Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/adlc/formssel.cpp
32285 views
1
/*
2
* Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
// FORMS.CPP - Definitions for ADL Parser Forms Classes
26
#include "utilities/macros.hpp"
27
#include "adlc.hpp"
28
29
//==============================Instructions===================================
30
//------------------------------InstructForm-----------------------------------
31
InstructForm::InstructForm(const char *id, bool ideal_only)
32
: _ident(id), _ideal_only(ideal_only),
33
_localNames(cmpstr, hashstr, Form::arena),
34
_effects(cmpstr, hashstr, Form::arena),
35
_is_mach_constant(false),
36
_needs_constant_base(false),
37
_has_call(false)
38
{
39
_ftype = Form::INS;
40
41
_matrule = NULL;
42
_insencode = NULL;
43
_constant = NULL;
44
_is_postalloc_expand = false;
45
_opcode = NULL;
46
_size = NULL;
47
_attribs = NULL;
48
_predicate = NULL;
49
_exprule = NULL;
50
_rewrule = NULL;
51
_format = NULL;
52
_peephole = NULL;
53
_ins_pipe = NULL;
54
_uniq_idx = NULL;
55
_num_uniq = 0;
56
_cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
57
_cisc_spill_alternate = NULL; // possible cisc replacement
58
_cisc_reg_mask_name = NULL;
59
_is_cisc_alternate = false;
60
_is_short_branch = false;
61
_short_branch_form = NULL;
62
_alignment = 1;
63
}
64
65
InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
66
: _ident(id), _ideal_only(false),
67
_localNames(instr->_localNames),
68
_effects(instr->_effects),
69
_is_mach_constant(false),
70
_needs_constant_base(false),
71
_has_call(false)
72
{
73
_ftype = Form::INS;
74
75
_matrule = rule;
76
_insencode = instr->_insencode;
77
_constant = instr->_constant;
78
_is_postalloc_expand = instr->_is_postalloc_expand;
79
_opcode = instr->_opcode;
80
_size = instr->_size;
81
_attribs = instr->_attribs;
82
_predicate = instr->_predicate;
83
_exprule = instr->_exprule;
84
_rewrule = instr->_rewrule;
85
_format = instr->_format;
86
_peephole = instr->_peephole;
87
_ins_pipe = instr->_ins_pipe;
88
_uniq_idx = instr->_uniq_idx;
89
_num_uniq = instr->_num_uniq;
90
_cisc_spill_operand = Not_cisc_spillable; // Which operand may cisc-spill
91
_cisc_spill_alternate = NULL; // possible cisc replacement
92
_cisc_reg_mask_name = NULL;
93
_is_cisc_alternate = false;
94
_is_short_branch = false;
95
_short_branch_form = NULL;
96
_alignment = 1;
97
// Copy parameters
98
const char *name;
99
instr->_parameters.reset();
100
for (; (name = instr->_parameters.iter()) != NULL;)
101
_parameters.addName(name);
102
}
103
104
InstructForm::~InstructForm() {
105
}
106
107
InstructForm *InstructForm::is_instruction() const {
108
return (InstructForm*)this;
109
}
110
111
bool InstructForm::ideal_only() const {
112
return _ideal_only;
113
}
114
115
bool InstructForm::sets_result() const {
116
return (_matrule != NULL && _matrule->sets_result());
117
}
118
119
bool InstructForm::needs_projections() {
120
_components.reset();
121
for( Component *comp; (comp = _components.iter()) != NULL; ) {
122
if (comp->isa(Component::KILL)) {
123
return true;
124
}
125
}
126
return false;
127
}
128
129
130
bool InstructForm::has_temps() {
131
if (_matrule) {
132
// Examine each component to see if it is a TEMP
133
_components.reset();
134
// Skip the first component, if already handled as (SET dst (...))
135
Component *comp = NULL;
136
if (sets_result()) comp = _components.iter();
137
while ((comp = _components.iter()) != NULL) {
138
if (comp->isa(Component::TEMP)) {
139
return true;
140
}
141
}
142
}
143
144
return false;
145
}
146
147
uint InstructForm::num_defs_or_kills() {
148
uint defs_or_kills = 0;
149
150
_components.reset();
151
for( Component *comp; (comp = _components.iter()) != NULL; ) {
152
if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
153
++defs_or_kills;
154
}
155
}
156
157
return defs_or_kills;
158
}
159
160
// This instruction has an expand rule?
161
bool InstructForm::expands() const {
162
return ( _exprule != NULL );
163
}
164
165
// This instruction has a late expand rule?
166
bool InstructForm::postalloc_expands() const {
167
return _is_postalloc_expand;
168
}
169
170
// This instruction has a peephole rule?
171
Peephole *InstructForm::peepholes() const {
172
return _peephole;
173
}
174
175
// This instruction has a peephole rule?
176
void InstructForm::append_peephole(Peephole *peephole) {
177
if( _peephole == NULL ) {
178
_peephole = peephole;
179
} else {
180
_peephole->append_peephole(peephole);
181
}
182
}
183
184
185
// ideal opcode enumeration
186
const char *InstructForm::ideal_Opcode( FormDict &globalNames ) const {
187
if( !_matrule ) return "Node"; // Something weird
188
// Chain rules do not really have ideal Opcodes; use their source
189
// operand ideal Opcode instead.
190
if( is_simple_chain_rule(globalNames) ) {
191
const char *src = _matrule->_rChild->_opType;
192
OperandForm *src_op = globalNames[src]->is_operand();
193
assert( src_op, "Not operand class of chain rule" );
194
if( !src_op->_matrule ) return "Node";
195
return src_op->_matrule->_opType;
196
}
197
// Operand chain rules do not really have ideal Opcodes
198
if( _matrule->is_chain_rule(globalNames) )
199
return "Node";
200
return strcmp(_matrule->_opType,"Set")
201
? _matrule->_opType
202
: _matrule->_rChild->_opType;
203
}
204
205
// Recursive check on all operands' match rules in my match rule
206
bool InstructForm::is_pinned(FormDict &globals) {
207
if ( ! _matrule) return false;
208
209
int index = 0;
210
if (_matrule->find_type("Goto", index)) return true;
211
if (_matrule->find_type("If", index)) return true;
212
if (_matrule->find_type("CountedLoopEnd",index)) return true;
213
if (_matrule->find_type("Return", index)) return true;
214
if (_matrule->find_type("Rethrow", index)) return true;
215
if (_matrule->find_type("TailCall", index)) return true;
216
if (_matrule->find_type("TailJump", index)) return true;
217
if (_matrule->find_type("Halt", index)) return true;
218
if (_matrule->find_type("Jump", index)) return true;
219
220
return is_parm(globals);
221
}
222
223
// Recursive check on all operands' match rules in my match rule
224
bool InstructForm::is_projection(FormDict &globals) {
225
if ( ! _matrule) return false;
226
227
int index = 0;
228
if (_matrule->find_type("Goto", index)) return true;
229
if (_matrule->find_type("Return", index)) return true;
230
if (_matrule->find_type("Rethrow", index)) return true;
231
if (_matrule->find_type("TailCall",index)) return true;
232
if (_matrule->find_type("TailJump",index)) return true;
233
if (_matrule->find_type("Halt", index)) return true;
234
235
return false;
236
}
237
238
// Recursive check on all operands' match rules in my match rule
239
bool InstructForm::is_parm(FormDict &globals) {
240
if ( ! _matrule) return false;
241
242
int index = 0;
243
if (_matrule->find_type("Parm",index)) return true;
244
245
return false;
246
}
247
248
bool InstructForm::is_ideal_negD() const {
249
return (_matrule && _matrule->_rChild && strcmp(_matrule->_rChild->_opType, "NegD") == 0);
250
}
251
252
// Return 'true' if this instruction matches an ideal 'Copy*' node
253
int InstructForm::is_ideal_copy() const {
254
return _matrule ? _matrule->is_ideal_copy() : 0;
255
}
256
257
// Return 'true' if this instruction is too complex to rematerialize.
258
int InstructForm::is_expensive() const {
259
// We can prove it is cheap if it has an empty encoding.
260
// This helps with platform-specific nops like ThreadLocal and RoundFloat.
261
if (is_empty_encoding())
262
return 0;
263
264
if (is_tls_instruction())
265
return 1;
266
267
if (_matrule == NULL) return 0;
268
269
return _matrule->is_expensive();
270
}
271
272
// Has an empty encoding if _size is a constant zero or there
273
// are no ins_encode tokens.
274
int InstructForm::is_empty_encoding() const {
275
if (_insencode != NULL) {
276
_insencode->reset();
277
if (_insencode->encode_class_iter() == NULL) {
278
return 1;
279
}
280
}
281
if (_size != NULL && strcmp(_size, "0") == 0) {
282
return 1;
283
}
284
return 0;
285
}
286
287
int InstructForm::is_tls_instruction() const {
288
if (_ident != NULL &&
289
( ! strcmp( _ident,"tlsLoadP") ||
290
! strncmp(_ident,"tlsLoadP_",9)) ) {
291
return 1;
292
}
293
294
if (_matrule != NULL && _insencode != NULL) {
295
const char* opType = _matrule->_opType;
296
if (strcmp(opType, "Set")==0)
297
opType = _matrule->_rChild->_opType;
298
if (strcmp(opType,"ThreadLocal")==0) {
299
fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
300
(_ident == NULL ? "NULL" : _ident));
301
return 1;
302
}
303
}
304
305
return 0;
306
}
307
308
309
// Return 'true' if this instruction matches an ideal 'If' node
310
bool InstructForm::is_ideal_if() const {
311
if( _matrule == NULL ) return false;
312
313
return _matrule->is_ideal_if();
314
}
315
316
// Return 'true' if this instruction matches an ideal 'FastLock' node
317
bool InstructForm::is_ideal_fastlock() const {
318
if( _matrule == NULL ) return false;
319
320
return _matrule->is_ideal_fastlock();
321
}
322
323
// Return 'true' if this instruction matches an ideal 'MemBarXXX' node
324
bool InstructForm::is_ideal_membar() const {
325
if( _matrule == NULL ) return false;
326
327
return _matrule->is_ideal_membar();
328
}
329
330
// Return 'true' if this instruction matches an ideal 'LoadPC' node
331
bool InstructForm::is_ideal_loadPC() const {
332
if( _matrule == NULL ) return false;
333
334
return _matrule->is_ideal_loadPC();
335
}
336
337
// Return 'true' if this instruction matches an ideal 'Box' node
338
bool InstructForm::is_ideal_box() const {
339
if( _matrule == NULL ) return false;
340
341
return _matrule->is_ideal_box();
342
}
343
344
// Return 'true' if this instruction matches an ideal 'Goto' node
345
bool InstructForm::is_ideal_goto() const {
346
if( _matrule == NULL ) return false;
347
348
return _matrule->is_ideal_goto();
349
}
350
351
// Return 'true' if this instruction matches an ideal 'Jump' node
352
bool InstructForm::is_ideal_jump() const {
353
if( _matrule == NULL ) return false;
354
355
return _matrule->is_ideal_jump();
356
}
357
358
// Return 'true' if instruction matches ideal 'If' | 'Goto' | 'CountedLoopEnd'
359
bool InstructForm::is_ideal_branch() const {
360
if( _matrule == NULL ) return false;
361
362
return _matrule->is_ideal_if() || _matrule->is_ideal_goto();
363
}
364
365
366
// Return 'true' if this instruction matches an ideal 'Return' node
367
bool InstructForm::is_ideal_return() const {
368
if( _matrule == NULL ) return false;
369
370
// Check MatchRule to see if the first entry is the ideal "Return" node
371
int index = 0;
372
if (_matrule->find_type("Return",index)) return true;
373
if (_matrule->find_type("Rethrow",index)) return true;
374
if (_matrule->find_type("TailCall",index)) return true;
375
if (_matrule->find_type("TailJump",index)) return true;
376
377
return false;
378
}
379
380
// Return 'true' if this instruction matches an ideal 'Halt' node
381
bool InstructForm::is_ideal_halt() const {
382
int index = 0;
383
return _matrule && _matrule->find_type("Halt",index);
384
}
385
386
// Return 'true' if this instruction matches an ideal 'SafePoint' node
387
bool InstructForm::is_ideal_safepoint() const {
388
int index = 0;
389
return _matrule && _matrule->find_type("SafePoint",index);
390
}
391
392
// Return 'true' if this instruction matches an ideal 'Nop' node
393
bool InstructForm::is_ideal_nop() const {
394
return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
395
}
396
397
bool InstructForm::is_ideal_control() const {
398
if ( ! _matrule) return false;
399
400
return is_ideal_return() || is_ideal_branch() || _matrule->is_ideal_jump() || is_ideal_halt();
401
}
402
403
// Return 'true' if this instruction matches an ideal 'Call' node
404
Form::CallType InstructForm::is_ideal_call() const {
405
if( _matrule == NULL ) return Form::invalid_type;
406
407
// Check MatchRule to see if the first entry is the ideal "Call" node
408
int idx = 0;
409
if(_matrule->find_type("CallStaticJava",idx)) return Form::JAVA_STATIC;
410
idx = 0;
411
if(_matrule->find_type("Lock",idx)) return Form::JAVA_STATIC;
412
idx = 0;
413
if(_matrule->find_type("Unlock",idx)) return Form::JAVA_STATIC;
414
idx = 0;
415
if(_matrule->find_type("CallDynamicJava",idx)) return Form::JAVA_DYNAMIC;
416
idx = 0;
417
if(_matrule->find_type("CallRuntime",idx)) return Form::JAVA_RUNTIME;
418
idx = 0;
419
if(_matrule->find_type("CallLeaf",idx)) return Form::JAVA_LEAF;
420
idx = 0;
421
if(_matrule->find_type("CallLeafNoFP",idx)) return Form::JAVA_LEAF;
422
idx = 0;
423
424
return Form::invalid_type;
425
}
426
427
// Return 'true' if this instruction matches an ideal 'Load?' node
428
Form::DataType InstructForm::is_ideal_load() const {
429
if( _matrule == NULL ) return Form::none;
430
431
return _matrule->is_ideal_load();
432
}
433
434
// Return 'true' if this instruction matches an ideal 'LoadKlass' node
435
bool InstructForm::skip_antidep_check() const {
436
if( _matrule == NULL ) return false;
437
438
return _matrule->skip_antidep_check();
439
}
440
441
// Return 'true' if this instruction matches an ideal 'Load?' node
442
Form::DataType InstructForm::is_ideal_store() const {
443
if( _matrule == NULL ) return Form::none;
444
445
return _matrule->is_ideal_store();
446
}
447
448
// Return 'true' if this instruction matches an ideal vector node
449
bool InstructForm::is_vector() const {
450
if( _matrule == NULL ) return false;
451
452
return _matrule->is_vector();
453
}
454
455
456
// Return the input register that must match the output register
457
// If this is not required, return 0
458
uint InstructForm::two_address(FormDict &globals) {
459
uint matching_input = 0;
460
if(_components.count() == 0) return 0;
461
462
_components.reset();
463
Component *comp = _components.iter();
464
// Check if there is a DEF
465
if( comp->isa(Component::DEF) ) {
466
// Check that this is a register
467
const char *def_type = comp->_type;
468
const Form *form = globals[def_type];
469
OperandForm *op = form->is_operand();
470
if( op ) {
471
if( op->constrained_reg_class() != NULL &&
472
op->interface_type(globals) == Form::register_interface ) {
473
// Remember the local name for equality test later
474
const char *def_name = comp->_name;
475
// Check if a component has the same name and is a USE
476
do {
477
if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
478
return operand_position_format(def_name);
479
}
480
} while( (comp = _components.iter()) != NULL);
481
}
482
}
483
}
484
485
return 0;
486
}
487
488
489
// when chaining a constant to an instruction, returns 'true' and sets opType
490
Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
491
const char *dummy = NULL;
492
const char *dummy2 = NULL;
493
return is_chain_of_constant(globals, dummy, dummy2);
494
}
495
Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
496
const char * &opTypeParam) {
497
const char *result = NULL;
498
499
return is_chain_of_constant(globals, opTypeParam, result);
500
}
501
502
Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
503
const char * &opTypeParam, const char * &resultParam) {
504
Form::DataType data_type = Form::none;
505
if ( ! _matrule) return data_type;
506
507
// !!!!!
508
// The source of the chain rule is 'position = 1'
509
uint position = 1;
510
const char *result = NULL;
511
const char *name = NULL;
512
const char *opType = NULL;
513
// Here base_operand is looking for an ideal type to be returned (opType).
514
if ( _matrule->is_chain_rule(globals)
515
&& _matrule->base_operand(position, globals, result, name, opType) ) {
516
data_type = ideal_to_const_type(opType);
517
518
// if it isn't an ideal constant type, just return
519
if ( data_type == Form::none ) return data_type;
520
521
// Ideal constant types also adjust the opType parameter.
522
resultParam = result;
523
opTypeParam = opType;
524
return data_type;
525
}
526
527
return data_type;
528
}
529
530
// Check if a simple chain rule
531
bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
532
if( _matrule && _matrule->sets_result()
533
&& _matrule->_rChild->_lChild == NULL
534
&& globals[_matrule->_rChild->_opType]
535
&& globals[_matrule->_rChild->_opType]->is_opclass() ) {
536
return true;
537
}
538
return false;
539
}
540
541
// check for structural rematerialization
542
bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
543
bool rematerialize = false;
544
545
Form::DataType data_type = is_chain_of_constant(globals);
546
if( data_type != Form::none )
547
rematerialize = true;
548
549
// Constants
550
if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) )
551
rematerialize = true;
552
553
// Pseudo-constants (values easily available to the runtime)
554
if (is_empty_encoding() && is_tls_instruction())
555
rematerialize = true;
556
557
// 1-input, 1-output, such as copies or increments.
558
if( _components.count() == 2 &&
559
_components[0]->is(Component::DEF) &&
560
_components[1]->isa(Component::USE) )
561
rematerialize = true;
562
563
// Check for an ideal 'Load?' and eliminate rematerialize option
564
if ( is_ideal_load() != Form::none || // Ideal load? Do not rematerialize
565
is_ideal_copy() != Form::none || // Ideal copy? Do not rematerialize
566
is_expensive() != Form::none) { // Expensive? Do not rematerialize
567
rematerialize = false;
568
}
569
570
// Always rematerialize the flags. They are more expensive to save &
571
// restore than to recompute (and possibly spill the compare's inputs).
