Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/adlc/output_h.cpp
32285 views
1
/*
2
* Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
// output_h.cpp - Class HPP file output routines for architecture definition
26
#include "adlc.hpp"
27
28
// The comment delimiter used in format statements after assembler instructions.
29
#if defined(PPC64)
30
#define commentSeperator "\t//"
31
#else
32
#define commentSeperator "!"
33
#endif
34
35
// Generate the #define that describes the number of registers.
36
static void defineRegCount(FILE *fp, RegisterForm *registers) {
37
if (registers) {
38
int regCount = AdlcVMDeps::Physical + registers->_rdefs.count();
39
fprintf(fp,"\n");
40
fprintf(fp,"// the number of reserved registers + machine registers.\n");
41
fprintf(fp,"#define REG_COUNT %d\n", regCount);
42
}
43
}
44
45
// Output enumeration of machine register numbers
46
// (1)
47
// // Enumerate machine registers starting after reserved regs.
48
// // in the order of occurrence in the register block.
49
// enum MachRegisterNumbers {
50
// EAX_num = 0,
51
// ...
52
// _last_Mach_Reg
53
// }
54
void ArchDesc::buildMachRegisterNumbers(FILE *fp_hpp) {
55
if (_register) {
56
RegDef *reg_def = NULL;
57
58
// Output a #define for the number of machine registers
59
defineRegCount(fp_hpp, _register);
60
61
// Count all the Save_On_Entry and Always_Save registers
62
int saved_on_entry = 0;
63
int c_saved_on_entry = 0;
64
_register->reset_RegDefs();
65
while( (reg_def = _register->iter_RegDefs()) != NULL ) {
66
if( strcmp(reg_def->_callconv,"SOE") == 0 ||
67
strcmp(reg_def->_callconv,"AS") == 0 ) ++saved_on_entry;
68
if( strcmp(reg_def->_c_conv,"SOE") == 0 ||
69
strcmp(reg_def->_c_conv,"AS") == 0 ) ++c_saved_on_entry;
70
}
71
fprintf(fp_hpp, "\n");
72
fprintf(fp_hpp, "// the number of save_on_entry + always_saved registers.\n");
73
fprintf(fp_hpp, "#define MAX_SAVED_ON_ENTRY_REG_COUNT %d\n", max(saved_on_entry,c_saved_on_entry));
74
fprintf(fp_hpp, "#define SAVED_ON_ENTRY_REG_COUNT %d\n", saved_on_entry);
75
fprintf(fp_hpp, "#define C_SAVED_ON_ENTRY_REG_COUNT %d\n", c_saved_on_entry);
76
77
// (1)
78
// Build definition for enumeration of register numbers
79
fprintf(fp_hpp, "\n");
80
fprintf(fp_hpp, "// Enumerate machine register numbers starting after reserved regs.\n");
81
fprintf(fp_hpp, "// in the order of occurrence in the register block.\n");
82
fprintf(fp_hpp, "enum MachRegisterNumbers {\n");
83
84
// Output the register number for each register in the allocation classes
85
_register->reset_RegDefs();
86
int i = 0;
87
while( (reg_def = _register->iter_RegDefs()) != NULL ) {
88
fprintf(fp_hpp," %s_num,", reg_def->_regname);
89
for (int j = 0; j < 20-(int)strlen(reg_def->_regname); j++) fprintf(fp_hpp, " ");
90
fprintf(fp_hpp," // enum %3d, regnum %3d, reg encode %3s\n",
91
i++,
92
reg_def->register_num(),
93
reg_def->register_encode());
94
}
95
// Finish defining enumeration
96
fprintf(fp_hpp, " _last_Mach_Reg // %d\n", i);
97
fprintf(fp_hpp, "};\n");
98
}
99
100
fprintf(fp_hpp, "\n// Size of register-mask in ints\n");
101
fprintf(fp_hpp, "#define RM_SIZE %d\n",RegisterForm::RegMask_Size());
102
fprintf(fp_hpp, "// Unroll factor for loops over the data in a RegMask\n");
103
fprintf(fp_hpp, "#define FORALL_BODY ");
104
int len = RegisterForm::RegMask_Size();
105
for( int i = 0; i < len; i++ )
106
fprintf(fp_hpp, "BODY(%d) ",i);
107
fprintf(fp_hpp, "\n\n");
108
109
fprintf(fp_hpp,"class RegMask;\n");
110
// All RegMasks are declared "extern const ..." in ad_<arch>.hpp
111
// fprintf(fp_hpp,"extern RegMask STACK_OR_STACK_SLOTS_mask;\n\n");
112
}
113
114
115
// Output enumeration of machine register encodings
116
// (2)
117
// // Enumerate machine registers starting after reserved regs.
