Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/adlc/output_c.cpp
32285 views
1
/*
2
* Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
// output_c.cpp - Class CPP file output routines for architecture definition
26
27
#include "adlc.hpp"
28
29
// Utilities to characterize effect statements
30
static bool is_def(int usedef) {
31
switch(usedef) {
32
case Component::DEF:
33
case Component::USE_DEF: return true; break;
34
}
35
return false;
36
}
37
38
// Define an array containing the machine register names, strings.
39
static void defineRegNames(FILE *fp, RegisterForm *registers) {
40
if (registers) {
41
fprintf(fp,"\n");
42
fprintf(fp,"// An array of character pointers to machine register names.\n");
43
fprintf(fp,"const char *Matcher::regName[REG_COUNT] = {\n");
44
45
// Output the register name for each register in the allocation classes
46
RegDef *reg_def = NULL;
47
RegDef *next = NULL;
48
registers->reset_RegDefs();
49
for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
50
next = registers->iter_RegDefs();
51
const char *comma = (next != NULL) ? "," : " // no trailing comma";
52
fprintf(fp," \"%s\"%s\n", reg_def->_regname, comma);
53
}
54
55
// Finish defining enumeration
56
fprintf(fp,"};\n");
57
58
fprintf(fp,"\n");
59
fprintf(fp,"// An array of character pointers to machine register names.\n");
60
fprintf(fp,"const VMReg OptoReg::opto2vm[REG_COUNT] = {\n");
61
reg_def = NULL;
62
next = NULL;
63
registers->reset_RegDefs();
64
for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
65
next = registers->iter_RegDefs();
66
const char *comma = (next != NULL) ? "," : " // no trailing comma";
67
fprintf(fp,"\t%s%s\n", reg_def->_concrete, comma);
68
}
69
// Finish defining array
70
fprintf(fp,"\t};\n");
71
fprintf(fp,"\n");
72
73
fprintf(fp," OptoReg::Name OptoReg::vm2opto[ConcreteRegisterImpl::number_of_registers];\n");
74
75
}
76
}
77
78
// Define an array containing the machine register encoding values
79
static void defineRegEncodes(FILE *fp, RegisterForm *registers) {
80
if (registers) {
81
fprintf(fp,"\n");
82
fprintf(fp,"// An array of the machine register encode values\n");
83
fprintf(fp,"const unsigned char Matcher::_regEncode[REG_COUNT] = {\n");
84
85
// Output the register encoding for each register in the allocation classes
86
RegDef *reg_def = NULL;
87
RegDef *next = NULL;
88
registers->reset_RegDefs();
89
for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
90
next = registers->iter_RegDefs();
91
const char* register_encode = reg_def->register_encode();
92
const char *comma = (next != NULL) ? "," : " // no trailing comma";
93
int encval;
94
if (!ADLParser::is_int_token(register_encode, encval)) {
95
fprintf(fp," %s%s // %s\n", register_encode, comma, reg_def->_regname);
96
} else {
97
// Output known constants in hex char format (backward compatibility).
98
assert(encval < 256, "Exceeded supported width for register encoding");
99
fprintf(fp," (unsigned char)'\\x%X'%s // %s\n", encval, comma, reg_def->_regname);
100
}
101
}
102
// Finish defining enumeration
103
fprintf(fp,"};\n");
104
105
} // Done defining array
106
}
107
108
// Output an enumeration of register class names
109
static void defineRegClassEnum(FILE *fp, RegisterForm *registers) {
110
if (registers) {
111
// Output an enumeration of register class names
112
fprintf(fp,"\n");
113
fprintf(fp,"// Enumeration of register class names\n");
114
fprintf(fp, "enum machRegisterClass {\n");
115
registers->_rclasses.reset();
116
for (const char *class_name = NULL; (class_name = registers->_rclasses.iter()) != NULL;) {
117
const char * class_name_to_upper = toUpper(class_name);
118
fprintf(fp," %s,\n", class_name_to_upper);
119
delete[] class_name_to_upper;
120
}
121
// Finish defining enumeration
122
fprintf(fp, " _last_Mach_Reg_Class\n");
123
fprintf(fp, "};\n");
124
}
125
}
126
127
// Declare an enumeration of user-defined register classes
128
// and a list of register masks, one for each class.
129
void ArchDesc::declare_register_masks(FILE *fp_hpp) {
130
const char *rc_name;
131
132
if (_register) {
133
// Build enumeration of user-defined register classes.
134
defineRegClassEnum(fp_hpp, _register);
135
136
// Generate a list of register masks, one for each class.
137
fprintf(fp_hpp,"\n");
138
fprintf(fp_hpp,"// Register masks, one for each register class.\n");
139
_register->_rclasses.reset();
140
for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
141
RegClass *reg_class = _register->getRegClass(rc_name);
142
assert(reg_class, "Using an undefined register class");
143
reg_class->declare_register_masks(fp_hpp);
144
}
145
}
146
}
147
148
// Generate an enumeration of user-defined register classes
149
// and a list of register masks, one for each class.
150
void ArchDesc::build_register_masks(FILE *fp_cpp) {
151
const char *rc_name;
152
153
if (_register) {
154
// Generate a list of register masks, one for each class.
155
fprintf(fp_cpp,"\n");
156
fprintf(fp_cpp,"// Register masks, one for each register class.\n");
157
_register->_rclasses.reset();
158
for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
159
RegClass *reg_class = _register->getRegClass(rc_name);
160
assert(reg_class, "Using an undefined register class");
161
reg_class->build_register_masks(fp_cpp);
162
}
163
}
164
}
165
166
// Compute an index for an array in the pipeline_reads_NNN arrays
167
static int pipeline_reads_initializer(FILE *fp_cpp, NameList &pipeline_reads, PipeClassForm *pipeclass)
168
{
169
int templen = 1;
170
int paramcount = 0;
171
const char *paramname;
172
173
if (pipeclass->_parameters.count() == 0)
174
return -1;
175
176
pipeclass->_parameters.reset();
177
paramname = pipeclass->_parameters.iter();
178
const PipeClassOperandForm *pipeopnd =
179
(const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
180
if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
181
pipeclass->_parameters.reset();
182
183
while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
184
const PipeClassOperandForm *tmppipeopnd =
185
(const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
186
187
if (tmppipeopnd)
188
templen += 10 + (int)strlen(tmppipeopnd->_stage);
189
else
190
templen += 19;
191
192
paramcount++;
193
}
194
195
// See if the count is zero
196
if (paramcount == 0) {
197
return -1;
198
}
199
200
char *operand_stages = new char [templen];
201
operand_stages[0] = 0;
202
int i = 0;
203
templen = 0;
204
205
pipeclass->_parameters.reset();
206
paramname = pipeclass->_parameters.iter();
207
pipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
208
if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
209
pipeclass->_parameters.reset();
210
211
while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
212
const PipeClassOperandForm *tmppipeopnd =
213
(const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
214
templen += sprintf(&operand_stages[templen], " stage_%s%c\n",
215
tmppipeopnd ? tmppipeopnd->_stage : "undefined",
216
(++i < paramcount ? ',' : ' ') );
217
}
218
219
// See if the same string is in the table
220
int ndx = pipeline_reads.index(operand_stages);
221
222
// No, add it to the table
223
if (ndx < 0) {
224
pipeline_reads.addName(operand_stages);
225
ndx = pipeline_reads.index(operand_stages);
226
227
fprintf(fp_cpp, "static const enum machPipelineStages pipeline_reads_%03d[%d] = {\n%s};\n\n",
228
ndx+1, paramcount, operand_stages);
229
}
230
else
231
delete [] operand_stages;
232
233
return (ndx);
234
}
235
236
// Compute an index for an array in the pipeline_res_stages_NNN arrays
237
static int pipeline_res_stages_initializer(
238
FILE *fp_cpp,
239
PipelineForm *pipeline,
240
NameList &pipeline_res_stages,
241
PipeClassForm *pipeclass)
242
{
243
const PipeClassResourceForm *piperesource;
244
int * res_stages = new int [pipeline->_rescount];
245
int i;
246
247
for (i = 0; i < pipeline->_rescount; i++)
248
res_stages[i] = 0;
249
250
for (pipeclass->_resUsage.reset();
251
(piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
252
int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
253
for (i = 0; i < pipeline->_rescount; i++)
254
if ((1 << i) & used_mask) {
255
int stage = pipeline->_stages.index(piperesource->_stage);
256
if (res_stages[i] < stage+1)
257
res_stages[i] = stage+1;
258
}
259
}
260
261
// Compute the length needed for the resource list
262
int commentlen = 0;
263
int max_stage = 0;
264
for (i = 0; i < pipeline->_rescount; i++) {
265
if (res_stages[i] == 0) {
266
if (max_stage < 9)
267
max_stage = 9;
268
}
269
else {
270
int stagelen = (int)strlen(pipeline->_stages.name(res_stages[i]-1));
271
if (max_stage < stagelen)
272
max_stage = stagelen;
273
}
274
275
commentlen += (int)strlen(pipeline->_reslist.name(i));
276
}
277
278
int templen = 1 + commentlen + pipeline->_rescount * (max_stage + 14);
279
280
// Allocate space for the resource list
281
char * resource_stages = new char [templen];
282
283
templen = 0;
284
for (i = 0; i < pipeline->_rescount; i++) {
285
const char * const resname =
286
res_stages[i] == 0 ? "undefined" : pipeline->_stages.name(res_stages[i]-1);
287
288
templen += sprintf(&resource_stages[templen], " stage_%s%-*s // %s\n",
289
resname, max_stage - (int)strlen(resname) + 1,
290
(i < pipeline->_rescount-1) ? "," : "",
291
pipeline->_reslist.name(i));
292
}
293
294
// See if the same string is in the table
295
int ndx = pipeline_res_stages.index(resource_stages);
296
297
// No, add it to the table
298
if (ndx < 0) {
299
pipeline_res_stages.addName(resource_stages);
300
ndx = pipeline_res_stages.index(resource_stages);
301
302
fprintf(fp_cpp, "static const enum machPipelineStages pipeline_res_stages_%03d[%d] = {\n%s};\n\n",
303
ndx+1, pipeline->_rescount, resource_stages);
304
}
305
else
306
delete [] resource_stages;
307
308
delete [] res_stages;
309
310
return (ndx);
311
}
312
313
// Compute an index for an array in the pipeline_res_cycles_NNN arrays
314
static int pipeline_res_cycles_initializer(
315
FILE *fp_cpp,
316
PipelineForm *pipeline,
317
NameList &pipeline_res_cycles,
318
PipeClassForm *pipeclass)
319
{
320
const PipeClassResourceForm *piperesource;
321
int * res_cycles = new int [pipeline->_rescount];
322
int i;
323
324
for (i = 0; i < pipeline->_rescount; i++)
325
res_cycles[i] = 0;
326
327
for (pipeclass->_resUsage.reset();
328
(piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
329
int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
330
for (i = 0; i < pipeline->_rescount; i++)
331
if ((1 << i) & used_mask) {
332
int cycles = piperesource->_cycles;
333
if (res_cycles[i] < cycles)
334
res_cycles[i] = cycles;
335
}
336
}
337
338
// Pre-compute the string length
339
int templen;
340
int cyclelen = 0, commentlen = 0;
341
int max_cycles = 0;
342
char temp[32];
343
344
for (i = 0; i < pipeline->_rescount; i++) {
345
if (max_cycles < res_cycles[i])
346
max_cycles = res_cycles[i];
347
templen = sprintf(temp, "%d", res_cycles[i]);
348
if (cyclelen < templen)
349
cyclelen = templen;
350
commentlen += (int)strlen(pipeline->_reslist.name(i));
351
}
352
353
templen = 1 + commentlen + (cyclelen + 8) * pipeline->_rescount;
354
355
// Allocate space for the resource list
356
char * resource_cycles = new char [templen];
357
358
templen = 0;
359
360
for (i = 0; i < pipeline->_rescount; i++) {
361
templen += sprintf(&resource_cycles[templen], " %*d%c // %s\n",
362
cyclelen, res_cycles[i], (i < pipeline->_rescount-1) ? ',' : ' ', pipeline->_reslist.name(i));
363
}
364
365
// See if the same string is in the table
366
int ndx = pipeline_res_cycles.index(resource_cycles);
367
368
// No, add it to the table
369
if (ndx < 0) {
370
pipeline_res_cycles.addName(resource_cycles);
371
ndx = pipeline_res_cycles.index(resource_cycles);
372
373
fprintf(fp_cpp, "static const uint pipeline_res_cycles_%03d[%d] = {\n%s};\n\n",
374
ndx+1, pipeline->_rescount, resource_cycles);
375
}
376
else
377
delete [] resource_cycles;
378
379
delete [] res_cycles;
380
381
return (ndx);
382
}
383
384
//typedef unsigned long long uint64_t;
385
386
// Compute an index for an array in the pipeline_res_mask_NNN arrays
387
static int pipeline_res_mask_initializer(
388
FILE *fp_cpp,
389
PipelineForm *pipeline,
390
NameList &pipeline_res_mask,
391
NameList &pipeline_res_args,
392
PipeClassForm *pipeclass)
393
{
394
const PipeClassResourceForm *piperesource;
395
const uint rescount = pipeline->_rescount;
396
const uint maxcycleused = pipeline->_maxcycleused;
397
const uint cyclemasksize = (maxcycleused + 31) >> 5;
398
399
int i, j;
400
int element_count = 0;
401
uint *res_mask = new uint [cyclemasksize];
402
uint resources_used = 0;
403
uint resources_used_exclusively = 0;
404
405
for (pipeclass->_resUsage.reset();
406
(piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
407
element_count++;
408
}
409
410
// Pre-compute the string length
411
int templen;
412
int commentlen = 0;
413
int max_cycles = 0;
414
415
int cyclelen = ((maxcycleused + 3) >> 2);
416
int masklen = (rescount + 3) >> 2;
417
418
int cycledigit = 0;
419
for (i = maxcycleused; i > 0; i /= 10)
420
cycledigit++;
421
422
int maskdigit = 0;
423
for (i = rescount; i > 0; i /= 10)
424
maskdigit++;
425
426
static const char* pipeline_use_cycle_mask = "Pipeline_Use_Cycle_Mask";
427
static const char* pipeline_use_element = "Pipeline_Use_Element";
428
429
templen = 1 +
430
(int)(strlen(pipeline_use_cycle_mask) + (int)strlen(pipeline_use_element) +
431
(cyclemasksize * 12) + masklen + (cycledigit * 2) + 30) * element_count;
432
433
// Allocate space for the resource list
434
char * resource_mask = new char [templen];
435
char * last_comma = NULL;
436
437
templen = 0;
438
439
for (pipeclass->_resUsage.reset();
440
(piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
441
int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
442
443
if (!used_mask) {
444
fprintf(stderr, "*** used_mask is 0 ***\n");
445
}
446
447
resources_used |= used_mask;
448
449
uint lb, ub;
450
451
for (lb = 0; (used_mask & (1 << lb)) == 0; lb++);
452
for (ub = 31; (used_mask & (1 << ub)) == 0; ub--);
453
454
if (lb == ub) {
455
resources_used_exclusively |= used_mask;
456
}
457
458
int formatlen =
459
sprintf(&resource_mask[templen], " %s(0x%0*x, %*d, %*d, %s %s(",
460
pipeline_use_element,
461
masklen, used_mask,
462
cycledigit, lb, cycledigit, ub,
463
((used_mask & (used_mask-1)) != 0) ? "true, " : "false,",
464
pipeline_use_cycle_mask);
465
466
templen += formatlen;
467
468
memset(res_mask, 0, cyclemasksize * sizeof(uint));
469
470
int cycles = piperesource->_cycles;
471
uint stage = pipeline->_stages.index(piperesource->_stage);
472
if ((uint)NameList::Not_in_list == stage) {
473
fprintf(stderr,
474
"pipeline_res_mask_initializer: "
475
"semantic error: "
476
"pipeline stage undeclared: %s\n",
477
piperesource->_stage);
478
exit(1);
479
}
480
uint upper_limit = stage + cycles - 1;
481
uint lower_limit = stage - 1;
482
uint upper_idx = upper_limit >> 5;
483
uint lower_idx = lower_limit >> 5;
484
uint upper_position = upper_limit & 0x1f;
485
uint lower_position = lower_limit & 0x1f;
486
487
uint mask = (((uint)1) << upper_position) - 1;
488
489
while (upper_idx > lower_idx) {
490
res_mask[upper_idx--] |= mask;
491
mask = (uint)-1;
492
}
493
494
mask -= (((uint)1) << lower_position) - 1;
495
res_mask[upper_idx] |= mask;
496
497
for (j = cyclemasksize-1; j >= 0; j--) {
498
formatlen =
499
sprintf(&resource_mask[templen], "0x%08x%s", res_mask[j], j > 0 ? ", " : "");
500
templen += formatlen;
501
}
502
503
resource_mask[templen++] = ')';
504
resource_mask[templen++] = ')';
505
last_comma = &resource_mask[templen];
506
resource_mask[templen++] = ',';
507
resource_mask[templen++] = '\n';
508
}
509
510
resource_mask[templen] = 0;
511
if (last_comma) {
512
last_comma[0] = ' ';
513
}
514
515
// See if the same string is in the table
516
int ndx = pipeline_res_mask.index(resource_mask);
517
518
// No, add it to the table
519
if (ndx < 0) {
520
pipeline_res_mask.addName(resource_mask);
521
ndx = pipeline_res_mask.index(resource_mask);
522
523
if (strlen(resource_mask) > 0)
524
fprintf(fp_cpp, "static const Pipeline_Use_Element pipeline_res_mask_%03d[%d] = {\n%s};\n\n",
525
ndx+1, element_count, resource_mask);
526
527
char* args = new char [9 + 2*masklen + maskdigit];
528
529
sprintf(args, "0x%0*x, 0x%0*x, %*d",
530
masklen, resources_used,
531
masklen, resources_used_exclusively,
532
maskdigit, element_count);
533
534
pipeline_res_args.addName(args);
535
}
536
else {
537
delete [] resource_mask;
538
}
539
540
delete [] res_mask;
541
//delete [] res_masks;
542
543
return (ndx);
544
}
545
546
void ArchDesc::build_pipe_classes(FILE *fp_cpp) {
547
const char *classname;
548
const char *resourcename;
549
int resourcenamelen = 0;
550
NameList pipeline_reads;
551
NameList pipeline_res_stages;
552
NameList pipeline_res_cycles;
553
NameList pipeline_res_masks;
554
NameList pipeline_res_args;
555
const int default_latency = 1;
556
const int non_operand_latency = 0;
557
const int node_latency = 0;
558
559
if (!_pipeline) {
560
fprintf(fp_cpp, "uint Node::latency(uint i) const {\n");
561
fprintf(fp_cpp, " // assert(false, \"pipeline functionality is not defined\");\n");
562
fprintf(fp_cpp, " return %d;\n", non_operand_latency);
563
fprintf(fp_cpp, "}\n");
564
return;
565
}
566
567
fprintf(fp_cpp, "\n");
568
fprintf(fp_cpp, "//------------------Pipeline Methods-----------------------------------------\n");
569
fprintf(fp_cpp, "#ifndef PRODUCT\n");
570
fprintf(fp_cpp, "const char * Pipeline::stageName(uint s) {\n");
571
fprintf(fp_cpp, " static const char * const _stage_names[] = {\n");
572
fprintf(fp_cpp, " \"undefined\"");
573
574
for (int s = 0; s < _pipeline->_stagecnt; s++)
575
fprintf(fp_cpp, ", \"%s\"", _pipeline->_stages.name(s));
576
577
fprintf(fp_cpp, "\n };\n\n");
578
fprintf(fp_cpp, " return (s <= %d ? _stage_names[s] : \"???\");\n",
579
_pipeline->_stagecnt);
580
fprintf(fp_cpp, "}\n");
581
fprintf(fp_cpp, "#endif\n\n");
582
583
fprintf(fp_cpp, "uint Pipeline::functional_unit_latency(uint start, const Pipeline *pred) const {\n");
584
fprintf(fp_cpp, " // See if the functional units overlap\n");
585
#if 0
586
fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
587
fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
588
fprintf(fp_cpp, " tty->print(\"# functional_unit_latency: start == %%d, this->exclusively == 0x%%03x, pred->exclusively == 0x%%03x\\n\", start, resourcesUsedExclusively(), pred->resourcesUsedExclusively());\n");
589
fprintf(fp_cpp, " }\n");
590
fprintf(fp_cpp, "#endif\n\n");
591
#endif
592
fprintf(fp_cpp, " uint mask = resourcesUsedExclusively() & pred->resourcesUsedExclusively();\n");
593
fprintf(fp_cpp, " if (mask == 0)\n return (start);\n\n");
594
#if 0
595
fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
596
fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
597
fprintf(fp_cpp, " tty->print(\"# functional_unit_latency: mask == 0x%%x\\n\", mask);\n");
598
fprintf(fp_cpp, " }\n");
599
fprintf(fp_cpp, "#endif\n\n");
600
#endif
601
fprintf(fp_cpp, " for (uint i = 0; i < pred->resourceUseCount(); i++) {\n");
602
fprintf(fp_cpp, " const Pipeline_Use_Element *predUse = pred->resourceUseElement(i);\n");
603
fprintf(fp_cpp, " if (predUse->multiple())\n");
604
fprintf(fp_cpp, " continue;\n\n");
605
fprintf(fp_cpp, " for (uint j = 0; j < resourceUseCount(); j++) {\n");
606
fprintf(fp_cpp, " const Pipeline_Use_Element *currUse = resourceUseElement(j);\n");
607
fprintf(fp_cpp, " if (currUse->multiple())\n");
608
fprintf(fp_cpp, " continue;\n\n");
609
fprintf(fp_cpp, " if (predUse->used() & currUse->used()) {\n");
610
fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask x = predUse->mask();\n");
611
fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask y = currUse->mask();\n\n");
612
fprintf(fp_cpp, " for ( y <<= start; x.overlaps(y); start++ )\n");
613
fprintf(fp_cpp, " y <<= 1;\n");
614
fprintf(fp_cpp, " }\n");