572
if( _components.count() >= 1 ) {
573
Component *c = _components[0];
574
const Form *form = globals[c->_type];
575
OperandForm *opform = form->is_operand();
576
if( opform ) {
577
// Avoid the special stack_slots register classes
578
const char *rc_name = opform->constrained_reg_class();
579
if( rc_name ) {
580
if( strcmp(rc_name,"stack_slots") ) {
581
// Check for ideal_type of RegFlags
582
const char *type = opform->ideal_type( globals, registers );
583
if( (type != NULL) && !strcmp(type, "RegFlags") )
584
rematerialize = true;
585
} else
586
rematerialize = false; // Do not rematerialize things target stk
587
}
588
}
589
}
590
591
return rematerialize;
592
}
593
594
// loads from memory, so must check for anti-dependence
595
bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
596
if ( skip_antidep_check() ) return false;
597
598
// Machine independent loads must be checked for anti-dependences
599
if( is_ideal_load() != Form::none ) return true;
600
601
// !!!!! !!!!! !!!!!
602
// TEMPORARY
603
// if( is_simple_chain_rule(globals) ) return false;
604
605
// String.(compareTo/equals/indexOf) and Arrays.equals use many memorys edges,
606
// but writes none
607
if( _matrule && _matrule->_rChild &&
608
( strcmp(_matrule->_rChild->_opType,"StrComp" )==0 ||
609
strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 ||
610
strcmp(_matrule->_rChild->_opType,"StrIndexOf" )==0 ||
611
strcmp(_matrule->_rChild->_opType,"AryEq" )==0 ))
612
return true;
613
614
// Check if instruction has a USE of a memory operand class, but no defs
615
bool USE_of_memory = false;
616
bool DEF_of_memory = false;
617
Component *comp = NULL;
618
ComponentList &components = (ComponentList &)_components;
619
620
components.reset();
621
while( (comp = components.iter()) != NULL ) {
622
const Form *form = globals[comp->_type];
623
if( !form ) continue;
624
OpClassForm *op = form->is_opclass();
625
if( !op ) continue;
626
if( form->interface_type(globals) == Form::memory_interface ) {
627
if( comp->isa(Component::USE) ) USE_of_memory = true;
628
if( comp->isa(Component::DEF) ) {
629
OperandForm *oper = form->is_operand();
630
if( oper && oper->is_user_name_for_sReg() ) {
631
// Stack slots are unaliased memory handled by allocator
632
oper = oper; // debug stopping point !!!!!
633
} else {
634
DEF_of_memory = true;
635
}
636
}
637
}
638
}
639
return (USE_of_memory && !DEF_of_memory);
640
}
641
642
643
int InstructForm::memory_operand(FormDict &globals) const {
644
// Machine independent loads must be checked for anti-dependences
645
// Check if instruction has a USE of a memory operand class, or a def.
646
int USE_of_memory = 0;
647
int DEF_of_memory = 0;
648
const char* last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
649
const char* last_memory_USE = NULL;
650
Component *unique = NULL;
651
Component *comp = NULL;
652
ComponentList &components = (ComponentList &)_components;
653
654
components.reset();
655
while( (comp = components.iter()) != NULL ) {
656
const Form *form = globals[comp->_type];
657
if( !form ) continue;
658
OpClassForm *op = form->is_opclass();
659
if( !op ) continue;
660
if( op->stack_slots_only(globals) ) continue;
661
if( form->interface_type(globals) == Form::memory_interface ) {
662
if( comp->isa(Component::DEF) ) {
663
last_memory_DEF = comp->_name;
664
DEF_of_memory++;
665
unique = comp;
666
} else if( comp->isa(Component::USE) ) {
667
if( last_memory_DEF != NULL ) {
668
assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
669
last_memory_DEF = NULL;
670
}
671
// Handles same memory being used multiple times in the case of BMI1 instructions.
672
if (last_memory_USE != NULL) {
673
if (strcmp(comp->_name, last_memory_USE) != 0) {
674
USE_of_memory++;
675
}
676
} else {
677
USE_of_memory++;
678
}
679
last_memory_USE = comp->_name;
680
681
if (DEF_of_memory == 0) // defs take precedence
682
unique = comp;
683
} else {
684
assert(last_memory_DEF == NULL, "unpaired memory DEF");
685
}
686
}
687
}
688
assert(last_memory_DEF == NULL, "unpaired memory DEF");
689
assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
690
USE_of_memory -= DEF_of_memory; // treat paired DEF/USE as one occurrence
691
if( (USE_of_memory + DEF_of_memory) > 0 ) {
692
if( is_simple_chain_rule(globals) ) {
693
//fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
694
//((InstructForm*)this)->dump();
695
// Preceding code prints nothing on sparc and these insns on intel:
696
// leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
697
// leaPIdxOff leaPIdxScale leaPIdxScaleOff
698
return NO_MEMORY_OPERAND;
699
}
700
701
if( DEF_of_memory == 1 ) {
702
assert(unique != NULL, "");
703
if( USE_of_memory == 0 ) {
704
// unique def, no uses
705
} else {
706
// // unique def, some uses
707
// // must return bottom unless all uses match def
708
// unique = NULL;
709
}
710
} else if( DEF_of_memory > 0 ) {
711
// multiple defs, don't care about uses
712
unique = NULL;
713
} else if( USE_of_memory == 1) {
714
// unique use, no defs
715
assert(unique != NULL, "");
716
} else if( USE_of_memory > 0 ) {
717
// multiple uses, no defs
718
unique = NULL;
719
} else {
720
assert(false, "bad case analysis");
721
}
722
// process the unique DEF or USE, if there is one
723
if( unique == NULL ) {
724
return MANY_MEMORY_OPERANDS;
725
} else {
726
int pos = components.operand_position(unique->_name);
727
if( unique->isa(Component::DEF) ) {
728
pos += 1; // get corresponding USE from DEF
729
}
730
assert(pos >= 1, "I was just looking at it!");
731
return pos;
732
}
733
}
734
735
// missed the memory op??
736
if( true ) { // %%% should not be necessary
737
if( is_ideal_store() != Form::none ) {
738
fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
739
((InstructForm*)this)->dump();
740
// pretend it has multiple defs and uses
741
return MANY_MEMORY_OPERANDS;
742
}
743
if( is_ideal_load() != Form::none ) {
744
fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
745
((InstructForm*)this)->dump();
746
// pretend it has multiple uses and no defs
747
return MANY_MEMORY_OPERANDS;
748
}
749
}
750
751
return NO_MEMORY_OPERAND;
752
}
753
754
755
// This instruction captures the machine-independent bottom_type
756
// Expected use is for pointer vs oop determination for LoadP
757
bool InstructForm::captures_bottom_type(FormDict &globals) const {
758
if( _matrule && _matrule->_rChild &&
759
(!strcmp(_matrule->_rChild->_opType,"CastPP") || // new result type
760
!strcmp(_matrule->_rChild->_opType,"CastX2P") || // new result type
761
!strcmp(_matrule->_rChild->_opType,"DecodeN") ||
762
!strcmp(_matrule->_rChild->_opType,"EncodeP") ||
763
!strcmp(_matrule->_rChild->_opType,"DecodeNKlass") ||
764
!strcmp(_matrule->_rChild->_opType,"EncodePKlass") ||
765
!strcmp(_matrule->_rChild->_opType,"LoadN") ||
766
!strcmp(_matrule->_rChild->_opType,"LoadNKlass") ||
767
!strcmp(_matrule->_rChild->_opType,"CreateEx") || // type of exception
768
!strcmp(_matrule->_rChild->_opType,"CheckCastPP") ||
769
!strcmp(_matrule->_rChild->_opType,"GetAndSetP") ||
770
!strcmp(_matrule->_rChild->_opType,"GetAndSetN")) ) return true;
771
else if ( is_ideal_load() == Form::idealP ) return true;
772
else if ( is_ideal_store() != Form::none ) return true;
773
774
if (needs_base_oop_edge(globals)) return true;
775
776
if (is_vector()) return true;
777
if (is_mach_constant()) return true;
778
779
return false;
780
}
781
782
783
// Access instr_cost attribute or return NULL.
784
const char* InstructForm::cost() {
785
for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
786
if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
787
return cur->_val;
788
}
789
}
790
return NULL;
791
}
792
793
// Return count of top-level operands.
794
uint InstructForm::num_opnds() {
795
int num_opnds = _components.num_operands();
796
797
// Need special handling for matching some ideal nodes
798
// i.e. Matching a return node
799
/*
800
if( _matrule ) {
801
if( strcmp(_matrule->_opType,"Return" )==0 ||
802
strcmp(_matrule->_opType,"Halt" )==0 )
803
return 3;
804
}
805
*/
806
return num_opnds;
807
}
808
809
const char* InstructForm::opnd_ident(int idx) {
810
return _components.at(idx)->_name;
811
}
812
813
const char* InstructForm::unique_opnd_ident(uint idx) {
814
uint i;
815
for (i = 1; i < num_opnds(); ++i) {
816
if (unique_opnds_idx(i) == idx) {
817
break;
818
}
819
}
820
return (_components.at(i) != NULL) ? _components.at(i)->_name : "";
821
}
822
823
// Return count of unmatched operands.
824
uint InstructForm::num_post_match_opnds() {
825
uint num_post_match_opnds = _components.count();
826
uint num_match_opnds = _components.match_count();
827
num_post_match_opnds = num_post_match_opnds - num_match_opnds;
828
829
return num_post_match_opnds;
830
}
831
832
// Return the number of leaves below this complex operand
833
uint InstructForm::num_consts(FormDict &globals) const {
834
if ( ! _matrule) return 0;
835
836
// This is a recursive invocation on all operands in the matchrule
837
return _matrule->num_consts(globals);
838
}
839
840
// Constants in match rule with specified type
841
uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
842
if ( ! _matrule) return 0;
843
844
// This is a recursive invocation on all operands in the matchrule
845
return _matrule->num_consts(globals, type);
846
}
847
848
849
// Return the register class associated with 'leaf'.
850
const char *InstructForm::out_reg_class(FormDict &globals) {
851
assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");
852
853
return NULL;
854
}
855
856
857
858
// Lookup the starting position of inputs we are interested in wrt. ideal nodes
859
uint InstructForm::oper_input_base(FormDict &globals) {
860
if( !_matrule ) return 1; // Skip control for most nodes
861
862
// Need special handling for matching some ideal nodes
863
// i.e. Matching a return node
864
if( strcmp(_matrule->_opType,"Return" )==0 ||
865
strcmp(_matrule->_opType,"Rethrow" )==0 ||
866
strcmp(_matrule->_opType,"TailCall" )==0 ||
867
strcmp(_matrule->_opType,"TailJump" )==0 ||
868
strcmp(_matrule->_opType,"SafePoint" )==0 ||
869
strcmp(_matrule->_opType,"Halt" )==0 )
870
return AdlcVMDeps::Parms; // Skip the machine-state edges
871
872
if( _matrule->_rChild &&
873
( strcmp(_matrule->_rChild->_opType,"AryEq" )==0 ||
874
strcmp(_matrule->_rChild->_opType,"StrComp" )==0 ||
875
strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 ||
876
strcmp(_matrule->_rChild->_opType,"StrIndexOf")==0 ||
877
strcmp(_matrule->_rChild->_opType,"EncodeISOArray")==0)) {
878
// String.(compareTo/equals/indexOf) and Arrays.equals
879
// and sun.nio.cs.iso8859_1$Encoder.EncodeISOArray
880
// take 1 control and 1 memory edges.
881
return 2;
882
}
883
884
// Check for handling of 'Memory' input/edge in the ideal world.
885
// The AD file writer is shielded from knowledge of these edges.
886
int base = 1; // Skip control
887
base += _matrule->needs_ideal_memory_edge(globals);
888
889
// Also skip the base-oop value for uses of derived oops.
890
// The AD file writer is shielded from knowledge of these edges.
891
base += needs_base_oop_edge(globals);
892
893
return base;
894
}
895
896
// This function determines the order of the MachOper in _opnds[]
897
// by writing the operand names into the _components list.
898
//
899
// Implementation does not modify state of internal structures
900
void InstructForm::build_components() {
901
// Add top-level operands to the components
902
if (_matrule) _matrule->append_components(_localNames, _components);
903
904
// Add parameters that "do not appear in match rule".
905
bool has_temp = false;
906
const char *name;
907
const char *kill_name = NULL;
908
for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
909
OpClassForm *opForm = _localNames[name]->is_opclass();
910
assert(opForm != NULL, "sanity");
911
912
Effect* e = NULL;
913
{
914
const Form* form = _effects[name];
915
e = form ? form->is_effect() : NULL;
916
}
917
918
if (e != NULL) {
919
has_temp |= e->is(Component::TEMP);
920
921
// KILLs must be declared after any TEMPs because TEMPs are real
922
// uses so their operand numbering must directly follow the real
923
// inputs from the match rule. Fixing the numbering seems
924
// complex so simply enforce the restriction during parse.
925
if (kill_name != NULL &&
926
e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
927
OpClassForm* kill = _localNames[kill_name]->is_opclass();
928
assert(kill != NULL, "sanity");
929
globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
930
_ident, kill->_ident, kill_name);
931
} else if (e->isa(Component::KILL) && !e->isa(Component::USE)) {
932
kill_name = name;
933
}
934
}
935
936
const Component *component = _components.search(name);
937
if ( component == NULL ) {
938
if (e) {
939
_components.insert(name, opForm->_ident, e->_use_def, false);
940
component = _components.search(name);
941
if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
942
const Form *form = globalAD->globalNames()[component->_type];
943
assert( form, "component type must be a defined form");
944
OperandForm *op = form->is_operand();
945
if (op->_interface && op->_interface->is_RegInterface()) {
946
globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
947
_ident, opForm->_ident, name);
948
}
949
}
950
} else {
951
// This would be a nice warning but it triggers in a few places in a benign way
952
// if (_matrule != NULL && !expands()) {
953
// globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
954
// _ident, opForm->_ident, name);
955
// }
956
_components.insert(name, opForm->_ident, Component::INVALID, false);
957
}
958
}
959
else if (e) {
960
// Component was found in the list
961
// Check if there is a new effect that requires an extra component.
962
// This happens when adding 'USE' to a component that is not yet one.
963
if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
964
if (component->isa(Component::USE) && _matrule) {
965
const Form *form = globalAD->globalNames()[component->_type];
966
assert( form, "component type must be a defined form");
967
OperandForm *op = form->is_operand();
968
if (op->_interface && op->_interface->is_RegInterface()) {
969
globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
970
_ident, opForm->_ident, name);
971
}
972
}
973
_components.insert(name, opForm->_ident, e->_use_def, false);
974
} else {
975
Component *comp = (Component*)component;
976
comp->promote_use_def_info(e->_use_def);
977
}
978
// Component positions are zero based.
979
int pos = _components.operand_position(name);
980
assert( ! (component->isa(Component::DEF) && (pos >= 1)),
981
"Component::DEF can only occur in the first position");
982
}
983
}
984
985
// Resolving the interactions between expand rules and TEMPs would
986
// be complex so simply disallow it.
987
if (_matrule == NULL && has_temp) {
988
globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
989
}
990
991
return;
992
}
993
994
// Return zero-based position in component list; -1 if not in list.
995
int InstructForm::operand_position(const char *name, int usedef) {
996
return unique_opnds_idx(_components.operand_position(name, usedef, this));
997
}
998
999
int InstructForm::operand_position_format(const char *name) {
1000
return unique_opnds_idx(_components.operand_position_format(name, this));
1001
}
1002
1003
// Return zero-based position in component list; -1 if not in list.
1004
int InstructForm::label_position() {
1005
return unique_opnds_idx(_components.label_position());
1006
}
1007
1008
int InstructForm::method_position() {
1009
return unique_opnds_idx(_components.method_position());
1010
}
1011
1012
// Return number of relocation entries needed for this instruction.
1013
uint InstructForm::reloc(FormDict &globals) {
1014
uint reloc_entries = 0;
1015
// Check for "Call" nodes
1016
if ( is_ideal_call() ) ++reloc_entries;
1017
if ( is_ideal_return() ) ++reloc_entries;
1018
if ( is_ideal_safepoint() ) ++reloc_entries;
1019
1020
1021
// Check if operands MAYBE oop pointers, by checking for ConP elements
1022
// Proceed through the leaves of the match-tree and check for ConPs
1023
if ( _matrule != NULL ) {
1024
uint position = 0;
1025
const char *result = NULL;
1026
const char *name = NULL;
1027
const char *opType = NULL;
1028
while (_matrule->base_operand(position, globals, result, name, opType)) {
1029
if ( strcmp(opType,"ConP") == 0 ) {
1030
#ifdef SPARC
1031
reloc_entries += 2; // 1 for sethi + 1 for setlo
1032
#else
1033
++reloc_entries;
1034
#endif
1035
}
1036
++position;
1037
}
1038
}
1039
1040
// Above is only a conservative estimate
1041
// because it did not check contents of operand classes.
1042
// !!!!! !!!!!
1043
// Add 1 to reloc info for each operand class in the component list.
1044
Component *comp;
1045
_components.reset();
1046
while ( (comp = _components.iter()) != NULL ) {
1047
const Form *form = globals[comp->_type];
1048
assert( form, "Did not find component's type in global names");
1049
const OpClassForm *opc = form->is_opclass();
1050
const OperandForm *oper = form->is_operand();
1051
if ( opc && (oper == NULL) ) {
1052
++reloc_entries;
1053
} else if ( oper ) {
1054
// floats and doubles loaded out of method's constant pool require reloc info
1055
Form::DataType type = oper->is_base_constant(globals);
1056
if ( (type == Form::idealF) || (type == Form::idealD) ) {
1057
++reloc_entries;
1058
}
1059
}
1060
}
1061
1062
// Float and Double constants may come from the CodeBuffer table
1063
// and require relocatable addresses for access
1064
// !!!!!
1065
// Check for any component being an immediate float or double.