118
// // in the order of occurrence in the alloc_class(es).
119
// enum MachRegisterEncodes {
120
// EAX_enc = 0x00,
121
// ...
122
// }
123
void ArchDesc::buildMachRegisterEncodes(FILE *fp_hpp) {
124
if (_register) {
125
RegDef *reg_def = NULL;
126
RegDef *reg_def_next = NULL;
127
128
// (2)
129
// Build definition for enumeration of encode values
130
fprintf(fp_hpp, "\n");
131
fprintf(fp_hpp, "// Enumerate machine registers starting after reserved regs.\n");
132
fprintf(fp_hpp, "// in the order of occurrence in the alloc_class(es).\n");
133
fprintf(fp_hpp, "enum MachRegisterEncodes {\n");
134
135
// Find max enum string length.
136
size_t maxlen = 0;
137
_register->reset_RegDefs();
138
reg_def = _register->iter_RegDefs();
139
while (reg_def != NULL) {
140
size_t len = strlen(reg_def->_regname);
141
if (len > maxlen) maxlen = len;
142
reg_def = _register->iter_RegDefs();
143
}
144
145
// Output the register encoding for each register in the allocation classes
146
_register->reset_RegDefs();
147
reg_def_next = _register->iter_RegDefs();
148
while( (reg_def = reg_def_next) != NULL ) {
149
reg_def_next = _register->iter_RegDefs();
150
fprintf(fp_hpp," %s_enc", reg_def->_regname);
151
for (size_t i = strlen(reg_def->_regname); i < maxlen; i++) fprintf(fp_hpp, " ");
152
fprintf(fp_hpp," = %3s%s\n", reg_def->register_encode(), reg_def_next == NULL? "" : "," );
153
}
154
// Finish defining enumeration
155
fprintf(fp_hpp, "};\n");
156
157
} // Done with register form
158
}
159
160
161
// Declare an array containing the machine register names, strings.
162
static void declareRegNames(FILE *fp, RegisterForm *registers) {
163
if (registers) {
164
// fprintf(fp,"\n");
165
// fprintf(fp,"// An array of character pointers to machine register names.\n");
166
// fprintf(fp,"extern const char *regName[];\n");
167
}
168
}
169
170
// Declare an array containing the machine register sizes in 32-bit words.
171
void ArchDesc::declareRegSizes(FILE *fp) {
172
// regSize[] is not used
173
}
174
175
// Declare an array containing the machine register encoding values
176
static void declareRegEncodes(FILE *fp, RegisterForm *registers) {
177
if (registers) {
178
// // //
179
// fprintf(fp,"\n");
180
// fprintf(fp,"// An array containing the machine register encode values\n");
181
// fprintf(fp,"extern const char regEncode[];\n");
182
}
183
}
184
185
186
// ---------------------------------------------------------------------------
187
//------------------------------Utilities to build Instruction Classes--------
188
// ---------------------------------------------------------------------------
189
static void out_RegMask(FILE *fp) {
190
fprintf(fp," virtual const RegMask &out_RegMask() const;\n");
191
}
192
193
// ---------------------------------------------------------------------------
194
//--------Utilities to build MachOper and MachNode derived Classes------------
195
// ---------------------------------------------------------------------------
196
197
//------------------------------Utilities to build Operand Classes------------
198
static void in_RegMask(FILE *fp) {
199
fprintf(fp," virtual const RegMask *in_RegMask(int index) const;\n");
200
}
201
202
static void declareConstStorage(FILE *fp, FormDict &globals, OperandForm *oper) {
203
int i = 0;
204
Component *comp;
205
206
if (oper->num_consts(globals) == 0) return;
207
// Iterate over the component list looking for constants
208
oper->_components.reset();
209
if ((comp = oper->_components.iter()) == NULL) {
210
assert(oper->num_consts(globals) == 1, "Bad component list detected.\n");
211
const char *type = oper->ideal_type(globals);
212
if (!strcmp(type, "ConI")) {
213
if (i > 0) fprintf(fp,", ");
214