615
fprintf(fp_cpp, " }\n");
616
fprintf(fp_cpp, " }\n\n");
617
fprintf(fp_cpp, " // There is the potential for overlap\n");
618
fprintf(fp_cpp, " return (start);\n");
619
fprintf(fp_cpp, "}\n\n");
620
fprintf(fp_cpp, "// The following two routines assume that the root Pipeline_Use entity\n");
621
fprintf(fp_cpp, "// consists of exactly 1 element for each functional unit\n");
622
fprintf(fp_cpp, "// start is relative to the current cycle; used for latency-based info\n");
623
fprintf(fp_cpp, "uint Pipeline_Use::full_latency(uint delay, const Pipeline_Use &pred) const {\n");
624
fprintf(fp_cpp, " for (uint i = 0; i < pred._count; i++) {\n");
625
fprintf(fp_cpp, " const Pipeline_Use_Element *predUse = pred.element(i);\n");
626
fprintf(fp_cpp, " if (predUse->_multiple) {\n");
627
fprintf(fp_cpp, " uint min_delay = %d;\n",
628
_pipeline->_maxcycleused+1);
629
fprintf(fp_cpp, " // Multiple possible functional units, choose first unused one\n");
630
fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
631
fprintf(fp_cpp, " const Pipeline_Use_Element *currUse = element(j);\n");
632
fprintf(fp_cpp, " uint curr_delay = delay;\n");
633
fprintf(fp_cpp, " if (predUse->_used & currUse->_used) {\n");
634
fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
635
fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
636
fprintf(fp_cpp, " for ( y <<= curr_delay; x.overlaps(y); curr_delay++ )\n");
637
fprintf(fp_cpp, " y <<= 1;\n");
638
fprintf(fp_cpp, " }\n");
639
fprintf(fp_cpp, " if (min_delay > curr_delay)\n min_delay = curr_delay;\n");
640
fprintf(fp_cpp, " }\n");
641
fprintf(fp_cpp, " if (delay < min_delay)\n delay = min_delay;\n");
642
fprintf(fp_cpp, " }\n");
643
fprintf(fp_cpp, " else {\n");
644
fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
645
fprintf(fp_cpp, " const Pipeline_Use_Element *currUse = element(j);\n");
646
fprintf(fp_cpp, " if (predUse->_used & currUse->_used) {\n");
647
fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
648
fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
649
fprintf(fp_cpp, " for ( y <<= delay; x.overlaps(y); delay++ )\n");
650
fprintf(fp_cpp, " y <<= 1;\n");
651
fprintf(fp_cpp, " }\n");
652
fprintf(fp_cpp, " }\n");
653
fprintf(fp_cpp, " }\n");
654
fprintf(fp_cpp, " }\n\n");
655
fprintf(fp_cpp, " return (delay);\n");
656
fprintf(fp_cpp, "}\n\n");
657
fprintf(fp_cpp, "void Pipeline_Use::add_usage(const Pipeline_Use &pred) {\n");
658
fprintf(fp_cpp, " for (uint i = 0; i < pred._count; i++) {\n");
659
fprintf(fp_cpp, " const Pipeline_Use_Element *predUse = pred.element(i);\n");
660
fprintf(fp_cpp, " if (predUse->_multiple) {\n");
661
fprintf(fp_cpp, " // Multiple possible functional units, choose first unused one\n");
662
fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
663
fprintf(fp_cpp, " Pipeline_Use_Element *currUse = element(j);\n");
664
fprintf(fp_cpp, " if ( !predUse->_mask.overlaps(currUse->_mask) ) {\n");
665
fprintf(fp_cpp, " currUse->_used |= (1 << j);\n");
666
fprintf(fp_cpp, " _resources_used |= (1 << j);\n");
667
fprintf(fp_cpp, " currUse->_mask.Or(predUse->_mask);\n");
668
fprintf(fp_cpp, " break;\n");
669
fprintf(fp_cpp, " }\n");
670
fprintf(fp_cpp, " }\n");
671
fprintf(fp_cpp, " }\n");
672
fprintf(fp_cpp, " else {\n");
673
fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
674
fprintf(fp_cpp, " Pipeline_Use_Element *currUse = element(j);\n");
675
fprintf(fp_cpp, " currUse->_used |= (1 << j);\n");
676
fprintf(fp_cpp, " _resources_used |= (1 << j);\n");
677
fprintf(fp_cpp, " currUse->_mask.Or(predUse->_mask);\n");
678
fprintf(fp_cpp, " }\n");
679
fprintf(fp_cpp, " }\n");
680
fprintf(fp_cpp, " }\n");
681
fprintf(fp_cpp, "}\n\n");
682
683
fprintf(fp_cpp, "uint Pipeline::operand_latency(uint opnd, const Pipeline *pred) const {\n");
684
fprintf(fp_cpp, " int const default_latency = 1;\n");
685
fprintf(fp_cpp, "\n");
686
#if 0
687
fprintf(fp_cpp, "#ifndef PRODUCT\n");
688
fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
689
fprintf(fp_cpp, " tty->print(\"# operand_latency(%%d), _read_stage_count = %%d\\n\", opnd, _read_stage_count);\n");
690
fprintf(fp_cpp, " }\n");
691
fprintf(fp_cpp, "#endif\n\n");
692
#endif
693
fprintf(fp_cpp, " assert(this, \"NULL pipeline info\");\n");
694
fprintf(fp_cpp, " assert(pred, \"NULL predecessor pipline info\");\n\n");
695
fprintf(fp_cpp, " if (pred->hasFixedLatency())\n return (pred->fixedLatency());\n\n");
696
fprintf(fp_cpp, " // If this is not an operand, then assume a dependence with 0 latency\n");
697
fprintf(fp_cpp, " if (opnd > _read_stage_count)\n return (0);\n\n");
698
fprintf(fp_cpp, " uint writeStage = pred->_write_stage;\n");
699
fprintf(fp_cpp, " uint readStage = _read_stages[opnd-1];\n");
700
#if 0
701
fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
702
fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
703
fprintf(fp_cpp, " tty->print(\"# operand_latency: writeStage=%%s readStage=%%s, opnd=%%d\\n\", stageName(writeStage), stageName(readStage), opnd);\n");
704
fprintf(fp_cpp, " }\n");
705
fprintf(fp_cpp, "#endif\n\n");
706
#endif
707
fprintf(fp_cpp, "\n");
708
fprintf(fp_cpp, " if (writeStage == stage_undefined || readStage == stage_undefined)\n");
709
fprintf(fp_cpp, " return (default_latency);\n");
710
fprintf(fp_cpp, "\n");
711
fprintf(fp_cpp, " int delta = writeStage - readStage;\n");
712
fprintf(fp_cpp, " if (delta < 0) delta = 0;\n\n");
713
#if 0
714
fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
715
fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
716
fprintf(fp_cpp, " tty->print(\"# operand_latency: delta=%%d\\n\", delta);\n");
717
fprintf(fp_cpp, " }\n");
718
fprintf(fp_cpp, "#endif\n\n");
719
#endif
720
fprintf(fp_cpp, " return (delta);\n");
721
fprintf(fp_cpp, "}\n\n");
722
723
if (!_pipeline)
724
/* Do Nothing */;
725
726
else if (_pipeline->_maxcycleused <=
727
#ifdef SPARC
728
64
729
#else
730
32
731
#endif
732
) {
733
fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
734
fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask(in1._mask & in2._mask);\n");
735
fprintf(fp_cpp, "}\n\n");
736
fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
737
fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask(in1._mask | in2._mask);\n");
738
fprintf(fp_cpp, "}\n\n");
739
}
740
else {
741
uint l;
742
uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
743
fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
744
fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask(");
745
for (l = 1; l <= masklen; l++)
746
fprintf(fp_cpp, "in1._mask%d & in2._mask%d%s\n", l, l, l < masklen ? ", " : "");
747
fprintf(fp_cpp, ");\n");
748
fprintf(fp_cpp, "}\n\n");
749
fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
750
fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask(");
751
for (l = 1; l <= masklen; l++)
752
fprintf(fp_cpp, "in1._mask%d | in2._mask%d%s", l, l, l < masklen ? ", " : "");
753
fprintf(fp_cpp, ");\n");
754
fprintf(fp_cpp, "}\n\n");
755
fprintf(fp_cpp, "void Pipeline_Use_Cycle_Mask::Or(const Pipeline_Use_Cycle_Mask &in2) {\n ");
756
for (l = 1; l <= masklen; l++)
757
fprintf(fp_cpp, " _mask%d |= in2._mask%d;", l, l);
758
fprintf(fp_cpp, "\n}\n\n");
759
}
760
761
/* Get the length of all the resource names */
762
for (_pipeline->_reslist.reset(), resourcenamelen = 0;
763
(resourcename = _pipeline->_reslist.iter()) != NULL;
764
resourcenamelen += (int)strlen(resourcename));
765
766
// Create the pipeline class description
767
768
fprintf(fp_cpp, "static const Pipeline pipeline_class_Zero_Instructions(0, 0, true, 0, 0, false, false, false, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
769
fprintf(fp_cpp, "static const Pipeline pipeline_class_Unknown_Instructions(0, 0, true, 0, 0, false, true, true, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
770
771
fprintf(fp_cpp, "const Pipeline_Use_Element Pipeline_Use::elaborated_elements[%d] = {\n", _pipeline->_rescount);
772
for (int i1 = 0; i1 < _pipeline->_rescount; i1++) {
773
fprintf(fp_cpp, " Pipeline_Use_Element(0, %d, %d, false, Pipeline_Use_Cycle_Mask(", i1, i1);
774
uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
775
for (int i2 = masklen-1; i2 >= 0; i2--)
776
fprintf(fp_cpp, "0%s", i2 > 0 ? ", " : "");
777
fprintf(fp_cpp, "))%s\n", i1 < (_pipeline->_rescount-1) ? "," : "");
778
}
779
fprintf(fp_cpp, "};\n\n");
780
781
fprintf(fp_cpp, "const Pipeline_Use Pipeline_Use::elaborated_use(0, 0, %d, (Pipeline_Use_Element *)&elaborated_elements[0]);\n\n",
782
_pipeline->_rescount);
783
784
for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
785
fprintf(fp_cpp, "\n");
786
fprintf(fp_cpp, "// Pipeline Class \"%s\"\n", classname);
787
PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
788
int maxWriteStage = -1;
789
int maxMoreInstrs = 0;
790
int paramcount = 0;
791
int i = 0;
792
const char *paramname;
793
int resource_count = (_pipeline->_rescount + 3) >> 2;
794
795
// Scan the operands, looking for last output stage and number of inputs
796
for (pipeclass->_parameters.reset(); (paramname = pipeclass->_parameters.iter()) != NULL; ) {
797
const PipeClassOperandForm *pipeopnd =
798
(const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
799
if (pipeopnd) {
800
if (pipeopnd->_iswrite) {
801
int stagenum = _pipeline->_stages.index(pipeopnd->_stage);
802
int moreinsts = pipeopnd->_more_instrs;
803
if ((maxWriteStage+maxMoreInstrs) < (stagenum+moreinsts)) {
804
maxWriteStage = stagenum;
805
maxMoreInstrs = moreinsts;
806
}
807
}
808
}
809
810
if (i++ > 0 || (pipeopnd && !pipeopnd->isWrite()))
811
paramcount++;
812
}
813
814
// Create the list of stages for the operands that are read
815
// Note that we will build a NameList to reduce the number of copies
816
817
int pipeline_reads_index = pipeline_reads_initializer(fp_cpp, pipeline_reads, pipeclass);
818
819
int pipeline_res_stages_index = pipeline_res_stages_initializer(
820
fp_cpp, _pipeline, pipeline_res_stages, pipeclass);
821
822
int pipeline_res_cycles_index = pipeline_res_cycles_initializer(
823
fp_cpp, _pipeline, pipeline_res_cycles, pipeclass);
824
825
int pipeline_res_mask_index = pipeline_res_mask_initializer(
826
fp_cpp, _pipeline, pipeline_res_masks, pipeline_res_args, pipeclass);
827
828
#if 0
829
// Process the Resources
830
const PipeClassResourceForm *piperesource;
831
832
unsigned resources_used = 0;
833
unsigned exclusive_resources_used = 0;
834
unsigned resource_groups = 0;
835
for (pipeclass->_resUsage.reset();
836
(piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
837
int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
838
if (used_mask)
839
resource_groups++;
840
resources_used |= used_mask;
841
if ((used_mask & (used_mask-1)) == 0)
842
exclusive_resources_used |= used_mask;
843
}
844
845
if (resource_groups > 0) {
846
fprintf(fp_cpp, "static const uint pipeline_res_or_masks_%03d[%d] = {",
847
pipeclass->_num, resource_groups);
848
for (pipeclass->_resUsage.reset(), i = 1;
849
(piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL;
850
i++ ) {
851
int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
852
if (used_mask) {
853
fprintf(fp_cpp, " 0x%0*x%c", resource_count, used_mask, i < (int)resource_groups ? ',' : ' ');
854
}
855
}
856
fprintf(fp_cpp, "};\n\n");
857
}
858
#endif
859
860
// Create the pipeline class description
861
fprintf(fp_cpp, "static const Pipeline pipeline_class_%03d(",
862
pipeclass->_num);
863
if (maxWriteStage < 0)
864
fprintf(fp_cpp, "(uint)stage_undefined");
865
else if (maxMoreInstrs == 0)
866
fprintf(fp_cpp, "(uint)stage_%s", _pipeline->_stages.name(maxWriteStage));
867
else
868
fprintf(fp_cpp, "((uint)stage_%s)+%d", _pipeline->_stages.name(maxWriteStage), maxMoreInstrs);
869
fprintf(fp_cpp, ", %d, %s, %d, %d, %s, %s, %s, %s,\n",
870
paramcount,
871
pipeclass->hasFixedLatency() ? "true" : "false",
872
pipeclass->fixedLatency(),
873
pipeclass->InstructionCount(),
874
pipeclass->hasBranchDelay() ? "true" : "false",
875
pipeclass->hasMultipleBundles() ? "true" : "false",
876
pipeclass->forceSerialization() ? "true" : "false",
877
pipeclass->mayHaveNoCode() ? "true" : "false" );
878
if (paramcount > 0) {
879
fprintf(fp_cpp, "\n (enum machPipelineStages * const) pipeline_reads_%03d,\n ",
880
pipeline_reads_index+1);
881
}
882
else
883
fprintf(fp_cpp, " NULL,");
884
fprintf(fp_cpp, " (enum machPipelineStages * const) pipeline_res_stages_%03d,\n",
885
pipeline_res_stages_index+1);
886
fprintf(fp_cpp, " (uint * const) pipeline_res_cycles_%03d,\n",
887
pipeline_res_cycles_index+1);
888
fprintf(fp_cpp, " Pipeline_Use(%s, (Pipeline_Use_Element *)",
889
pipeline_res_args.name(pipeline_res_mask_index));
890
if (strlen(pipeline_res_masks.name(pipeline_res_mask_index)) > 0)
891
fprintf(fp_cpp, "&pipeline_res_mask_%03d[0]",
892
pipeline_res_mask_index+1);
893
else
894
fprintf(fp_cpp, "NULL");
895
fprintf(fp_cpp, "));\n");
896
}
897
898
// Generate the Node::latency method if _pipeline defined
899
fprintf(fp_cpp, "\n");
900
fprintf(fp_cpp, "//------------------Inter-Instruction Latency--------------------------------\n");
901
fprintf(fp_cpp, "uint Node::latency(uint i) {\n");
902
if (_pipeline) {
903
#if 0
904
fprintf(fp_cpp, "#ifndef PRODUCT\n");
905
fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
906
fprintf(fp_cpp, " tty->print(\"# %%4d->latency(%%d)\\n\", _idx, i);\n");
907
fprintf(fp_cpp, " }\n");
908
fprintf(fp_cpp, "#endif\n");
909
#endif
910
fprintf(fp_cpp, " uint j;\n");
911
fprintf(fp_cpp, " // verify in legal range for inputs\n");
912
fprintf(fp_cpp, " assert(i < len(), \"index not in range\");\n\n");
913
fprintf(fp_cpp, " // verify input is not null\n");
914
fprintf(fp_cpp, " Node *pred = in(i);\n");
915
fprintf(fp_cpp, " if (!pred)\n return %d;\n\n",
916
non_operand_latency);
917
fprintf(fp_cpp, " if (pred->is_Proj())\n pred = pred->in(0);\n\n");
918
fprintf(fp_cpp, " // if either node does not have pipeline info, use default\n");
919
fprintf(fp_cpp, " const Pipeline *predpipe = pred->pipeline();\n");
920
fprintf(fp_cpp, " assert(predpipe, \"no predecessor pipeline info\");\n\n");
921
fprintf(fp_cpp, " if (predpipe->hasFixedLatency())\n return predpipe->fixedLatency();\n\n");
922
fprintf(fp_cpp, " const Pipeline *currpipe = pipeline();\n");
923
fprintf(fp_cpp, " assert(currpipe, \"no pipeline info\");\n\n");
924
fprintf(fp_cpp, " if (!is_Mach())\n return %d;\n\n",
925
node_latency);
926
fprintf(fp_cpp, " const MachNode *m = as_Mach();\n");
927
fprintf(fp_cpp, " j = m->oper_input_base();\n");
928
fprintf(fp_cpp, " if (i < j)\n return currpipe->functional_unit_latency(%d, predpipe);\n\n",
929
non_operand_latency);
930
fprintf(fp_cpp, " // determine which operand this is in\n");
931
fprintf(fp_cpp, " uint n = m->num_opnds();\n");
932
fprintf(fp_cpp, " int delta = %d;\n\n",
933
non_operand_latency);
934
fprintf(fp_cpp, " uint k;\n");
935
fprintf(fp_cpp, " for (k = 1; k < n; k++) {\n");
936
fprintf(fp_cpp, " j += m->_opnds[k]->num_edges();\n");
937
fprintf(fp_cpp, " if (i < j)\n");
938
fprintf(fp_cpp, " break;\n");
939
fprintf(fp_cpp, " }\n");
940
fprintf(fp_cpp, " if (k < n)\n");
941
fprintf(fp_cpp, " delta = currpipe->operand_latency(k,predpipe);\n\n");
942
fprintf(fp_cpp, " return currpipe->functional_unit_latency(delta, predpipe);\n");
943
}
944
else {
945
fprintf(fp_cpp, " // assert(false, \"pipeline functionality is not defined\");\n");
946
fprintf(fp_cpp, " return %d;\n",
947
non_operand_latency);
948
}
949
fprintf(fp_cpp, "}\n\n");
950
951
// Output the list of nop nodes
952
fprintf(fp_cpp, "// Descriptions for emitting different functional unit nops\n");
953
const char *nop;
954
int nopcnt = 0;
955
for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; nopcnt++ );
956
957
fprintf(fp_cpp, "void Bundle::initialize_nops(MachNode * nop_list[%d], Compile *C) {\n", nopcnt);
958
int i = 0;
959
for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; i++ ) {
960
fprintf(fp_cpp, " nop_list[%d] = (MachNode *) new (C) %sNode();\n", i, nop);
961
}
962
fprintf(fp_cpp, "};\n\n");
963
fprintf(fp_cpp, "#ifndef PRODUCT\n");
964
fprintf(fp_cpp, "void Bundle::dump(outputStream *st) const {\n");
965
fprintf(fp_cpp, " static const char * bundle_flags[] = {\n");
966
fprintf(fp_cpp, " \"\",\n");
967
fprintf(fp_cpp, " \"use nop delay\",\n");
968
fprintf(fp_cpp, " \"use unconditional delay\",\n");
969
fprintf(fp_cpp, " \"use conditional delay\",\n");
970
fprintf(fp_cpp, " \"used in conditional delay\",\n");
971
fprintf(fp_cpp, " \"used in unconditional delay\",\n");
972
fprintf(fp_cpp, " \"used in all conditional delays\",\n");
973
fprintf(fp_cpp, " };\n\n");
974
975
fprintf(fp_cpp, " static const char *resource_names[%d] = {", _pipeline->_rescount);
976
for (i = 0; i < _pipeline->_rescount; i++)
977
fprintf(fp_cpp, " \"%s\"%c", _pipeline->_reslist.name(i), i < _pipeline->_rescount-1 ? ',' : ' ');
978
fprintf(fp_cpp, "};\n\n");
979
980
// See if the same string is in the table
981
fprintf(fp_cpp, " bool needs_comma = false;\n\n");
982
fprintf(fp_cpp, " if (_flags) {\n");
983
fprintf(fp_cpp, " st->print(\"%%s\", bundle_flags[_flags]);\n");
984
fprintf(fp_cpp, " needs_comma = true;\n");
985
fprintf(fp_cpp, " };\n");
986
fprintf(fp_cpp, " if (instr_count()) {\n");
987
fprintf(fp_cpp, " st->print(\"%%s%%d instr%%s\", needs_comma ? \", \" : \"\", instr_count(), instr_count() != 1 ? \"s\" : \"\");\n");
988
fprintf(fp_cpp, " needs_comma = true;\n");
989
fprintf(fp_cpp, " };\n");
990
fprintf(fp_cpp, " uint r = resources_used();\n");
991
fprintf(fp_cpp, " if (r) {\n");
992
fprintf(fp_cpp, " st->print(\"%%sresource%%s:\", needs_comma ? \", \" : \"\", (r & (r-1)) != 0 ? \"s\" : \"\");\n");
993
fprintf(fp_cpp, " for (uint i = 0; i < %d; i++)\n", _pipeline->_rescount);
994
fprintf(fp_cpp, " if ((r & (1 << i)) != 0)\n");
995
fprintf(fp_cpp, " st->print(\" %%s\", resource_names[i]);\n");
996
fprintf(fp_cpp, " needs_comma = true;\n");
997
fprintf(fp_cpp, " };\n");
998
fprintf(fp_cpp, " st->print(\"\\n\");\n");
999
fprintf(fp_cpp, "}\n");
1000
fprintf(fp_cpp, "#endif\n");
1001
}
1002
1003
// ---------------------------------------------------------------------------
1004
//------------------------------Utilities to build Instruction Classes--------
1005
// ---------------------------------------------------------------------------
1006
1007
static void defineOut_RegMask(FILE *fp, const char *node, const char *regMask) {
1008
fprintf(fp,"const RegMask &%sNode::out_RegMask() const { return (%s); }\n",
1009
node, regMask);
1010
}
1011
1012
static void print_block_index(FILE *fp, int inst_position) {
1013
assert( inst_position >= 0, "Instruction number less than zero");
1014
fprintf(fp, "block_index");
1015
if( inst_position != 0 ) {
1016
fprintf(fp, " - %d", inst_position);
1017
}
1018
}
1019
1020
// Scan the peepmatch and output a test for each instruction
1021
static void check_peepmatch_instruction_sequence(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1022
int parent = -1;
1023
int inst_position = 0;
1024
const char* inst_name = NULL;
1025
int input = 0;
1026
fprintf(fp, " // Check instruction sub-tree\n");
1027
pmatch->reset();
1028
for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1029
inst_name != NULL;
1030
pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1031
// If this is not a placeholder
1032
if( ! pmatch->is_placeholder() ) {
1033
// Define temporaries 'inst#', based on parent and parent's input index
1034
if( parent != -1 ) { // root was initialized
1035
fprintf(fp, " // Identify previous instruction if inside this block\n");
1036
fprintf(fp, " if( ");
1037
print_block_index(fp, inst_position);
1038
fprintf(fp, " > 0 ) {\n Node *n = block->get_node(");
1039
print_block_index(fp, inst_position);
1040
fprintf(fp, ");\n inst%d = (n->is_Mach()) ? ", inst_position);
1041
fprintf(fp, "n->as_Mach() : NULL;\n }\n");
1042
}
1043
1044
// When not the root
1045
// Test we have the correct instruction by comparing the rule.