1066
Form::DataType data_type = is_chain_of_constant(globals);
1067
if( data_type==idealD || data_type==idealF ) {
1068
#ifdef SPARC
1069
// sparc required more relocation entries for floating constants
1070
// (expires 9/98)
1071
reloc_entries += 6;
1072
#else
1073
reloc_entries++;
1074
#endif
1075
}
1076
1077
return reloc_entries;
1078
}
1079
1080
// Utility function defined in archDesc.cpp
1081
extern bool is_def(int usedef);
1082
1083
// Return the result of reducing an instruction
1084
const char *InstructForm::reduce_result() {
1085
const char* result = "Universe"; // default
1086
_components.reset();
1087
Component *comp = _components.iter();
1088
if (comp != NULL && comp->isa(Component::DEF)) {
1089
result = comp->_type;
1090
// Override this if the rule is a store operation:
1091
if (_matrule && _matrule->_rChild &&
1092
is_store_to_memory(_matrule->_rChild->_opType))
1093
result = "Universe";
1094
}
1095
return result;
1096
}
1097
1098
// Return the name of the operand on the right hand side of the binary match
1099
// Return NULL if there is no right hand side
1100
const char *InstructForm::reduce_right(FormDict &globals) const {
1101
if( _matrule == NULL ) return NULL;
1102
return _matrule->reduce_right(globals);
1103
}
1104
1105
// Similar for left
1106
const char *InstructForm::reduce_left(FormDict &globals) const {
1107
if( _matrule == NULL ) return NULL;
1108
return _matrule->reduce_left(globals);
1109
}
1110
1111
1112
// Base class for this instruction, MachNode except for calls
1113
const char *InstructForm::mach_base_class(FormDict &globals) const {
1114
if( is_ideal_call() == Form::JAVA_STATIC ) {
1115
return "MachCallStaticJavaNode";
1116
}
1117
else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
1118
return "MachCallDynamicJavaNode";
1119
}
1120
else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
1121
return "MachCallRuntimeNode";
1122
}
1123
else if( is_ideal_call() == Form::JAVA_LEAF ) {
1124
return "MachCallLeafNode";
1125
}
1126
else if (is_ideal_return()) {
1127
return "MachReturnNode";
1128
}
1129
else if (is_ideal_halt()) {
1130
return "MachHaltNode";
1131
}
1132
else if (is_ideal_safepoint()) {
1133
return "MachSafePointNode";
1134
}
1135
else if (is_ideal_if()) {
1136
return "MachIfNode";
1137
}
1138
else if (is_ideal_goto()) {
1139
return "MachGotoNode";
1140
}
1141
else if (is_ideal_fastlock()) {
1142
return "MachFastLockNode";
1143
}
1144
else if (is_ideal_nop()) {
1145
return "MachNopNode";
1146
}
1147
else if (is_ideal_membar()) {
1148
return "MachMemBarNode";
1149
}
1150
else if (is_mach_constant()) {
1151
return "MachConstantNode";
1152
}
1153
else if (captures_bottom_type(globals)) {
1154
return "MachTypeNode";
1155
} else {
1156
return "MachNode";
1157
}
1158
assert( false, "ShouldNotReachHere()");
1159
return NULL;
1160
}
1161
1162
// Compare the instruction predicates for textual equality
1163
bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
1164
const Predicate *pred1 = instr1->_predicate;
1165
const Predicate *pred2 = instr2->_predicate;
1166
if( pred1 == NULL && pred2 == NULL ) {
1167
// no predicates means they are identical
1168
return true;
1169
}
1170
if( pred1 != NULL && pred2 != NULL ) {
1171
// compare the predicates
1172
if (ADLParser::equivalent_expressions(pred1->_pred, pred2->_pred)) {
1173
return true;
1174
}
1175
}
1176
1177
return false;
1178
}
1179
1180
// Check if this instruction can cisc-spill to 'alternate'
1181
bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
1182
assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
1183
// Do not replace if a cisc-version has been found.
1184
if( cisc_spill_operand() != Not_cisc_spillable ) return false;
1185
1186
int cisc_spill_operand = Maybe_cisc_spillable;
1187
char *result = NULL;
1188
char *result2 = NULL;
1189
const char *op_name = NULL;
1190
const char *reg_type = NULL;
1191
FormDict &globals = AD.globalNames();
1192
cisc_spill_operand = _matrule->matchrule_cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
1193
if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
1194
cisc_spill_operand = operand_position(op_name, Component::USE);
1195
int def_oper = operand_position(op_name, Component::DEF);
1196
if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
1197
// Do not support cisc-spilling for destination operands and
1198
// make sure they have the same number of operands.
1199
_cisc_spill_alternate = instr;
1200
instr->set_cisc_alternate(true);
1201
if( AD._cisc_spill_debug ) {
1202
fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
1203
fprintf(stderr, " using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
1204
}
1205
// Record that a stack-version of the reg_mask is needed
1206
// !!!!!
1207
OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
1208
assert( oper != NULL, "cisc-spilling non operand");
1209
const char *reg_class_name = oper->constrained_reg_class();
1210
AD.set_stack_or_reg(reg_class_name);
1211
const char *reg_mask_name = AD.reg_mask(*oper);
1212
set_cisc_reg_mask_name(reg_mask_name);
1213
const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
1214
} else {
1215
cisc_spill_operand = Not_cisc_spillable;
1216
}
1217
} else {
1218
cisc_spill_operand = Not_cisc_spillable;
1219
}
1220
1221
set_cisc_spill_operand(cisc_spill_operand);
1222
return (cisc_spill_operand != Not_cisc_spillable);
1223
}
1224
1225
// Check to see if this instruction can be replaced with the short branch
1226
// instruction `short-branch'
1227
bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
1228
if (_matrule != NULL &&
1229
this != short_branch && // Don't match myself
1230
!is_short_branch() && // Don't match another short branch variant
1231
reduce_result() != NULL &&
1232
strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
1233
_matrule->equivalent(AD.globalNames(), short_branch->_matrule)
1234
AARCH64_ONLY(&& equivalent_predicates(this, short_branch))) {
1235
// The instructions are equivalent.
1236
1237
// Now verify that both instructions have the same parameters and
1238
// the same effects. Both branch forms should have the same inputs
1239
// and resulting projections to correctly replace a long branch node
1240
// with corresponding short branch node during code generation.
1241
1242
bool different = false;
1243
if (short_branch->_components.count() != _components.count()) {
1244
different = true;
1245
} else if (_components.count() > 0) {
1246
short_branch->_components.reset();
1247
_components.reset();
1248
Component *comp;
1249
while ((comp = _components.iter()) != NULL) {
1250
Component *short_comp = short_branch->_components.iter();
1251
if (short_comp == NULL ||
1252
short_comp->_type != comp->_type ||
1253
short_comp->_usedef != comp->_usedef) {
1254
different = true;
1255
break;
1256
}
1257
}
1258
if (short_branch->_components.iter() != NULL)
1259
different = true;
1260
}
1261
if (different) {
1262
globalAD->syntax_err(short_branch->_linenum, "Instruction %s and its short form %s have different parameters\n", _ident, short_branch->_ident);
1263
}
1264
if (AD._adl_debug > 1 || AD._short_branch_debug) {
1265
fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
1266
}
1267
_short_branch_form = short_branch;
1268
return true;
1269
}
1270
return false;
1271
}
1272
1273
1274
// --------------------------- FILE *output_routines
1275
//
1276
// Generate the format call for the replacement variable
1277
void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
1278
// Handle special constant table variables.
1279
if (strcmp(rep_var, "constanttablebase") == 0) {
1280
fprintf(fp, "char reg[128]; ra->dump_register(in(mach_constant_base_node_input()), reg);\n");
1281
fprintf(fp, " st->print(\"%%s\", reg);\n");
1282
return;
1283
}
1284
if (strcmp(rep_var, "constantoffset") == 0) {
1285
fprintf(fp, "st->print(\"#%%d\", constant_offset_unchecked());\n");
1286
return;
1287
}
1288
if (strcmp(rep_var, "constantaddress") == 0) {
1289
fprintf(fp, "st->print(\"constant table base + #%%d\", constant_offset_unchecked());\n");
1290
return;
1291
}
1292
1293
// Find replacement variable's type
1294
const Form *form = _localNames[rep_var];
1295
if (form == NULL) {
1296
globalAD->syntax_err(_linenum, "Unknown replacement variable %s in format statement of %s.",
1297
rep_var, _ident);
1298
return;
1299
}
1300
OpClassForm *opc = form->is_opclass();
1301
assert( opc, "replacement variable was not found in local names");
1302
// Lookup the index position of the replacement variable
1303
int idx = operand_position_format(rep_var);
1304
if ( idx == -1 ) {
1305
globalAD->syntax_err(_linenum, "Could not find replacement variable %s in format statement of %s.\n",
1306
rep_var, _ident);
1307
assert(strcmp(opc->_ident, "label") == 0, "Unimplemented");
1308
return;
1309
}
1310
1311
if (is_noninput_operand(idx)) {
1312
// This component isn't in the input array. Print out the static
1313
// name of the register.
1314
OperandForm* oper = form->is_operand();
1315
if (oper != NULL && oper->is_bound_register()) {
1316
const RegDef* first = oper->get_RegClass()->find_first_elem();
1317
fprintf(fp, " st->print_raw(\"%s\");\n", first->_regname);
1318
} else {
1319
globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
1320
}
1321
} else {
1322
// Output the format call for this operand
1323
fprintf(fp,"opnd_array(%d)->",idx);
1324
if (idx == 0)
1325
fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
1326
else
1327
fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
1328
}
1329
}
1330
1331
// Seach through operands to determine parameters unique positions.
1332
void InstructForm::set_unique_opnds() {
1333
uint* uniq_idx = NULL;
1334
uint nopnds = num_opnds();
1335
uint num_uniq = nopnds;
1336
uint i;
1337
_uniq_idx_length = 0;
1338
if (nopnds > 0) {
1339
// Allocate index array. Worst case we're mapping from each
1340
// component back to an index and any DEF always goes at 0 so the
1341
// length of the array has to be the number of components + 1.
1342
_uniq_idx_length = _components.count() + 1;
1343
uniq_idx = (uint*) malloc(sizeof(uint) * _uniq_idx_length);
1344
for (i = 0; i < _uniq_idx_length; i++) {
1345
uniq_idx[i] = i;
1346
}
1347
}
1348
// Do it only if there is a match rule and no expand rule. With an
1349
// expand rule it is done by creating new mach node in Expand()
1350
// method.
1351
if (nopnds > 0 && _matrule != NULL && _exprule == NULL) {
1352
const char *name;
1353
uint count;
1354
bool has_dupl_use = false;
1355
1356
_parameters.reset();
1357
while ((name = _parameters.iter()) != NULL) {
1358
count = 0;
1359
uint position = 0;
1360
uint uniq_position = 0;
1361
_components.reset();
1362
Component *comp = NULL;
1363
if (sets_result()) {
1364
comp = _components.iter();
1365
position++;
1366
}
1367
// The next code is copied from the method operand_position().
1368
for (; (comp = _components.iter()) != NULL; ++position) {
1369
// When the first component is not a DEF,
1370
// leave space for the result operand!
1371
if (position==0 && (!comp->isa(Component::DEF))) {
1372
++position;
1373
}
1374
if (strcmp(name, comp->_name) == 0) {
1375
if (++count > 1) {
1376
assert(position < _uniq_idx_length, "out of bounds");
1377
uniq_idx[position] = uniq_position;
1378
has_dupl_use = true;
1379
} else {
1380
uniq_position = position;
1381
}
1382
}
1383
if (comp->isa(Component::DEF) && comp->isa(Component::USE)) {
1384
++position;
1385
if (position != 1)
1386
--position; // only use two slots for the 1st USE_DEF
1387
}
1388
}
1389
}
1390
if (has_dupl_use) {
1391
for (i = 1; i < nopnds; i++) {
1392
if (i != uniq_idx[i]) {
1393
break;
1394
}
1395
}
1396
uint j = i;
1397
for (; i < nopnds; i++) {
1398
if (i == uniq_idx[i]) {
1399
uniq_idx[i] = j++;
1400
}
1401
}
1402
num_uniq = j;
1403
}
1404
}
1405
_uniq_idx = uniq_idx;
1406
_num_uniq = num_uniq;
1407
}
1408
1409
// Generate index values needed for determining the operand position
1410
void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
1411
uint idx = 0; // position of operand in match rule
1412
int cur_num_opnds = num_opnds();
1413
1414
// Compute the index into vector of operand pointers:
1415
// idx0=0 is used to indicate that info comes from this same node, not from input edge.
1416
// idx1 starts at oper_input_base()
1417
if ( cur_num_opnds >= 1 ) {
1418
fprintf(fp," // Start at oper_input_base() and count operands\n");
1419
fprintf(fp," unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
1420
fprintf(fp," unsigned %sidx1 = %d;", prefix, oper_input_base(globals));
1421
fprintf(fp," \t// %s\n", unique_opnd_ident(1));
1422
1423
// Generate starting points for other unique operands if they exist
1424
for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
1425
if( *receiver == 0 ) {
1426
fprintf(fp," unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();",
1427
prefix, idx, prefix, idx-1, idx-1 );
1428
} else {
1429
fprintf(fp," unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();",
1430
prefix, idx, prefix, idx-1, receiver, idx-1 );
1431
}
1432
fprintf(fp," \t// %s\n", unique_opnd_ident(idx));
1433
}
1434
}
1435
if( *receiver != 0 ) {
1436
// This value is used by generate_peepreplace when copying a node.
1437
// Don't emit it in other cases since it can hide bugs with the
1438
// use invalid idx's.
1439
fprintf(fp," unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
1440
}
1441
1442
}
1443
1444
// ---------------------------
1445
bool InstructForm::verify() {
1446
// !!!!! !!!!!
1447
// Check that a "label" operand occurs last in the operand list, if present
1448
return true;
1449
}
1450
1451
void InstructForm::dump() {
1452
output(stderr);
1453
}
1454
1455
void InstructForm::output(FILE *fp) {
1456
fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
1457
if (_matrule) _matrule->output(fp);
1458
if (_insencode) _insencode->output(fp);
1459
if (_constant) _constant->output(fp);
1460
if (_opcode) _opcode->output(fp);
1461
if (_attribs) _attribs->output(fp);
1462
if (_predicate) _predicate->output(fp);
1463
if (_effects.Size()) {
1464
fprintf(fp,"Effects\n");
1465
_effects.dump();
1466
}
1467
if (_exprule) _exprule->output(fp);
1468
if (_rewrule) _rewrule->output(fp);
1469
if (_format) _format->output(fp);
1470
if (_peephole) _peephole->output(fp);
1471
}
1472
1473
void MachNodeForm::dump() {
1474
output(stderr);
1475
}
1476
1477
void MachNodeForm::output(FILE *fp) {
1478
fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
1479
}
1480
1481
//------------------------------build_predicate--------------------------------
1482
// Build instruction predicates. If the user uses the same operand name
1483
// twice, we need to check that the operands are pointer-eequivalent in
1484
// the DFA during the labeling process.
1485
Predicate *InstructForm::build_predicate() {
1486
char buf[1024], *s=buf;
1487
Dict names(cmpstr,hashstr,Form::arena); // Map Names to counts
1488
1489
MatchNode *mnode =
1490
strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
1491
mnode->count_instr_names(names);
1492
1493
uint first = 1;
1494
// Start with the predicate supplied in the .ad file.
1495
if( _predicate ) {
1496
if( first ) first=0;
1497
strcpy(s,"("); s += strlen(s);
1498
strcpy(s,_predicate->_pred);
1499
s += strlen(s);
1500
strcpy(s,")"); s += strlen(s);
1501
}
1502
for( DictI i(&names); i.test(); ++i ) {
1503
uintptr_t cnt = (uintptr_t)i._value;
1504
if( cnt > 1 ) { // Need a predicate at all?
1505
assert( cnt == 2, "Unimplemented" );
1506
// Handle many pairs
1507
if( first ) first=0;
1508
else { // All tests must pass, so use '&&'
1509
strcpy(s," && ");
1510
s += strlen(s);
1511
}
1512
// Add predicate to working buffer
1513
sprintf(s,"/*%s*/(",(char*)i._key);
1514
s += strlen(s);
1515
mnode->build_instr_pred(s,(char*)i._key,0);
1516
s += strlen(s);
1517
strcpy(s," == "); s += strlen(s);
1518
mnode->build_instr_pred(s,(char*)i._key,1);
1519
s += strlen(s);
1520
strcpy(s,")"); s += strlen(s);
1521
}
1522
}
1523
if( s == buf ) s = NULL;
1524
else {
1525
assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
1526
s = strdup(buf);
1527
}
1528
return new Predicate(s);
1529
}
1530
1531
//------------------------------EncodeForm-------------------------------------
1532
// Constructor
1533
EncodeForm::EncodeForm()
1534
: _encClass(cmpstr,hashstr, Form::arena) {
1535
}
1536
EncodeForm::~EncodeForm() {
1537
}
1538
1539
// record a new register class
1540
EncClass *EncodeForm::add_EncClass(const char *className) {
1541
EncClass *encClass = new EncClass(className);
1542
_eclasses.addName(className);
1543
_encClass.Insert(className,encClass);
1544
return encClass;
1545
}
1546
1547
// Lookup the function body for an encoding class
1548
EncClass *EncodeForm::encClass(const char *className) {
1549
assert( className != NULL, "Must provide a defined encoding name");
1550
1551
EncClass *encClass = (EncClass*)_encClass[className];
1552
return encClass;
1553
}
1554
1555
// Lookup the function body for an encoding class
1556
const char *EncodeForm::encClassBody(const char *className) {
1557
if( className == NULL ) return NULL;
1558
1559
EncClass *encClass = (EncClass*)_encClass[className];
1560
assert( encClass != NULL, "Encode Class is missing.");
1561
encClass->_code.reset();
1562
const char *code = (const char*)encClass->_code.iter();
1563
assert( code != NULL, "Found an empty encode class body.");
1564
1565
return code;
1566
}
1567
1568
// Lookup the function body for an encoding class
1569
const char *EncodeForm::encClassPrototype(const char *className) {
1570
assert( className != NULL, "Encode class name must be non NULL.");
1571
1572
return className;
1573
}
1574
1575
void EncodeForm::dump() { // Debug printer
1576
output(stderr);
1577
}
1578
1579
void EncodeForm::output(FILE *fp) { // Write info to output files
1580
const char *name;
1581
fprintf(fp,"\n");
1582
fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
1583
for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
1584
((EncClass*)_encClass[name])->output(fp);
1585
}
1586
fprintf(fp,"-------------------- end EncodeForm --------------------\n");
1587
}
1588
//------------------------------EncClass---------------------------------------
1589
EncClass::EncClass(const char *name)
1590
: _localNames(cmpstr,hashstr, Form::arena), _name(name) {
1591
}
1592
EncClass::~EncClass() {
1593
}
1594
1595
// Add a parameter <type,name> pair
1596
void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
1597
_parameter_type.addName( parameter_type );
1598
_parameter_name.addName( parameter_name );
1599
}
1600
1601
// Verify operand types in parameter list
1602
bool EncClass::check_parameter_types(FormDict &globals) {
1603
// !!!!!
