}
1302
1303