1046
if( parent != -1 ) {
1047
fprintf(fp, " matches = matches && (inst%d != NULL) && (inst%d->rule() == %s_rule);\n",
1048
inst_position, inst_position, inst_name);
1049
}
1050
} else {
1051
// Check that user did not try to constrain a placeholder
1052
assert( ! pconstraint->constrains_instruction(inst_position),
1053
"fatal(): Can not constrain a placeholder instruction");
1054
}
1055
}
1056
}
1057
1058
// Build mapping for register indices, num_edges to input
1059
static void build_instruction_index_mapping( FILE *fp, FormDict &globals, PeepMatch *pmatch ) {
1060
int parent = -1;
1061
int inst_position = 0;
1062
const char* inst_name = NULL;
1063
int input = 0;
1064
fprintf(fp, " // Build map to register info\n");
1065
pmatch->reset();
1066
for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1067
inst_name != NULL;
1068
pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1069
// If this is not a placeholder
1070
if( ! pmatch->is_placeholder() ) {
1071
// Define temporaries 'inst#', based on self's inst_position
1072
InstructForm *inst = globals[inst_name]->is_instruction();
1073
if( inst != NULL ) {
1074
char inst_prefix[] = "instXXXX_";
1075
sprintf(inst_prefix, "inst%d_", inst_position);
1076
char receiver[] = "instXXXX->";
1077
sprintf(receiver, "inst%d->", inst_position);
1078
inst->index_temps( fp, globals, inst_prefix, receiver );
1079
}
1080
}
1081
}
1082
}
1083
1084
// Generate tests for the constraints
1085
static void check_peepconstraints(FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1086
fprintf(fp, "\n");
1087
fprintf(fp, " // Check constraints on sub-tree-leaves\n");
1088
1089
// Build mapping from num_edges to local variables
1090
build_instruction_index_mapping( fp, globals, pmatch );
1091
1092
// Build constraint tests
1093
if( pconstraint != NULL ) {
1094
fprintf(fp, " matches = matches &&");
1095
bool first_constraint = true;
1096
while( pconstraint != NULL ) {
1097
// indentation and connecting '&&'
1098
const char *indentation = " ";
1099
fprintf(fp, "\n%s%s", indentation, (!first_constraint ? "&& " : " "));
1100
1101
// Only have '==' relation implemented
1102
if( strcmp(pconstraint->_relation,"==") != 0 ) {
1103
assert( false, "Unimplemented()" );
1104
}
1105
1106
// LEFT
1107
int left_index = pconstraint->_left_inst;
1108
const char *left_op = pconstraint->_left_op;
1109
// Access info on the instructions whose operands are compared
1110
InstructForm *inst_left = globals[pmatch->instruction_name(left_index)]->is_instruction();
1111
assert( inst_left, "Parser should guaranty this is an instruction");
1112
int left_op_base = inst_left->oper_input_base(globals);
1113
// Access info on the operands being compared
1114
int left_op_index = inst_left->operand_position(left_op, Component::USE);
1115
if( left_op_index == -1 ) {
1116
left_op_index = inst_left->operand_position(left_op, Component::DEF);
1117
if( left_op_index == -1 ) {
1118
left_op_index = inst_left->operand_position(left_op, Component::USE_DEF);
1119
}
1120
}
1121
assert( left_op_index != NameList::Not_in_list, "Did not find operand in instruction");
1122
ComponentList components_left = inst_left->_components;
1123
const char *left_comp_type = components_left.at(left_op_index)->_type;
1124
OpClassForm *left_opclass = globals[left_comp_type]->is_opclass();
1125
Form::InterfaceType left_interface_type = left_opclass->interface_type(globals);
1126
1127
1128
// RIGHT
1129
int right_op_index = -1;
1130
int right_index = pconstraint->_right_inst;
1131
const char *right_op = pconstraint->_right_op;
1132
if( right_index != -1 ) { // Match operand
1133
// Access info on the instructions whose operands are compared
1134
InstructForm *inst_right = globals[pmatch->instruction_name(right_index)]->is_instruction();
1135
assert( inst_right, "Parser should guaranty this is an instruction");
1136
int right_op_base = inst_right->oper_input_base(globals);
1137
// Access info on the operands being compared
1138
right_op_index = inst_right->operand_position(right_op, Component::USE);
1139
if( right_op_index == -1 ) {
1140
right_op_index = inst_right->operand_position(right_op, Component::DEF);
1141
if( right_op_index == -1 ) {
1142
right_op_index = inst_right->operand_position(right_op, Component::USE_DEF);
1143
}
1144
}
1145
assert( right_op_index != NameList::Not_in_list, "Did not find operand in instruction");
1146
ComponentList components_right = inst_right->_components;
1147
const char *right_comp_type = components_right.at(right_op_index)->_type;
1148
OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
1149
Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
1150
assert( right_interface_type == left_interface_type, "Both must be same interface");
1151
1152
} else { // Else match register
1153
// assert( false, "should be a register" );
1154
}
1155
1156
//
1157
// Check for equivalence
1158
//
1159
// fprintf(fp, "phase->eqv( ");
1160
// fprintf(fp, "inst%d->in(%d+%d) /* %s */, inst%d->in(%d+%d) /* %s */",
1161
// left_index, left_op_base, left_op_index, left_op,
1162
// right_index, right_op_base, right_op_index, right_op );
1163
// fprintf(fp, ")");
1164
//
1165
switch( left_interface_type ) {
1166
case Form::register_interface: {
1167
// Check that they are allocated to the same register
1168
// Need parameter for index position if not result operand
1169
char left_reg_index[] = ",instXXXX_idxXXXX";
1170
if( left_op_index != 0 ) {
1171
assert( (left_index <= 9999) && (left_op_index <= 9999), "exceed string size");
1172
// Must have index into operands
1173
sprintf(left_reg_index,",inst%d_idx%d", (int)left_index, left_op_index);
1174
} else {
1175
strcpy(left_reg_index, "");
1176
}
1177
fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s) /* %d.%s */",
1178
left_index, left_op_index, left_index, left_reg_index, left_index, left_op );
1179
fprintf(fp, " == ");
1180
1181
if( right_index != -1 ) {
1182
char right_reg_index[18] = ",instXXXX_idxXXXX";
1183
if( right_op_index != 0 ) {
1184
assert( (right_index <= 9999) && (right_op_index <= 9999), "exceed string size");
1185
// Must have index into operands
1186
sprintf(right_reg_index,",inst%d_idx%d", (int)right_index, right_op_index);
1187
} else {
1188
strcpy(right_reg_index, "");
1189
}
1190
fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)",
1191
right_index, right_op, right_index, right_op_index, right_index, right_reg_index );
1192
} else {
1193
fprintf(fp, "%s_enc", right_op );
1194
}
1195
fprintf(fp,")");
1196
break;
1197
}
1198
case Form::constant_interface: {
1199
// Compare the '->constant()' values
1200
fprintf(fp, "(inst%d->_opnds[%d]->constant() /* %d.%s */",
1201
left_index, left_op_index, left_index, left_op );
1202
fprintf(fp, " == ");
1203
fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->constant())",
1204
right_index, right_op, right_index, right_op_index );
1205
break;
1206
}
1207
case Form::memory_interface: {
1208
// Compare 'base', 'index', 'scale', and 'disp'
1209
// base
1210
fprintf(fp, "( \n");
1211
fprintf(fp, " (inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d) /* %d.%s$$base */",
1212
left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1213
fprintf(fp, " == ");
1214
fprintf(fp, "/* %d.%s$$base */ inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)) &&\n",
1215
right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1216
// index
1217
fprintf(fp, " (inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d) /* %d.%s$$index */",
1218
left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1219
fprintf(fp, " == ");
1220
fprintf(fp, "/* %d.%s$$index */ inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)) &&\n",
1221
right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1222
// scale
1223
fprintf(fp, " (inst%d->_opnds[%d]->scale() /* %d.%s$$scale */",
1224
left_index, left_op_index, left_index, left_op );
1225
fprintf(fp, " == ");
1226
fprintf(fp, "/* %d.%s$$scale */ inst%d->_opnds[%d]->scale()) &&\n",
1227
right_index, right_op, right_index, right_op_index );
1228
// disp
1229
fprintf(fp, " (inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d) /* %d.%s$$disp */",
1230
left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1231
fprintf(fp, " == ");
1232
fprintf(fp, "/* %d.%s$$disp */ inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d))\n",
1233
right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1234
fprintf(fp, ") \n");
1235
break;
1236
}
1237
case Form::conditional_interface: {
1238
// Compare the condition code being tested
1239
assert( false, "Unimplemented()" );
1240
break;
1241
}
1242
default: {
1243
assert( false, "ShouldNotReachHere()" );
1244
break;
1245
}
1246
}
1247
1248
// Advance to next constraint
1249
pconstraint = pconstraint->next();
1250
first_constraint = false;
1251
}
1252
1253
fprintf(fp, ";\n");
1254
}
1255
}
1256
1257
// // EXPERIMENTAL -- TEMPORARY code
1258
// static Form::DataType get_operand_type(FormDict &globals, InstructForm *instr, const char *op_name ) {
1259
// int op_index = instr->operand_position(op_name, Component::USE);
1260
// if( op_index == -1 ) {
1261
// op_index = instr->operand_position(op_name, Component::DEF);
1262
// if( op_index == -1 ) {
1263
// op_index = instr->operand_position(op_name, Component::USE_DEF);
1264
// }
1265
// }
1266
// assert( op_index != NameList::Not_in_list, "Did not find operand in instruction");
1267
//
1268
// ComponentList components_right = instr->_components;
1269
// char *right_comp_type = components_right.at(op_index)->_type;
1270
// OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
1271
// Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
1272
//
1273
// return;
1274
// }
1275
1276
// Construct the new sub-tree
1277
static void generate_peepreplace( FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint, PeepReplace *preplace, int max_position ) {
1278
fprintf(fp, " // IF instructions and constraints matched\n");
1279
fprintf(fp, " if( matches ) {\n");
1280
fprintf(fp, " // generate the new sub-tree\n");
1281
fprintf(fp, " assert( true, \"Debug stopping point\");\n");
1282
if( preplace != NULL ) {
1283
// Get the root of the new sub-tree
1284
const char *root_inst = NULL;
1285
preplace->next_instruction(root_inst);
1286
InstructForm *root_form = globals[root_inst]->is_instruction();
1287
assert( root_form != NULL, "Replacement instruction was not previously defined");
1288
fprintf(fp, " %sNode *root = new (C) %sNode();\n", root_inst, root_inst);
1289
1290
int inst_num;
1291
const char *op_name;
1292
int opnds_index = 0; // define result operand
1293
// Then install the use-operands for the new sub-tree
1294
// preplace->reset(); // reset breaks iteration
1295
for( preplace->next_operand( inst_num, op_name );
1296
op_name != NULL;
1297
preplace->next_operand( inst_num, op_name ) ) {
1298
InstructForm *inst_form;
1299
inst_form = globals[pmatch->instruction_name(inst_num)]->is_instruction();
1300
assert( inst_form, "Parser should guaranty this is an instruction");
1301
int inst_op_num = inst_form->operand_position(op_name, Component::USE);
1302
if( inst_op_num == NameList::Not_in_list )
1303
inst_op_num = inst_form->operand_position(op_name, Component::USE_DEF);
1304
assert( inst_op_num != NameList::Not_in_list, "Did not find operand as USE");
1305
// find the name of the OperandForm from the local name
1306
const Form *form = inst_form->_localNames[op_name];
1307
OperandForm *op_form = form->is_operand();
1308
if( opnds_index == 0 ) {
1309
// Initial setup of new instruction
1310
fprintf(fp, " // ----- Initial setup -----\n");
1311
//
1312
// Add control edge for this node
1313
fprintf(fp, " root->add_req(_in[0]); // control edge\n");
1314
// Add unmatched edges from root of match tree
1315
int op_base = root_form->oper_input_base(globals);
1316
for( int unmatched_edge = 1; unmatched_edge < op_base; ++unmatched_edge ) {
1317
fprintf(fp, " root->add_req(inst%d->in(%d)); // unmatched ideal edge\n",
1318
inst_num, unmatched_edge);
1319
}
1320
// If new instruction captures bottom type
1321
if( root_form->captures_bottom_type(globals) ) {
1322
// Get bottom type from instruction whose result we are replacing
1323
fprintf(fp, " root->_bottom_type = inst%d->bottom_type();\n", inst_num);
1324
}
1325
// Define result register and result operand
1326
fprintf(fp, " ra_->add_reference(root, inst%d);\n", inst_num);
1327
fprintf(fp, " ra_->set_oop (root, ra_->is_oop(inst%d));\n", inst_num);
1328
fprintf(fp, " ra_->set_pair(root->_idx, ra_->get_reg_second(inst%d), ra_->get_reg_first(inst%d));\n", inst_num, inst_num);
1329
fprintf(fp, " root->_opnds[0] = inst%d->_opnds[0]->clone(C); // result\n", inst_num);
1330
fprintf(fp, " // ----- Done with initial setup -----\n");
1331
} else {
1332
if( (op_form == NULL) || (op_form->is_base_constant(globals) == Form::none) ) {
1333
// Do not have ideal edges for constants after matching
1334
fprintf(fp, " for( unsigned x%d = inst%d_idx%d; x%d < inst%d_idx%d; x%d++ )\n",
1335
inst_op_num, inst_num, inst_op_num,
1336
inst_op_num, inst_num, inst_op_num+1, inst_op_num );
1337
fprintf(fp, " root->add_req( inst%d->in(x%d) );\n",
1338
inst_num, inst_op_num );
1339
} else {
1340
fprintf(fp, " // no ideal edge for constants after matching\n");
1341
}
1342
fprintf(fp, " root->_opnds[%d] = inst%d->_opnds[%d]->clone(C);\n",
1343
opnds_index, inst_num, inst_op_num );
1344
}
1345
++opnds_index;
1346
}
1347
}else {
1348
// Replacing subtree with empty-tree
1349
assert( false, "ShouldNotReachHere();");
1350
}
1351
1352
// Return the new sub-tree
1353
fprintf(fp, " deleted = %d;\n", max_position+1 /*zero to one based*/);
1354
fprintf(fp, " return root; // return new root;\n");
1355
fprintf(fp, " }\n");
1356
}
1357
1358
1359
// Define the Peephole method for an instruction node
1360
void ArchDesc::definePeephole(FILE *fp, InstructForm *node) {
1361
// Generate Peephole function header
1362
fprintf(fp, "MachNode *%sNode::peephole( Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile* C ) {\n", node->_ident);
1363
fprintf(fp, " bool matches = true;\n");
1364
1365
// Identify the maximum instruction position,
1366
// generate temporaries that hold current instruction
1367
//
1368
// MachNode *inst0 = NULL;
1369
// ...
1370
// MachNode *instMAX = NULL;
1371
//
1372
int max_position = 0;
1373
Peephole *peep;
1374
for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
1375
PeepMatch *pmatch = peep->match();
1376
assert( pmatch != NULL, "fatal(), missing peepmatch rule");
1377
if( max_position < pmatch->max_position() ) max_position = pmatch->max_position();
1378
}
1379
for( int i = 0; i <= max_position; ++i ) {
1380
if( i == 0 ) {
1381
fprintf(fp, " MachNode *inst0 = this;\n");
1382
} else {
1383
fprintf(fp, " MachNode *inst%d = NULL;\n", i);
1384
}
1385
}
1386
1387
// For each peephole rule in architecture description
1388
// Construct a test for the desired instruction sub-tree
1389
// then check the constraints
1390
// If these match, Generate the new subtree
1391
for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
1392
int peephole_number = peep->peephole_number();
1393
PeepMatch *pmatch = peep->match();
1394
PeepConstraint *pconstraint = peep->constraints();
1395
PeepReplace *preplace = peep->replacement();
1396
1397
// Root of this peephole is the current MachNode
1398
assert( true, // %%name?%% strcmp( node->_ident, pmatch->name(0) ) == 0,
1399
"root of PeepMatch does not match instruction");
1400
1401
// Make each peephole rule individually selectable
1402
fprintf(fp, " if( (OptoPeepholeAt == -1) || (OptoPeepholeAt==%d) ) {\n", peephole_number);
1403
fprintf(fp, " matches = true;\n");
1404
// Scan the peepmatch and output a test for each instruction
1405
check_peepmatch_instruction_sequence( fp, pmatch, pconstraint );
1406
1407
// Check constraints and build replacement inside scope
1408
fprintf(fp, " // If instruction subtree matches\n");
1409
fprintf(fp, " if( matches ) {\n");
1410
1411
// Generate tests for the constraints
1412
check_peepconstraints( fp, _globalNames, pmatch, pconstraint );
1413
1414
// Construct the new sub-tree
1415
generate_peepreplace( fp, _globalNames, pmatch, pconstraint, preplace, max_position );
1416
1417
// End of scope for this peephole's constraints
1418
fprintf(fp, " }\n");
1419
// Closing brace '}' to make each peephole rule individually selectable
1420
fprintf(fp, " } // end of peephole rule #%d\n", peephole_number);
1421
fprintf(fp, "\n");
1422
}
1423
1424
fprintf(fp, " return NULL; // No peephole rules matched\n");
1425
fprintf(fp, "}\n");
1426
fprintf(fp, "\n");
1427
}
1428
1429
// Define the Expand method for an instruction node
1430
void ArchDesc::defineExpand(FILE *fp, InstructForm *node) {
1431
unsigned cnt = 0; // Count nodes we have expand into
1432
unsigned i;
1433
1434
// Generate Expand function header
1435
fprintf(fp, "MachNode* %sNode::Expand(State* state, Node_List& proj_list, Node* mem) {\n", node->_ident);
1436
fprintf(fp, " Compile* C = Compile::current();\n");
1437
// Generate expand code
1438
if( node->expands() ) {
1439
const char *opid;
1440
int new_pos, exp_pos;
1441
const char *new_id = NULL;
1442
const Form *frm = NULL;
1443
InstructForm *new_inst = NULL;
1444
OperandForm *new_oper = NULL;
1445
unsigned numo = node->num_opnds() +
1446
node->_exprule->_newopers.count();
1447
1448
// If necessary, generate any operands created in expand rule
1449
if (node->_exprule->_newopers.count()) {
1450
for(node->_exprule->_newopers.reset();
1451
(new_id = node->_exprule->_newopers.iter()) != NULL; cnt++) {
1452
frm = node->_localNames[new_id];
1453
assert(frm, "Invalid entry in new operands list of expand rule");
1454
new_oper = frm->is_operand();
1455
char *tmp = (char *)node->_exprule->_newopconst[new_id];
1456
if (tmp == NULL) {
1457
fprintf(fp," MachOper *op%d = new (C) %sOper();\n",
1458
cnt, new_oper->_ident);
1459
}
1460
else {
1461
fprintf(fp," MachOper *op%d = new (C) %sOper(%s);\n",
1462
cnt, new_oper->_ident, tmp);
1463
}
1464
}
1465
}
1466
cnt = 0;
1467
// Generate the temps to use for DAG building
1468
for(i = 0; i < numo; i++) {
1469
if (i < node->num_opnds()) {
1470
fprintf(fp," MachNode *tmp%d = this;\n", i);
1471
}
1472
else {
1473
fprintf(fp," MachNode *tmp%d = NULL;\n", i);
1474
}
1475
}
1476
// Build mapping from num_edges to local variables
1477
fprintf(fp," unsigned num0 = 0;\n");
1478
for( i = 1; i < node->num_opnds(); i++ ) {
1479
fprintf(fp," unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
1480
}
1481
1482
// Build a mapping from operand index to input edges
1483
fprintf(fp," unsigned idx0 = oper_input_base();\n");
1484
1485
// The order in which the memory input is added to a node is very
1486
// strange. Store nodes get a memory input before Expand is
1487
// called and other nodes get it afterwards or before depending on
1488
// match order so oper_input_base is wrong during expansion. This
1489
// code adjusts it so that expansion will work correctly.
1490
int has_memory_edge = node->_matrule->needs_ideal_memory_edge(_globalNames);
1491
if (has_memory_edge) {
1492
fprintf(fp," if (mem == (Node*)1) {\n");
1493
fprintf(fp," idx0--; // Adjust base because memory edge hasn't been inserted yet\n");
1494
fprintf(fp," }\n");
1495
}
1496
1497
for( i = 0; i < node->num_opnds(); i++ ) {
1498
fprintf(fp," unsigned idx%d = idx%d + num%d;\n",
1499
i+1,i,i);
1500
}
1501
1502
// Declare variable to hold root of expansion
1503
fprintf(fp," MachNode *result = NULL;\n");
1504
1505
// Iterate over the instructions 'node' expands into
1506
ExpandRule *expand = node->_exprule;
1507
NameAndList *expand_instr = NULL;
1508
for(expand->reset_instructions();
1509
(expand_instr = expand->iter_instructions()) != NULL; cnt++) {
1510
new_id = expand_instr->name();
1511
1512
InstructForm* expand_instruction = (InstructForm*)globalAD->globalNames()[new_id];
1513
1514
if (!expand_instruction) {
1515
globalAD->syntax_err(node->_linenum, "In %s: instruction %s used in expand not declared\n",
1516
node->_ident, new_id);
1517
continue;
1518
}
1519
1520
if (expand_instruction->has_temps()) {
1521
globalAD->syntax_err(node->_linenum, "In %s: expand rules using instructs with TEMPs aren't supported: %s",
1522
node->_ident, new_id);
1523
}
1524
1525
// Build the node for the instruction
1526
fprintf(fp,"\n %sNode *n%d = new (C) %sNode();\n", new_id, cnt, new_id);
1527
// Add control edge for this node
1528
fprintf(fp," n%d->add_req(_in[0]);\n", cnt);
1529
// Build the operand for the value this node defines.
1530
Form *form = (Form*)_globalNames[new_id];
1531
assert( form, "'new_id' must be a defined form name");
1532
// Grab the InstructForm for the new instruction
1533
new_inst = form->is_instruction();
1534
assert( new_inst, "'new_id' must be an instruction name");
1535
if( node->is_ideal_if() && new_inst->is_ideal_if() ) {
1536
fprintf(fp, " ((MachIfNode*)n%d)->_prob = _prob;\n",cnt);
1537
fprintf(fp, " ((MachIfNode*)n%d)->_fcnt = _fcnt;\n",cnt);
1538
}
1539
1540
if( node->is_ideal_fastlock() && new_inst->is_ideal_fastlock() ) {
1541
fprintf(fp, " ((MachFastLockNode*)n%d)->_counters = _counters;\n",cnt);
1542
fprintf(fp, " ((MachFastLockNode*)n%d)->_rtm_counters = _rtm_counters;\n",cnt);
1543
fprintf(fp, " ((MachFastLockNode*)n%d)->_stack_rtm_counters = _stack_rtm_counters;\n",cnt);
1544
}
1545
1546
// Fill in the bottom_type where requested
1547
if (node->captures_bottom_type(_globalNames) &&
1548
new_inst->captures_bottom_type(_globalNames)) {
1549
fprintf(fp, " ((MachTypeNode*)n%d)->_bottom_type = bottom_type();\n", cnt);
1550
}
1551
1552
const char *resultOper = new_inst->reduce_result();
1553
fprintf(fp," n%d->set_opnd_array(0, state->MachOperGenerator( %s, C ));\n",
1554
cnt, machOperEnum(resultOper));
1555
1556
// get the formal operand NameList
1557
NameList *formal_lst = &new_inst->_parameters;
1558
formal_lst->reset();
1559
1560
// Handle any memory operand
1561
int memory_operand = new_inst->memory_operand(_globalNames);
1562
if( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
1563
int node_mem_op = node->memory_operand(_globalNames);
1564
assert( node_mem_op != InstructForm::NO_MEMORY_OPERAND,
1565
"expand rule member needs memory but top-level inst doesn't have any" );
1566
if (has_memory_edge) {
1567
// Copy memory edge
1568
fprintf(fp," if (mem != (Node*)1) {\n");
1569
fprintf(fp," n%d->add_req(_in[1]);\t// Add memory edge\n", cnt);
1570
fprintf(fp," }\n");
1571
}
1572
}
1573
1574
// Iterate over the new instruction's operands
1575
int prev_pos = -1;
1576
for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
1577
// Use 'parameter' at current position in list of new instruction's formals
1578
// instead of 'opid' when looking up info internal to new_inst
1579
const char *parameter = formal_lst->iter();
1580
if (!parameter) {
1581
globalAD->syntax_err(node->_linenum, "Operand %s of expand instruction %s has"
1582
" no equivalent in new instruction %s.",
1583
opid, node->_ident, new_inst->_ident);
1584
assert(0, "Wrong expand");
1585
}
1586
1587
// Check for an operand which is created in the expand rule
1588
if ((exp_pos = node->_exprule->_newopers.index(opid)) != -1) {
1589
new_pos = new_inst->operand_position(parameter,Component::USE);
1590
exp_pos += node->num_opnds();
1591
// If there is no use of the created operand, just skip it
1592
if (new_pos != NameList::Not_in_list) {
1593
//Copy the operand from the original made above
1594
fprintf(fp," n%d->set_opnd_array(%d, op%d->clone(C)); // %s\n",
1595
cnt, new_pos, exp_pos-node->num_opnds(), opid);
1596
// Check for who defines this operand & add edge if needed
1597
fprintf(fp," if(tmp%d != NULL)\n", exp_pos);
1598
fprintf(fp," n%d->add_req(tmp%d);\n", cnt, exp_pos);
1599
}
1600
}
1601
else {
1602
// Use operand name to get an index into instruction component list
1603
// ins = (InstructForm *) _globalNames[new_id];
1604
exp_pos = node->operand_position_format(opid);
1605
assert(exp_pos != -1, "Bad expand rule");
1606
if (prev_pos > exp_pos && expand_instruction->_matrule != NULL) {
1607
// For the add_req calls below to work correctly they need
1608
// to added in the same order that a match would add them.
1609
// This means that they would need to be in the order of
1610
// the components list instead of the formal parameters.
1611
// This is a sort of hidden invariant that previously
1612
// wasn't checked and could lead to incorrectly
1613
// constructed nodes.