1604
return false;
1605
}
1606
1607
// Add the decomposed "code" sections of an encoding's code-block
1608
void EncClass::add_code(const char *code) {
1609
_code.addName(code);
1610
}
1611
1612
// Add the decomposed "replacement variables" of an encoding's code-block
1613
void EncClass::add_rep_var(char *replacement_var) {
1614
_code.addName(NameList::_signal);
1615
_rep_vars.addName(replacement_var);
1616
}
1617
1618
// Lookup the function body for an encoding class
1619
int EncClass::rep_var_index(const char *rep_var) {
1620
uint position = 0;
1621
const char *name = NULL;
1622
1623
_parameter_name.reset();
1624
while ( (name = _parameter_name.iter()) != NULL ) {
1625
if ( strcmp(rep_var,name) == 0 ) return position;
1626
++position;
1627
}
1628
1629
return -1;
1630
}
1631
1632
// Check after parsing
1633
bool EncClass::verify() {
1634
// 1!!!!
1635
// Check that each replacement variable, '$name' in architecture description
1636
// is actually a local variable for this encode class, or a reserved name
1637
// "primary, secondary, tertiary"
1638
return true;
1639
}
1640
1641
void EncClass::dump() {
1642
output(stderr);
1643
}
1644
1645
// Write info to output files
1646
void EncClass::output(FILE *fp) {
1647
fprintf(fp,"EncClass: %s", (_name ? _name : ""));
1648
1649
// Output the parameter list
1650
_parameter_type.reset();
1651
_parameter_name.reset();
1652
const char *type = _parameter_type.iter();
1653
const char *name = _parameter_name.iter();
1654
fprintf(fp, " ( ");
1655
for ( ; (type != NULL) && (name != NULL);
1656
(type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
1657
fprintf(fp, " %s %s,", type, name);
1658
}
1659
fprintf(fp, " ) ");
1660
1661
// Output the code block
1662
_code.reset();
1663
_rep_vars.reset();
1664
const char *code;
1665
while ( (code = _code.iter()) != NULL ) {
1666
if ( _code.is_signal(code) ) {
1667
// A replacement variable
1668
const char *rep_var = _rep_vars.iter();
1669
fprintf(fp,"($%s)", rep_var);
1670
} else {
1671
// A section of code
1672
fprintf(fp,"%s", code);
1673
}
1674
}
1675
1676
}
1677
1678
//------------------------------Opcode-----------------------------------------
1679
Opcode::Opcode(char *primary, char *secondary, char *tertiary)
1680
: _primary(primary), _secondary(secondary), _tertiary(tertiary) {
1681
}
1682
1683
Opcode::~Opcode() {
1684
}
1685
1686
Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
1687
if( strcmp(param,"primary") == 0 ) {
1688
return Opcode::PRIMARY;
1689
}
1690
else if( strcmp(param,"secondary") == 0 ) {
1691
return Opcode::SECONDARY;
1692
}
1693
else if( strcmp(param,"tertiary") == 0 ) {
1694
return Opcode::TERTIARY;
1695
}
1696
return Opcode::NOT_AN_OPCODE;
1697
}
1698
1699
bool Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
1700
// Default values previously provided by MachNode::primary()...
1701
const char *description = NULL;
1702
const char *value = NULL;
1703
// Check if user provided any opcode definitions
1704
if( this != NULL ) {
1705
// Update 'value' if user provided a definition in the instruction
1706
switch (desired_opcode) {
1707
case PRIMARY:
1708
description = "primary()";
1709
if( _primary != NULL) { value = _primary; }
1710
break;
1711
case SECONDARY:
1712
description = "secondary()";
1713
if( _secondary != NULL ) { value = _secondary; }
1714
break;
1715
case TERTIARY:
1716
description = "tertiary()";
1717
if( _tertiary != NULL ) { value = _tertiary; }
1718
break;
1719
default:
1720
assert( false, "ShouldNotReachHere();");
1721
break;
1722
}
1723
}
1724
if (value != NULL) {
1725
fprintf(fp, "(%s /*%s*/)", value, description);
1726
}
1727
return value != NULL;
1728
}
1729
1730
void Opcode::dump() {
1731
output(stderr);
1732
}
1733
1734
// Write info to output files
1735
void Opcode::output(FILE *fp) {
1736
if (_primary != NULL) fprintf(fp,"Primary opcode: %s\n", _primary);
1737
if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
1738
if (_tertiary != NULL) fprintf(fp,"Tertiary opcode: %s\n", _tertiary);
1739
}
1740
1741
//------------------------------InsEncode--------------------------------------
1742
InsEncode::InsEncode() {
1743
}
1744
InsEncode::~InsEncode() {
1745
}
1746
1747
// Add "encode class name" and its parameters
1748
NameAndList *InsEncode::add_encode(char *encoding) {
1749
assert( encoding != NULL, "Must provide name for encoding");
1750
1751
// add_parameter(NameList::_signal);
1752
NameAndList *encode = new NameAndList(encoding);
1753
_encoding.addName((char*)encode);
1754
1755
return encode;
1756
}
1757
1758
// Access the list of encodings
1759
void InsEncode::reset() {
1760
_encoding.reset();
1761
// _parameter.reset();
1762
}
1763
const char* InsEncode::encode_class_iter() {
1764
NameAndList *encode_class = (NameAndList*)_encoding.iter();
1765
return ( encode_class != NULL ? encode_class->name() : NULL );
1766
}
1767
// Obtain parameter name from zero based index
1768
const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
1769
NameAndList *params = (NameAndList*)_encoding.current();
1770
assert( params != NULL, "Internal Error");
1771
const char *param = (*params)[param_no];
1772
1773
// Remove '$' if parser placed it there.
1774
return ( param != NULL && *param == '$') ? (param+1) : param;
1775
}
1776
1777
void InsEncode::dump() {
1778
output(stderr);
1779
}
1780
1781
// Write info to output files
1782
void InsEncode::output(FILE *fp) {
1783
NameAndList *encoding = NULL;
1784
const char *parameter = NULL;
1785
1786
fprintf(fp,"InsEncode: ");
1787
_encoding.reset();
1788
1789
while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
1790
// Output the encoding being used
1791
fprintf(fp,"%s(", encoding->name() );
1792
1793
// Output its parameter list, if any
1794
bool first_param = true;
1795
encoding->reset();
1796
while ( (parameter = encoding->iter()) != 0 ) {
1797
// Output the ',' between parameters
1798
if ( ! first_param ) fprintf(fp,", ");
1799
first_param = false;
1800
// Output the parameter
1801
fprintf(fp,"%s", parameter);
1802
} // done with parameters
1803
fprintf(fp,") ");
1804
} // done with encodings
1805
1806
fprintf(fp,"\n");
1807
}
1808
1809
//------------------------------Effect-----------------------------------------
1810
static int effect_lookup(const char *name) {
1811
if(!strcmp(name, "USE")) return Component::USE;
1812
if(!strcmp(name, "DEF")) return Component::DEF;
1813
if(!strcmp(name, "USE_DEF")) return Component::USE_DEF;
1814
if(!strcmp(name, "KILL")) return Component::KILL;
1815
if(!strcmp(name, "USE_KILL")) return Component::USE_KILL;
1816
if(!strcmp(name, "TEMP")) return Component::TEMP;
1817
if(!strcmp(name, "INVALID")) return Component::INVALID;
1818
if(!strcmp(name, "CALL")) return Component::CALL;
1819
assert( false,"Invalid effect name specified\n");
1820
return Component::INVALID;
1821
}
1822
1823
const char *Component::getUsedefName() {
1824
switch (_usedef) {
1825
case Component::INVALID: return "INVALID"; break;
1826
case Component::USE: return "USE"; break;
1827
case Component::USE_DEF: return "USE_DEF"; break;
1828
case Component::USE_KILL: return "USE_KILL"; break;
1829
case Component::KILL: return "KILL"; break;
1830
case Component::TEMP: return "TEMP"; break;
1831
case Component::DEF: return "DEF"; break;
1832
case Component::CALL: return "CALL"; break;
1833
default: assert(false, "unknown effect");
1834
}
1835
return "Undefined Use/Def info";
1836
}
1837
1838
Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
1839
_ftype = Form::EFF;
1840
}
1841
1842
Effect::~Effect() {
1843
}
1844
1845
// Dynamic type check
1846
Effect *Effect::is_effect() const {
1847
return (Effect*)this;
1848
}
1849
1850
1851
// True if this component is equal to the parameter.
1852
bool Effect::is(int use_def_kill_enum) const {
1853
return (_use_def == use_def_kill_enum ? true : false);
1854
}
1855
// True if this component is used/def'd/kill'd as the parameter suggests.
1856
bool Effect::isa(int use_def_kill_enum) const {
1857
return (_use_def & use_def_kill_enum) == use_def_kill_enum;
1858
}
1859
1860
void Effect::dump() {
1861
output(stderr);
1862
}
1863
1864
void Effect::output(FILE *fp) { // Write info to output files
1865
fprintf(fp,"Effect: %s\n", (_name?_name:""));
1866
}
1867
1868
//------------------------------ExpandRule-------------------------------------
1869
ExpandRule::ExpandRule() : _expand_instrs(),
1870
_newopconst(cmpstr, hashstr, Form::arena) {
1871
_ftype = Form::EXP;
1872
}
1873
1874
ExpandRule::~ExpandRule() { // Destructor
1875
}
1876
1877
void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
1878
_expand_instrs.addName((char*)instruction_name_and_operand_list);
1879
}
1880
1881
void ExpandRule::reset_instructions() {
1882
_expand_instrs.reset();
1883
}
1884
1885
NameAndList* ExpandRule::iter_instructions() {
1886
return (NameAndList*)_expand_instrs.iter();
1887
}
1888
1889
1890
void ExpandRule::dump() {
1891
output(stderr);
1892
}
1893
1894
void ExpandRule::output(FILE *fp) { // Write info to output files
1895
NameAndList *expand_instr = NULL;
1896
const char *opid = NULL;
1897
1898
fprintf(fp,"\nExpand Rule:\n");
1899
1900
// Iterate over the instructions 'node' expands into
1901
for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
1902
fprintf(fp,"%s(", expand_instr->name());
1903
1904
// iterate over the operand list
1905
for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
1906
fprintf(fp,"%s ", opid);
1907
}
1908
fprintf(fp,");\n");
1909
}
1910
}
1911
1912
//------------------------------RewriteRule------------------------------------
1913
RewriteRule::RewriteRule(char* params, char* block)
1914
: _tempParams(params), _tempBlock(block) { }; // Constructor
1915
RewriteRule::~RewriteRule() { // Destructor
1916
}
1917
1918
void RewriteRule::dump() {
1919
output(stderr);
1920
}
1921
1922
void RewriteRule::output(FILE *fp) { // Write info to output files
1923
fprintf(fp,"\nRewrite Rule:\n%s\n%s\n",
1924
(_tempParams?_tempParams:""),
1925
(_tempBlock?_tempBlock:""));
1926
}
1927
1928
1929
//==============================MachNodes======================================
1930
//------------------------------MachNodeForm-----------------------------------
1931
MachNodeForm::MachNodeForm(char *id)
1932
: _ident(id) {
1933
}
1934
1935
MachNodeForm::~MachNodeForm() {
1936
}
1937
1938
MachNodeForm *MachNodeForm::is_machnode() const {
1939
return (MachNodeForm*)this;
1940
}
1941
1942
//==============================Operand Classes================================
1943
//------------------------------OpClassForm------------------------------------
1944
OpClassForm::OpClassForm(const char* id) : _ident(id) {
1945
_ftype = Form::OPCLASS;
1946
}
1947
1948
OpClassForm::~OpClassForm() {
1949
}
1950
1951
bool OpClassForm::ideal_only() const { return 0; }
1952
1953
OpClassForm *OpClassForm::is_opclass() const {
1954
return (OpClassForm*)this;
1955
}
1956
1957
Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
1958
if( _oplst.count() == 0 ) return Form::no_interface;
1959
1960
// Check that my operands have the same interface type
1961
Form::InterfaceType interface;
1962
bool first = true;
1963
NameList &op_list = (NameList &)_oplst;
1964
op_list.reset();
1965
const char *op_name;
1966
while( (op_name = op_list.iter()) != NULL ) {
1967
const Form *form = globals[op_name];
1968
OperandForm *operand = form->is_operand();
1969
assert( operand, "Entry in operand class that is not an operand");
1970
if( first ) {
1971
first = false;
1972
interface = operand->interface_type(globals);
1973
} else {
1974
interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
1975
}
1976
}
1977
return interface;
1978
}
1979
1980
bool OpClassForm::stack_slots_only(FormDict &globals) const {
1981
if( _oplst.count() == 0 ) return false; // how?
1982
1983
NameList &op_list = (NameList &)_oplst;
1984
op_list.reset();
1985
const char *op_name;
1986
while( (op_name = op_list.iter()) != NULL ) {
1987
const Form *form = globals[op_name];
1988
OperandForm *operand = form->is_operand();
1989
assert( operand, "Entry in operand class that is not an operand");
1990
if( !operand->stack_slots_only(globals) ) return false;
1991
}
1992
return true;
1993
}
1994
1995
1996
void OpClassForm::dump() {
1997
output(stderr);
1998
}
1999
2000
void OpClassForm::output(FILE *fp) {
2001
const char *name;
2002
fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
2003
fprintf(fp,"\nCount = %d\n", _oplst.count());
2004
for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
2005
fprintf(fp,"%s, ",name);
2006
}
2007
fprintf(fp,"\n");
2008
}
2009
2010
2011
//==============================Operands=======================================
2012
//------------------------------OperandForm------------------------------------
2013
OperandForm::OperandForm(const char* id)
2014
: OpClassForm(id), _ideal_only(false),
2015
_localNames(cmpstr, hashstr, Form::arena) {
2016
_ftype = Form::OPER;
2017
2018
_matrule = NULL;
2019
_interface = NULL;
2020
_attribs = NULL;
2021
_predicate = NULL;
2022
_constraint= NULL;
2023
_construct = NULL;
2024
_format = NULL;
2025
}
2026
OperandForm::OperandForm(const char* id, bool ideal_only)
2027
: OpClassForm(id), _ideal_only(ideal_only),
2028
_localNames(cmpstr, hashstr, Form::arena) {
2029
_ftype = Form::OPER;
2030
2031
_matrule = NULL;
2032
_interface = NULL;
2033
_attribs = NULL;
2034
_predicate = NULL;
2035
_constraint= NULL;
2036
_construct = NULL;
2037
_format = NULL;
2038
}
2039
OperandForm::~OperandForm() {
2040
}
2041
2042
2043
OperandForm *OperandForm::is_operand() const {
2044
return (OperandForm*)this;
2045
}
2046
2047
bool OperandForm::ideal_only() const {
2048
return _ideal_only;
2049
}
2050
2051
Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
2052
if( _interface == NULL ) return Form::no_interface;
2053
2054
return _interface->interface_type(globals);
2055
}
2056
2057
2058
bool OperandForm::stack_slots_only(FormDict &globals) const {
2059
if( _constraint == NULL ) return false;
2060
return _constraint->stack_slots_only();
2061
}
2062
2063
2064
// Access op_cost attribute or return NULL.
2065
const char* OperandForm::cost() {
2066
for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
2067
if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
2068
return cur->_val;
2069
}
2070
}
2071
return NULL;
2072
}
2073
2074
// Return the number of leaves below this complex operand
2075
uint OperandForm::num_leaves() const {
2076
if ( ! _matrule) return 0;
2077
2078
int num_leaves = _matrule->_numleaves;
2079
return num_leaves;
2080
}
2081
2082
// Return the number of constants contained within this complex operand
2083
uint OperandForm::num_consts(FormDict &globals) const {
2084
if ( ! _matrule) return 0;
2085
2086
// This is a recursive invocation on all operands in the matchrule
2087
return _matrule->num_consts(globals);
2088
}
2089
2090
// Return the number of constants in match rule with specified type
2091
uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
2092
if ( ! _matrule) return 0;
2093
2094
// This is a recursive invocation on all operands in the matchrule
2095
return _matrule->num_consts(globals, type);
2096
}
2097
2098
// Return the number of pointer constants contained within this complex operand
2099
uint OperandForm::num_const_ptrs(FormDict &globals) const {
2100
if ( ! _matrule) return 0;
2101
2102
// This is a recursive invocation on all operands in the matchrule
2103
return _matrule->num_const_ptrs(globals);
2104
}
2105
2106
uint OperandForm::num_edges(FormDict &globals) const {
2107
uint edges = 0;
2108
uint leaves = num_leaves();
2109
uint consts = num_consts(globals);
2110
2111
// If we are matching a constant directly, there are no leaves.
2112
edges = ( leaves > consts ) ? leaves - consts : 0;
2113
2114
// !!!!!
2115
// Special case operands that do not have a corresponding ideal node.
2116
if( (edges == 0) && (consts == 0) ) {
2117
if( constrained_reg_class() != NULL ) {
2118
edges = 1;
2119
} else {
2120
if( _matrule
2121
&& (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
2122
const Form *form = globals[_matrule->_opType];
2123
OperandForm *oper = form ? form->is_operand() : NULL;
2124
if( oper ) {
2125
return oper->num_edges(globals);
2126
}
2127
}
2128
}
2129
}
2130
2131
return edges;
2132
}
2133
2134
2135
// Check if this operand is usable for cisc-spilling
2136
bool OperandForm::is_cisc_reg(FormDict &globals) const {
2137
const char *ideal = ideal_type(globals);
2138
bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
2139
return is_cisc_reg;
2140
}
2141
2142
bool OpClassForm::is_cisc_mem(FormDict &globals) const {
2143
Form::InterfaceType my_interface = interface_type(globals);
2144
return (my_interface == memory_interface);
2145
}
2146
2147
2148
// node matches ideal 'Bool'
2149
bool OperandForm::is_ideal_bool() const {
2150
if( _matrule == NULL ) return false;
2151
2152
return _matrule->is_ideal_bool();
2153
}
2154
2155
// Require user's name for an sRegX to be stackSlotX
2156
Form::DataType OperandForm::is_user_name_for_sReg() const {
2157
DataType data_type = none;
2158
if( _ident != NULL ) {
2159
if( strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
2160
else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
2161
else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
2162
else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
2163
else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
2164
}
2165
assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");
2166
2167
return data_type;
2168
}
2169
2170
2171
// Return ideal type, if there is a single ideal type for this operand
2172
const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
2173
const char *type = NULL;
2174
if (ideal_only()) type = _ident;
2175
else if( _matrule == NULL ) {
2176
// Check for condition code register
2177
const char *rc_name = constrained_reg_class();
2178
// !!!!!