fprintf(fp," int32 _c%d;\n", i);
215
}
216
else if (!strcmp(type, "ConP")) {
217
if (i > 0) fprintf(fp,", ");
218
fprintf(fp," const TypePtr *_c%d;\n", i);
219
}
220
else if (!strcmp(type, "ConN")) {
221
if (i > 0) fprintf(fp,", ");
222
fprintf(fp," const TypeNarrowOop *_c%d;\n", i);
223
}
224
else if (!strcmp(type, "ConNKlass")) {
225
if (i > 0) fprintf(fp,", ");
226
fprintf(fp," const TypeNarrowKlass *_c%d;\n", i);
227
}
228
else if (!strcmp(type, "ConL")) {
229
if (i > 0) fprintf(fp,", ");
230
fprintf(fp," jlong _c%d;\n", i);
231
}
232
else if (!strcmp(type, "ConF")) {
233
if (i > 0) fprintf(fp,", ");
234
fprintf(fp," jfloat _c%d;\n", i);
235
}
236
else if (!strcmp(type, "ConD")) {
237
if (i > 0) fprintf(fp,", ");
238
fprintf(fp," jdouble _c%d;\n", i);
239
}
240
else if (!strcmp(type, "Bool")) {
241
fprintf(fp,"private:\n");
242
fprintf(fp," BoolTest::mask _c%d;\n", i);
243
fprintf(fp,"public:\n");
244
}
245
else {
246
assert(0, "Non-constant operand lacks component list.");
247
}
248
} // end if NULL
249
else {
250
oper->_components.reset();
251
while ((comp = oper->_components.iter()) != NULL) {
252
if (!strcmp(comp->base_type(globals), "ConI")) {
253
fprintf(fp," jint _c%d;\n", i);
254
i++;
255
}
256
else if (!strcmp(comp->base_type(globals), "ConP")) {
257
fprintf(fp," const TypePtr *_c%d;\n", i);
258
i++;
259
}
260
else if (!strcmp(comp->base_type(globals), "ConN")) {
261
fprintf(fp," const TypePtr *_c%d;\n", i);
262
i++;
263
}
264
else if (!strcmp(comp->base_type(globals), "ConNKlass")) {
265
fprintf(fp," const TypePtr *_c%d;\n", i);
266
i++;
267
}
268
else if (!strcmp(comp->base_type(globals), "ConL")) {
269
fprintf(fp," jlong _c%d;\n", i);
270
i++;
271
}
272
else if (!strcmp(comp->base_type(globals), "ConF")) {
273
fprintf(fp," jfloat _c%d;\n", i);
274
i++;
275
}
276
else if (!strcmp(comp->base_type(globals), "ConD")) {
277
fprintf(fp," jdouble _c%d;\n", i);
278
i++;
279
}
280
}
281
}
282
}
283
284
// Declare constructor.
285
// Parameters start with condition code, then all other constants
286
//
287
// (0) public:
288
// (1) MachXOper(int32 ccode, int32 c0, int32 c1, ..., int32 cn)
289
// (2) : _ccode(ccode), _c0(c0), _c1(c1), ..., _cn(cn) { }
290
//
291
static void defineConstructor(FILE *fp, const char *name, uint num_consts,
292
ComponentList &lst, bool is_ideal_bool,
293
Form::DataType constant_type, FormDict &globals) {
294
fprintf(fp,"public:\n");
295
// generate line (1)
296
fprintf(fp," %sOper(", name);
297
if( num_consts == 0 ) {
298
fprintf(fp,") {}\n");
299
return;
300
}
301
302
// generate parameters for constants
303
uint i = 0;
304
Component *comp;
305
lst.reset();
306
if ((comp = lst.iter()) == NULL) {
307
assert(num_consts == 1, "Bad component list detected.\n");
308
switch( constant_type ) {
309
case Form::idealI : {
310
fprintf(fp,is_ideal_bool ? "BoolTest::mask c%d" : "int32 c%d", i);
311
break;
312
}
313
case Form::idealN : { fprintf(fp,"const TypeNarrowOop *c%d", i); break; }
314
case Form::idealNKlass : { fprintf(fp,"const TypeNarrowKlass *c%d", i); break; }
315
case Form::idealP : { fprintf(fp,"const TypePtr *c%d", i); break; }
316
case Form::idealL : { fprintf(fp,"jlong c%d", i); break; }
317
case Form::idealF : { fprintf(fp,"jfloat c%d", i); break; }
318
case Form::idealD : { fprintf(fp,"jdouble c%d", i); break; }
319
default:
320
assert(!is_ideal_bool, "Non-constant operand lacks component list.");
321
break;
322
}
323
} // end if NULL
324
else {
325
lst.reset();
326
while((comp = lst.iter()) != NULL) {
327
if (!strcmp(comp->base_type(globals), "ConI")) {
328
if (i > 0) fprintf(fp,", ");
329
fprintf(fp,"int32 c%d", i);
330
i++;
331
}
332
else if (!strcmp(comp->base_type(globals), "ConP")) {
333