1614
syntax_err(node->_linenum, "For expand in %s to work, parameter declaration order in %s must follow matchrule\n",
1615
node->_ident, new_inst->_ident);
1616
}
1617
prev_pos = exp_pos;
1618
1619
new_pos = new_inst->operand_position(parameter,Component::USE);
1620
if (new_pos != -1) {
1621
// Copy the operand from the ExpandNode to the new node
1622
fprintf(fp," n%d->set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
1623
cnt, new_pos, exp_pos, opid);
1624
// For each operand add appropriate input edges by looking at tmp's
1625
fprintf(fp," if(tmp%d == this) {\n", exp_pos);
1626
// Grab corresponding edges from ExpandNode and insert them here
1627
fprintf(fp," for(unsigned i = 0; i < num%d; i++) {\n", exp_pos);
1628
fprintf(fp," n%d->add_req(_in[i + idx%d]);\n", cnt, exp_pos);
1629
fprintf(fp," }\n");
1630
fprintf(fp," }\n");
1631
// This value is generated by one of the new instructions
1632
fprintf(fp," else n%d->add_req(tmp%d);\n", cnt, exp_pos);
1633
}
1634
}
1635
1636
// Update the DAG tmp's for values defined by this instruction
1637
int new_def_pos = new_inst->operand_position(parameter,Component::DEF);
1638
Effect *eform = (Effect *)new_inst->_effects[parameter];
1639
// If this operand is a definition in either an effects rule
1640
// or a match rule
1641
if((eform) && (is_def(eform->_use_def))) {
1642
// Update the temp associated with this operand
1643
fprintf(fp," tmp%d = n%d;\n", exp_pos, cnt);
1644
}
1645
else if( new_def_pos != -1 ) {
1646
// Instruction defines a value but user did not declare it
1647
// in the 'effect' clause
1648
fprintf(fp," tmp%d = n%d;\n", exp_pos, cnt);
1649
}
1650
} // done iterating over a new instruction's operands
1651
1652
// Invoke Expand() for the newly created instruction.
1653
fprintf(fp," result = n%d->Expand( state, proj_list, mem );\n", cnt);
1654
assert( !new_inst->expands(), "Do not have complete support for recursive expansion");
1655
} // done iterating over new instructions
1656
fprintf(fp,"\n");
1657
} // done generating expand rule
1658
1659
// Generate projections for instruction's additional DEFs and KILLs
1660
if( ! node->expands() && (node->needs_projections() || node->has_temps())) {
1661
// Get string representing the MachNode that projections point at
1662
const char *machNode = "this";
1663
// Generate the projections
1664
fprintf(fp," // Add projection edges for additional defs or kills\n");
1665
1666
// Examine each component to see if it is a DEF or KILL
1667
node->_components.reset();
1668
// Skip the first component, if already handled as (SET dst (...))
1669
Component *comp = NULL;
1670
// For kills, the choice of projection numbers is arbitrary
1671
int proj_no = 1;
1672
bool declared_def = false;
1673
bool declared_kill = false;
1674
1675
while( (comp = node->_components.iter()) != NULL ) {
1676
// Lookup register class associated with operand type
1677
Form *form = (Form*)_globalNames[comp->_type];
1678
assert( form, "component type must be a defined form");
1679
OperandForm *op = form->is_operand();
1680
1681
if (comp->is(Component::TEMP)) {
1682
fprintf(fp, " // TEMP %s\n", comp->_name);
1683
if (!declared_def) {
1684
// Define the variable "def" to hold new MachProjNodes
1685
fprintf(fp, " MachTempNode *def;\n");
1686
declared_def = true;
1687
}
1688
if (op && op->_interface && op->_interface->is_RegInterface()) {
1689
fprintf(fp," def = new (C) MachTempNode(state->MachOperGenerator( %s, C ));\n",
1690
machOperEnum(op->_ident));
1691
fprintf(fp," add_req(def);\n");
1692
// The operand for TEMP is already constructed during
1693
// this mach node construction, see buildMachNode().
1694
//
1695
// int idx = node->operand_position_format(comp->_name);
1696
// fprintf(fp," set_opnd_array(%d, state->MachOperGenerator( %s, C ));\n",
1697
// idx, machOperEnum(op->_ident));
1698
} else {
1699
assert(false, "can't have temps which aren't registers");
1700
}
1701
} else if (comp->isa(Component::KILL)) {
1702
fprintf(fp, " // DEF/KILL %s\n", comp->_name);
1703
1704
if (!declared_kill) {
1705
// Define the variable "kill" to hold new MachProjNodes
1706
fprintf(fp, " MachProjNode *kill;\n");
1707
declared_kill = true;
1708
}
1709
1710
assert( op, "Support additional KILLS for base operands");
1711
const char *regmask = reg_mask(*op);
1712
const char *ideal_type = op->ideal_type(_globalNames, _register);
1713
1714
if (!op->is_bound_register()) {
1715
syntax_err(node->_linenum, "In %s only bound registers can be killed: %s %s\n",
1716
node->_ident, comp->_type, comp->_name);
1717
}
1718
1719
fprintf(fp," kill = ");
1720
fprintf(fp,"new (C) MachProjNode( %s, %d, (%s), Op_%s );\n",
1721
machNode, proj_no++, regmask, ideal_type);
1722
fprintf(fp," proj_list.push(kill);\n");
1723
}
1724
}
1725
}
1726
1727
if( !node->expands() && node->_matrule != NULL ) {
1728
// Remove duplicated operands and inputs which use the same name.
1729
// Seach through match operands for the same name usage.
1730
uint cur_num_opnds = node->num_opnds();
1731
if( cur_num_opnds > 1 && cur_num_opnds != node->num_unique_opnds() ) {
1732
Component *comp = NULL;
1733
// Build mapping from num_edges to local variables
1734
fprintf(fp," unsigned num0 = 0;\n");
1735
for( i = 1; i < cur_num_opnds; i++ ) {
1736
fprintf(fp," unsigned num%d = opnd_array(%d)->num_edges();",i,i);
1737
fprintf(fp, " \t// %s\n", node->opnd_ident(i));
1738
}
1739
// Build a mapping from operand index to input edges
1740
fprintf(fp," unsigned idx0 = oper_input_base();\n");
1741
for( i = 0; i < cur_num_opnds; i++ ) {
1742
fprintf(fp," unsigned idx%d = idx%d + num%d;\n",
1743
i+1,i,i);
1744
}
1745
1746
uint new_num_opnds = 1;
1747
node->_components.reset();
1748
// Skip first unique operands.
1749
for( i = 1; i < cur_num_opnds; i++ ) {
1750
comp = node->_components.iter();
1751
if (i != node->unique_opnds_idx(i)) {
1752
break;
1753
}
1754
new_num_opnds++;
1755
}
1756
// Replace not unique operands with next unique operands.
1757
for( ; i < cur_num_opnds; i++ ) {
1758
comp = node->_components.iter();
1759
uint j = node->unique_opnds_idx(i);
1760
// unique_opnds_idx(i) is unique if unique_opnds_idx(j) is not unique.
1761
if( j != node->unique_opnds_idx(j) ) {
1762
fprintf(fp," set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
1763
new_num_opnds, i, comp->_name);
1764
// delete not unique edges here
1765
fprintf(fp," for(unsigned i = 0; i < num%d; i++) {\n", i);
1766
fprintf(fp," set_req(i + idx%d, _in[i + idx%d]);\n", new_num_opnds, i);
1767
fprintf(fp," }\n");
1768
fprintf(fp," num%d = num%d;\n", new_num_opnds, i);
1769
fprintf(fp," idx%d = idx%d + num%d;\n", new_num_opnds+1, new_num_opnds, new_num_opnds);
1770
new_num_opnds++;
1771
}
1772
}
1773
// delete the rest of edges
1774
fprintf(fp," for(int i = idx%d - 1; i >= (int)idx%d; i--) {\n", cur_num_opnds, new_num_opnds);
1775
fprintf(fp," del_req(i);\n");
1776
fprintf(fp," }\n");
1777
fprintf(fp," _num_opnds = %d;\n", new_num_opnds);
1778
assert(new_num_opnds == node->num_unique_opnds(), "what?");
1779
}
1780
}
1781
1782
// If the node is a MachConstantNode, insert the MachConstantBaseNode edge.
1783
// NOTE: this edge must be the last input (see MachConstantNode::mach_constant_base_node_input).
1784
// There are nodes that don't use $constantablebase, but still require that it
1785
// is an input to the node. Example: divF_reg_immN, Repl32B_imm on x86_64.
1786
if (node->is_mach_constant() || node->needs_constant_base()) {
1787
if (node->is_ideal_call() != Form::invalid_type &&
1788
node->is_ideal_call() != Form::JAVA_LEAF) {
1789
fprintf(fp, " // MachConstantBaseNode added in matcher.\n");
1790
_needs_clone_jvms = true;
1791
} else {
1792
fprintf(fp, " add_req(C->mach_constant_base_node());\n");
1793
}
1794
}
1795
1796
fprintf(fp, "\n");
1797
if (node->expands()) {
1798
fprintf(fp, " return result;\n");
1799
} else {
1800
fprintf(fp, " return this;\n");
1801
}
1802
fprintf(fp, "}\n");
1803
fprintf(fp, "\n");
1804
}
1805
1806
1807
//------------------------------Emit Routines----------------------------------
1808
// Special classes and routines for defining node emit routines which output
1809
// target specific instruction object encodings.
1810
// Define the ___Node::emit() routine
1811
//
1812
// (1) void ___Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1813
// (2) // ... encoding defined by user
1814
// (3)
1815
// (4) }
1816
//
1817
1818
class DefineEmitState {
1819
private:
1820
enum reloc_format { RELOC_NONE = -1,
1821
RELOC_IMMEDIATE = 0,
1822
RELOC_DISP = 1,
1823
RELOC_CALL_DISP = 2 };
1824
enum literal_status{ LITERAL_NOT_SEEN = 0,
1825
LITERAL_SEEN = 1,
1826
LITERAL_ACCESSED = 2,
1827
LITERAL_OUTPUT = 3 };
1828
// Temporaries that describe current operand
1829
bool _cleared;
1830
OpClassForm *_opclass;
1831
OperandForm *_operand;
1832
int _operand_idx;
1833
const char *_local_name;
1834
const char *_operand_name;
1835
bool _doing_disp;
1836
bool _doing_constant;
1837
Form::DataType _constant_type;
1838
DefineEmitState::literal_status _constant_status;
1839
DefineEmitState::literal_status _reg_status;
1840
bool _doing_emit8;
1841
bool _doing_emit_d32;
1842
bool _doing_emit_d16;
1843
bool _doing_emit_hi;
1844
bool _doing_emit_lo;
1845
bool _may_reloc;
1846
reloc_format _reloc_form;
1847
const char * _reloc_type;
1848
bool _processing_noninput;
1849
1850
NameList _strings_to_emit;
1851
1852
// Stable state, set by constructor
1853
ArchDesc &_AD;
1854
FILE *_fp;
1855
EncClass &_encoding;
1856
InsEncode &_ins_encode;
1857
InstructForm &_inst;
1858
1859
public:
1860
DefineEmitState(FILE *fp, ArchDesc &AD, EncClass &encoding,
1861
InsEncode &ins_encode, InstructForm &inst)
1862
: _AD(AD), _fp(fp), _encoding(encoding), _ins_encode(ins_encode), _inst(inst) {
1863
clear();
1864
}
1865
1866
void clear() {
1867
_cleared = true;
1868
_opclass = NULL;
1869
_operand = NULL;
1870
_operand_idx = 0;
1871
_local_name = "";
1872
_operand_name = "";
1873
_doing_disp = false;
1874
_doing_constant= false;
1875
_constant_type = Form::none;
1876
_constant_status = LITERAL_NOT_SEEN;
1877
_reg_status = LITERAL_NOT_SEEN;
1878
_doing_emit8 = false;
1879
_doing_emit_d32= false;
1880
_doing_emit_d16= false;
1881
_doing_emit_hi = false;
1882
_doing_emit_lo = false;
1883
_may_reloc = false;
1884
_reloc_form = RELOC_NONE;
1885
_reloc_type = AdlcVMDeps::none_reloc_type();
1886
_strings_to_emit.clear();
1887
}
1888
1889
// Track necessary state when identifying a replacement variable
1890
// @arg rep_var: The formal parameter of the encoding.
1891
void update_state(const char *rep_var) {
1892
// A replacement variable or one of its subfields
1893
// Obtain replacement variable from list
1894
if ( (*rep_var) != '$' ) {
1895
// A replacement variable, '$' prefix
1896
// check_rep_var( rep_var );
1897
if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
1898
// No state needed.
1899
assert( _opclass == NULL,
1900
"'primary', 'secondary' and 'tertiary' don't follow operand.");
1901
}
1902
else if ((strcmp(rep_var, "constanttablebase") == 0) ||
1903
(strcmp(rep_var, "constantoffset") == 0) ||
1904
(strcmp(rep_var, "constantaddress") == 0)) {
1905
if (!(_inst.is_mach_constant() || _inst.needs_constant_base())) {
1906
_AD.syntax_err(_encoding._linenum,
1907
"Replacement variable %s not allowed in instruct %s (only in MachConstantNode or MachCall).\n",
1908
rep_var, _encoding._name);
1909
}
1910
}
1911
else {
1912
// Lookup its position in (formal) parameter list of encoding
1913
int param_no = _encoding.rep_var_index(rep_var);
1914
if ( param_no == -1 ) {
1915
_AD.syntax_err( _encoding._linenum,
1916
"Replacement variable %s not found in enc_class %s.\n",
1917
rep_var, _encoding._name);
1918
}
1919
1920
// Lookup the corresponding ins_encode parameter
1921
// This is the argument (actual parameter) to the encoding.
1922
const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
1923
if (inst_rep_var == NULL) {
1924
_AD.syntax_err( _ins_encode._linenum,
1925
"Parameter %s not passed to enc_class %s from instruct %s.\n",
1926
rep_var, _encoding._name, _inst._ident);
1927
}
1928
1929
// Check if instruction's actual parameter is a local name in the instruction
1930
const Form *local = _inst._localNames[inst_rep_var];
1931
OpClassForm *opc = (local != NULL) ? local->is_opclass() : NULL;
1932
// Note: assert removed to allow constant and symbolic parameters
1933
// assert( opc, "replacement variable was not found in local names");
1934
// Lookup the index position iff the replacement variable is a localName
1935
int idx = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
1936
1937
if ( idx != -1 ) {
1938
// This is a local in the instruction
1939
// Update local state info.
1940
_opclass = opc;
1941
_operand_idx = idx;
1942
_local_name = rep_var;
1943
_operand_name = inst_rep_var;
1944
1945
// !!!!!
1946
// Do not support consecutive operands.
1947
assert( _operand == NULL, "Unimplemented()");
1948
_operand = opc->is_operand();
1949
}
1950
else if( ADLParser::is_literal_constant(inst_rep_var) ) {
1951
// Instruction provided a constant expression
1952
// Check later that encoding specifies $$$constant to resolve as constant
1953
_constant_status = LITERAL_SEEN;
1954
}
1955
else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
1956
// Instruction provided an opcode: "primary", "secondary", "tertiary"
1957
// Check later that encoding specifies $$$constant to resolve as constant
1958
_constant_status = LITERAL_SEEN;
1959
}
1960
else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
1961
// Instruction provided a literal register name for this parameter
1962
// Check that encoding specifies $$$reg to resolve.as register.
1963
_reg_status = LITERAL_SEEN;
1964
}
1965
else {
1966
// Check for unimplemented functionality before hard failure
1967
assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
1968
assert( false, "ShouldNotReachHere()");
1969
}
1970
} // done checking which operand this is.
1971
} else {
1972
//
1973
// A subfield variable, '$$' prefix
1974
// Check for fields that may require relocation information.
1975
// Then check that literal register parameters are accessed with 'reg' or 'constant'
1976
//
1977
if ( strcmp(rep_var,"$disp") == 0 ) {
1978
_doing_disp = true;
1979
assert( _opclass, "Must use operand or operand class before '$disp'");
1980
if( _operand == NULL ) {
1981
// Only have an operand class, generate run-time check for relocation
1982
_may_reloc = true;
1983
_reloc_form = RELOC_DISP;
1984
_reloc_type = AdlcVMDeps::oop_reloc_type();
1985
} else {
1986
// Do precise check on operand: is it a ConP or not
1987
//
1988
// Check interface for value of displacement
1989
assert( ( _operand->_interface != NULL ),
1990
"$disp can only follow memory interface operand");
1991
MemInterface *mem_interface= _operand->_interface->is_MemInterface();
1992
assert( mem_interface != NULL,
1993
"$disp can only follow memory interface operand");
1994
const char *disp = mem_interface->_disp;
1995
1996
if( disp != NULL && (*disp == '$') ) {
1997
// MemInterface::disp contains a replacement variable,
1998
// Check if this matches a ConP
1999
//
2000
// Lookup replacement variable, in operand's component list
2001
const char *rep_var_name = disp + 1; // Skip '$'
2002
const Component *comp = _operand->_components.search(rep_var_name);
2003
assert( comp != NULL,"Replacement variable not found in components");
2004
const char *type = comp->_type;
2005
// Lookup operand form for replacement variable's type
2006
const Form *form = _AD.globalNames()[type];
2007
assert( form != NULL, "Replacement variable's type not found");
2008
OperandForm *op = form->is_operand();
2009
assert( op, "Attempting to emit a non-register or non-constant");
2010
// Check if this is a constant
2011
if (op->_matrule && op->_matrule->is_base_constant(_AD.globalNames())) {
2012
// Check which constant this name maps to: _c0, _c1, ..., _cn
2013
// const int idx = _operand.constant_position(_AD.globalNames(), comp);
2014
// assert( idx != -1, "Constant component not found in operand");
2015
Form::DataType dtype = op->is_base_constant(_AD.globalNames());
2016
if ( dtype == Form::idealP ) {
2017
_may_reloc = true;
2018
// No longer true that idealP is always an oop
2019
_reloc_form = RELOC_DISP;
2020
_reloc_type = AdlcVMDeps::oop_reloc_type();
2021
}
2022
}
2023
2024
else if( _operand->is_user_name_for_sReg() != Form::none ) {
2025
// The only non-constant allowed access to disp is an operand sRegX in a stackSlotX
2026
assert( op->ideal_to_sReg_type(type) != Form::none, "StackSlots access displacements using 'sRegs'");
2027
_may_reloc = false;
2028
} else {
2029
assert( false, "fatal(); Only stackSlots can access a non-constant using 'disp'");
2030
}
2031
}
2032
} // finished with precise check of operand for relocation.
2033
} // finished with subfield variable
2034
else if ( strcmp(rep_var,"$constant") == 0 ) {
2035
_doing_constant = true;
2036
if ( _constant_status == LITERAL_NOT_SEEN ) {
2037
// Check operand for type of constant
2038
assert( _operand, "Must use operand before '$$constant'");
2039
Form::DataType dtype = _operand->is_base_constant(_AD.globalNames());
2040
_constant_type = dtype;
2041
if ( dtype == Form::idealP ) {
2042
_may_reloc = true;
2043
// No longer true that idealP is always an oop
2044
// // _must_reloc = true;
2045
_reloc_form = RELOC_IMMEDIATE;
2046
_reloc_type = AdlcVMDeps::oop_reloc_type();
2047
} else {
2048
// No relocation information needed
2049
}
2050
} else {
2051
// User-provided literals may not require relocation information !!!!!
2052
assert( _constant_status == LITERAL_SEEN, "Must know we are processing a user-provided literal");
2053
}
2054
}
2055
else if ( strcmp(rep_var,"$label") == 0 ) {
2056
// Calls containing labels require relocation
2057
if ( _inst.is_ideal_call() ) {
2058
_may_reloc = true;
2059
// !!!!! !!!!!
2060
_reloc_type = AdlcVMDeps::none_reloc_type();
2061
}
2062
}
2063
2064
// literal register parameter must be accessed as a 'reg' field.
2065
if ( _reg_status != LITERAL_NOT_SEEN ) {
2066
assert( _reg_status == LITERAL_SEEN, "Must have seen register literal before now");
2067
if (strcmp(rep_var,"$reg") == 0 || reg_conversion(rep_var) != NULL) {
2068
_reg_status = LITERAL_ACCESSED;
2069
} else {
2070
_AD.syntax_err(_encoding._linenum,
2071
"Invalid access to literal register parameter '%s' in %s.\n",
2072
rep_var, _encoding._name);
2073
assert( false, "invalid access to literal register parameter");
2074
}
2075
}
2076
// literal constant parameters must be accessed as a 'constant' field
2077
if (_constant_status != LITERAL_NOT_SEEN) {
2078
assert(_constant_status == LITERAL_SEEN, "Must have seen constant literal before now");
2079
if (strcmp(rep_var,"$constant") == 0) {
2080
_constant_status = LITERAL_ACCESSED;
2081
} else {
2082
_AD.syntax_err(_encoding._linenum,
2083
"Invalid access to literal constant parameter '%s' in %s.\n",
2084
rep_var, _encoding._name);
2085
}
2086
}
2087
} // end replacement and/or subfield
2088
2089
}
2090
2091
void add_rep_var(const char *rep_var) {
2092
// Handle subfield and replacement variables.
2093
if ( ( *rep_var == '$' ) && ( *(rep_var+1) == '$' ) ) {
2094
// Check for emit prefix, '$$emit32'
2095
assert( _cleared, "Can not nest $$$emit32");
2096
if ( strcmp(rep_var,"$$emit32") == 0 ) {
2097
_doing_emit_d32 = true;
2098
}
2099
else if ( strcmp(rep_var,"$$emit16") == 0 ) {
2100
_doing_emit_d16 = true;
2101
}
2102
else if ( strcmp(rep_var,"$$emit_hi") == 0 ) {
2103
_doing_emit_hi = true;
2104
}
2105
else if ( strcmp(rep_var,"$$emit_lo") == 0 ) {
2106
_doing_emit_lo = true;
2107
}
2108
else if ( strcmp(rep_var,"$$emit8") == 0 ) {
2109
_doing_emit8 = true;
2110
}
2111
else {
2112
_AD.syntax_err(_encoding._linenum, "Unsupported $$operation '%s'\n",rep_var);
2113
assert( false, "fatal();");
2114
}
2115
}
2116
else {
2117
// Update state for replacement variables
2118
update_state( rep_var );
2119
_strings_to_emit.addName(rep_var);
2120
}
2121
_cleared = false;
2122
}
2123
2124
void emit_replacement() {
2125
// A replacement variable or one of its subfields
2126
// Obtain replacement variable from list
2127
// const char *ec_rep_var = encoding->_rep_vars.iter();
2128
const char *rep_var;
2129
_strings_to_emit.reset();
2130
while ( (rep_var = _strings_to_emit.iter()) != NULL ) {
2131
2132
if ( (*rep_var) == '$' ) {
2133
// A subfield variable, '$$' prefix
2134
emit_field( rep_var );
2135
} else {
2136
if (_strings_to_emit.peek() != NULL &&
2137
strcmp(_strings_to_emit.peek(), "$Address") == 0) {
2138
fprintf(_fp, "Address::make_raw(");
2139
2140
emit_rep_var( rep_var );
2141
fprintf(_fp,"->base(ra_,this,idx%d), ", _operand_idx);
2142
2143
_reg_status = LITERAL_ACCESSED;
2144
emit_rep_var( rep_var );
2145
fprintf(_fp,"->index(ra_,this,idx%d), ", _operand_idx);
2146
2147
_reg_status = LITERAL_ACCESSED;
2148
emit_rep_var( rep_var );
2149
fprintf(_fp,"->scale(), ");
2150
2151
_reg_status = LITERAL_ACCESSED;
2152
emit_rep_var( rep_var );
2153
Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
2154
if( _operand && _operand_idx==0 && stack_type != Form::none ) {
2155
fprintf(_fp,"->disp(ra_,this,0), ");
2156
} else {
2157
fprintf(_fp,"->disp(ra_,this,idx%d), ", _operand_idx);
2158
}
2159
2160
_reg_status = LITERAL_ACCESSED;
2161
emit_rep_var( rep_var );
2162
fprintf(_fp,"->disp_reloc())");
2163
2164
// skip trailing $Address
2165
_strings_to_emit.iter();
2166
} else {
2167
// A replacement variable, '$' prefix
2168
const char* next = _strings_to_emit.peek();
2169
const char* next2 = _strings_to_emit.peek(2);
2170
if (next != NULL && next2 != NULL && strcmp(next2, "$Register") == 0 &&
2171
(strcmp(next, "$base") == 0 || strcmp(next, "$index") == 0)) {
2172
// handle $rev_var$$base$$Register and $rev_var$$index$$Register by
2173
// producing as_Register(opnd_array(#)->base(ra_,this,idx1)).