2179
if (rc_name == NULL) return NULL;
2180
// !!!!! !!!!!
2181
// Check constraints on result's register class
2182
if( registers ) {
2183
RegClass *reg_class = registers->getRegClass(rc_name);
2184
assert( reg_class != NULL, "Register class is not defined");
2185
2186
// Check for ideal type of entries in register class, all are the same type
2187
reg_class->reset();
2188
RegDef *reg_def = reg_class->RegDef_iter();
2189
assert( reg_def != NULL, "No entries in register class");
2190
assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
2191
// Return substring that names the register's ideal type
2192
type = reg_def->_idealtype + 3;
2193
assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
2194
assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
2195
assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
2196
}
2197
}
2198
else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
2199
// This operand matches a single type, at the top level.
2200
// Check for ideal type
2201
type = _matrule->_opType;
2202
if( strcmp(type,"Bool") == 0 )
2203
return "Bool";
2204
// transitive lookup
2205
const Form *frm = globals[type];
2206
OperandForm *op = frm->is_operand();
2207
type = op->ideal_type(globals, registers);
2208
}
2209
return type;
2210
}
2211
2212
2213
// If there is a single ideal type for this interface field, return it.
2214
const char *OperandForm::interface_ideal_type(FormDict &globals,
2215
const char *field) const {
2216
const char *ideal_type = NULL;
2217
const char *value = NULL;
2218
2219
// Check if "field" is valid for this operand's interface
2220
if ( ! is_interface_field(field, value) ) return ideal_type;
2221
2222
// !!!!! !!!!! !!!!!
2223
// If a valid field has a constant value, identify "ConI" or "ConP" or ...
2224
2225
// Else, lookup type of field's replacement variable
2226
2227
return ideal_type;
2228
}
2229
2230
2231
RegClass* OperandForm::get_RegClass() const {
2232
if (_interface && !_interface->is_RegInterface()) return NULL;
2233
return globalAD->get_registers()->getRegClass(constrained_reg_class());
2234
}
2235
2236
2237
bool OperandForm::is_bound_register() const {
2238
RegClass* reg_class = get_RegClass();
2239
if (reg_class == NULL) {
2240
return false;
2241
}
2242
2243
const char* name = ideal_type(globalAD->globalNames());
2244
if (name == NULL) {
2245
return false;
2246
}
2247
2248
uint size = 0;
2249
if (strcmp(name, "RegFlags") == 0) size = 1;
2250
if (strcmp(name, "RegI") == 0) size = 1;
2251
if (strcmp(name, "RegF") == 0) size = 1;
2252
if (strcmp(name, "RegD") == 0) size = 2;
2253
if (strcmp(name, "RegL") == 0) size = 2;
2254
if (strcmp(name, "RegN") == 0) size = 1;
2255
if (strcmp(name, "RegP") == 0) size = globalAD->get_preproc_def("_LP64") ? 2 : 1;
2256
if (size == 0) {
2257
return false;
2258
}
2259
return size == reg_class->size();
2260
}
2261
2262
2263
// Check if this is a valid field for this operand,
2264
// Return 'true' if valid, and set the value to the string the user provided.
2265
bool OperandForm::is_interface_field(const char *field,
2266
const char * &value) const {
2267
return false;
2268
}
2269
2270
2271
// Return register class name if a constraint specifies the register class.
2272
const char *OperandForm::constrained_reg_class() const {
2273
const char *reg_class = NULL;
2274
if ( _constraint ) {
2275
// !!!!!
2276
Constraint *constraint = _constraint;
2277
if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
2278
reg_class = _constraint->_arg;
2279
}
2280
}
2281
2282
return reg_class;
2283
}
2284
2285
2286
// Return the register class associated with 'leaf'.
2287
const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
2288
const char *reg_class = NULL; // "RegMask::Empty";
2289
2290
if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
2291
reg_class = constrained_reg_class();
2292
return reg_class;
2293
}
2294
const char *result = NULL;
2295
const char *name = NULL;
2296
const char *type = NULL;
2297
// iterate through all base operands
2298
// until we reach the register that corresponds to "leaf"
2299
// This function is not looking for an ideal type. It needs the first
2300
// level user type associated with the leaf.
2301
for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
2302
const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
2303
OperandForm *oper = form ? form->is_operand() : NULL;
2304
if( oper ) {
2305
reg_class = oper->constrained_reg_class();
2306
if( reg_class ) {
2307
reg_class = reg_class;
2308
} else {
2309
// ShouldNotReachHere();
2310
}
2311
} else {
2312
// ShouldNotReachHere();
2313
}
2314
2315
// Increment our target leaf position if current leaf is not a candidate.
2316
if( reg_class == NULL) ++leaf;
2317
// Exit the loop with the value of reg_class when at the correct index
2318
if( idx == leaf ) break;
2319
// May iterate through all base operands if reg_class for 'leaf' is NULL
2320
}
2321
return reg_class;
2322
}
2323
2324
2325
// Recursive call to construct list of top-level operands.
2326
// Implementation does not modify state of internal structures
2327
void OperandForm::build_components() {
2328
if (_matrule) _matrule->append_components(_localNames, _components);
2329
2330
// Add parameters that "do not appear in match rule".
2331
const char *name;
2332
for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
2333
OpClassForm *opForm = _localNames[name]->is_opclass();
2334
assert(opForm != NULL, "sanity");
2335
2336
if ( _components.operand_position(name) == -1 ) {
2337
_components.insert(name, opForm->_ident, Component::INVALID, false);
2338
}
2339
}
2340
2341
return;
2342
}
2343
2344
int OperandForm::operand_position(const char *name, int usedef) {
2345
return _components.operand_position(name, usedef, this);
2346
}
2347
2348
2349
// Return zero-based position in component list, only counting constants;
2350
// Return -1 if not in list.
2351
int OperandForm::constant_position(FormDict &globals, const Component *last) {
2352
// Iterate through components and count constants preceding 'constant'
2353
int position = 0;
2354
Component *comp;
2355
_components.reset();
2356
while( (comp = _components.iter()) != NULL && (comp != last) ) {
2357
// Special case for operands that take a single user-defined operand
2358
// Skip the initial definition in the component list.
2359
if( strcmp(comp->_name,this->_ident) == 0 ) continue;
2360
2361
const char *type = comp->_type;
2362
// Lookup operand form for replacement variable's type
2363
const Form *form = globals[type];
2364
assert( form != NULL, "Component's type not found");
2365
OperandForm *oper = form ? form->is_operand() : NULL;
2366
if( oper ) {
2367
if( oper->_matrule->is_base_constant(globals) != Form::none ) {
2368
++position;
2369
}
2370
}
2371
}
2372
2373
// Check for being passed a component that was not in the list
2374
if( comp != last ) position = -1;
2375
2376
return position;
2377
}
2378
// Provide position of constant by "name"
2379
int OperandForm::constant_position(FormDict &globals, const char *name) {
2380
const Component *comp = _components.search(name);
2381
int idx = constant_position( globals, comp );
2382
2383
return idx;
2384
}
2385
2386
2387
// Return zero-based position in component list, only counting constants;
2388
// Return -1 if not in list.
2389
int OperandForm::register_position(FormDict &globals, const char *reg_name) {
2390
// Iterate through components and count registers preceding 'last'
2391
uint position = 0;
2392
Component *comp;
2393
_components.reset();
2394
while( (comp = _components.iter()) != NULL
2395
&& (strcmp(comp->_name,reg_name) != 0) ) {
2396
// Special case for operands that take a single user-defined operand
2397
// Skip the initial definition in the component list.
2398
if( strcmp(comp->_name,this->_ident) == 0 ) continue;
2399
2400
const char *type = comp->_type;
2401
// Lookup operand form for component's type
2402
const Form *form = globals[type];
2403
assert( form != NULL, "Component's type not found");
2404
OperandForm *oper = form ? form->is_operand() : NULL;
2405
if( oper ) {
2406
if( oper->_matrule->is_base_register(globals) ) {
2407
++position;
2408
}
2409
}
2410
}
2411
2412
return position;
2413
}
2414
2415
2416
const char *OperandForm::reduce_result() const {
2417
return _ident;
2418
}
2419
// Return the name of the operand on the right hand side of the binary match
2420
// Return NULL if there is no right hand side
2421
const char *OperandForm::reduce_right(FormDict &globals) const {
2422
return ( _matrule ? _matrule->reduce_right(globals) : NULL );
2423
}
2424
2425
// Similar for left
2426
const char *OperandForm::reduce_left(FormDict &globals) const {
2427
return ( _matrule ? _matrule->reduce_left(globals) : NULL );
2428
}
2429
2430
2431
// --------------------------- FILE *output_routines
2432
//
2433
// Output code for disp_is_oop, if true.
2434
void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
2435
// Check it is a memory interface with a non-user-constant disp field
2436
if ( this->_interface == NULL ) return;
2437
MemInterface *mem_interface = this->_interface->is_MemInterface();
2438
if ( mem_interface == NULL ) return;
2439
const char *disp = mem_interface->_disp;
2440
if ( *disp != '$' ) return;
2441
2442
// Lookup replacement variable in operand's component list
2443
const char *rep_var = disp + 1;
2444
const Component *comp = this->_components.search(rep_var);
2445
assert( comp != NULL, "Replacement variable not found in components");
2446
// Lookup operand form for replacement variable's type
2447
const char *type = comp->_type;
2448
Form *form = (Form*)globals[type];
2449
assert( form != NULL, "Replacement variable's type not found");
2450
OperandForm *op = form->is_operand();
2451
assert( op, "Memory Interface 'disp' can only emit an operand form");
2452
// Check if this is a ConP, which may require relocation
2453
if ( op->is_base_constant(globals) == Form::idealP ) {
2454
// Find the constant's index: _c0, _c1, _c2, ... , _cN
2455
uint idx = op->constant_position( globals, rep_var);
2456
fprintf(fp," virtual relocInfo::relocType disp_reloc() const {");
2457
fprintf(fp, " return _c%d->reloc();", idx);
2458
fprintf(fp, " }\n");
2459
}
2460
}
2461
2462
// Generate code for internal and external format methods
2463
//
2464
// internal access to reg# node->_idx
2465
// access to subsumed constant _c0, _c1,
2466
void OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
2467
Form::DataType dtype;
2468
if (_matrule && (_matrule->is_base_register(globals) ||
2469
strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
2470
// !!!!! !!!!!
2471
fprintf(fp," { char reg_str[128];\n");
2472
fprintf(fp," ra->dump_register(node,reg_str);\n");
2473
fprintf(fp," st->print(\"%cs\",reg_str);\n",'%');
2474
fprintf(fp," }\n");
2475
} else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
2476
format_constant( fp, index, dtype );
2477
} else if (ideal_to_sReg_type(_ident) != Form::none) {
2478
// Special format for Stack Slot Register
2479
fprintf(fp," { char reg_str[128];\n");
2480
fprintf(fp," ra->dump_register(node,reg_str);\n");
2481
fprintf(fp," st->print(\"%cs\",reg_str);\n",'%');
2482
fprintf(fp," }\n");
2483
} else {
2484
fprintf(fp," st->print(\"No format defined for %s\n\");\n", _ident);
2485
fflush(fp);
2486
fprintf(stderr,"No format defined for %s\n", _ident);
2487
dump();
2488
assert( false,"Internal error:\n output_internal_operand() attempting to output other than a Register or Constant");
2489
}
2490
}
2491
2492
// Similar to "int_format" but for cases where data is external to operand
2493
// external access to reg# node->in(idx)->_idx,
2494
void OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
2495
Form::DataType dtype;
2496
if (_matrule && (_matrule->is_base_register(globals) ||
2497
strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
2498
fprintf(fp," { char reg_str[128];\n");
2499
fprintf(fp," ra->dump_register(node->in(idx");
2500
if ( index != 0 ) fprintf(fp, "+%d",index);
2501
fprintf(fp, "),reg_str);\n");
2502
fprintf(fp," st->print(\"%cs\",reg_str);\n",'%');
2503
fprintf(fp," }\n");
2504
} else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
2505
format_constant( fp, index, dtype );
2506
} else if (ideal_to_sReg_type(_ident) != Form::none) {
2507
// Special format for Stack Slot Register
2508
fprintf(fp," { char reg_str[128];\n");
2509
fprintf(fp," ra->dump_register(node->in(idx");
2510
if ( index != 0 ) fprintf(fp, "+%d",index);
2511
fprintf(fp, "),reg_str);\n");
2512
fprintf(fp," st->print(\"%cs\",reg_str);\n",'%');
2513
fprintf(fp," }\n");
2514
} else {
2515
fprintf(fp," st->print(\"No format defined for %s\n\");\n", _ident);
2516
assert( false,"Internal error:\n output_external_operand() attempting to output other than a Register or Constant");
2517
}
2518
}
2519
2520
void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
2521
switch(const_type) {
2522
case Form::idealI: fprintf(fp," st->print(\"#%%d\", _c%d);\n", const_index); break;
2523
case Form::idealP: fprintf(fp," if (_c%d) _c%d->dump_on(st);\n", const_index, const_index); break;
2524
case Form::idealNKlass:
2525
case Form::idealN: fprintf(fp," if (_c%d) _c%d->dump_on(st);\n", const_index, const_index); break;
2526
case Form::idealL: fprintf(fp," st->print(\"#\" INT64_FORMAT, (int64_t)_c%d);\n", const_index); break;
2527
case Form::idealF: fprintf(fp," st->print(\"#%%f\", _c%d);\n", const_index); break;
2528
case Form::idealD: fprintf(fp," st->print(\"#%%f\", _c%d);\n", const_index); break;
2529
default:
2530
assert( false, "ShouldNotReachHere()");
2531
}
2532
}
2533
2534
// Return the operand form corresponding to the given index, else NULL.
2535
OperandForm *OperandForm::constant_operand(FormDict &globals,
2536
uint index) {
2537
// !!!!!
2538
// Check behavior on complex operands
2539
uint n_consts = num_consts(globals);
2540
if( n_consts > 0 ) {
2541
uint i = 0;
2542
const char *type;
2543
Component *comp;
2544
_components.reset();
2545
if ((comp = _components.iter()) == NULL) {
2546
assert(n_consts == 1, "Bad component list detected.\n");
2547
// Current operand is THE operand
2548
if ( index == 0 ) {
2549
return this;
2550
}
2551
} // end if NULL
2552
else {
2553
// Skip the first component, it can not be a DEF of a constant
2554
do {
2555
type = comp->base_type(globals);
2556
// Check that "type" is a 'ConI', 'ConP', ...
2557
if ( ideal_to_const_type(type) != Form::none ) {
2558
// When at correct component, get corresponding Operand
2559
if ( index == 0 ) {
2560
return globals[comp->_type]->is_operand();
2561
}
2562
// Decrement number of constants to go
2563
--index;
2564
}
2565
} while((comp = _components.iter()) != NULL);
2566
}
2567
}
2568
2569
// Did not find a constant for this index.
2570
return NULL;
2571
}
2572
2573
// If this operand has a single ideal type, return its type
2574
Form::DataType OperandForm::simple_type(FormDict &globals) const {
2575
const char *type_name = ideal_type(globals);
2576
Form::DataType type = type_name ? ideal_to_const_type( type_name )
2577
: Form::none;
2578
return type;
2579
}
2580
2581
Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
2582
if ( _matrule == NULL ) return Form::none;
2583
2584
return _matrule->is_base_constant(globals);
2585
}
2586
2587
// "true" if this operand is a simple type that is swallowed
2588
bool OperandForm::swallowed(FormDict &globals) const {
2589
Form::DataType type = simple_type(globals);
2590
if( type != Form::none ) {
2591
return true;
2592
}
2593
2594
return false;
2595
}
2596
2597
// Output code to access the value of the index'th constant
2598
void OperandForm::access_constant(FILE *fp, FormDict &globals,
2599
uint const_index) {
2600
OperandForm *oper = constant_operand(globals, const_index);
2601
assert( oper, "Index exceeds number of constants in operand");
2602
Form::DataType dtype = oper->is_base_constant(globals);
2603
2604
switch(dtype) {
2605
case idealI: fprintf(fp,"_c%d", const_index); break;
2606
case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
2607
case idealL: fprintf(fp,"_c%d", const_index); break;
2608
case idealF: fprintf(fp,"_c%d", const_index); break;
2609
case idealD: fprintf(fp,"_c%d", const_index); break;
2610
default:
2611
assert( false, "ShouldNotReachHere()");
2612
}
2613
}
2614
2615
2616
void OperandForm::dump() {
2617
output(stderr);
2618
}
2619
2620
void OperandForm::output(FILE *fp) {
2621
fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
2622
if (_matrule) _matrule->dump();
2623
if (_interface) _interface->dump();
2624
if (_attribs) _attribs->dump();
2625
if (_predicate) _predicate->dump();
2626
if (_constraint) _constraint->dump();
2627
if (_construct) _construct->dump();
2628
if (_format) _format->dump();
2629
}
2630
2631
//------------------------------Constraint-------------------------------------
2632
Constraint::Constraint(const char *func, const char *arg)
2633
: _func(func), _arg(arg) {
2634
}
2635
Constraint::~Constraint() { /* not owner of char* */
2636
}
2637
2638
bool Constraint::stack_slots_only() const {
2639
return strcmp(_func, "ALLOC_IN_RC") == 0
2640
&& strcmp(_arg, "stack_slots") == 0;
2641
}
2642
2643
void Constraint::dump() {
2644
output(stderr);
2645
}
2646
2647
void Constraint::output(FILE *fp) { // Write info to output files
2648
assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
2649
fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg);
2650
}
2651
2652
//------------------------------Predicate--------------------------------------
2653
Predicate::Predicate(char *pr)
2654
: _pred(pr) {
2655
}
2656
Predicate::~Predicate() {
2657
}
2658
2659
void Predicate::dump() {
2660
output(stderr);
2661
}
2662
2663
void Predicate::output(FILE *fp) {
2664
fprintf(fp,"Predicate"); // Write to output files
2665
}
2666
//------------------------------Interface--------------------------------------
2667
Interface::Interface(const char *name) : _name(name) {
2668
}
2669
Interface::~Interface() {
2670
}
2671
2672
Form::InterfaceType Interface::interface_type(FormDict &globals) const {
2673
Interface *thsi = (Interface*)this;
2674
if ( thsi->is_RegInterface() ) return Form::register_interface;
2675
if ( thsi->is_MemInterface() ) return Form::memory_interface;
2676
if ( thsi->is_ConstInterface() ) return Form::constant_interface;
2677
if ( thsi->is_CondInterface() ) return Form::conditional_interface;
2678
2679
return Form::no_interface;
2680
}
2681
2682
RegInterface *Interface::is_RegInterface() {
2683
if ( strcmp(_name,"REG_INTER") != 0 )
2684
return NULL;
2685
return (RegInterface*)this;
2686
}
2687
MemInterface *Interface::is_MemInterface() {
2688
if ( strcmp(_name,"MEMORY_INTER") != 0 ) return NULL;
2689
return (MemInterface*)this;
2690
}
2691
ConstInterface *Interface::is_ConstInterface() {
2692
if ( strcmp(_name,"CONST_INTER") != 0 ) return NULL;
2693
return (ConstInterface*)this;
2694
}
2695
CondInterface *Interface::is_CondInterface() {
2696
if ( strcmp(_name,"COND_INTER") != 0 ) return NULL;
2697
return (CondInterface*)this;
2698
}
2699
2700
2701
void Interface::dump() {
2702
output(stderr);
2703
}
2704
2705
// Write info to output files
2706
void Interface::output(FILE *fp) {
2707
fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
2708
}
2709
2710
//------------------------------RegInterface-----------------------------------
2711
RegInterface::RegInterface() : Interface("REG_INTER") {
2712
}
2713
RegInterface::~RegInterface() {
2714
}
2715
2716
void RegInterface::dump() {
2717
output(stderr);
2718
}
2719
2720
// Write info to output files
2721
void RegInterface::output(FILE *fp) {
2722
Interface::output(fp);
2723
}
2724
2725
//------------------------------ConstInterface---------------------------------
2726
ConstInterface::ConstInterface() : Interface("CONST_INTER") {
2727
}
2728
ConstInterface::~ConstInterface() {
2729
}
2730
2731
void ConstInterface::dump() {
2732
output(stderr);
2733
}
2734
2735
// Write info to output files
2736
void ConstInterface::output(FILE *fp) {
2737
Interface::output(fp);
2738
}
2739
2740
//------------------------------MemInterface-----------------------------------
2741
MemInterface::MemInterface(char *base, char *index, char *scale, char *disp)
2742
: Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
2743
}
2744
MemInterface::~MemInterface() {
2745
// not owner of any character arrays
2746
}
2747
2748
void MemInterface::dump() {
2749
output(stderr);
2750
}
2751
2752
// Write info to output files
2753
void MemInterface::output(FILE *fp) {
2754
Interface::output(fp);
2755
if ( _base != NULL ) fprintf(fp," base == %s\n", _base);
2756
if ( _index != NULL ) fprintf(fp," index == %s\n", _index);
2757
if ( _scale != NULL ) fprintf(fp," scale == %s\n", _scale);
2758
if ( _disp != NULL ) fprintf(fp," disp == %s\n", _disp);
2759
// fprintf(fp,"\n");
2760
}
2761
2762
//------------------------------CondInterface----------------------------------
2763
CondInterface::CondInterface(const char* equal, const char* equal_format,
2764
const char* not_equal, const char* not_equal_format,
2765
const char* less, const char* less_format,
2766
const char* greater_equal, const char* greater_equal_format,
2767
const char* less_equal, const char* less_equal_format,
2768
const char* greater, const char* greater_format,
2769
const char* overflow, const char* overflow_format,
2770
const char* no_overflow, const char* no_overflow_format)
2771
: Interface("COND_INTER"),
2772
_equal(equal), _equal_format(equal_format),
2773
_not_equal(not_equal), _not_equal_format(not_equal_format),
2774
_less(less), _less_format(less_format),
2775
_greater_equal(greater_equal), _greater_equal_format(greater_equal_format),
2776
_less_equal(less_equal), _less_equal_format(less_equal_format),
2777
_greater(greater), _greater_format(greater_format),
2778
_overflow(overflow), _overflow_format(overflow_format),
2779
_no_overflow(no_overflow), _no_overflow_format(no_overflow_format) {
2780
}
2781
CondInterface::~CondInterface() {
2782
// not owner of any character arrays
2783
}
2784
2785
void CondInterface::dump() {
2786
output(stderr);
2787
}
2788
2789
// Write info to output files
2790
void CondInterface::output(FILE *fp) {
2791
Interface::output(fp);
2792
if ( _equal != NULL ) fprintf(fp," equal == %s\n", _equal);
2793
if ( _not_equal != NULL ) fprintf(fp," not_equal == %s\n", _not_equal);
2794
if ( _less != NULL ) fprintf(fp," less == %s\n", _less);
2795
if ( _greater_equal != NULL ) fprintf(fp," greater_equal == %s\n", _greater_equal);
2796
if ( _less_equal != NULL ) fprintf(fp," less_equal == %s\n", _less_equal);
2797
if ( _greater != NULL ) fprintf(fp," greater == %s\n", _greater);
2798
if ( _overflow != NULL ) fprintf(fp," overflow == %s\n", _overflow);
2799
if ( _no_overflow != NULL ) fprintf(fp," no_overflow == %s\n", _no_overflow);
2800
// fprintf(fp,"\n");
2801
}
2802
2803
//------------------------------ConstructRule----------------------------------
2804
ConstructRule::ConstructRule(char *cnstr)
2805
: _construct(cnstr) {
2806
}
2807
ConstructRule::~ConstructRule() {
2808
}
2809
2810
void ConstructRule::dump() {
2811
output(stderr);
2812
}
2813
2814
void ConstructRule::output(FILE *fp) {
2815
fprintf(fp,"\nConstruct Rule\n"); // Write to output files
2816
}
2817
2818
2819
//==============================Shared Forms===================================
2820
//------------------------------AttributeForm----------------------------------
2821
int AttributeForm::_insId = 0; // start counter at 0
2822
int AttributeForm::_opId = 0; // start counter at 0
2823
const char* AttributeForm::_ins_cost = "ins_cost"; // required name
2824
const char* AttributeForm::_op_cost = "op_cost"; // required name
2825
2826
AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
2827
: Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
2828
if (type==OP_ATTR) {
2829
id = ++_opId;
2830
}
2831
else if (type==INS_ATTR) {
2832
id = ++_insId;
2833
}
2834
else assert( false,"");
2835
}
2836
AttributeForm::~AttributeForm() {
2837
}
2838
2839
// Dynamic type check
2840
AttributeForm *AttributeForm::is_attribute() const {
2841
return (AttributeForm*)this;
2842
}
2843
2844
2845
// inlined // int AttributeForm::type() { return id;}
2846
2847
void AttributeForm::dump() {
2848
output(stderr);
2849
}
2850
2851
void AttributeForm::output(FILE *fp) {
2852
if( _attrname && _attrdef ) {
2853
fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
2854
_attrname, _attrdef);
2855
}
2856
else {
2857
fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
2858
(_attrname?_attrname:""), (_attrdef?_attrdef:"") );
2859
}
2860
}
2861
2862
//------------------------------Component--------------------------------------
2863
Component::Component(const char *name, const char *type, int usedef)
2864
: _name(name), _type(type), _usedef(usedef) {
2865
_ftype = Form::COMP;
2866
}
2867
Component::~Component() {
2868
}
2869
2870
// True if this component is equal to the parameter.
2871
bool Component::is(int use_def_kill_enum) const {
2872
return (_usedef == use_def_kill_enum ? true : false);
2873
}
2874
// True if this component is used/def'd/kill'd as the parameter suggests.
2875
bool Component::isa(int use_def_kill_enum) const {
2876
return (_usedef & use_def_kill_enum) == use_def_kill_enum;
2877
}
2878
2879
// Extend this component with additional use/def/kill behavior
2880
int Component::promote_use_def_info(int new_use_def) {
2881
_usedef |= new_use_def;
2882
2883
return _usedef;
2884
}
2885
2886
// Check the base type of this component, if it has one
2887
const char *Component::base_type(FormDict &globals) {
2888
const Form *frm = globals[_type];
2889
if (frm == NULL) return NULL;
2890
OperandForm *op = frm->is_operand();
2891
if (op == NULL) return NULL;
2892
if (op->ideal_only()) return op->_ident;
2893
return (char *)op->ideal_type(globals);
2894
}
2895
2896
void Component::dump() {
2897
output(stderr);
2898
}
2899
2900
void Component::output(FILE *fp) {
2901
fprintf(fp,"Component:"); // Write to output files
2902
fprintf(fp, " name = %s", _name);
2903
fprintf(fp, ", type = %s", _type);
2904
assert(_usedef != 0, "unknown effect");
2905
fprintf(fp, ", use/def = %s\n", getUsedefName());
2906
}
2907
2908
2909
//------------------------------ComponentList---------------------------------
2910
ComponentList::ComponentList() : NameList(), _matchcnt(0) {
2911
}
2912
ComponentList::~ComponentList() {
2913
// // This list may not own its elements if copied via assignment
2914
// Component *component;
2915
// for (reset(); (component = iter()) != NULL;) {
2916
// delete component;
2917
// }
2918
}
2919
2920
void ComponentList::insert(Component *component, bool mflag) {
2921
NameList::addName((char *)component);
2922
if(mflag) _matchcnt++;
2923
}
2924
void ComponentList::insert(const char *name, const char *opType, int usedef,
2925
bool mflag) {
2926
Component * component = new Component(name, opType, usedef);
2927
insert(component, mflag);
2928
}
2929
Component *ComponentList::current() { return (Component*)NameList::current(); }
2930
Component *ComponentList::iter() { return (Component*)NameList::iter(); }
2931
Component *ComponentList::match_iter() {
2932
if(_iter < _matchcnt) return (Component*)NameList::iter();
2933
return NULL;
2934
}
2935
Component *ComponentList::post_match_iter() {
2936
Component *comp = iter();
2937
// At end of list?
2938
if ( comp == NULL ) {
2939
return comp;
2940
}
2941
// In post-match components?
2942
if (_iter > match_count()-1) {
2943
return comp;
2944
}
2945
2946
return post_match_iter();
2947
}
2948
2949
void ComponentList::reset() { NameList::reset(); }
2950
int ComponentList::count() { return NameList::count(); }
2951
2952
Component *ComponentList::operator[](int position) {
2953
// Shortcut complete iteration if there are not enough entries
2954
if (position >= count()) return NULL;
2955
2956
int index = 0;
2957
Component *component = NULL;
2958
for (reset(); (component = iter()) != NULL;) {
2959
if (index == position) {
2960
return component;
2961
}
2962
++index;
2963
}
2964
2965
return NULL;
2966
}
2967
2968
const Component *ComponentList::search(const char *name) {
2969
PreserveIter pi(this);
2970
reset();
2971
for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
2972
if( strcmp(comp->_name,name) == 0 ) return comp;
2973
}
2974
2975
return NULL;
2976
}
2977
2978
// Return number of USEs + number of DEFs
2979
// When there are no components, or the first component is a USE,
2980
// then we add '1' to hold a space for the 'result' operand.
2981
int ComponentList::num_operands() {
2982
PreserveIter pi(this);
2983
uint count = 1; // result operand
2984
uint position = 0;
2985
2986
Component *component = NULL;
2987
for( reset(); (component = iter()) != NULL; ++position ) {
2988
if( component->isa(Component::USE) ||
2989
( position == 0 && (! component->isa(Component::DEF))) ) {
2990
++count;
2991
}
2992
}
2993
2994
return count;
2995
}
2996
2997
// Return zero-based position of operand 'name' in list; -1 if not in list.
2998
// if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
2999
int ComponentList::operand_position(const char *name, int usedef, Form *fm) {
3000
PreserveIter pi(this);
3001
int position = 0;
3002
int num_opnds = num_operands();
3003
Component *component;
3004
Component* preceding_non_use = NULL;
3005
Component* first_def = NULL;
3006
for (reset(); (component = iter()) != NULL; ++position) {
3007
// When the first component is not a DEF,
3008
// leave space for the result operand!
3009
if ( position==0 && (! component->isa(Component::DEF)) ) {
3010
++position;
3011
++num_opnds;
3012
}
3013
if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
3014
// When the first entry in the component list is a DEF and a USE
3015
// Treat them as being separate, a DEF first, then a USE
3016
if( position==0
3017
&& usedef==Component::USE && component->isa(Component::DEF) ) {
3018
assert(position+1 < num_opnds, "advertised index in bounds");
3019
return position+1;
3020
} else {
3021
if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
3022
fprintf(stderr, "the name '%s(%s)' should not precede the name '%s(%s)'",
3023
preceding_non_use->_name, preceding_non_use->getUsedefName(),
3024
name, component->getUsedefName());
3025
if (fm && fm->is_instruction()) fprintf(stderr, "in form '%s'", fm->is_instruction()->_ident);
3026
if (fm && fm->is_operand()) fprintf(stderr, "in form '%s'", fm->is_operand()->_ident);
3027
fprintf(stderr, "\n");
3028
}
3029
if( position >= num_opnds ) {
3030
fprintf(stderr, "the name '%s' is too late in its name list", name);
3031
if (fm && fm->is_instruction()) fprintf(stderr, "in form '%s'", fm->is_instruction()->_ident);
3032
if (fm && fm->is_operand()) fprintf(stderr, "in form '%s'", fm->is_operand()->_ident);
3033
fprintf(stderr, "\n");
3034
}
3035
assert(position < num_opnds, "advertised index in bounds");
3036
return position;
3037
}
3038
}
3039
if( component->isa(Component::DEF)
3040
&& component->isa(Component::USE) ) {
3041
++position;
3042
if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
3043
}
3044
if( component->isa(Component::DEF) && !first_def ) {
3045
first_def = component;
3046
}
3047
if( !component->isa(Component::USE) && component != first_def ) {
3048
preceding_non_use = component;
3049
} else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
3050
preceding_non_use = NULL;
3051
}
3052
}
3053
return Not_in_list;
3054
}
3055
3056
// Find position for this name, regardless of use/def information
3057
int ComponentList::operand_position(const char *name) {
3058
PreserveIter pi(this);
3059
int position = 0;
3060
Component *component;
3061
for (reset(); (component = iter()) != NULL; ++position) {
3062
// When the first component is not a DEF,
3063
// leave space for the result operand!
3064
if ( position==0 && (! component->isa(Component::DEF)) ) {
3065
++position;
3066
}
3067
if (strcmp(name, component->_name)==0) {
3068
return position;
3069
}
3070
if( component->isa(Component::DEF)
3071
&& component->isa(Component::USE) ) {
3072
++position;
3073
if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
3074
}
3075
}
3076
return Not_in_list;
3077
}
3078
3079
int ComponentList::operand_position_format(const char *name, Form *fm) {
3080
PreserveIter pi(this);
3081
int first_position = operand_position(name);
3082
int use_position = operand_position(name, Component::USE, fm);
3083
3084
return ((first_position < use_position) ? use_position : first_position);
3085
}
3086
3087
int ComponentList::label_position() {
3088
PreserveIter pi(this);
3089
int position = 0;
3090
reset();
3091
for( Component *comp; (comp = iter()) != NULL; ++position) {
3092
// When the first component is not a DEF,
3093
// leave space for the result operand!
3094
if ( position==0 && (! comp->isa(Component::DEF)) ) {
3095
++position;
3096
}
3097
if (strcmp(comp->_type, "label")==0) {
3098
return position;
3099
}
3100
if( comp->isa(Component::DEF)
3101
&& comp->isa(Component::USE) ) {
3102
++position;
3103
if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
3104
}
3105
}
3106
3107
return -1;
3108
}
3109
3110
int ComponentList::method_position() {
3111
PreserveIter pi(this);
3112
int position = 0;
3113
reset();
3114
for( Component *comp; (comp = iter()) != NULL; ++position) {
3115
// When the first component is not a DEF,
3116
// leave space for the result operand!
3117
if ( position==0 && (! comp->isa(Component::DEF)) ) {
3118
++position;
3119
}
3120
if (strcmp(comp->_type, "method")==0) {
3121
return position;
3122
}
3123
if( comp->isa(Component::DEF)
3124
&& comp->isa(Component::USE) ) {
3125
++position;
3126
if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
3127
}
3128
}
3129
3130
return -1;
3131
}
3132
3133
void ComponentList::dump() { output(stderr); }
3134
3135
void ComponentList::output(FILE *fp) {
3136
PreserveIter pi(this);
3137
fprintf(fp, "\n");
3138
Component *component;
3139
for (reset(); (component = iter()) != NULL;) {
3140
component->output(fp);
3141
}
3142
fprintf(fp, "\n");
3143
}
3144
3145
//------------------------------MatchNode--------------------------------------
3146
MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
3147
const char *opType, MatchNode *lChild, MatchNode *rChild)
3148
: _AD(ad), _result(result), _name(mexpr), _opType(opType),
3149
_lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0),
3150
_commutative_id(0) {
3151
_numleaves = (lChild ? lChild->_numleaves : 0)
3152
+ (rChild ? rChild->_numleaves : 0);
3153
}
3154
3155
MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode)
3156
: _AD(ad), _result(mnode._result), _name(mnode._name),
3157
_opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild),
3158
_internalop(0), _numleaves(mnode._numleaves),
3159
_commutative_id(mnode._commutative_id) {
3160
}
3161
3162
MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone)
3163
: _AD(ad), _result(mnode._result), _name(mnode._name),
3164
_opType(mnode._opType),
3165
_internalop(0), _numleaves(mnode._numleaves),
3166
_commutative_id(mnode._commutative_id) {
3167
if (mnode._lChild) {
3168
_lChild = new MatchNode(ad, *mnode._lChild, clone);
3169
} else {
3170
_lChild = NULL;
3171
}
3172
if (mnode._rChild) {
3173
_rChild = new MatchNode(ad, *mnode._rChild, clone);
3174
} else {
3175
_rChild = NULL;
3176
}
3177
}
3178
3179
MatchNode::~MatchNode() {
3180
// // This node may not own its children if copied via assignment
3181
// if( _lChild ) delete _lChild;
3182
// if( _rChild ) delete _rChild;
3183
}
3184
3185
bool MatchNode::find_type(const char *type, int &position) const {
3186
if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
3187
if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;
3188
3189
if (strcmp(type,_opType)==0) {
3190
return true;
3191
} else {
3192
++position;
3193
}
3194
return false;
3195
}
3196
3197
// Recursive call collecting info on top-level operands, not transitive.
3198
// Implementation does not modify state of internal structures.