2174
fprintf(_fp, "as_Register(");
2175
// emit the operand reference
2176
emit_rep_var( rep_var );
2177
rep_var = _strings_to_emit.iter();
2178
assert(strcmp(rep_var, "$base") == 0 || strcmp(rep_var, "$index") == 0, "bad pattern");
2179
// handle base or index
2180
emit_field(rep_var);
2181
rep_var = _strings_to_emit.iter();
2182
assert(strcmp(rep_var, "$Register") == 0, "bad pattern");
2183
// close up the parens
2184
fprintf(_fp, ")");
2185
} else {
2186
emit_rep_var( rep_var );
2187
}
2188
}
2189
} // end replacement and/or subfield
2190
}
2191
}
2192
2193
void emit_reloc_type(const char* type) {
2194
fprintf(_fp, "%s", type)
2195
;
2196
}
2197
2198
2199
void emit() {
2200
//
2201
// "emit_d32_reloc(" or "emit_hi_reloc" or "emit_lo_reloc"
2202
//
2203
// Emit the function name when generating an emit function
2204
if ( _doing_emit_d32 || _doing_emit_hi || _doing_emit_lo ) {
2205
const char *d32_hi_lo = _doing_emit_d32 ? "d32" : (_doing_emit_hi ? "hi" : "lo");
2206
// In general, relocatable isn't known at compiler compile time.
2207
// Check results of prior scan
2208
if ( ! _may_reloc ) {
2209
// Definitely don't need relocation information
2210
fprintf( _fp, "emit_%s(cbuf, ", d32_hi_lo );
2211
emit_replacement(); fprintf(_fp, ")");
2212
}
2213
else {
2214
// Emit RUNTIME CHECK to see if value needs relocation info
2215
// If emitting a relocatable address, use 'emit_d32_reloc'
2216
const char *disp_constant = _doing_disp ? "disp" : _doing_constant ? "constant" : "INVALID";
2217
assert( (_doing_disp || _doing_constant)
2218
&& !(_doing_disp && _doing_constant),
2219
"Must be emitting either a displacement or a constant");
2220
fprintf(_fp,"\n");
2221
fprintf(_fp,"if ( opnd_array(%d)->%s_reloc() != relocInfo::none ) {\n",
2222
_operand_idx, disp_constant);
2223
fprintf(_fp," ");
2224
fprintf(_fp,"emit_%s_reloc(cbuf, ", d32_hi_lo );
2225
emit_replacement(); fprintf(_fp,", ");
2226
fprintf(_fp,"opnd_array(%d)->%s_reloc(), ",
2227
_operand_idx, disp_constant);
2228
fprintf(_fp, "%d", _reloc_form);fprintf(_fp, ");");
2229
fprintf(_fp,"\n");
2230
fprintf(_fp,"} else {\n");
2231
fprintf(_fp," emit_%s(cbuf, ", d32_hi_lo);
2232
emit_replacement(); fprintf(_fp, ");\n"); fprintf(_fp,"}");
2233
}
2234
}
2235
else if ( _doing_emit_d16 ) {
2236
// Relocation of 16-bit values is not supported
2237
fprintf(_fp,"emit_d16(cbuf, ");
2238
emit_replacement(); fprintf(_fp, ")");
2239
// No relocation done for 16-bit values
2240
}
2241
else if ( _doing_emit8 ) {
2242
// Relocation of 8-bit values is not supported
2243
fprintf(_fp,"emit_d8(cbuf, ");
2244
emit_replacement(); fprintf(_fp, ")");
2245
// No relocation done for 8-bit values
2246
}
2247
else {
2248
// Not an emit# command, just output the replacement string.
2249
emit_replacement();
2250
}
2251
2252
// Get ready for next state collection.
2253
clear();
2254
}
2255
2256
private:
2257
2258
// recognizes names which represent MacroAssembler register types
2259
// and return the conversion function to build them from OptoReg
2260
const char* reg_conversion(const char* rep_var) {
2261
if (strcmp(rep_var,"$Register") == 0) return "as_Register";
2262
if (strcmp(rep_var,"$FloatRegister") == 0) return "as_FloatRegister";
2263
#if defined(IA32) || defined(AMD64)
2264
if (strcmp(rep_var,"$XMMRegister") == 0) return "as_XMMRegister";
2265
#endif
2266
if (strcmp(rep_var,"$CondRegister") == 0) return "as_ConditionRegister";
2267
return NULL;
2268
}
2269
2270
void emit_field(const char *rep_var) {
2271
const char* reg_convert = reg_conversion(rep_var);
2272
2273
// A subfield variable, '$$subfield'
2274
if ( strcmp(rep_var, "$reg") == 0 || reg_convert != NULL) {
2275
// $reg form or the $Register MacroAssembler type conversions
2276
assert( _operand_idx != -1,
2277
"Must use this subfield after operand");
2278
if( _reg_status == LITERAL_NOT_SEEN ) {
2279
if (_processing_noninput) {
2280
const Form *local = _inst._localNames[_operand_name];
2281
OperandForm *oper = local->is_operand();
2282
const RegDef* first = oper->get_RegClass()->find_first_elem();
2283
if (reg_convert != NULL) {
2284
fprintf(_fp, "%s(%s_enc)", reg_convert, first->_regname);
2285
} else {
2286
fprintf(_fp, "%s_enc", first->_regname);
2287
}
2288
} else {
2289
fprintf(_fp,"->%s(ra_,this", reg_convert != NULL ? reg_convert : "reg");
2290
// Add parameter for index position, if not result operand
2291
if( _operand_idx != 0 ) fprintf(_fp,",idx%d", _operand_idx);
2292
fprintf(_fp,")");
2293
fprintf(_fp, "/* %s */", _operand_name);
2294
}
2295
} else {
2296
assert( _reg_status == LITERAL_OUTPUT, "should have output register literal in emit_rep_var");
2297
// Register literal has already been sent to output file, nothing more needed
2298
}
2299
}
2300
else if ( strcmp(rep_var,"$base") == 0 ) {
2301
assert( _operand_idx != -1,
2302
"Must use this subfield after operand");
2303
assert( ! _may_reloc, "UnImplemented()");
2304
fprintf(_fp,"->base(ra_,this,idx%d)", _operand_idx);
2305
}
2306
else if ( strcmp(rep_var,"$index") == 0 ) {
2307
assert( _operand_idx != -1,
2308
"Must use this subfield after operand");
2309
assert( ! _may_reloc, "UnImplemented()");
2310
fprintf(_fp,"->index(ra_,this,idx%d)", _operand_idx);
2311
}
2312
else if ( strcmp(rep_var,"$scale") == 0 ) {
2313
assert( ! _may_reloc, "UnImplemented()");
2314
fprintf(_fp,"->scale()");
2315
}
2316
else if ( strcmp(rep_var,"$cmpcode") == 0 ) {
2317
assert( ! _may_reloc, "UnImplemented()");
2318
fprintf(_fp,"->ccode()");
2319
}
2320
else if ( strcmp(rep_var,"$constant") == 0 ) {
2321
if( _constant_status == LITERAL_NOT_SEEN ) {
2322
if ( _constant_type == Form::idealD ) {
2323
fprintf(_fp,"->constantD()");
2324
} else if ( _constant_type == Form::idealF ) {
2325
fprintf(_fp,"->constantF()");
2326
} else if ( _constant_type == Form::idealL ) {
2327
fprintf(_fp,"->constantL()");
2328
} else {
2329
fprintf(_fp,"->constant()");
2330
}
2331
} else {
2332
assert( _constant_status == LITERAL_OUTPUT, "should have output constant literal in emit_rep_var");
2333
// Constant literal has already been sent to output file, nothing more needed
2334
}
2335
}
2336
else if ( strcmp(rep_var,"$disp") == 0 ) {
2337
Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
2338
if( _operand && _operand_idx==0 && stack_type != Form::none ) {
2339
fprintf(_fp,"->disp(ra_,this,0)");
2340
} else {
2341
fprintf(_fp,"->disp(ra_,this,idx%d)", _operand_idx);
2342
}
2343
}
2344
else if ( strcmp(rep_var,"$label") == 0 ) {
2345
fprintf(_fp,"->label()");
2346
}
2347
else if ( strcmp(rep_var,"$method") == 0 ) {
2348
fprintf(_fp,"->method()");
2349
}
2350
else {
2351
printf("emit_field: %s\n",rep_var);
2352
globalAD->syntax_err(_inst._linenum, "Unknown replacement variable %s in format statement of %s.",
2353
rep_var, _inst._ident);
2354
assert( false, "UnImplemented()");
2355
}
2356
}
2357
2358
2359
void emit_rep_var(const char *rep_var) {
2360
_processing_noninput = false;
2361
// A replacement variable, originally '$'
2362
if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
2363
if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(rep_var) )) {
2364
// Missing opcode
2365
_AD.syntax_err( _inst._linenum,
2366
"Missing $%s opcode definition in %s, used by encoding %s\n",
2367
rep_var, _inst._ident, _encoding._name);
2368
}
2369
}
2370
else if (strcmp(rep_var, "constanttablebase") == 0) {
2371
fprintf(_fp, "as_Register(ra_->get_encode(in(mach_constant_base_node_input())))");
2372
}
2373
else if (strcmp(rep_var, "constantoffset") == 0) {
2374
fprintf(_fp, "constant_offset()");
2375
}
2376
else if (strcmp(rep_var, "constantaddress") == 0) {
2377
fprintf(_fp, "InternalAddress(__ code()->consts()->start() + constant_offset())");
2378
}
2379
else {
2380
// Lookup its position in parameter list
2381
int param_no = _encoding.rep_var_index(rep_var);
2382
if ( param_no == -1 ) {
2383
_AD.syntax_err( _encoding._linenum,
2384
"Replacement variable %s not found in enc_class %s.\n",
2385
rep_var, _encoding._name);
2386
}
2387
// Lookup the corresponding ins_encode parameter
2388
const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
2389
2390
// Check if instruction's actual parameter is a local name in the instruction
2391
const Form *local = _inst._localNames[inst_rep_var];
2392
OpClassForm *opc = (local != NULL) ? local->is_opclass() : NULL;
2393
// Note: assert removed to allow constant and symbolic parameters
2394
// assert( opc, "replacement variable was not found in local names");
2395
// Lookup the index position iff the replacement variable is a localName
2396
int idx = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
2397
if( idx != -1 ) {
2398
if (_inst.is_noninput_operand(idx)) {
2399
// This operand isn't a normal input so printing it is done
2400
// specially.
2401
_processing_noninput = true;
2402
} else {
2403
// Output the emit code for this operand
2404
fprintf(_fp,"opnd_array(%d)",idx);
2405
}
2406
assert( _operand == opc->is_operand(),
2407
"Previous emit $operand does not match current");
2408
}
2409
else if( ADLParser::is_literal_constant(inst_rep_var) ) {
2410
// else check if it is a constant expression
2411
// Removed following assert to allow primitive C types as arguments to encodings
2412
// assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
2413
fprintf(_fp,"(%s)", inst_rep_var);
2414
_constant_status = LITERAL_OUTPUT;
2415
}
2416
else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
2417
// else check if "primary", "secondary", "tertiary"
2418
assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
2419
if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(inst_rep_var) )) {
2420
// Missing opcode
2421
_AD.syntax_err( _inst._linenum,
2422
"Missing $%s opcode definition in %s\n",
2423
rep_var, _inst._ident);
2424
2425
}
2426
_constant_status = LITERAL_OUTPUT;
2427
}
2428
else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
2429
// Instruction provided a literal register name for this parameter
2430
// Check that encoding specifies $$$reg to resolve.as register.
2431
assert( _reg_status == LITERAL_ACCESSED, "Must be processing a literal register parameter");
2432
fprintf(_fp,"(%s_enc)", inst_rep_var);
2433
_reg_status = LITERAL_OUTPUT;
2434
}
2435
else {
2436
// Check for unimplemented functionality before hard failure
2437
assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
2438
assert( false, "ShouldNotReachHere()");
2439
}
2440
// all done
2441
}
2442
}
2443
2444
}; // end class DefineEmitState
2445
2446
2447
void ArchDesc::defineSize(FILE *fp, InstructForm &inst) {
2448
2449
//(1)
2450
// Output instruction's emit prototype
2451
fprintf(fp,"uint %sNode::size(PhaseRegAlloc *ra_) const {\n",
2452
inst._ident);
2453
2454
fprintf(fp, " assert(VerifyOops || MachNode::size(ra_) <= %s, \"bad fixed size\");\n", inst._size);
2455
2456
//(2)
2457
// Print the size
2458
fprintf(fp, " return (VerifyOops ? MachNode::size(ra_) : %s);\n", inst._size);
2459
2460
// (3) and (4)
2461
fprintf(fp,"}\n\n");
2462
}
2463
2464
// Emit postalloc expand function.
2465
void ArchDesc::define_postalloc_expand(FILE *fp, InstructForm &inst) {
2466
InsEncode *ins_encode = inst._insencode;
2467
2468
// Output instruction's postalloc_expand prototype.
2469
fprintf(fp, "void %sNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {\n",
2470
inst._ident);
2471
2472
assert((_encode != NULL) && (ins_encode != NULL), "You must define an encode section.");
2473
2474
// Output each operand's offset into the array of registers.
2475
inst.index_temps(fp, _globalNames);
2476
2477
// Output variables "unsigned idx_<par_name>", Node *n_<par_name> and "MachOpnd *op_<par_name>"
2478
// for each parameter <par_name> specified in the encoding.
2479
ins_encode->reset();
2480
const char *ec_name = ins_encode->encode_class_iter();
2481
assert(ec_name != NULL, "Postalloc expand must specify an encoding.");
2482
2483
EncClass *encoding = _encode->encClass(ec_name);
2484
if (encoding == NULL) {
2485
fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2486
abort();
2487
}
2488
if (ins_encode->current_encoding_num_args() != encoding->num_args()) {
2489
globalAD->syntax_err(ins_encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2490
inst._ident, ins_encode->current_encoding_num_args(),
2491
ec_name, encoding->num_args());
2492
}
2493
2494
fprintf(fp, " // Access to ins and operands for postalloc expand.\n");
2495
const int buflen = 2000;
2496
char idxbuf[buflen]; char *ib = idxbuf; idxbuf[0] = '\0';
2497
char nbuf [buflen]; char *nb = nbuf; nbuf[0] = '\0';
2498
char opbuf [buflen]; char *ob = opbuf; opbuf[0] = '\0';
2499
2500
encoding->_parameter_type.reset();
2501
encoding->_parameter_name.reset();
2502
const char *type = encoding->_parameter_type.iter();
2503
const char *name = encoding->_parameter_name.iter();
2504
int param_no = 0;
2505
for (; (type != NULL) && (name != NULL);
2506
(type = encoding->_parameter_type.iter()), (name = encoding->_parameter_name.iter())) {
2507
const char* arg_name = ins_encode->rep_var_name(inst, param_no);
2508
int idx = inst.operand_position_format(arg_name);
2509
if (strcmp(arg_name, "constanttablebase") == 0) {
2510
ib += sprintf(ib, " unsigned idx_%-5s = mach_constant_base_node_input(); \t// %s, \t%s\n",
2511
name, type, arg_name);
2512
nb += sprintf(nb, " Node *n_%-7s = lookup(idx_%s);\n", name, name);
2513
// There is no operand for the constanttablebase.
2514
} else if (inst.is_noninput_operand(idx)) {
2515
globalAD->syntax_err(inst._linenum,
2516
"In %s: you can not pass the non-input %s to a postalloc expand encoding.\n",
2517
inst._ident, arg_name);
2518
} else {
2519
ib += sprintf(ib, " unsigned idx_%-5s = idx%d; \t// %s, \t%s\n",
2520
name, idx, type, arg_name);
2521
nb += sprintf(nb, " Node *n_%-7s = lookup(idx_%s);\n", name, name);
2522
ob += sprintf(ob, " %sOper *op_%s = (%sOper *)opnd_array(%d);\n", type, name, type, idx);
2523
}
2524
param_no++;
2525
}
2526
assert(ib < &idxbuf[buflen-1] && nb < &nbuf[buflen-1] && ob < &opbuf[buflen-1], "buffer overflow");
2527
2528
fprintf(fp, "%s", idxbuf);
2529
fprintf(fp, " Node *n_region = lookup(0);\n");
2530
fprintf(fp, "%s%s", nbuf, opbuf);
2531
fprintf(fp, " Compile *C = ra_->C;\n");
2532
2533
// Output this instruction's encodings.
2534
fprintf(fp, " {");
2535
const char *ec_code = NULL;
2536
const char *ec_rep_var = NULL;
2537
assert(encoding == _encode->encClass(ec_name), "");
2538
2539
DefineEmitState pending(fp, *this, *encoding, *ins_encode, inst);
2540
encoding->_code.reset();
2541
encoding->_rep_vars.reset();
2542
// Process list of user-defined strings,
2543
// and occurrences of replacement variables.
2544
// Replacement Vars are pushed into a list and then output.
2545
while ((ec_code = encoding->_code.iter()) != NULL) {
2546
if (! encoding->_code.is_signal(ec_code)) {
2547
// Emit pending code.
2548
pending.emit();
2549
pending.clear();
2550
// Emit this code section.
2551
fprintf(fp, "%s", ec_code);
2552
} else {
2553
// A replacement variable or one of its subfields.
2554
// Obtain replacement variable from list.
2555
ec_rep_var = encoding->_rep_vars.iter();
2556
pending.add_rep_var(ec_rep_var);
2557
}
2558
}
2559
// Emit pending code.
2560
pending.emit();
2561
pending.clear();
2562
fprintf(fp, " }\n");
2563
2564
fprintf(fp, "}\n\n");
2565
2566
ec_name = ins_encode->encode_class_iter();
2567
assert(ec_name == NULL, "Postalloc expand may only have one encoding.");
2568
}
2569
2570
// defineEmit -----------------------------------------------------------------
2571
void ArchDesc::defineEmit(FILE* fp, InstructForm& inst) {
2572
InsEncode* encode = inst._insencode;
2573
2574
// (1)
2575
// Output instruction's emit prototype
2576
fprintf(fp, "void %sNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {\n", inst._ident);
2577
2578
// If user did not define an encode section,
2579
// provide stub that does not generate any machine code.
2580
if( (_encode == NULL) || (encode == NULL) ) {
2581
fprintf(fp, " // User did not define an encode section.\n");
2582
fprintf(fp, "}\n");
2583
return;
2584
}
2585
2586
// Save current instruction's starting address (helps with relocation).
2587
fprintf(fp, " cbuf.set_insts_mark();\n");
2588
2589
// For MachConstantNodes which are ideal jump nodes, fill the jump table.
2590
if (inst.is_mach_constant() && inst.is_ideal_jump()) {
2591
fprintf(fp, " ra_->C->constant_table().fill_jump_table(cbuf, (MachConstantNode*) this, _index2label);\n");
2592
}
2593
2594
// Output each operand's offset into the array of registers.
2595
inst.index_temps(fp, _globalNames);
2596
2597
// Output this instruction's encodings
2598
const char *ec_name;
2599
bool user_defined = false;
2600
encode->reset();
2601
while ((ec_name = encode->encode_class_iter()) != NULL) {
2602
fprintf(fp, " {\n");
2603
// Output user-defined encoding
2604
user_defined = true;
2605
2606
const char *ec_code = NULL;
2607
const char *ec_rep_var = NULL;
2608
EncClass *encoding = _encode->encClass(ec_name);
2609
if (encoding == NULL) {
2610
fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2611
abort();
2612
}
2613
2614
if (encode->current_encoding_num_args() != encoding->num_args()) {
2615
globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2616
inst._ident, encode->current_encoding_num_args(),
2617
ec_name, encoding->num_args());
2618
}
2619
2620
DefineEmitState pending(fp, *this, *encoding, *encode, inst);
2621
encoding->_code.reset();
2622
encoding->_rep_vars.reset();
2623
// Process list of user-defined strings,
2624
// and occurrences of replacement variables.
2625
// Replacement Vars are pushed into a list and then output
2626
while ((ec_code = encoding->_code.iter()) != NULL) {
2627
if (!encoding->_code.is_signal(ec_code)) {
2628
// Emit pending code
2629
pending.emit();
2630
pending.clear();
2631
// Emit this code section
2632
fprintf(fp, "%s", ec_code);
2633
} else {
2634
// A replacement variable or one of its subfields
2635
// Obtain replacement variable from list
2636
ec_rep_var = encoding->_rep_vars.iter();
2637
pending.add_rep_var(ec_rep_var);
2638
}
2639
}
2640
// Emit pending code
2641
pending.emit();
2642
pending.clear();
2643
fprintf(fp, " }\n");
2644
} // end while instruction's encodings
2645
2646
// Check if user stated which encoding to user
2647
if ( user_defined == false ) {
2648
fprintf(fp, " // User did not define which encode class to use.\n");
2649
}
2650
2651
// (3) and (4)
2652
fprintf(fp, "}\n\n");
2653
}
2654
2655
// defineEvalConstant ---------------------------------------------------------
2656
void ArchDesc::defineEvalConstant(FILE* fp, InstructForm& inst) {
2657
InsEncode* encode = inst._constant;
2658
2659
// (1)
2660
// Output instruction's emit prototype
2661
fprintf(fp, "void %sNode::eval_constant(Compile* C) {\n", inst._ident);
2662
2663
// For ideal jump nodes, add a jump-table entry.
2664
if (inst.is_ideal_jump()) {
2665
fprintf(fp, " _constant = C->constant_table().add_jump_table(this);\n");
2666
}
2667
2668
// If user did not define an encode section,
2669
// provide stub that does not generate any machine code.
2670
if ((_encode == NULL) || (encode == NULL)) {
2671
fprintf(fp, " // User did not define an encode section.\n");
2672
fprintf(fp, "}\n");
2673
return;
2674
}
2675
2676
// Output this instruction's encodings
2677
const char *ec_name;
2678
bool user_defined = false;
2679
encode->reset();
2680
while ((ec_name = encode->encode_class_iter()) != NULL) {
2681
fprintf(fp, " {\n");
2682
// Output user-defined encoding
2683
user_defined = true;
2684
2685
const char *ec_code = NULL;
2686
const char *ec_rep_var = NULL;
2687
EncClass *encoding = _encode->encClass(ec_name);
2688
if (encoding == NULL) {
2689
fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2690
abort();
2691
}
2692
2693
if (encode->current_encoding_num_args() != encoding->num_args()) {
2694
globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2695
inst._ident, encode->current_encoding_num_args(),
2696
ec_name, encoding->num_args());
2697
}
2698
2699
DefineEmitState pending(fp, *this, *encoding, *encode, inst);
2700
encoding->_code.reset();
2701
encoding->_rep_vars.reset();
2702
// Process list of user-defined strings,
2703
// and occurrences of replacement variables.
2704
// Replacement Vars are pushed into a list and then output
2705
while ((ec_code = encoding->_code.iter()) != NULL) {
2706
if (!encoding->_code.is_signal(ec_code)) {
2707
// Emit pending code
2708
pending.emit();
2709
pending.clear();
2710
// Emit this code section
2711
fprintf(fp, "%s", ec_code);
2712
} else {
2713
// A replacement variable or one of its subfields
2714
// Obtain replacement variable from list
2715
ec_rep_var = encoding->_rep_vars.iter();
2716
pending.add_rep_var(ec_rep_var);
2717
}
2718
}
2719
// Emit pending code
2720
pending.emit();
2721
pending.clear();
2722
fprintf(fp, " }\n");
2723
} // end while instruction's encodings
2724
2725
// Check if user stated which encoding to user
2726
if (user_defined == false) {
2727
fprintf(fp, " // User did not define which encode class to use.\n");
2728
}
2729
2730
// (3) and (4)
2731
fprintf(fp, "}\n");
2732
}
2733
2734
// ---------------------------------------------------------------------------
2735
//--------Utilities to build MachOper and MachNode derived Classes------------
2736
// ---------------------------------------------------------------------------
2737
2738
//------------------------------Utilities to build Operand Classes------------
2739
static void defineIn_RegMask(FILE *fp, FormDict &globals, OperandForm &oper) {
2740
uint num_edges = oper.num_edges(globals);
2741
if( num_edges != 0 ) {
2742
// Method header
2743
fprintf(fp, "const RegMask *%sOper::in_RegMask(int index) const {\n",
2744
oper._ident);
2745
2746
// Assert that the index is in range.
2747
fprintf(fp, " assert(0 <= index && index < %d, \"index out of range\");\n",
2748
num_edges);
2749
2750
// Figure out if all RegMasks are the same.
2751
const char* first_reg_class = oper.in_reg_class(0, globals);
2752
bool all_same = true;
2753
assert(first_reg_class != NULL, "did not find register mask");
2754
2755
for (uint index = 1; all_same && index < num_edges; index++) {
2756
const char* some_reg_class = oper.in_reg_class(index, globals);
2757
assert(some_reg_class != NULL, "did not find register mask");
2758
if (strcmp(first_reg_class, some_reg_class) != 0) {
2759
all_same = false;
2760
}
2761
}
2762
2763
if (all_same) {
2764
// Return the sole RegMask.
2765
if (strcmp(first_reg_class, "stack_slots") == 0) {
2766
fprintf(fp," return &(Compile::current()->FIRST_STACK_mask());\n");
2767
} else {
2768
const char* first_reg_class_to_upper = toUpper(first_reg_class);
2769
fprintf(fp," return &%s_mask();\n", first_reg_class_to_upper);
2770
delete[] first_reg_class_to_upper;
2771
}
2772
} else {
2773
// Build a switch statement to return the desired mask.
2774
fprintf(fp," switch (index) {\n");
2775
2776
for (uint index = 0; index < num_edges; index++) {
2777
const char *reg_class = oper.in_reg_class(index, globals);
2778
assert(reg_class != NULL, "did not find register mask");
2779
if( !strcmp(reg_class, "stack_slots") ) {
2780
fprintf(fp, " case %d: return &(Compile::current()->FIRST_STACK_mask());\n", index);
2781
} else {
2782
const char* reg_class_to_upper = toUpper(reg_class);
2783
fprintf(fp, " case %d: return &%s_mask();\n", index, reg_class_to_upper);
2784
delete[] reg_class_to_upper;
2785
}
2786
}
2787
fprintf(fp," }\n");
2788
fprintf(fp," ShouldNotReachHere();\n");
2789
fprintf(fp," return NULL;\n");
2790
}
2791
2792
// Method close
2793
fprintf(fp, "}\n\n");
2794
}
2795
}
2796
2797
// generate code to create a clone for a class derived from MachOper
2798
//
2799
// (0) MachOper *MachOperXOper::clone(Compile* C) const {
2800
// (1) return new (C) MachXOper( _ccode, _c0, _c1, ..., _cn);
2801
// (2) }
2802
//
2803
static void defineClone(FILE *fp, FormDict &globalNames, OperandForm &oper) {
2804
fprintf(fp,"MachOper *%sOper::clone(Compile* C) const {\n", oper._ident);
2805
// Check for constants that need to be copied over
2806
const int num_consts = oper.num_consts(globalNames);
2807
const bool is_ideal_bool = oper.is_ideal_bool();
2808
if( (num_consts > 0) ) {
2809
fprintf(fp," return new (C) %sOper(", oper._ident);
2810
// generate parameters for constants
2811
int i = 0;
2812
fprintf(fp,"_c%d", i);
2813
for( i = 1; i < num_consts; ++i) {
2814
fprintf(fp,", _c%d", i);
2815
}
2816
// finish line (1)
2817
fprintf(fp,");\n");
2818
}
2819
else {
2820
assert( num_consts == 0, "Currently support zero or one constant per operand clone function");
2821
fprintf(fp," return new (C) %sOper();\n", oper._ident);
2822
}
2823
// finish method
2824
fprintf(fp,"}\n");
2825
}
2826
2827
// Helper functions for bug 4796752, abstracted with minimal modification
2828
// from define_oper_interface()
2829
OperandForm *rep_var_to_operand(const char *encoding, OperandForm &oper, FormDict &globals) {
2830
OperandForm *op = NULL;
2831
// Check for replacement variable
2832
if( *encoding == '$' ) {
2833
// Replacement variable
2834
const char *rep_var = encoding + 1;
2835
// Lookup replacement variable, rep_var, in operand's component list
2836
const Component *comp = oper._components.search(rep_var);
2837
assert( comp != NULL, "Replacement variable not found in components");
2838
// Lookup operand form for replacement variable's type
2839
const char *type = comp->_type;
2840
Form *form = (Form*)globals[type];
2841
assert( form != NULL, "Replacement variable's type not found");
2842
op = form->is_operand();
2843
assert( op, "Attempting to emit a non-register or non-constant");
2844
}
2845
2846
return op;
2847
}
2848
2849
int rep_var_to_constant_index(const char *encoding, OperandForm &oper, FormDict &globals) {
2850
int idx = -1;
2851
// Check for replacement variable
2852
if( *encoding == '$' ) {
2853
// Replacement variable
2854
const char *rep_var = encoding + 1;
2855
// Lookup replacement variable, rep_var, in operand's component list
2856
const Component *comp = oper._components.search(rep_var);
2857
assert( comp != NULL, "Replacement variable not found in components");
2858
// Lookup operand form for replacement variable's type
2859
const char *type = comp->_type;
2860
Form *form = (Form*)globals[type];
2861
assert( form != NULL, "Replacement variable's type not found");
2862
OperandForm *op = form->is_operand();
2863
assert( op, "Attempting to emit a non-register or non-constant");
2864
// Check that this is a constant and find constant's index:
2865
if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2866
idx = oper.constant_position(globals, comp);
2867
}
2868
}
2869
2870
return idx;
2871
}
2872
2873
bool is_regI(const char *encoding, OperandForm &oper, FormDict &globals ) {
2874
bool is_regI = false;
2875
2876
OperandForm *op = rep_var_to_operand(encoding, oper, globals);
2877
if( op != NULL ) {
2878
// Check that this is a register
2879
if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
2880
// Register
2881
const char* ideal = op->ideal_type(globals);
2882
is_regI = (ideal && (op->ideal_to_Reg_type(ideal) == Form::idealI));
2883
}
2884
}
2885
2886
return is_regI;
2887
}
2888
2889
bool is_conP(const char *encoding, OperandForm &oper, FormDict &globals ) {
2890
bool is_conP = false;
2891
2892
OperandForm *op = rep_var_to_operand(encoding, oper, globals);
2893
if( op != NULL ) {
2894
// Check that this is a constant pointer
2895
if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2896
// Constant
2897
Form::DataType dtype = op->is_base_constant(globals);
2898
is_conP = (dtype == Form::idealP);
2899
}
2900
}
2901
2902
return is_conP;
2903
}
2904
2905
2906
// Define a MachOper interface methods
2907
void ArchDesc::define_oper_interface(FILE *fp, OperandForm &oper, FormDict &globals,
2908
const char *name, const char *encoding) {
2909
bool emit_position = false;
2910
int position = -1;
2911
2912
fprintf(fp," virtual int %s", name);
2913
// Generate access method for base, index, scale, disp, ...
2914
if( (strcmp(name,"base") == 0) || (strcmp(name,"index") == 0) ) {
2915
fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
2916
emit_position = true;
2917
} else if ( (strcmp(name,"disp") == 0) ) {
2918
fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
2919
} else {
2920
fprintf(fp, "() const {\n");
2921
}
2922
2923
// Check for hexadecimal value OR replacement variable
2924
if( *encoding == '$' ) {
2925
// Replacement variable
2926
const char *rep_var = encoding + 1;
2927
fprintf(fp," // Replacement variable: %s\n", encoding+1);
2928
// Lookup replacement variable, rep_var, in operand's component list
2929
const Component *comp = oper._components.search(rep_var);
2930
assert( comp != NULL, "Replacement variable not found in components");
2931
// Lookup operand form for replacement variable's type
2932
const char *type = comp->_type;
2933
Form *form = (Form*)globals[type];
2934
assert( form != NULL, "Replacement variable's type not found");
2935
OperandForm *op = form->is_operand();
2936
assert( op, "Attempting to emit a non-register or non-constant");
2937
// Check that this is a register or a constant and generate code:
2938
if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
2939
// Register
2940
int idx_offset = oper.register_position( globals, rep_var);
2941
position = idx_offset;
2942
fprintf(fp," return (int)ra_->get_encode(node->in(idx");
2943
if ( idx_offset > 0 ) fprintf(fp, "+%d",idx_offset);
2944
fprintf(fp,"));\n");
2945
} else if ( op->ideal_to_sReg_type(op->_ident) != Form::none ) {
2946
// StackSlot for an sReg comes either from input node or from self, when idx==0
2947
fprintf(fp," if( idx != 0 ) {\n");
2948
fprintf(fp," // Access stack offset (register number) for input operand\n");
2949
fprintf(fp," return ra_->reg2offset(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
2950
fprintf(fp," }\n");
2951
fprintf(fp," // Access stack offset (register number) from myself\n");
2952
fprintf(fp," return ra_->reg2offset(ra_->get_reg_first(node));/* sReg */\n");
2953
} else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2954
// Constant
2955
// Check which constant this name maps to: _c0, _c1, ..., _cn
2956
const int idx = oper.constant_position(globals, comp);
2957
assert( idx != -1, "Constant component not found in operand");
2958
// Output code for this constant, type dependent.
2959
fprintf(fp," return (int)" );
2960
oper.access_constant(fp, globals, (uint)idx /* , const_type */);
2961
fprintf(fp,";\n");
2962
} else {
2963
assert( false, "Attempting to emit a non-register or non-constant");
2964
}
2965
}
2966
else if( *encoding == '0' && *(encoding+1) == 'x' ) {
2967
// Hex value
2968
fprintf(fp," return %s;\n", encoding);
2969
} else {
2970
globalAD->syntax_err(oper._linenum, "In operand %s: Do not support this encode constant: '%s' for %s.",
2971
oper._ident, encoding, name);
2972
assert( false, "Do not support octal or decimal encode constants");
2973
}
2974
fprintf(fp," }\n");
2975
2976
if( emit_position && (position != -1) && (oper.num_edges(globals) > 0) ) {
2977
fprintf(fp," virtual int %s_position() const { return %d; }\n", name, position);
2978
MemInterface *mem_interface = oper._interface->is_MemInterface();
2979
const char *base = mem_interface->_base;
2980
const char *disp = mem_interface->_disp;
2981
if( emit_position && (strcmp(name,"base") == 0)
2982
&& base != NULL && is_regI(base, oper, globals)
2983
&& disp != NULL && is_conP(disp, oper, globals) ) {
2984
// Found a memory access using a constant pointer for a displacement
2985
// and a base register containing an integer offset.
2986
// In this case the base and disp are reversed with respect to what
2987
// is expected by MachNode::get_base_and_disp() and MachNode::adr_type().
2988
// Provide a non-NULL return for disp_as_type() that will allow adr_type()
2989
// to correctly compute the access type for alias analysis.
2990
//
2991
// See BugId 4796752, operand indOffset32X in i486.ad
2992
int idx = rep_var_to_constant_index(disp, oper, globals);
2993
fprintf(fp," virtual const TypePtr *disp_as_type() const { return _c%d; }\n", idx);
2994
}
2995
}
2996
}
2997
2998
//
2999
// Construct the method to copy _idx, inputs and operands to new node.
3000
static void define_fill_new_machnode(bool used, FILE *fp_cpp) {
3001
fprintf(fp_cpp, "\n");
3002
fprintf(fp_cpp, "// Copy _idx, inputs and operands to new node\n");
3003
fprintf(fp_cpp, "void MachNode::fill_new_machnode( MachNode* node, Compile* C) const {\n");
3004
if( !used ) {
3005
fprintf(fp_cpp, " // This architecture does not have cisc or short branch instructions\n");
3006
fprintf(fp_cpp, " ShouldNotCallThis();\n");
3007
fprintf(fp_cpp, "}\n");
3008
} else {
3009
// New node must use same node index for access through allocator's tables
3010
fprintf(fp_cpp, " // New node must use same node index\n");
3011
fprintf(fp_cpp, " node->set_idx( _idx );\n");
3012
// Copy machine-independent inputs
3013
fprintf(fp_cpp, " // Copy machine-independent inputs\n");
3014
fprintf(fp_cpp, " for( uint j = 0; j < req(); j++ ) {\n");
3015
fprintf(fp_cpp, " node->add_req(in(j));\n");
3016
fprintf(fp_cpp, " }\n");
3017
// Copy machine operands to new MachNode
3018
fprintf(fp_cpp, " // Copy my operands, except for cisc position\n");
3019
fprintf(fp_cpp, " int nopnds = num_opnds();\n");
3020
fprintf(fp_cpp, " assert( node->num_opnds() == (uint)nopnds, \"Must have same number of operands\");\n");
3021
fprintf(fp_cpp, " MachOper **to = node->_opnds;\n");
3022
fprintf(fp_cpp, " for( int i = 0; i < nopnds; i++ ) {\n");
3023
fprintf(fp_cpp, " if( i != cisc_operand() ) \n");
3024
fprintf(fp_cpp, " to[i] = _opnds[i]->clone(C);\n");
3025
fprintf(fp_cpp, " }\n");
3026
fprintf(fp_cpp, "}\n");
3027
}
3028
fprintf(fp_cpp, "\n");
3029
}
3030
3031
//------------------------------defineClasses----------------------------------
3032
// Define members of MachNode and MachOper classes based on
3033
// operand and instruction lists
3034
void ArchDesc::defineClasses(FILE *fp) {
3035
3036
// Define the contents of an array containing the machine register names
3037
defineRegNames(fp, _register);
3038
// Define an array containing the machine register encoding values
3039
defineRegEncodes(fp, _register);
3040
// Generate an enumeration of user-defined register classes
3041
// and a list of register masks, one for each class.
3042
// Only define the RegMask value objects in the expand file.
3043
// Declare each as an extern const RegMask ...; in ad_<arch>.hpp
3044
declare_register_masks(_HPP_file._fp);
3045
// build_register_masks(fp);
3046
build_register_masks(_CPP_EXPAND_file._fp);
3047
// Define the pipe_classes
3048
build_pipe_classes(_CPP_PIPELINE_file._fp);
3049
3050
// Generate Machine Classes for each operand defined in AD file
3051
fprintf(fp,"\n");
3052
fprintf(fp,"\n");
3053
fprintf(fp,"//------------------Define classes derived from MachOper---------------------\n");
3054
// Iterate through all operands
3055
_operands.reset();
3056
OperandForm *oper;
3057
for( ; (oper = (OperandForm*)_operands.iter()) != NULL; ) {
3058
// Ensure this is a machine-world instruction
3059
if ( oper->ideal_only() ) continue;
3060
// !!!!!
3061
// The declaration of labelOper is in machine-independent file: machnode
3062
if ( strcmp(oper->_ident,"label") == 0 ) {
3063
defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
3064
3065
fprintf(fp,"MachOper *%sOper::clone(Compile* C) const {\n", oper->_ident);
3066
fprintf(fp," return new (C) %sOper(_label, _block_num);\n", oper->_ident);
3067
fprintf(fp,"}\n");
3068
3069
fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
3070
oper->_ident, machOperEnum(oper->_ident));
3071
// // Currently all XXXOper::Hash() methods are identical (990820)
3072
// define_hash(fp, oper->_ident);
3073
// // Currently all XXXOper::Cmp() methods are identical (990820)
3074
// define_cmp(fp, oper->_ident);
3075
fprintf(fp,"\n");
3076
3077
continue;
3078
}
3079
3080
// The declaration of methodOper is in machine-independent file: machnode
3081
if ( strcmp(oper->_ident,"method") == 0 ) {
3082
defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
3083
3084
fprintf(fp,"MachOper *%sOper::clone(Compile* C) const {\n", oper->_ident);
3085
fprintf(fp," return new (C) %sOper(_method);\n", oper->_ident);
3086
fprintf(fp,"}\n");
3087
3088
fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
3089
oper->_ident, machOperEnum(oper->_ident));
3090
// // Currently all XXXOper::Hash() methods are identical (990820)
3091
// define_hash(fp, oper->_ident);
3092
// // Currently all XXXOper::Cmp() methods are identical (990820)
3093
// define_cmp(fp, oper->_ident);
3094
fprintf(fp,"\n");
3095
3096
continue;
3097
}
3098
3099
defineIn_RegMask(fp, _globalNames, *oper);
3100
defineClone(_CPP_CLONE_file._fp, _globalNames, *oper);
3101
// // Currently all XXXOper::Hash() methods are identical (990820)
3102
// define_hash(fp, oper->_ident);
3103
// // Currently all XXXOper::Cmp() methods are identical (990820)
3104
// define_cmp(fp, oper->_ident);
3105
3106
// side-call to generate output that used to be in the header file:
3107
extern void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file);
3108
gen_oper_format(_CPP_FORMAT_file._fp, _globalNames, *oper, true);
3109
3110
}
3111
3112
3113
// Generate Machine Classes for each instruction defined in AD file
3114
fprintf(fp,"//------------------Define members for classes derived from MachNode----------\n");
3115
// Output the definitions for out_RegMask() // & kill_RegMask()
3116
_instructions.reset();
3117
InstructForm *instr;
3118
MachNodeForm *machnode;
3119
for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3120
// Ensure this is a machine-world instruction
3121
if ( instr->ideal_only() ) continue;
3122
3123
defineOut_RegMask(_CPP_MISC_file._fp, instr->_ident, reg_mask(*instr));
3124
}
3125
3126
bool used = false;
3127
// Output the definitions for expand rules & peephole rules
3128
_instructions.reset();
3129
for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3130
// Ensure this is a machine-world instruction
3131
if ( instr->ideal_only() ) continue;
3132
// If there are multiple defs/kills, or an explicit expand rule, build rule
3133
if( instr->expands() || instr->needs_projections() ||
3134
instr->has_temps() ||
3135
instr->is_mach_constant() ||
3136
instr->needs_constant_base() ||
3137
instr->_matrule != NULL &&
3138
instr->num_opnds() != instr->num_unique_opnds() )
3139
defineExpand(_CPP_EXPAND_file._fp, instr);
3140
// If there is an explicit peephole rule, build it
3141
if ( instr->peepholes() )
3142
definePeephole(_CPP_PEEPHOLE_file._fp, instr);
3143
3144
// Output code to convert to the cisc version, if applicable
3145
used |= instr->define_cisc_version(*this, fp);
3146
3147
// Output code to convert to the short branch version, if applicable
3148
used |= instr->define_short_branch_methods(*this, fp);
3149
}
3150
3151
// Construct the method called by cisc_version() to copy inputs and operands.
3152
define_fill_new_machnode(used, fp);
3153
3154
// Output the definitions for labels
3155
_instructions.reset();
3156
while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3157
// Ensure this is a machine-world instruction
3158
if ( instr->ideal_only() ) continue;
3159
3160
// Access the fields for operand Label
3161
int label_position = instr->label_position();
3162
if( label_position != -1 ) {
3163
// Set the label
3164
fprintf(fp,"void %sNode::label_set( Label* label, uint block_num ) {\n", instr->_ident);
3165
fprintf(fp," labelOper* oper = (labelOper*)(opnd_array(%d));\n",
3166
label_position );
3167
fprintf(fp," oper->_label = label;\n");
3168
fprintf(fp," oper->_block_num = block_num;\n");
3169
fprintf(fp,"}\n");
3170
// Save the label
3171
fprintf(fp,"void %sNode::save_label( Label** label, uint* block_num ) {\n", instr->_ident);
3172
fprintf(fp," labelOper* oper = (labelOper*)(opnd_array(%d));\n",
3173
label_position );
3174
fprintf(fp," *label = oper->_label;\n");
3175
fprintf(fp," *block_num = oper->_block_num;\n");
3176
fprintf(fp,"}\n");
3177
}
3178
}
3179
3180
// Output the definitions for methods
3181
_instructions.reset();
3182
while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3183
// Ensure this is a machine-world instruction
3184
if ( instr->ideal_only() ) continue;
3185
3186
// Access the fields for operand Label
3187
int method_position = instr->method_position();
3188
if( method_position != -1 ) {
3189
// Access the method's address
3190
fprintf(fp,"void %sNode::method_set( intptr_t method ) {\n", instr->_ident);
3191
fprintf(fp," ((methodOper*)opnd_array(%d))->_method = method;\n",
3192
method_position );
3193
fprintf(fp,"}\n");
3194
fprintf(fp,"\n");
3195
}
3196
}
3197
3198
// Define this instruction's number of relocation entries, base is '0'
3199
_instructions.reset();
3200
while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3201
// Output the definition for number of relocation entries
3202
uint reloc_size = instr->reloc(_globalNames);
3203
if ( reloc_size != 0 ) {
3204
fprintf(fp,"int %sNode::reloc() const {\n", instr->_ident);
3205
fprintf(fp," return %d;\n", reloc_size);
3206
fprintf(fp,"}\n");
3207
fprintf(fp,"\n");
3208
}
3209
}
3210
fprintf(fp,"\n");
3211
3212
// Output the definitions for code generation
3213
//
3214
// address ___Node::emit(address ptr, PhaseRegAlloc *ra_) const {
3215
// // ... encoding defined by user
3216
// return ptr;
3217
// }
3218
//
3219
_instructions.reset();
3220
for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3221
// Ensure this is a machine-world instruction
3222
if ( instr->ideal_only() ) continue;
3223
3224
if (instr->_insencode) {
3225
if (instr->postalloc_expands()) {
3226
// Don't write this to _CPP_EXPAND_file, as the code generated calls C-code
3227
// from code sections in ad file that is dumped to fp.
3228
define_postalloc_expand(fp, *instr);
3229
} else {
3230
defineEmit(fp, *instr);
3231
}
3232
}
3233
if (instr->is_mach_constant()) defineEvalConstant(fp, *instr);
3234
if (instr->_size) defineSize (fp, *instr);
3235
3236
// side-call to generate output that used to be in the header file:
3237
extern void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &oper, bool for_c_file);
3238
gen_inst_format(_CPP_FORMAT_file._fp, _globalNames, *instr, true);
3239
}
3240
3241
// Output the definitions for alias analysis
3242
_instructions.reset();
3243
for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3244
// Ensure this is a machine-world instruction
3245
if ( instr->ideal_only() ) continue;
3246
3247
// Analyze machine instructions that either USE or DEF memory.