3199
void MatchNode::append_components(FormDict& locals, ComponentList& components,
3200
bool def_flag) const {
3201
int usedef = def_flag ? Component::DEF : Component::USE;
3202
FormDict &globals = _AD.globalNames();
3203
3204
assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
3205
// Base case
3206
if (_lChild==NULL && _rChild==NULL) {
3207
// If _opType is not an operation, do not build a component for it #####
3208
const Form *f = globals[_opType];
3209
if( f != NULL ) {
3210
// Add non-ideals that are operands, operand-classes,
3211
if( ! f->ideal_only()
3212
&& (f->is_opclass() || f->is_operand()) ) {
3213
components.insert(_name, _opType, usedef, true);
3214
}
3215
}
3216
return;
3217
}
3218
// Promote results of "Set" to DEF
3219
bool tmpdef_flag = (!strcmp(_opType, "Set")) ? true : false;
3220
if (_lChild) _lChild->append_components(locals, components, tmpdef_flag);
3221
tmpdef_flag = false; // only applies to component immediately following 'Set'
3222
if (_rChild) _rChild->append_components(locals, components, tmpdef_flag);
3223
}
3224
3225
// Find the n'th base-operand in the match node,
3226
// recursively investigates match rules of user-defined operands.
3227
//
3228
// Implementation does not modify state of internal structures since they
3229
// can be shared.
3230
bool MatchNode::base_operand(uint &position, FormDict &globals,
3231
const char * &result, const char * &name,
3232
const char * &opType) const {
3233
assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
3234
// Base case
3235
if (_lChild==NULL && _rChild==NULL) {
3236
// Check for special case: "Universe", "label"
3237
if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
3238
if (position == 0) {
3239
result = _result;
3240
name = _name;
3241
opType = _opType;
3242
return 1;
3243
} else {
3244
-- position;
3245
return 0;
3246
}
3247
}
3248
3249
const Form *form = globals[_opType];
3250
MatchNode *matchNode = NULL;
3251
// Check for user-defined type
3252
if (form) {
3253
// User operand or instruction?
3254
OperandForm *opForm = form->is_operand();
3255
InstructForm *inForm = form->is_instruction();
3256
if ( opForm ) {
3257
matchNode = (MatchNode*)opForm->_matrule;
3258
} else if ( inForm ) {
3259
matchNode = (MatchNode*)inForm->_matrule;
3260
}
3261
}
3262
// if this is user-defined, recurse on match rule
3263
// User-defined operand and instruction forms have a match-rule.
3264
if (matchNode) {
3265
return (matchNode->base_operand(position,globals,result,name,opType));
3266
} else {
3267
// Either not a form, or a system-defined form (no match rule).
3268
if (position==0) {
3269
result = _result;
3270
name = _name;
3271
opType = _opType;
3272
return 1;
3273
} else {
3274
--position;
3275
return 0;
3276
}
3277
}
3278
3279
} else {
3280
// Examine the left child and right child as well
3281
if (_lChild) {
3282
if (_lChild->base_operand(position, globals, result, name, opType))
3283
return 1;
3284
}
3285
3286
if (_rChild) {
3287
if (_rChild->base_operand(position, globals, result, name, opType))
3288
return 1;
3289
}
3290
}
3291
3292
return 0;
3293
}
3294
3295
// Recursive call on all operands' match rules in my match rule.
3296
uint MatchNode::num_consts(FormDict &globals) const {
3297
uint index = 0;
3298
uint num_consts = 0;
3299
const char *result;
3300
const char *name;
3301
const char *opType;
3302
3303
for (uint position = index;
3304
base_operand(position,globals,result,name,opType); position = index) {
3305
++index;
3306
if( ideal_to_const_type(opType) ) num_consts++;
3307
}
3308
3309
return num_consts;
3310
}
3311
3312
// Recursive call on all operands' match rules in my match rule.
3313
// Constants in match rule subtree with specified type
3314
uint MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
3315
uint index = 0;
3316
uint num_consts = 0;
3317
const char *result;
3318
const char *name;
3319
const char *opType;
3320
3321
for (uint position = index;
3322
base_operand(position,globals,result,name,opType); position = index) {
3323
++index;
3324
if( ideal_to_const_type(opType) == type ) num_consts++;
3325
}
3326
3327
return num_consts;
3328
}
3329
3330
// Recursive call on all operands' match rules in my match rule.
3331
uint MatchNode::num_const_ptrs(FormDict &globals) const {
3332
return num_consts( globals, Form::idealP );
3333
}
3334
3335
bool MatchNode::sets_result() const {
3336
return ( (strcmp(_name,"Set") == 0) ? true : false );
3337
}
3338
3339
const char *MatchNode::reduce_right(FormDict &globals) const {
3340
// If there is no right reduction, return NULL.
3341
const char *rightStr = NULL;
3342
3343
// If we are a "Set", start from the right child.
3344
const MatchNode *const mnode = sets_result() ?
3345
(const MatchNode *)this->_rChild :
3346
(const MatchNode *)this;
3347
3348
// If our right child exists, it is the right reduction
3349
if ( mnode->_rChild ) {
3350
rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
3351
: mnode->_rChild->_opType;
3352
}
3353
// Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
3354
return rightStr;
3355
}
3356
3357
const char *MatchNode::reduce_left(FormDict &globals) const {
3358
// If there is no left reduction, return NULL.
3359
const char *leftStr = NULL;
3360
3361
// If we are a "Set", start from the right child.
3362
const MatchNode *const mnode = sets_result() ?
3363
(const MatchNode *)this->_rChild :
3364
(const MatchNode *)this;
3365
3366
// If our left child exists, it is the left reduction
3367
if ( mnode->_lChild ) {
3368
leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
3369
: mnode->_lChild->_opType;
3370
} else {
3371
// May be simple chain rule: (Set dst operand_form_source)
3372
if ( sets_result() ) {
3373
OperandForm *oper = globals[mnode->_opType]->is_operand();
3374
if( oper ) {
3375
leftStr = mnode->_opType;
3376
}
3377
}
3378
}
3379
return leftStr;
3380
}
3381
3382
//------------------------------count_instr_names------------------------------
3383
// Count occurrences of operands names in the leaves of the instruction
3384
// match rule.
3385
void MatchNode::count_instr_names( Dict &names ) {
3386
if( this == NULL ) return;
3387
if( _lChild ) _lChild->count_instr_names(names);
3388
if( _rChild ) _rChild->count_instr_names(names);
3389
if( !_lChild && !_rChild ) {
3390
uintptr_t cnt = (uintptr_t)names[_name];
3391
cnt++; // One more name found
3392
names.Insert(_name,(void*)cnt);
3393
}
3394
}
3395
3396
//------------------------------build_instr_pred-------------------------------
3397
// Build a path to 'name' in buf. Actually only build if cnt is zero, so we
3398
// can skip some leading instances of 'name'.
3399
int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
3400
if( _lChild ) {
3401
if( !cnt ) strcpy( buf, "_kids[0]->" );
3402
cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
3403
if( cnt < 0 ) return cnt; // Found it, all done
3404
}
3405
if( _rChild ) {
3406
if( !cnt ) strcpy( buf, "_kids[1]->" );
3407
cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
3408
if( cnt < 0 ) return cnt; // Found it, all done
3409
}
3410
if( !_lChild && !_rChild ) { // Found a leaf
3411
// Wrong name? Give up...
3412
if( strcmp(name,_name) ) return cnt;
3413
if( !cnt ) strcpy(buf,"_leaf");
3414
return cnt-1;
3415
}
3416
return cnt;
3417
}
3418
3419
3420
//------------------------------build_internalop-------------------------------
3421
// Build string representation of subtree
3422
void MatchNode::build_internalop( ) {
3423
char *iop, *subtree;
3424
const char *lstr, *rstr;
3425
// Build string representation of subtree
3426
// Operation lchildType rchildType
3427
int len = (int)strlen(_opType) + 4;
3428
lstr = (_lChild) ? ((_lChild->_internalop) ?
3429
_lChild->_internalop : _lChild->_opType) : "";
3430
rstr = (_rChild) ? ((_rChild->_internalop) ?
3431
_rChild->_internalop : _rChild->_opType) : "";
3432
len += (int)strlen(lstr) + (int)strlen(rstr);
3433
subtree = (char *)malloc(len);
3434
sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
3435
// Hash the subtree string in _internalOps; if a name exists, use it
3436
iop = (char *)_AD._internalOps[subtree];
3437
// Else create a unique name, and add it to the hash table
3438
if (iop == NULL) {
3439
iop = subtree;
3440
_AD._internalOps.Insert(subtree, iop);
3441
_AD._internalOpNames.addName(iop);
3442
_AD._internalMatch.Insert(iop, this);
3443
}
3444
// Add the internal operand name to the MatchNode
3445
_internalop = iop;
3446
_result = iop;
3447
}
3448
3449
3450
void MatchNode::dump() {
3451
output(stderr);
3452
}
3453
3454
void MatchNode::output(FILE *fp) {
3455
if (_lChild==0 && _rChild==0) {
3456
fprintf(fp," %s",_name); // operand
3457
}
3458
else {
3459
fprintf(fp," (%s ",_name); // " (opcodeName "
3460
if(_lChild) _lChild->output(fp); // left operand
3461
if(_rChild) _rChild->output(fp); // right operand
3462
fprintf(fp,")"); // ")"
3463
}
3464
}
3465
3466
int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
3467
static const char *needs_ideal_memory_list[] = {
3468
"StoreI","StoreL","StoreP","StoreN","StoreNKlass","StoreD","StoreF" ,
3469
"StoreB","StoreC","Store" ,"StoreFP",
3470
"LoadI", "LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF" ,
3471
"LoadB" , "LoadUB", "LoadUS" ,"LoadS" ,"Load" ,
3472
"StoreVector", "LoadVector",
3473
"LoadRange", "LoadKlass", "LoadNKlass", "LoadL_unaligned", "LoadD_unaligned",
3474
"LoadPLocked",
3475
"StorePConditional", "StoreIConditional", "StoreLConditional",
3476
"CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN",
3477
"ShenandoahCompareAndSwapN", "ShenandoahCompareAndSwapP",
3478
"StoreCM",
3479
"ClearArray",
3480
"GetAndAddI", "GetAndSetI", "GetAndSetP",
3481
"GetAndAddL", "GetAndSetL", "GetAndSetN",
3482
};
3483
int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
3484
if( strcmp(_opType,"PrefetchRead")==0 ||
3485
strcmp(_opType,"PrefetchWrite")==0 ||
3486
strcmp(_opType,"PrefetchAllocation")==0 )
3487
return 1;
3488
if( _lChild ) {
3489
const char *opType = _lChild->_opType;
3490
for( int i=0; i<cnt; i++ )
3491
if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
3492
return 1;
3493
if( _lChild->needs_ideal_memory_edge(globals) )
3494
return 1;
3495
}
3496
if( _rChild ) {
3497
const char *opType = _rChild->_opType;
3498
for( int i=0; i<cnt; i++ )
3499
if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
3500
return 1;
3501
if( _rChild->needs_ideal_memory_edge(globals) )
3502
return 1;
3503
}
3504
3505
return 0;
3506
}
3507
3508
// TRUE if defines a derived oop, and so needs a base oop edge present
3509
// post-matching.
3510
int MatchNode::needs_base_oop_edge() const {
3511
if( !strcmp(_opType,"AddP") ) return 1;
3512
if( strcmp(_opType,"Set") ) return 0;
3513
return !strcmp(_rChild->_opType,"AddP");
3514
}
3515
3516
int InstructForm::needs_base_oop_edge(FormDict &globals) const {
3517
if( is_simple_chain_rule(globals) ) {
3518
const char *src = _matrule->_rChild->_opType;
3519
OperandForm *src_op = globals[src]->is_operand();
3520
assert( src_op, "Not operand class of chain rule" );
3521
return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
3522
} // Else check instruction
3523
3524
return _matrule ? _matrule->needs_base_oop_edge() : 0;
3525
}
3526
3527
3528
//-------------------------cisc spilling methods-------------------------------
3529
// helper routines and methods for detecting cisc-spilling instructions
3530
//-------------------------cisc_spill_merge------------------------------------
3531
int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
3532
int cisc_spillable = Maybe_cisc_spillable;
3533
3534
// Combine results of left and right checks
3535
if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
3536
// neither side is spillable, nor prevents cisc spilling
3537
cisc_spillable = Maybe_cisc_spillable;
3538
}
3539
else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
3540
// right side is spillable
3541
cisc_spillable = right_spillable;
3542
}
3543
else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
3544
// left side is spillable
3545
cisc_spillable = left_spillable;
3546
}
3547
else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
3548
// left or right prevents cisc spilling this instruction
3549
cisc_spillable = Not_cisc_spillable;
3550
}
3551
else {
3552
// Only allow one to spill
3553
cisc_spillable = Not_cisc_spillable;
3554
}
3555
3556
return cisc_spillable;
3557
}
3558
3559
//-------------------------root_ops_match--------------------------------------
3560
bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
3561
// Base Case: check that the current operands/operations match
3562
assert( op1, "Must have op's name");
3563
assert( op2, "Must have op's name");
3564
const Form *form1 = globals[op1];
3565
const Form *form2 = globals[op2];
3566
3567
return (form1 == form2);
3568
}
3569
3570
//-------------------------cisc_spill_match_node-------------------------------
3571
// Recursively check two MatchRules for legal conversion via cisc-spilling
3572
int MatchNode::cisc_spill_match(FormDict& globals, RegisterForm* registers, MatchNode* mRule2, const char* &operand, const char* &reg_type) {
3573
int cisc_spillable = Maybe_cisc_spillable;
3574
int left_spillable = Maybe_cisc_spillable;
3575
int right_spillable = Maybe_cisc_spillable;
3576
3577
// Check that each has same number of operands at this level
3578
if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) )
3579
return Not_cisc_spillable;
3580
3581
// Base Case: check that the current operands/operations match
3582
// or are CISC spillable
3583
assert( _opType, "Must have _opType");
3584
assert( mRule2->_opType, "Must have _opType");
3585
const Form *form = globals[_opType];
3586
const Form *form2 = globals[mRule2->_opType];
3587
if( form == form2 ) {
3588
cisc_spillable = Maybe_cisc_spillable;
3589
} else {
3590
const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
3591
const char *name_left = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
3592
const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
3593
DataType data_type = Form::none;
3594
if (form->is_operand()) {
3595
// Make sure the loadX matches the type of the reg
3596
data_type = form->ideal_to_Reg_type(form->is_operand()->ideal_type(globals));
3597
}
3598
// Detect reg vs (loadX memory)
3599
if( form->is_cisc_reg(globals)
3600
&& form2_inst
3601
&& data_type != Form::none
3602
&& (is_load_from_memory(mRule2->_opType) == data_type) // reg vs. (load memory)
3603
&& (name_left != NULL) // NOT (load)
3604
&& (name_right == NULL) ) { // NOT (load memory foo)
3605
const Form *form2_left = name_left ? globals[name_left] : NULL;
3606
if( form2_left && form2_left->is_cisc_mem(globals) ) {
3607
cisc_spillable = Is_cisc_spillable;
3608
operand = _name;
3609
reg_type = _result;
3610
return Is_cisc_spillable;
3611
} else {
3612
cisc_spillable = Not_cisc_spillable;
3613
}
3614
}
3615
// Detect reg vs memory
3616
else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) {
3617
cisc_spillable = Is_cisc_spillable;
3618
operand = _name;
3619
reg_type = _result;
3620
return Is_cisc_spillable;
3621
} else {
3622
cisc_spillable = Not_cisc_spillable;
3623
}
3624
}
3625
3626
// If cisc is still possible, check rest of tree
3627
if( cisc_spillable == Maybe_cisc_spillable ) {
3628
// Check that each has same number of operands at this level
3629
if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
3630
3631
// Check left operands
3632
if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
3633
left_spillable = Maybe_cisc_spillable;
3634
} else {
3635
left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
3636
}
3637
3638
// Check right operands
3639
if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
3640
right_spillable = Maybe_cisc_spillable;
3641
} else {
3642
right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
3643
}
3644
3645
// Combine results of left and right checks
3646
cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
3647
}
3648
3649
return cisc_spillable;
3650
}
3651
3652
//---------------------------cisc_spill_match_rule------------------------------
3653
// Recursively check two MatchRules for legal conversion via cisc-spilling
3654
// This method handles the root of Match tree,
3655
// general recursive checks done in MatchNode
3656
int MatchRule::matchrule_cisc_spill_match(FormDict& globals, RegisterForm* registers,
3657
MatchRule* mRule2, const char* &operand,
3658
const char* &reg_type) {
3659
int cisc_spillable = Maybe_cisc_spillable;
3660
int left_spillable = Maybe_cisc_spillable;
3661
int right_spillable = Maybe_cisc_spillable;
3662
3663
// Check that each sets a result
3664
if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
3665
// Check that each has same number of operands at this level
3666
if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
3667
3668
// Check left operands: at root, must be target of 'Set'
3669
if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
3670
left_spillable = Not_cisc_spillable;
3671
} else {
3672
// Do not support cisc-spilling instruction's target location
3673
if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
3674
left_spillable = Maybe_cisc_spillable;
3675
} else {
3676
left_spillable = Not_cisc_spillable;
3677
}
3678
}
3679
3680
// Check right operands: recursive walk to identify reg->mem operand
3681
if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
3682
right_spillable = Maybe_cisc_spillable;
3683
} else {
3684
right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
3685
}
3686
3687
// Combine results of left and right checks
3688
cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
3689
3690
return cisc_spillable;
3691
}
3692
3693
//----------------------------- equivalent ------------------------------------
3694
// Recursively check to see if two match rules are equivalent.
3695
// This rule handles the root.
3696
bool MatchRule::equivalent(FormDict &globals, MatchNode *mRule2) {
3697
// Check that each sets a result
3698
if (sets_result() != mRule2->sets_result()) {
3699
return false;
3700
}
3701
3702
// Check that the current operands/operations match
3703
assert( _opType, "Must have _opType");
3704
assert( mRule2->_opType, "Must have _opType");
3705
const Form *form = globals[_opType];
3706
const Form *form2 = globals[mRule2->_opType];
3707
if( form != form2 ) {
3708
return false;
3709
}
3710
3711
if (_lChild ) {
3712
if( !_lChild->equivalent(globals, mRule2->_lChild) )
3713
return false;
3714
} else if (mRule2->_lChild) {
3715
return false; // I have NULL left child, mRule2 has non-NULL left child.