3248
int memory_operand = instr->memory_operand(_globalNames);
3249
3250
if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
3251
if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
3252
fprintf(fp,"const TypePtr *%sNode::adr_type() const { return TypePtr::BOTTOM; }\n", instr->_ident);
3253
fprintf(fp,"const MachOper* %sNode::memory_operand() const { return (MachOper*)-1; }\n", instr->_ident);
3254
} else {
3255
fprintf(fp,"const MachOper* %sNode::memory_operand() const { return _opnds[%d]; }\n", instr->_ident, memory_operand);
3256
}
3257
}
3258
}
3259
3260
// Get the length of the longest identifier
3261
int max_ident_len = 0;
3262
_instructions.reset();
3263
3264
for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3265
if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
3266
int ident_len = (int)strlen(instr->_ident);
3267
if( max_ident_len < ident_len )
3268
max_ident_len = ident_len;
3269
}
3270
}
3271
3272
// Emit specifically for Node(s)
3273
fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
3274
max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
3275
fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return %s; }\n",
3276
max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
3277
fprintf(_CPP_PIPELINE_file._fp, "\n");
3278
3279
fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
3280
max_ident_len, "MachNode", _pipeline ? "(&pipeline_class_Unknown_Instructions)" : "NULL");
3281
fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return pipeline_class(); }\n",
3282
max_ident_len, "MachNode");
3283
fprintf(_CPP_PIPELINE_file._fp, "\n");
3284
3285
// Output the definitions for machine node specific pipeline data
3286
_machnodes.reset();
3287
3288
for ( ; (machnode = (MachNodeForm*)_machnodes.iter()) != NULL; ) {
3289
fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
3290
machnode->_ident, ((class PipeClassForm *)_pipeline->_classdict[machnode->_machnode_pipe])->_num);
3291
}
3292
3293
fprintf(_CPP_PIPELINE_file._fp, "\n");
3294
3295
// Output the definitions for instruction pipeline static data references
3296
_instructions.reset();
3297
3298
for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3299
if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
3300
fprintf(_CPP_PIPELINE_file._fp, "\n");
3301
fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline_class() { return (&pipeline_class_%03d); }\n",
3302
max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
3303
fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
3304
max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
3305
}
3306
}
3307
}
3308
3309
3310
// -------------------------------- maps ------------------------------------
3311
3312
// Information needed to generate the ReduceOp mapping for the DFA
3313
class OutputReduceOp : public OutputMap {
3314
public:
3315
OutputReduceOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3316
: OutputMap(hpp, cpp, globals, AD, "reduceOp") {};
3317
3318
void declaration() { fprintf(_hpp, "extern const int reduceOp[];\n"); }
3319
void definition() { fprintf(_cpp, "const int reduceOp[] = {\n"); }
3320
void closing() { fprintf(_cpp, " 0 // no trailing comma\n");
3321
OutputMap::closing();
3322
}
3323
void map(OpClassForm &opc) {
3324
const char *reduce = opc._ident;
3325
if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3326
else fprintf(_cpp, " 0");
3327
}
3328
void map(OperandForm &oper) {
3329
// Most operands without match rules, e.g. eFlagsReg, do not have a result operand
3330
const char *reduce = (oper._matrule ? oper.reduce_result() : NULL);
3331
// operand stackSlot does not have a match rule, but produces a stackSlot
3332
if( oper.is_user_name_for_sReg() != Form::none ) reduce = oper.reduce_result();
3333
if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3334
else fprintf(_cpp, " 0");
3335
}
3336
void map(InstructForm &inst) {
3337
const char *reduce = (inst._matrule ? inst.reduce_result() : NULL);
3338
if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3339
else fprintf(_cpp, " 0");
3340
}
3341
void map(char *reduce) {
3342
if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3343
else fprintf(_cpp, " 0");
3344
}
3345
};
3346
3347
// Information needed to generate the LeftOp mapping for the DFA
3348
class OutputLeftOp : public OutputMap {
3349
public:
3350
OutputLeftOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3351
: OutputMap(hpp, cpp, globals, AD, "leftOp") {};
3352
3353
void declaration() { fprintf(_hpp, "extern const int leftOp[];\n"); }
3354
void definition() { fprintf(_cpp, "const int leftOp[] = {\n"); }
3355
void closing() { fprintf(_cpp, " 0 // no trailing comma\n");
3356
OutputMap::closing();
3357
}
3358
void map(OpClassForm &opc) { fprintf(_cpp, " 0"); }
3359
void map(OperandForm &oper) {
3360
const char *reduce = oper.reduce_left(_globals);
3361
if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3362
else fprintf(_cpp, " 0");
3363
}
3364
void map(char *name) {
3365
const char *reduce = _AD.reduceLeft(name);
3366
if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3367
else fprintf(_cpp, " 0");
3368
}
3369
void map(InstructForm &inst) {
3370
const char *reduce = inst.reduce_left(_globals);
3371
if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3372
else fprintf(_cpp, " 0");
3373
}
3374
};
3375
3376
3377
// Information needed to generate the RightOp mapping for the DFA
3378
class OutputRightOp : public OutputMap {
3379
public:
3380
OutputRightOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3381
: OutputMap(hpp, cpp, globals, AD, "rightOp") {};
3382
3383
void declaration() { fprintf(_hpp, "extern const int rightOp[];\n"); }
3384
void definition() { fprintf(_cpp, "const int rightOp[] = {\n"); }
3385
void closing() { fprintf(_cpp, " 0 // no trailing comma\n");
3386
OutputMap::closing();
3387
}
3388
void map(OpClassForm &opc) { fprintf(_cpp, " 0"); }
3389
void map(OperandForm &oper) {
3390
const char *reduce = oper.reduce_right(_globals);
3391
if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3392
else fprintf(_cpp, " 0");
3393
}
3394
void map(char *name) {
3395
const char *reduce = _AD.reduceRight(name);
3396
if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3397
else fprintf(_cpp, " 0");
3398
}
3399
void map(InstructForm &inst) {
3400
const char *reduce = inst.reduce_right(_globals);
3401
if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3402
else fprintf(_cpp, " 0");
3403
}
3404
};
3405
3406
3407
// Information needed to generate the Rule names for the DFA
3408
class OutputRuleName : public OutputMap {
3409
public:
3410
OutputRuleName(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3411
: OutputMap(hpp, cpp, globals, AD, "ruleName") {};
3412
3413
void declaration() { fprintf(_hpp, "extern const char *ruleName[];\n"); }
3414
void definition() { fprintf(_cpp, "const char *ruleName[] = {\n"); }
3415
void closing() { fprintf(_cpp, " \"invalid rule name\" // no trailing comma\n");
3416
OutputMap::closing();
3417
}
3418
void map(OpClassForm &opc) { fprintf(_cpp, " \"%s\"", _AD.machOperEnum(opc._ident) ); }
3419
void map(OperandForm &oper) { fprintf(_cpp, " \"%s\"", _AD.machOperEnum(oper._ident) ); }
3420
void map(char *name) { fprintf(_cpp, " \"%s\"", name ? name : "0"); }
3421
void map(InstructForm &inst){ fprintf(_cpp, " \"%s\"", inst._ident ? inst._ident : "0"); }
3422
};
3423
3424
3425
// Information needed to generate the swallowed mapping for the DFA
3426
class OutputSwallowed : public OutputMap {
3427
public:
3428
OutputSwallowed(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3429
: OutputMap(hpp, cpp, globals, AD, "swallowed") {};
3430
3431
void declaration() { fprintf(_hpp, "extern const bool swallowed[];\n"); }
3432
void definition() { fprintf(_cpp, "const bool swallowed[] = {\n"); }
3433
void closing() { fprintf(_cpp, " false // no trailing comma\n");
3434
OutputMap::closing();
3435
}
3436
void map(OperandForm &oper) { // Generate the entry for this opcode
3437
const char *swallowed = oper.swallowed(_globals) ? "true" : "false";
3438
fprintf(_cpp, " %s", swallowed);
3439
}
3440
void map(OpClassForm &opc) { fprintf(_cpp, " false"); }
3441
void map(char *name) { fprintf(_cpp, " false"); }
3442
void map(InstructForm &inst){ fprintf(_cpp, " false"); }
3443
};
3444
3445
3446
// Information needed to generate the decision array for instruction chain rule
3447
class OutputInstChainRule : public OutputMap {
3448
public:
3449
OutputInstChainRule(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3450
: OutputMap(hpp, cpp, globals, AD, "instruction_chain_rule") {};
3451
3452
void declaration() { fprintf(_hpp, "extern const bool instruction_chain_rule[];\n"); }
3453
void definition() { fprintf(_cpp, "const bool instruction_chain_rule[] = {\n"); }
3454
void closing() { fprintf(_cpp, " false // no trailing comma\n");
3455
OutputMap::closing();
3456
}
3457
void map(OpClassForm &opc) { fprintf(_cpp, " false"); }
3458
void map(OperandForm &oper) { fprintf(_cpp, " false"); }
3459
void map(char *name) { fprintf(_cpp, " false"); }
3460
void map(InstructForm &inst) { // Check for simple chain rule
3461
const char *chain = inst.is_simple_chain_rule(_globals) ? "true" : "false";
3462
fprintf(_cpp, " %s", chain);
3463
}
3464
};
3465
3466
3467
//---------------------------build_map------------------------------------
3468
// Build mapping from enumeration for densely packed operands
3469
// TO result and child types.
3470
void ArchDesc::build_map(OutputMap &map) {
3471
FILE *fp_hpp = map.decl_file();
3472
FILE *fp_cpp = map.def_file();
3473
int idx = 0;
3474
OperandForm *op;
3475
OpClassForm *opc;
3476
InstructForm *inst;
3477
3478
// Construct this mapping
3479
map.declaration();
3480
fprintf(fp_cpp,"\n");
3481
map.definition();
3482
3483
// Output the mapping for operands
3484
map.record_position(OutputMap::BEGIN_OPERANDS, idx );
3485
_operands.reset();
3486
for(; (op = (OperandForm*)_operands.iter()) != NULL; ) {
3487
// Ensure this is a machine-world instruction
3488
if ( op->ideal_only() ) continue;
3489
3490
// Generate the entry for this opcode
3491
fprintf(fp_cpp, " /* %4d */", idx); map.map(*op); fprintf(fp_cpp, ",\n");
3492
++idx;
3493
};
3494
fprintf(fp_cpp, " // last operand\n");
3495
3496
// Place all user-defined operand classes into the mapping
3497
map.record_position(OutputMap::BEGIN_OPCLASSES, idx );
3498
_opclass.reset();
3499
for(; (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
3500
fprintf(fp_cpp, " /* %4d */", idx); map.map(*opc); fprintf(fp_cpp, ",\n");
3501
++idx;
3502
};
3503
fprintf(fp_cpp, " // last operand class\n");
3504
3505
// Place all internally defined operands into the mapping
3506
map.record_position(OutputMap::BEGIN_INTERNALS, idx );
3507
_internalOpNames.reset();
3508
char *name = NULL;
3509
for(; (name = (char *)_internalOpNames.iter()) != NULL; ) {
3510
fprintf(fp_cpp, " /* %4d */", idx); map.map(name); fprintf(fp_cpp, ",\n");
3511
++idx;
3512
};
3513
fprintf(fp_cpp, " // last internally defined operand\n");
3514
3515
// Place all user-defined instructions into the mapping
3516
if( map.do_instructions() ) {
3517
map.record_position(OutputMap::BEGIN_INSTRUCTIONS, idx );
3518
// Output all simple instruction chain rules first
3519
map.record_position(OutputMap::BEGIN_INST_CHAIN_RULES, idx );
3520
{
3521
_instructions.reset();
3522
for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3523
// Ensure this is a machine-world instruction
3524
if ( inst->ideal_only() ) continue;
3525
if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
3526
if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
3527
3528
fprintf(fp_cpp, " /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3529
++idx;
3530
};
3531
map.record_position(OutputMap::BEGIN_REMATERIALIZE, idx );
3532
_instructions.reset();
3533
for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3534
// Ensure this is a machine-world instruction
3535
if ( inst->ideal_only() ) continue;
3536
if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
3537
if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
3538
3539
fprintf(fp_cpp, " /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3540
++idx;
3541
};
3542
map.record_position(OutputMap::END_INST_CHAIN_RULES, idx );
3543
}
3544
// Output all instructions that are NOT simple chain rules
3545
{
3546
_instructions.reset();
3547
for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3548
// Ensure this is a machine-world instruction
3549
if ( inst->ideal_only() ) continue;
3550
if ( inst->is_simple_chain_rule(_globalNames) ) continue;
3551
if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
3552
3553
fprintf(fp_cpp, " /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3554
++idx;
3555
};
3556
map.record_position(OutputMap::END_REMATERIALIZE, idx );
3557
_instructions.reset();
3558
for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3559
// Ensure this is a machine-world instruction
3560
if ( inst->ideal_only() ) continue;
3561
if ( inst->is_simple_chain_rule(_globalNames) ) continue;
3562
if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
3563
3564
fprintf(fp_cpp, " /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3565
++idx;
3566
};
3567
}
3568
fprintf(fp_cpp, " // last instruction\n");
3569
map.record_position(OutputMap::END_INSTRUCTIONS, idx );
3570
}
3571
// Finish defining table
3572
map.closing();
3573
};
3574
3575
3576
// Helper function for buildReduceMaps
3577
char reg_save_policy(const char *calling_convention) {
3578
char callconv;
3579
3580
if (!strcmp(calling_convention, "NS")) callconv = 'N';
3581
else if (!strcmp(calling_convention, "SOE")) callconv = 'E';
3582
else if (!strcmp(calling_convention, "SOC")) callconv = 'C';
3583
else if (!strcmp(calling_convention, "AS")) callconv = 'A';
3584
else callconv = 'Z';
3585
3586
return callconv;
3587
}
3588
3589
void ArchDesc::generate_needs_clone_jvms(FILE *fp_cpp) {
3590
fprintf(fp_cpp, "bool Compile::needs_clone_jvms() { return %s; }\n\n",
3591
_needs_clone_jvms ? "true" : "false");
3592
}
3593
3594
//---------------------------generate_assertion_checks-------------------
3595
void ArchDesc::generate_adlc_verification(FILE *fp_cpp) {
3596
fprintf(fp_cpp, "\n");
3597
3598
fprintf(fp_cpp, "#ifndef PRODUCT\n");
3599
fprintf(fp_cpp, "void Compile::adlc_verification() {\n");
3600
globalDefs().print_asserts(fp_cpp);
3601
fprintf(fp_cpp, "}\n");
3602
fprintf(fp_cpp, "#endif\n");
3603
fprintf(fp_cpp, "\n");
3604
}
3605
3606
//---------------------------addSourceBlocks-----------------------------
3607
void ArchDesc::addSourceBlocks(FILE *fp_cpp) {
3608
if (_source.count() > 0)
3609
_source.output(fp_cpp);
3610
3611
generate_adlc_verification(fp_cpp);
3612
}
3613
//---------------------------addHeaderBlocks-----------------------------
3614
void ArchDesc::addHeaderBlocks(FILE *fp_hpp) {
3615
if (_header.count() > 0)
3616
_header.output(fp_hpp);
3617
}
3618
//-------------------------addPreHeaderBlocks----------------------------
3619
void ArchDesc::addPreHeaderBlocks(FILE *fp_hpp) {
3620
// Output #defines from definition block
3621
globalDefs().print_defines(fp_hpp);
3622
3623
if (_pre_header.count() > 0)
3624
_pre_header.output(fp_hpp);
3625
}
3626
3627
//---------------------------buildReduceMaps-----------------------------
3628
// Build mapping from enumeration for densely packed operands
3629
// TO result and child types.
3630
void ArchDesc::buildReduceMaps(FILE *fp_hpp, FILE *fp_cpp) {
3631
RegDef *rdef;
3632
RegDef *next;
3633
3634
// The emit bodies currently require functions defined in the source block.
3635
3636
// Build external declarations for mappings
3637
fprintf(fp_hpp, "\n");
3638
fprintf(fp_hpp, "extern const char register_save_policy[];\n");
3639
fprintf(fp_hpp, "extern const char c_reg_save_policy[];\n");
3640
fprintf(fp_hpp, "extern const int register_save_type[];\n");
3641
fprintf(fp_hpp, "\n");
3642
3643
// Construct Save-Policy array
3644
fprintf(fp_cpp, "// Map from machine-independent register number to register_save_policy\n");
3645
fprintf(fp_cpp, "const char register_save_policy[] = {\n");
3646
_register->reset_RegDefs();
3647
for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3648
next = _register->iter_RegDefs();
3649
char policy = reg_save_policy(rdef->_callconv);
3650
const char *comma = (next != NULL) ? "," : " // no trailing comma";
3651
fprintf(fp_cpp, " '%c'%s // %s\n", policy, comma, rdef->_regname);
3652
}
3653
fprintf(fp_cpp, "};\n\n");
3654
3655
// Construct Native Save-Policy array
3656
fprintf(fp_cpp, "// Map from machine-independent register number to c_reg_save_policy\n");
3657
fprintf(fp_cpp, "const char c_reg_save_policy[] = {\n");
3658
_register->reset_RegDefs();
3659
for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3660
next = _register->iter_RegDefs();
3661
char policy = reg_save_policy(rdef->_c_conv);
3662
const char *comma = (next != NULL) ? "," : " // no trailing comma";
3663
fprintf(fp_cpp, " '%c'%s // %s\n", policy, comma, rdef->_regname);
3664
}
3665
fprintf(fp_cpp, "};\n\n");
3666
3667
// Construct Register Save Type array
3668
fprintf(fp_cpp, "// Map from machine-independent register number to register_save_type\n");
3669
fprintf(fp_cpp, "const int register_save_type[] = {\n");
3670
_register->reset_RegDefs();
3671
for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3672
next = _register->iter_RegDefs();
3673
const char *comma = (next != NULL) ? "," : " // no trailing comma";
3674
fprintf(fp_cpp, " %s%s\n", rdef->_idealtype, comma);
3675
}
3676
fprintf(fp_cpp, "};\n\n");
3677
3678
// Construct the table for reduceOp
3679
OutputReduceOp output_reduce_op(fp_hpp, fp_cpp, _globalNames, *this);
3680
build_map(output_reduce_op);
3681
// Construct the table for leftOp
3682
OutputLeftOp output_left_op(fp_hpp, fp_cpp, _globalNames, *this);
3683
build_map(output_left_op);
3684
// Construct the table for rightOp
3685
OutputRightOp output_right_op(fp_hpp, fp_cpp, _globalNames, *this);
3686
build_map(output_right_op);
3687
// Construct the table of rule names
3688
OutputRuleName output_rule_name(fp_hpp, fp_cpp, _globalNames, *this);
3689
build_map(output_rule_name);
3690
// Construct the boolean table for subsumed operands
3691
OutputSwallowed output_swallowed(fp_hpp, fp_cpp, _globalNames, *this);
3692
build_map(output_swallowed);
3693
// // // Preserve in case we decide to use this table instead of another
3694
//// Construct the boolean table for instruction chain rules
3695
//OutputInstChainRule output_inst_chain(fp_hpp, fp_cpp, _globalNames, *this);
3696
//build_map(output_inst_chain);
3697
3698
}
3699
3700
3701
//---------------------------buildMachOperGenerator---------------------------
3702
3703
// Recurse through match tree, building path through corresponding state tree,
3704
// Until we reach the constant we are looking for.
3705
static void path_to_constant(FILE *fp, FormDict &globals,
3706
MatchNode *mnode, uint idx) {
3707
if ( ! mnode) return;
3708
3709
unsigned position = 0;
3710
const char *result = NULL;
3711
const char *name = NULL;
3712
const char *optype = NULL;
3713
3714
// Base Case: access constant in ideal node linked to current state node
3715
// Each type of constant has its own access function
3716
if ( (mnode->_lChild == NULL) && (mnode->_rChild == NULL)
3717
&& mnode->base_operand(position, globals, result, name, optype) ) {
3718
if ( strcmp(optype,"ConI") == 0 ) {
3719
fprintf(fp, "_leaf->get_int()");
3720
} else if ( (strcmp(optype,"ConP") == 0) ) {
3721
fprintf(fp, "_leaf->bottom_type()->is_ptr()");
3722
} else if ( (strcmp(optype,"ConN") == 0) ) {
3723
fprintf(fp, "_leaf->bottom_type()->is_narrowoop()");
3724
} else if ( (strcmp(optype,"ConNKlass") == 0) ) {
3725
fprintf(fp, "_leaf->bottom_type()->is_narrowklass()");
3726
} else if ( (strcmp(optype,"ConF") == 0) ) {
3727
fprintf(fp, "_leaf->getf()");
3728
} else if ( (strcmp(optype,"ConD") == 0) ) {
3729
fprintf(fp, "_leaf->getd()");
3730
} else if ( (strcmp(optype,"ConL") == 0) ) {
3731
fprintf(fp, "_leaf->get_long()");
3732
} else if ( (strcmp(optype,"Con")==0) ) {
3733
// !!!!! - Update if adding a machine-independent constant type
3734
fprintf(fp, "_leaf->get_int()");
3735
assert( false, "Unsupported constant type, pointer or indefinite");
3736
} else if ( (strcmp(optype,"Bool") == 0) ) {
3737
fprintf(fp, "_leaf->as_Bool()->_test._test");
3738
} else {
3739
assert( false, "Unsupported constant type");
3740
}
3741
return;
3742
}
3743
3744
// If constant is in left child, build path and recurse
3745
uint lConsts = (mnode->_lChild) ? (mnode->_lChild->num_consts(globals) ) : 0;
3746
uint rConsts = (mnode->_rChild) ? (mnode->_rChild->num_consts(globals) ) : 0;
3747
if ( (mnode->_lChild) && (lConsts > idx) ) {
3748
fprintf(fp, "_kids[0]->");
3749
path_to_constant(fp, globals, mnode->_lChild, idx);
3750
return;
3751
}
3752
// If constant is in right child, build path and recurse
3753
if ( (mnode->_rChild) && (rConsts > (idx - lConsts) ) ) {
3754
idx = idx - lConsts;
3755
fprintf(fp, "_kids[1]->");
3756
path_to_constant(fp, globals, mnode->_rChild, idx);
3757
return;
3758
}
3759
assert( false, "ShouldNotReachHere()");
3760
}
3761
3762
// Generate code that is executed when generating a specific Machine Operand
3763
static void genMachOperCase(FILE *fp, FormDict &globalNames, ArchDesc &AD,
3764
OperandForm &op) {
3765
const char *opName = op._ident;
3766
const char *opEnumName = AD.machOperEnum(opName);
3767
uint num_consts = op.num_consts(globalNames);
3768
3769
// Generate the case statement for this opcode
3770
fprintf(fp, " case %s:", opEnumName);
3771
fprintf(fp, "\n return new (C) %sOper(", opName);
3772
// Access parameters for constructor from the stat object
3773
//
3774
// Build access to condition code value
3775
if ( (num_consts > 0) ) {
3776
uint i = 0;
3777
path_to_constant(fp, globalNames, op._matrule, i);
3778
for ( i = 1; i < num_consts; ++i ) {
3779
fprintf(fp, ", ");
3780
path_to_constant(fp, globalNames, op._matrule, i);
3781
}
3782
}
3783
fprintf(fp, " );\n");
3784
}
3785
3786
3787
// Build switch to invoke "new" MachNode or MachOper
3788
void ArchDesc::buildMachOperGenerator(FILE *fp_cpp) {
3789
int idx = 0;
3790
3791
// Build switch to invoke 'new' for a specific MachOper
3792
fprintf(fp_cpp, "\n");
3793
fprintf(fp_cpp, "\n");
3794
fprintf(fp_cpp,
3795
"//------------------------- MachOper Generator ---------------\n");
3796
fprintf(fp_cpp,
3797
"// A switch statement on the dense-packed user-defined type system\n"
3798
"// that invokes 'new' on the corresponding class constructor.\n");
3799
fprintf(fp_cpp, "\n");
3800
fprintf(fp_cpp, "MachOper *State::MachOperGenerator");
3801
fprintf(fp_cpp, "(int opcode, Compile* C)");
3802
fprintf(fp_cpp, "{\n");
3803
fprintf(fp_cpp, "\n");
3804
fprintf(fp_cpp, " switch(opcode) {\n");
3805
3806
// Place all user-defined operands into the mapping
3807
_operands.reset();
3808
int opIndex = 0;
3809
OperandForm *op;
3810
for( ; (op = (OperandForm*)_operands.iter()) != NULL; ) {
3811
// Ensure this is a machine-world instruction
3812
if ( op->ideal_only() ) continue;
3813
3814
genMachOperCase(fp_cpp, _globalNames, *this, *op);
3815
};
3816
3817
// Do not iterate over operand classes for the operand generator!!!
3818
3819
// Place all internal operands into the mapping
3820
_internalOpNames.reset();
3821
const char *iopn;
3822
for( ; (iopn = _internalOpNames.iter()) != NULL; ) {
3823
const char *opEnumName = machOperEnum(iopn);
3824
// Generate the case statement for this opcode
3825
fprintf(fp_cpp, " case %s:", opEnumName);
3826
fprintf(fp_cpp, " return NULL;\n");
3827
};
3828
3829
// Generate the default case for switch(opcode)
3830
fprintf(fp_cpp, " \n");
3831
fprintf(fp_cpp, " default:\n");
3832
fprintf(fp_cpp, " fprintf(stderr, \"Default MachOper Generator invoked for: \\n\");\n");
3833
fprintf(fp_cpp, " fprintf(stderr, \" opcode = %cd\\n\", opcode);\n", '%');
3834
fprintf(fp_cpp, " break;\n");
3835
fprintf(fp_cpp, " }\n");
3836
3837
// Generate the closing for method Matcher::MachOperGenerator
3838
fprintf(fp_cpp, " return NULL;\n");
3839
fprintf(fp_cpp, "};\n");
3840
}
3841
3842
3843
//---------------------------buildMachNode-------------------------------------
3844
// Build a new MachNode, for MachNodeGenerator or cisc-spilling
3845
void ArchDesc::buildMachNode(FILE *fp_cpp, InstructForm *inst, const char *indent) {
3846
const char *opType = NULL;
3847
const char *opClass = inst->_ident;
3848
3849
// Create the MachNode object
3850
fprintf(fp_cpp, "%s %sNode *node = new (C) %sNode();\n",indent, opClass,opClass);
3851
3852
if ( (inst->num_post_match_opnds() != 0) ) {
3853
// Instruction that contains operands which are not in match rule.
3854
//
3855
// Check if the first post-match component may be an interesting def
3856
bool dont_care = false;
3857
ComponentList &comp_list = inst->_components;
3858
Component *comp = NULL;
3859
comp_list.reset();
3860
if ( comp_list.match_iter() != NULL ) dont_care = true;
3861
3862
// Insert operands that are not in match-rule.
3863
// Only insert a DEF if the do_care flag is set
3864
comp_list.reset();
3865
while ( comp = comp_list.post_match_iter() ) {
3866
// Check if we don't care about DEFs or KILLs that are not USEs
3867
if ( dont_care && (! comp->isa(Component::USE)) ) {
3868
continue;
3869
}
3870
dont_care = true;
3871
// For each operand not in the match rule, call MachOperGenerator
3872
// with the enum for the opcode that needs to be built.
3873
ComponentList clist = inst->_components;
3874
int index = clist.operand_position(comp->_name, comp->_usedef, inst);
3875
const char *opcode = machOperEnum(comp->_type);
3876
fprintf(fp_cpp, "%s node->set_opnd_array(%d, ", indent, index);
3877
fprintf(fp_cpp, "MachOperGenerator(%s, C));\n", opcode);
3878
}
3879
}
3880
else if ( inst->is_chain_of_constant(_globalNames, opType) ) {
3881
// An instruction that chains from a constant!
3882
// In this case, we need to subsume the constant into the node
3883
// at operand position, oper_input_base().
3884
//
3885
// Fill in the constant
3886
fprintf(fp_cpp, "%s node->_opnd_array[%d] = ", indent,
3887
inst->oper_input_base(_globalNames));
3888
// #####
3889
// Check for multiple constants and then fill them in.
3890
// Just like MachOperGenerator
3891
const char *opName = inst->_matrule->_rChild->_opType;
3892
fprintf(fp_cpp, "new (C) %sOper(", opName);
3893
// Grab operand form
3894
OperandForm *op = (_globalNames[opName])->is_operand();
3895
// Look up the number of constants
3896
uint num_consts = op->num_consts(_globalNames);
3897
if ( (num_consts > 0) ) {
3898
uint i = 0;
3899
path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
3900
for ( i = 1; i < num_consts; ++i ) {
3901
fprintf(fp_cpp, ", ");
3902
path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
3903
}
3904
}
3905
fprintf(fp_cpp, " );\n");
3906
// #####
3907
}
3908
3909
// Fill in the bottom_type where requested
3910
if (inst->captures_bottom_type(_globalNames)) {
3911
if (strncmp("MachCall", inst->mach_base_class(_globalNames), strlen("MachCall"))) {
3912
fprintf(fp_cpp, "%s node->_bottom_type = _leaf->bottom_type();\n", indent);
3913
}
3914
}
3915
if( inst->is_ideal_if() ) {
3916
fprintf(fp_cpp, "%s node->_prob = _leaf->as_If()->_prob;\n", indent);
3917
fprintf(fp_cpp, "%s node->_fcnt = _leaf->as_If()->_fcnt;\n", indent);
3918
}
3919
if( inst->is_ideal_fastlock() ) {
3920
fprintf(fp_cpp, "%s node->_counters = _leaf->as_FastLock()->counters();\n", indent);
3921
fprintf(fp_cpp, "%s node->_rtm_counters = _leaf->as_FastLock()->rtm_counters();\n", indent);
3922
fprintf(fp_cpp, "%s node->_stack_rtm_counters = _leaf->as_FastLock()->stack_rtm_counters();\n", indent);
3923
}
3924
3925
}
3926
3927
//---------------------------declare_cisc_version------------------------------
3928
// Build CISC version of this instruction
3929
void InstructForm::declare_cisc_version(ArchDesc &AD, FILE *fp_hpp) {
3930
if( AD.can_cisc_spill() ) {
3931
InstructForm *inst_cisc = cisc_spill_alternate();
3932
if (inst_cisc != NULL) {
3933
fprintf(fp_hpp, " virtual int cisc_operand() const { return %d; }\n", cisc_spill_operand());
3934
fprintf(fp_hpp, " virtual MachNode *cisc_version(int offset, Compile* C);\n");
3935
fprintf(fp_hpp, " virtual void use_cisc_RegMask();\n");
3936
fprintf(fp_hpp, " virtual const RegMask *cisc_RegMask() const { return _cisc_RegMask; }\n");
3937
}
3938
}
3939
}
3940
3941
//---------------------------define_cisc_version-------------------------------
3942
// Build CISC version of this instruction
3943
bool InstructForm::define_cisc_version(ArchDesc &AD, FILE *fp_cpp) {
3944
InstructForm *inst_cisc = this->cisc_spill_alternate();
3945
if( AD.can_cisc_spill() && (inst_cisc != NULL) ) {
3946
const char *name = inst_cisc->_ident;
3947
assert( inst_cisc->num_opnds() == this->num_opnds(), "Must have same number of operands");
3948
OperandForm *cisc_oper = AD.cisc_spill_operand();
3949
assert( cisc_oper != NULL, "insanity check");
3950
const char *cisc_oper_name = cisc_oper->_ident;
3951
assert( cisc_oper_name != NULL, "insanity check");
3952
//
3953
// Set the correct reg_mask_or_stack for the cisc operand
3954
fprintf(fp_cpp, "\n");
3955
fprintf(fp_cpp, "void %sNode::use_cisc_RegMask() {\n", this->_ident);
3956
// Lookup the correct reg_mask_or_stack
3957
const char *reg_mask_name = cisc_reg_mask_name();
3958
fprintf(fp_cpp, " _cisc_RegMask = &STACK_OR_%s;\n", reg_mask_name);
3959
fprintf(fp_cpp, "}\n");
3960
//
3961
// Construct CISC version of this instruction
3962
fprintf(fp_cpp, "\n");
3963
fprintf(fp_cpp, "// Build CISC version of this instruction\n");
3964
fprintf(fp_cpp, "MachNode *%sNode::cisc_version( int offset, Compile* C ) {\n", this->_ident);
3965
// Create the MachNode object
3966
fprintf(fp_cpp, " %sNode *node = new (C) %sNode();\n", name, name);
3967
// Fill in the bottom_type where requested
3968
if ( this->captures_bottom_type(AD.globalNames()) ) {
3969
fprintf(fp_cpp, " node->_bottom_type = bottom_type();\n");
3970
}
3971
3972
uint cur_num_opnds = num_opnds();
3973
if (cur_num_opnds > 1 && cur_num_opnds != num_unique_opnds()) {
3974
fprintf(fp_cpp," node->_num_opnds = %d;\n", num_unique_opnds());
3975
}
3976
3977
fprintf(fp_cpp, "\n");
3978
fprintf(fp_cpp, " // Copy _idx, inputs and operands to new node\n");
3979
fprintf(fp_cpp, " fill_new_machnode(node, C);\n");
3980
// Construct operand to access [stack_pointer + offset]
3981
fprintf(fp_cpp, " // Construct operand to access [stack_pointer + offset]\n");
3982
fprintf(fp_cpp, " node->set_opnd_array(cisc_operand(), new (C) %sOper(offset));\n", cisc_oper_name);
3983
fprintf(fp_cpp, "\n");
3984
3985
// Return result and exit scope
3986
fprintf(fp_cpp, " return node;\n");
3987
fprintf(fp_cpp, "}\n");
3988
fprintf(fp_cpp, "\n");
3989
return true;
3990
}
3991
return false;
3992
}
3993
3994
//---------------------------declare_short_branch_methods----------------------
3995
// Build prototypes for short branch methods
3996
void InstructForm::declare_short_branch_methods(FILE *fp_hpp) {
3997
if (has_short_branch_form()) {
3998
fprintf(fp_hpp, " virtual MachNode *short_branch_version(Compile* C);\n");
3999
}
4000
}
4001
4002
//---------------------------define_short_branch_methods-----------------------
4003
// Build definitions for short branch methods
4004
bool InstructForm::define_short_branch_methods(ArchDesc &AD, FILE *fp_cpp) {
4005
if (has_short_branch_form()) {
4006
InstructForm *short_branch = short_branch_form();
4007
const char *name = short_branch->_ident;
4008
4009
// Construct short_branch_version() method.
4010
fprintf(fp_cpp, "// Build short branch version of this instruction\n");
4011
fprintf(fp_cpp, "MachNode *%sNode::short_branch_version(Compile* C) {\n", this->_ident);
4012
// Create the MachNode object
4013
fprintf(fp_cpp, " %sNode *node = new (C) %sNode();\n", name, name);
4014
if( is_ideal_if() ) {
4015
fprintf(fp_cpp, " node->_prob = _prob;\n");
4016
fprintf(fp_cpp, " node->_fcnt = _fcnt;\n");
4017
}
4018
// Fill in the bottom_type where requested
4019
if ( this->captures_bottom_type(AD.globalNames()) ) {
4020
fprintf(fp_cpp, " node->_bottom_type = bottom_type();\n");
4021
}
4022
4023
fprintf(fp_cpp, "\n");
4024
// Short branch version must use same node index for access
4025
// through allocator's tables
4026
fprintf(fp_cpp, " // Copy _idx, inputs and operands to new node\n");
4027
fprintf(fp_cpp, " fill_new_machnode(node, C);\n");
4028
4029
// Return result and exit scope
4030
fprintf(fp_cpp, " return node;\n");
4031
fprintf(fp_cpp, "}\n");
4032
fprintf(fp_cpp,"\n");
4033
return true;
4034
}
4035
return false;
4036
}
4037
4038
4039
//---------------------------buildMachNodeGenerator----------------------------
4040
// Build switch to invoke appropriate "new" MachNode for an opcode
4041
void ArchDesc::buildMachNodeGenerator(FILE *fp_cpp) {
4042
4043
// Build switch to invoke 'new' for a specific MachNode
4044
fprintf(fp_cpp, "\n");
4045
fprintf(fp_cpp, "\n");
4046
fprintf(fp_cpp,
4047
"//------------------------- MachNode Generator ---------------\n");
4048
fprintf(fp_cpp,
4049
"// A switch statement on the dense-packed user-defined type system\n"
4050
"// that invokes 'new' on the corresponding class constructor.\n");
4051
fprintf(fp_cpp, "\n");
4052
fprintf(fp_cpp, "MachNode *State::MachNodeGenerator");
4053
fprintf(fp_cpp, "(int opcode, Compile* C)");
4054
fprintf(fp_cpp, "{\n");
4055
fprintf(fp_cpp, " switch(opcode) {\n");
4056
4057
// Provide constructor for all user-defined instructions
4058
_instructions.reset();
4059
int opIndex = operandFormCount();
4060
InstructForm *inst;
4061
for( ; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
4062
// Ensure that matrule is defined.
4063
if ( inst->_matrule == NULL ) continue;
4064
4065
int opcode = opIndex++;
4066
const char *opClass = inst->_ident;
4067
char *opType = NULL;
4068
4069
// Generate the case statement for this instruction
4070
fprintf(fp_cpp, " case %s_rule:", opClass);
4071
4072
// Start local scope
4073
fprintf(fp_cpp, " {\n");
4074
// Generate code to construct the new MachNode
4075
buildMachNode(fp_cpp, inst, " ");
4076
// Return result and exit scope
4077
fprintf(fp_cpp, " return node;\n");
4078
fprintf(fp_cpp, " }\n");
4079
}
4080
4081
// Generate the default case for switch(opcode)
4082
fprintf(fp_cpp, " \n");
4083
fprintf(fp_cpp, " default:\n");
4084
fprintf(fp_cpp, " fprintf(stderr, \"Default MachNode Generator invoked for: \\n\");\n");
4085
fprintf(fp_cpp, " fprintf(stderr, \" opcode = %cd\\n\", opcode);\n", '%');
4086
fprintf(fp_cpp, " break;\n");
4087
fprintf(fp_cpp, " };\n");
4088
4089
// Generate the closing for method Matcher::MachNodeGenerator
4090
fprintf(fp_cpp, " return NULL;\n");
4091
fprintf(fp_cpp, "}\n");
4092
}
4093
4094
4095
//---------------------------buildInstructMatchCheck--------------------------
4096
// Output the method to Matcher which checks whether or not a specific
4097
// instruction has a matching rule for the host architecture.
4098
void ArchDesc::buildInstructMatchCheck(FILE *fp_cpp) const {
4099
fprintf(fp_cpp, "\n\n");
4100
fprintf(fp_cpp, "const bool Matcher::has_match_rule(int opcode) {\n");
4101
fprintf(fp_cpp, " assert(_last_machine_leaf < opcode && opcode < _last_opcode, \"opcode in range\");\n");
4102
fprintf(fp_cpp, " return _hasMatchRule[opcode];\n");
4103
fprintf(fp_cpp, "}\n\n");
4104
4105
fprintf(fp_cpp, "const bool Matcher::_hasMatchRule[_last_opcode] = {\n");
4106
int i;
4107
for (i = 0; i < _last_opcode - 1; i++) {
4108
fprintf(fp_cpp, " %-5s, // %s\n",
4109
_has_match_rule[i] ? "true" : "false",
4110
NodeClassNames[i]);
4111
}
4112
fprintf(fp_cpp, " %-5s // %s\n",
4113
_has_match_rule[i] ? "true" : "false",
4114
NodeClassNames[i]);
4115
fprintf(fp_cpp, "};\n");
4116
}
4117
4118
//---------------------------buildFrameMethods---------------------------------
4119
// Output the methods to Matcher which specify frame behavior
4120
void ArchDesc::buildFrameMethods(FILE *fp_cpp) {
4121
fprintf(fp_cpp,"\n\n");
4122
// Stack Direction
4123
fprintf(fp_cpp,"bool Matcher::stack_direction() const { return %s; }\n\n",
4124
_frame->_direction ? "true" : "false");
4125
// Sync Stack Slots
4126
fprintf(fp_cpp,"int Compile::sync_stack_slots() const { return %s; }\n\n",
4127
_frame->_sync_stack_slots);
4128
// Java Stack Alignment
4129
fprintf(fp_cpp,"uint Matcher::stack_alignment_in_bytes() { return %s; }\n\n",
4130
_frame->_alignment);
4131
// Java Return Address Location
4132
fprintf(fp_cpp,"OptoReg::Name Matcher::return_addr() const {");
4133
if (_frame->_return_addr_loc) {
4134
fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4135
_frame->_return_addr);
4136
}
4137
else {
4138
fprintf(fp_cpp," return OptoReg::stack2reg(%s); }\n\n",
4139
_frame->_return_addr);
4140
}
4141
// Java Stack Slot Preservation
4142
fprintf(fp_cpp,"uint Compile::in_preserve_stack_slots() ");
4143
fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_in_preserve_slots);
4144
// Top Of Stack Slot Preservation, for both Java and C
4145
fprintf(fp_cpp,"uint Compile::out_preserve_stack_slots() ");
4146
fprintf(fp_cpp,"{ return SharedRuntime::out_preserve_stack_slots(); }\n\n");
4147
// varargs C out slots killed
4148
fprintf(fp_cpp,"uint Compile::varargs_C_out_slots_killed() const ");
4149
fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_varargs_C_out_slots_killed);
4150
// Java Argument Position
4151
fprintf(fp_cpp,"void Matcher::calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length, bool is_outgoing) {\n");
4152
fprintf(fp_cpp,"%s\n", _frame->_calling_convention);
4153
fprintf(fp_cpp,"}\n\n");
4154
// Native Argument Position
4155
fprintf(fp_cpp,"void Matcher::c_calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length) {\n");
4156
fprintf(fp_cpp,"%s\n", _frame->_c_calling_convention);
4157
fprintf(fp_cpp,"}\n\n");
4158
// Java Return Value Location
4159
fprintf(fp_cpp,"OptoRegPair Matcher::return_value(uint ideal_reg, bool is_outgoing) {\n");
4160
fprintf(fp_cpp,"%s\n", _frame->_return_value);
4161
fprintf(fp_cpp,"}\n\n");
4162
// Native Return Value Location
4163
fprintf(fp_cpp,"OptoRegPair Matcher::c_return_value(uint ideal_reg, bool is_outgoing) {\n");
4164
fprintf(fp_cpp,"%s\n", _frame->_c_return_value);
4165
fprintf(fp_cpp,"}\n\n");
4166
4167
// Inline Cache Register, mask definition, and encoding
4168
fprintf(fp_cpp,"OptoReg::Name Matcher::inline_cache_reg() {");
4169
fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4170
_frame->_inline_cache_reg);
4171
fprintf(fp_cpp,"int Matcher::inline_cache_reg_encode() {");
4172
fprintf(fp_cpp," return _regEncode[inline_cache_reg()]; }\n\n");
4173
4174
// Interpreter's Method Oop Register, mask definition, and encoding
4175
fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_method_oop_reg() {");
4176
fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4177
_frame->_interpreter_method_oop_reg);
4178
fprintf(fp_cpp,"int Matcher::interpreter_method_oop_reg_encode() {");
4179
fprintf(fp_cpp," return _regEncode[interpreter_method_oop_reg()]; }\n\n");
4180
4181
// Interpreter's Frame Pointer Register, mask definition, and encoding
4182
fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_frame_pointer_reg() {");
4183
if (_frame->_interpreter_frame_pointer_reg == NULL)
4184
fprintf(fp_cpp," return OptoReg::Bad; }\n\n");
4185
else
4186
fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4187
_frame->_interpreter_frame_pointer_reg);
4188
4189
// Frame Pointer definition
4190
/* CNC - I can not contemplate having a different frame pointer between
4191
Java and native code; makes my head hurt to think about it.
4192
fprintf(fp_cpp,"OptoReg::Name Matcher::frame_pointer() const {");
4193
fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4194
_frame->_frame_pointer);
4195
*/
4196
// (Native) Frame Pointer definition
4197
fprintf(fp_cpp,"OptoReg::Name Matcher::c_frame_pointer() const {");
4198
fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4199
_frame->_frame_pointer);
4200
4201
// Number of callee-save + always-save registers for calling convention
4202
fprintf(fp_cpp, "// Number of callee-save + always-save registers\n");
4203
fprintf(fp_cpp, "int Matcher::number_of_saved_registers() {\n");
4204
RegDef *rdef;
4205
int nof_saved_registers = 0;
4206
_register->reset_RegDefs();
4207
while( (rdef = _register->iter_RegDefs()) != NULL ) {
4208
if( !strcmp(rdef->_callconv, "SOE") || !strcmp(rdef->_callconv, "AS") )
4209
++nof_saved_registers;
4210
}
4211
fprintf(fp_cpp, " return %d;\n", nof_saved_registers);
4212
fprintf(fp_cpp, "};\n\n");
4213
}
4214
4215
4216
4217
4218
static int PrintAdlcCisc = 0;
4219
//---------------------------identify_cisc_spilling----------------------------
4220
// Get info for the CISC_oracle and MachNode::cisc_version()
4221
void ArchDesc::identify_cisc_spill_instructions() {
4222
4223
if (_frame == NULL)
4224
return;
4225
4226
// Find the user-defined operand for cisc-spilling
4227
if( _frame->_cisc_spilling_operand_name != NULL ) {
4228
const Form *form = _globalNames[_frame->_cisc_spilling_operand_name];
4229
OperandForm *oper = form ? form->is_operand() : NULL;
4230
// Verify the user's suggestion
4231
if( oper != NULL ) {
4232
// Ensure that match field is defined.
4233
if ( oper->_matrule != NULL ) {
4234
MatchRule &mrule = *oper->_matrule;
4235
if( strcmp(mrule._opType,"AddP") == 0 ) {
4236
MatchNode *left = mrule._lChild;
4237
MatchNode *right= mrule._rChild;
4238
if( left != NULL && right != NULL ) {
4239
const Form *left_op = _globalNames[left->_opType]->is_operand();
4240
const Form *right_op = _globalNames[right->_opType]->is_operand();
4241
if( (left_op != NULL && right_op != NULL)
4242
&& (left_op->interface_type(_globalNames) == Form::register_interface)
4243
&& (right_op->interface_type(_globalNames) == Form::constant_interface) ) {
4244
// Successfully verified operand
4245
set_cisc_spill_operand( oper );
4246
if( _cisc_spill_debug ) {
4247
fprintf(stderr, "\n\nVerified CISC-spill operand %s\n\n", oper->_ident);
4248
}
4249
}
4250
}
4251
}
4252
}
4253
}
4254
}
4255
4256
if( cisc_spill_operand() != NULL ) {
4257
// N^2 comparison of instructions looking for a cisc-spilling version
4258
_instructions.reset();
4259
InstructForm *instr;
4260
for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
4261
// Ensure that match field is defined.
4262
if ( instr->_matrule == NULL ) continue;
4263
4264
MatchRule &mrule = *instr->_matrule;
4265
Predicate *pred = instr->build_predicate();
4266
4267
// Grab the machine type of the operand
4268
const char *rootOp = instr->_ident;
4269
mrule._machType = rootOp;
4270
4271
// Find result type for match
4272
const char *result = instr->reduce_result();
4273
4274
if( PrintAdlcCisc ) fprintf(stderr, " new instruction %s \n", instr->_ident ? instr->_ident : " ");
4275
bool found_cisc_alternate = false;
4276
_instructions.reset2();
4277
InstructForm *instr2;
4278
for( ; !found_cisc_alternate && (instr2 = (InstructForm*)_instructions.iter2()) != NULL; ) {
4279
// Ensure that match field is defined.
4280
if( PrintAdlcCisc ) fprintf(stderr, " instr2 == %s \n", instr2->_ident ? instr2->_ident : " ");
4281
if ( instr2->_matrule != NULL
4282
&& (instr != instr2 ) // Skip self
4283
&& (instr2->reduce_result() != NULL) // want same result
4284
&& (strcmp(result, instr2->reduce_result()) == 0)) {
4285
MatchRule &mrule2 = *instr2->_matrule;
4286
Predicate *pred2 = instr2->build_predicate();
4287
found_cisc_alternate = instr->cisc_spills_to(*this, instr2);
4288
}
4289
}
4290
}
4291
}
4292
}
4293
4294
//---------------------------build_cisc_spilling-------------------------------
4295
// Get info for the CISC_oracle and MachNode::cisc_version()
4296
void ArchDesc::build_cisc_spill_instructions(FILE *fp_hpp, FILE *fp_cpp) {
4297
// Output the table for cisc spilling
4298
fprintf(fp_cpp, "// The following instructions can cisc-spill\n");
4299
_instructions.reset();
4300
InstructForm *inst = NULL;
4301
for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
4302
// Ensure this is a machine-world instruction
4303
if ( inst->ideal_only() ) continue;
4304
const char *inst_name = inst->_ident;
4305
int operand = inst->cisc_spill_operand();
4306
if( operand != AdlcVMDeps::Not_cisc_spillable ) {
4307
InstructForm *inst2 = inst->cisc_spill_alternate();
4308
fprintf(fp_cpp, "// %s can cisc-spill operand %d to %s\n", inst->_ident, operand, inst2->_ident);
4309
}
4310
}
4311
fprintf(fp_cpp, "\n\n");
4312
}
4313
4314
//---------------------------identify_short_branches----------------------------
4315
// Get info for our short branch replacement oracle.
4316
void ArchDesc::identify_short_branches() {
4317
// Walk over all instructions, checking to see if they match a short
4318
// branching alternate.
4319
_instructions.reset();
4320
InstructForm *instr;
4321
while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
4322
// The instruction must have a match rule.
4323
if (instr->_matrule != NULL &&
4324
instr->is_short_branch()) {
4325
4326
_instructions.reset2();
4327
InstructForm *instr2;
4328
while( (instr2 = (InstructForm*)_instructions.iter2()) != NULL ) {
4329
instr2->check_branch_variant(*this, instr);
4330
}
4331
}
4332
}
4333
}
4334
4335
4336
//---------------------------identify_unique_operands---------------------------
4337
// Identify unique operands.
4338
void ArchDesc::identify_unique_operands() {
4339
// Walk over all instructions.
4340
_instructions.reset();
4341
InstructForm *instr;
4342
while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
4343
// Ensure this is a machine-world instruction
4344
if (!instr->ideal_only()) {
4345
instr->set_unique_opnds();
4346
}
4347
}
4348
}
4349
4350