3716
}
3717
3718
if (_rChild ) {
3719
if( !_rChild->equivalent(globals, mRule2->_rChild) )
3720
return false;
3721
} else if (mRule2->_rChild) {
3722
return false; // I have NULL right child, mRule2 has non-NULL right child.
3723
}
3724
3725
// We've made it through the gauntlet.
3726
return true;
3727
}
3728
3729
//----------------------------- equivalent ------------------------------------
3730
// Recursively check to see if two match rules are equivalent.
3731
// This rule handles the operands.
3732
bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
3733
if( !mNode2 )
3734
return false;
3735
3736
// Check that the current operands/operations match
3737
assert( _opType, "Must have _opType");
3738
assert( mNode2->_opType, "Must have _opType");
3739
const Form *form = globals[_opType];
3740
const Form *form2 = globals[mNode2->_opType];
3741
if( form != form2 ) {
3742
return false;
3743
}
3744
3745
// Check that their children also match
3746
if (_lChild ) {
3747
if( !_lChild->equivalent(globals, mNode2->_lChild) )
3748
return false;
3749
} else if (mNode2->_lChild) {
3750
return false; // I have NULL left child, mNode2 has non-NULL left child.
3751
}
3752
3753
if (_rChild ) {
3754
if( !_rChild->equivalent(globals, mNode2->_rChild) )
3755
return false;
3756
} else if (mNode2->_rChild) {
3757
return false; // I have NULL right child, mNode2 has non-NULL right child.
3758
}
3759
3760
// We've made it through the gauntlet.
3761
return true;
3762
}
3763
3764
//-------------------------- has_commutative_op -------------------------------
3765
// Recursively check for commutative operations with subtree operands
3766
// which could be swapped.
3767
void MatchNode::count_commutative_op(int& count) {
3768
static const char *commut_op_list[] = {
3769
"AddI","AddL","AddF","AddD",
3770
"AndI","AndL",
3771
"MaxI","MinI",
3772
"MulI","MulL","MulF","MulD",
3773
"OrI" ,"OrL" ,
3774
"XorI","XorL"
3775
};
3776
int cnt = sizeof(commut_op_list)/sizeof(char*);
3777
3778
if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
3779
// Don't swap if right operand is an immediate constant.
3780
bool is_const = false;
3781
if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
3782
FormDict &globals = _AD.globalNames();
3783
const Form *form = globals[_rChild->_opType];
3784
if ( form ) {
3785
OperandForm *oper = form->is_operand();
3786
if( oper && oper->interface_type(globals) == Form::constant_interface )
3787
is_const = true;
3788
}
3789
}
3790
if( !is_const ) {
3791
for( int i=0; i<cnt; i++ ) {
3792
if( strcmp(_opType, commut_op_list[i]) == 0 ) {
3793
count++;
3794
_commutative_id = count; // id should be > 0
3795
break;
3796
}
3797
}
3798
}
3799
}
3800
if( _lChild )
3801
_lChild->count_commutative_op(count);
3802
if( _rChild )
3803
_rChild->count_commutative_op(count);
3804
}
3805
3806
//-------------------------- swap_commutative_op ------------------------------
3807
// Recursively swap specified commutative operation with subtree operands.
3808
void MatchNode::swap_commutative_op(bool atroot, int id) {
3809
if( _commutative_id == id ) { // id should be > 0
3810
assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ),
3811
"not swappable operation");
3812
MatchNode* tmp = _lChild;
3813
_lChild = _rChild;
3814
_rChild = tmp;
3815
// Don't exit here since we need to build internalop.
3816
}
3817
3818
bool is_set = ( strcmp(_opType, "Set") == 0 );
3819
if( _lChild )
3820
_lChild->swap_commutative_op(is_set, id);
3821
if( _rChild )
3822
_rChild->swap_commutative_op(is_set, id);
3823
3824
// If not the root, reduce this subtree to an internal operand
3825
if( !atroot && (_lChild || _rChild) ) {
3826
build_internalop();
3827
}
3828
}
3829
3830
//-------------------------- swap_commutative_op ------------------------------
3831
// Recursively swap specified commutative operation with subtree operands.
3832
void MatchRule::matchrule_swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
3833
assert(match_rules_cnt < 100," too many match rule clones");
3834
// Clone
3835
MatchRule* clone = new MatchRule(_AD, this);
3836
// Swap operands of commutative operation
3837
((MatchNode*)clone)->swap_commutative_op(true, count);
3838
char* buf = (char*) malloc(strlen(instr_ident) + 4);
3839
sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
3840
clone->_result = buf;
3841
3842
clone->_next = this->_next;
3843
this-> _next = clone;
3844
if( (--count) > 0 ) {
3845
this-> matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
3846
clone->matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
3847
}
3848
}
3849
3850
//------------------------------MatchRule--------------------------------------
3851
MatchRule::MatchRule(ArchDesc &ad)
3852
: MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
3853
_next = NULL;
3854
}
3855
3856
MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
3857
: MatchNode(ad, *mRule, 0), _depth(mRule->_depth),
3858
_construct(mRule->_construct), _numchilds(mRule->_numchilds) {
3859
_next = NULL;
3860
}
3861
3862
MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
3863
int numleaves)
3864
: MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
3865
_numchilds(0) {
3866
_next = NULL;
3867
mroot->_lChild = NULL;
3868
mroot->_rChild = NULL;
3869
delete mroot;
3870
_numleaves = numleaves;
3871
_numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
3872
}
3873
MatchRule::~MatchRule() {
3874
}
3875
3876
// Recursive call collecting info on top-level operands, not transitive.
3877
// Implementation does not modify state of internal structures.
3878
void MatchRule::append_components(FormDict& locals, ComponentList& components, bool def_flag) const {
3879
assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
3880
3881
MatchNode::append_components(locals, components,
3882
false /* not necessarily a def */);
3883
}
3884
3885
// Recursive call on all operands' match rules in my match rule.
3886
// Implementation does not modify state of internal structures since they
3887
// can be shared.
3888
// The MatchNode that is called first treats its
3889
bool MatchRule::base_operand(uint &position0, FormDict &globals,
3890
const char *&result, const char * &name,
3891
const char * &opType)const{
3892
uint position = position0;
3893
3894
return (MatchNode::base_operand( position, globals, result, name, opType));
3895
}
3896
3897
3898
bool MatchRule::is_base_register(FormDict &globals) const {
3899
uint position = 1;
3900
const char *result = NULL;
3901
const char *name = NULL;
3902
const char *opType = NULL;
3903
if (!base_operand(position, globals, result, name, opType)) {
3904
position = 0;
3905
if( base_operand(position, globals, result, name, opType) &&
3906
(strcmp(opType,"RegI")==0 ||
3907
strcmp(opType,"RegP")==0 ||
3908
strcmp(opType,"RegN")==0 ||
3909
strcmp(opType,"RegL")==0 ||
3910
strcmp(opType,"RegF")==0 ||
3911
strcmp(opType,"RegD")==0 ||
3912
strcmp(opType,"VecS")==0 ||
3913
strcmp(opType,"VecD")==0 ||
3914
strcmp(opType,"VecX")==0 ||
3915
strcmp(opType,"VecY")==0 ||
3916
strcmp(opType,"Reg" )==0) ) {
3917
return 1;
3918
}
3919
}
3920
return 0;
3921
}
3922
3923
Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
3924
uint position = 1;
3925
const char *result = NULL;
3926
const char *name = NULL;
3927
const char *opType = NULL;
3928
if (!base_operand(position, globals, result, name, opType)) {
3929
position = 0;
3930
if (base_operand(position, globals, result, name, opType)) {
3931
return ideal_to_const_type(opType);
3932
}
3933
}
3934
return Form::none;
3935
}
3936
3937
bool MatchRule::is_chain_rule(FormDict &globals) const {
3938
3939
// Check for chain rule, and do not generate a match list for it
3940
if ((_lChild == NULL) && (_rChild == NULL) ) {
3941
const Form *form = globals[_opType];
3942
// If this is ideal, then it is a base match, not a chain rule.
3943
if ( form && form->is_operand() && (!form->ideal_only())) {
3944
return true;
3945
}
3946
}
3947
// Check for "Set" form of chain rule, and do not generate a match list
3948
if (_rChild) {
3949
const char *rch = _rChild->_opType;
3950
const Form *form = globals[rch];
3951
if ((!strcmp(_opType,"Set") &&
3952
((form) && form->is_operand()))) {
3953
return true;
3954
}
3955
}
3956
return false;
3957
}
3958
3959
int MatchRule::is_ideal_copy() const {
3960
if (is_chain_rule(_AD.globalNames()) &&
3961
_lChild && strncmp(_lChild->_opType, "stackSlot", 9) == 0) {
3962
return 1;
3963
}
3964
return 0;
3965
}
3966
3967
int MatchRule::is_expensive() const {
3968
if( _rChild ) {
3969
const char *opType = _rChild->_opType;
3970
if( strcmp(opType,"AtanD")==0 ||
3971
strcmp(opType,"CosD")==0 ||
3972
strcmp(opType,"DivD")==0 ||
3973
strcmp(opType,"DivF")==0 ||
3974
strcmp(opType,"DivI")==0 ||
3975
strcmp(opType,"ExpD")==0 ||
3976
strcmp(opType,"LogD")==0 ||
3977
strcmp(opType,"Log10D")==0 ||
3978
strcmp(opType,"ModD")==0 ||
3979
strcmp(opType,"ModF")==0 ||
3980
strcmp(opType,"ModI")==0 ||
3981
strcmp(opType,"PowD")==0 ||
3982
strcmp(opType,"SinD")==0 ||
3983
strcmp(opType,"SqrtD")==0 ||
3984
strcmp(opType,"TanD")==0 ||
3985
strcmp(opType,"ConvD2F")==0 ||
3986
strcmp(opType,"ConvD2I")==0 ||
3987
strcmp(opType,"ConvD2L")==0 ||
3988
strcmp(opType,"ConvF2D")==0 ||
3989
strcmp(opType,"ConvF2I")==0 ||
3990
strcmp(opType,"ConvF2L")==0 ||
3991
strcmp(opType,"ConvI2D")==0 ||
3992
strcmp(opType,"ConvI2F")==0 ||
3993
strcmp(opType,"ConvI2L")==0 ||
3994
strcmp(opType,"ConvL2D")==0 ||
3995
strcmp(opType,"ConvL2F")==0 ||
3996
strcmp(opType,"ConvL2I")==0 ||
3997
strcmp(opType,"DecodeN")==0 ||
3998
strcmp(opType,"EncodeP")==0 ||
3999
strcmp(opType,"EncodePKlass")==0 ||
4000
strcmp(opType,"DecodeNKlass")==0 ||
4001
strcmp(opType,"RoundDouble")==0 ||
4002
strcmp(opType,"RoundFloat")==0 ||
4003
strcmp(opType,"ReverseBytesI")==0 ||
4004
strcmp(opType,"ReverseBytesL")==0 ||
4005
strcmp(opType,"ReverseBytesUS")==0 ||
4006
strcmp(opType,"ReverseBytesS")==0 ||
4007
strcmp(opType,"ReplicateB")==0 ||
4008
strcmp(opType,"ReplicateS")==0 ||
4009
strcmp(opType,"ReplicateI")==0 ||
4010
strcmp(opType,"ReplicateL")==0 ||
4011
strcmp(opType,"ReplicateF")==0 ||
4012
strcmp(opType,"ReplicateD")==0 ||
4013
0 /* 0 to line up columns nicely */ )
4014
return 1;
4015
}
4016
return 0;
4017
}
4018
4019
bool MatchRule::is_ideal_if() const {
4020
if( !_opType ) return false;
4021
return
4022
!strcmp(_opType,"If" ) ||
4023
!strcmp(_opType,"CountedLoopEnd");
4024
}
4025
4026
bool MatchRule::is_ideal_fastlock() const {
4027
if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4028
return (strcmp(_rChild->_opType,"FastLock") == 0);
4029
}
4030
return false;
4031
}
4032
4033
bool MatchRule::is_ideal_membar() const {
4034
if( !_opType ) return false;
4035
return
4036
!strcmp(_opType,"MemBarAcquire") ||
4037
!strcmp(_opType,"MemBarRelease") ||
4038
!strcmp(_opType,"MemBarAcquireLock") ||
4039
!strcmp(_opType,"MemBarReleaseLock") ||
4040
!strcmp(_opType,"LoadFence" ) ||
4041
!strcmp(_opType,"StoreFence") ||
4042
!strcmp(_opType,"MemBarVolatile") ||
4043
!strcmp(_opType,"MemBarCPUOrder") ||
4044
!strcmp(_opType,"MemBarStoreStore");
4045
}
4046
4047
bool MatchRule::is_ideal_loadPC() const {
4048
if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4049
return (strcmp(_rChild->_opType,"LoadPC") == 0);
4050
}
4051
return false;
4052
}
4053
4054
bool MatchRule::is_ideal_box() const {
4055
if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4056
return (strcmp(_rChild->_opType,"Box") == 0);
4057
}
4058
return false;
4059
}
4060
4061
bool MatchRule::is_ideal_goto() const {
4062
bool ideal_goto = false;
4063
4064
if( _opType && (strcmp(_opType,"Goto") == 0) ) {
4065
ideal_goto = true;
4066
}
4067
return ideal_goto;
4068
}
4069
4070
bool MatchRule::is_ideal_jump() const {
4071
if( _opType ) {
4072
if( !strcmp(_opType,"Jump") )
4073
return true;
4074
}
4075
return false;
4076
}
4077
4078
bool MatchRule::is_ideal_bool() const {
4079
if( _opType ) {
4080
if( !strcmp(_opType,"Bool") )
4081
return true;
4082
}
4083
return false;
4084
}
4085
4086
4087
Form::DataType MatchRule::is_ideal_load() const {
4088
Form::DataType ideal_load = Form::none;
4089
4090
if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4091
const char *opType = _rChild->_opType;
4092
ideal_load = is_load_from_memory(opType);
4093
}
4094
4095
return ideal_load;
4096
}
4097
4098
bool MatchRule::is_vector() const {
4099
static const char *vector_list[] = {
4100
"AddVB","AddVS","AddVI","AddVL","AddVF","AddVD",
4101
"SubVB","SubVS","SubVI","SubVL","SubVF","SubVD",
4102
"MulVS","MulVI","MulVF","MulVD",
4103
"DivVF","DivVD",
4104
"AndV" ,"XorV" ,"OrV",
4105
"LShiftCntV","RShiftCntV",
4106
"LShiftVB","LShiftVS","LShiftVI","LShiftVL",
4107
"RShiftVB","RShiftVS","RShiftVI","RShiftVL",
4108
"URShiftVB","URShiftVS","URShiftVI","URShiftVL",
4109
"ReplicateB","ReplicateS","ReplicateI","ReplicateL","ReplicateF","ReplicateD",
4110
"LoadVector","StoreVector",
4111
// Next are not supported currently.
4112
"PackB","PackS","PackI","PackL","PackF","PackD","Pack2L","Pack2D",
4113
"ExtractB","ExtractUB","ExtractC","ExtractS","ExtractI","ExtractL","ExtractF","ExtractD"
4114
};
4115
int cnt = sizeof(vector_list)/sizeof(char*);
4116
if (_rChild) {
4117
const char *opType = _rChild->_opType;
4118
for (int i=0; i<cnt; i++)
4119
if (strcmp(opType,vector_list[i]) == 0)
4120
return true;
4121
}
4122
return false;
4123
}
4124
4125
4126
bool MatchRule::skip_antidep_check() const {
4127
// Some loads operate on what is effectively immutable memory so we
4128
// should skip the anti dep computations. For some of these nodes
4129
// the rewritable field keeps the anti dep logic from triggering but
4130
// for certain kinds of LoadKlass it does not since they are
4131
// actually reading memory which could be rewritten by the runtime,
4132
// though never by generated code. This disables it uniformly for
4133
// the nodes that behave like this: LoadKlass, LoadNKlass and
4134
// LoadRange.
4135
if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4136
const char *opType = _rChild->_opType;
4137
if (strcmp("LoadKlass", opType) == 0 ||
4138
strcmp("LoadNKlass", opType) == 0 ||
4139
strcmp("LoadRange", opType) == 0) {
4140
return true;
4141
}
4142
}
4143
4144
return false;
4145
}
4146
4147
4148
Form::DataType MatchRule::is_ideal_store() const {
4149
Form::DataType ideal_store = Form::none;
4150
4151
if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4152
const char *opType = _rChild->_opType;
4153
ideal_store = is_store_to_memory(opType);
4154
}
4155
4156
return ideal_store;
4157
}
4158
4159
4160
void MatchRule::dump() {
4161
output(stderr);
4162
}
4163
4164
// Write just one line.
4165
void MatchRule::output_short(FILE *fp) {
4166
fprintf(fp,"MatchRule: ( %s",_name);
4167
if (_lChild) _lChild->output(fp);
4168
if (_rChild) _rChild->output(fp);
4169
fprintf(fp," )");
4170
}
4171
4172
void MatchRule::output(FILE *fp) {
4173
output_short(fp);
4174
fprintf(fp,"\n nesting depth = %d\n", _depth);
4175
if (_result) fprintf(fp," Result Type = %s", _result);
4176
fprintf(fp,"\n");
4177
}
4178
4179
//------------------------------Attribute--------------------------------------
4180
Attribute::Attribute(char *id, char* val, int type)
4181
: _ident(id), _val(val), _atype(type) {
4182
}
4183
Attribute::~Attribute() {
4184
}
4185
4186
int Attribute::int_val(ArchDesc &ad) {
4187
// Make sure it is an integer constant:
4188
int result = 0;
4189
if (!_val || !ADLParser::is_int_token(_val, result)) {
4190
ad.syntax_err(0, "Attribute %s must have an integer value: %s",
4191
_ident, _val ? _val : "");
4192
}
4193
return result;
4194
}
4195
4196
void Attribute::dump() {
4197
output(stderr);
4198
} // Debug printer
4199
4200
// Write to output files
4201
void Attribute::output(FILE *fp) {
4202
fprintf(fp,"Attribute: %s %s\n", (_ident?_ident:""), (_val?_val:""));
4203
}
4204
4205
//------------------------------FormatRule----------------------------------
4206
FormatRule::FormatRule(char *temp)
4207
: _temp(temp) {
4208
}
4209
FormatRule::~FormatRule() {
4210
}
4211
4212
void FormatRule::dump() {
4213
output(stderr);
4214
}
4215
4216
// Write to output files
4217
void FormatRule::output(FILE *fp) {
4218
fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
4219
fprintf(fp,"\n");
4220
}
4221
4222