if (i > 0) fprintf(fp,", ");
334
fprintf(fp,"const TypePtr *c%d", i);
335
i++;
336
}
337
else if (!strcmp(comp->base_type(globals), "ConN")) {
338
if (i > 0) fprintf(fp,", ");
339
fprintf(fp,"const TypePtr *c%d", i);
340
i++;
341
}
342
else if (!strcmp(comp->base_type(globals), "ConNKlass")) {
343
if (i > 0) fprintf(fp,", ");
344
fprintf(fp,"const TypePtr *c%d", i);
345
i++;
346
}
347
else if (!strcmp(comp->base_type(globals), "ConL")) {
348
if (i > 0) fprintf(fp,", ");
349
fprintf(fp,"jlong c%d", i);
350
i++;
351
}
352
else if (!strcmp(comp->base_type(globals), "ConF")) {
353
if (i > 0) fprintf(fp,", ");
354
fprintf(fp,"jfloat c%d", i);
355
i++;
356
}
357
else if (!strcmp(comp->base_type(globals), "ConD")) {
358
if (i > 0) fprintf(fp,", ");
359
fprintf(fp,"jdouble c%d", i);
360
i++;
361
}
362
else if (!strcmp(comp->base_type(globals), "Bool")) {
363
if (i > 0) fprintf(fp,", ");
364
fprintf(fp,"BoolTest::mask c%d", i);
365
i++;
366
}
367
}
368
}
369
// finish line (1) and start line (2)
370
fprintf(fp,") : ");
371
// generate initializers for constants
372
i = 0;
373
fprintf(fp,"_c%d(c%d)", i, i);
374
for( i = 1; i < num_consts; ++i) {
375
fprintf(fp,", _c%d(c%d)", i, i);
376
}
377
// The body for the constructor is empty
378
fprintf(fp," {}\n");
379
}
380
381
// ---------------------------------------------------------------------------
382
// Utilities to generate format rules for machine operands and instructions
383
// ---------------------------------------------------------------------------
384
385
// Generate the format rule for condition codes
386
static void defineCCodeDump(OperandForm* oper, FILE *fp, int i) {
387
assert(oper != NULL, "what");
388
CondInterface* cond = oper->_interface->is_CondInterface();
389
fprintf(fp, " if( _c%d == BoolTest::eq ) st->print_raw(\"%s\");\n",i,cond->_equal_format);
390
fprintf(fp, " else if( _c%d == BoolTest::ne ) st->print_raw(\"%s\");\n",i,cond->_not_equal_format);
391
fprintf(fp, " else if( _c%d == BoolTest::le ) st->print_raw(\"%s\");\n",i,cond->_less_equal_format);
392
fprintf(fp, " else if( _c%d == BoolTest::ge ) st->print_raw(\"%s\");\n",i,cond->_greater_equal_format);
393
fprintf(fp, " else if( _c%d == BoolTest::lt ) st->print_raw(\"%s\");\n",i,cond->_less_format);
394
fprintf(fp, " else if( _c%d == BoolTest::gt ) st->print_raw(\"%s\");\n",i,cond->_greater_format);
395
fprintf(fp, " else if( _c%d == BoolTest::overflow ) st->print_raw(\"%s\");\n",i,cond->_overflow_format);
396
fprintf(fp, " else if( _c%d == BoolTest::no_overflow ) st->print_raw(\"%s\");\n",i,cond->_no_overflow_format);
397
}
398
399
// Output code that dumps constant values, increment "i" if type is constant
400
static uint dump_spec_constant(FILE *fp, const char *ideal_type, uint i, OperandForm* oper) {
401
if (!strcmp(ideal_type, "ConI")) {
402
fprintf(fp," st->print(\"#%%d\", _c%d);\n", i);
403
fprintf(fp," st->print(\"/0x%%08x\", _c%d);\n", i);
404
++i;
405
}
406
else if (!strcmp(ideal_type, "ConP")) {
407
fprintf(fp," _c%d->dump_on(st);\n", i);
408
++i;
409
}
410
else if (!strcmp(ideal_type, "ConN")) {
411
fprintf(fp," _c%d->dump_on(st);\n", i);
412
++i;
413
}
414
else if (!strcmp(ideal_type, "ConNKlass")) {
415
fprintf(fp," _c%d->dump_on(st);\n", i);
416
++i;
417
}
418
else if (!strcmp(ideal_type, "ConL")) {
419
fprintf(fp," st->print(\"#\" INT64_FORMAT, (int64_t)_c%d);\n", i);
420
fprintf(fp," st->print(\"/\" PTR64_FORMAT, (uint64_t)_c%d);\n", i);
421
++i;
422
}
423
else if (!strcmp(ideal_type, "ConF")) {
424
fprintf(fp," st->print(\"#%%f\", _c%d);\n", i);
425
fprintf(fp," jint _c%di = JavaValue(_c%d).get_jint();\n", i, i);
426
fprintf(fp," st->print(\"/0x%%x/\", _c%di);\n", i);
427
++i;
428
}
429
else if (!strcmp(ideal_type, "ConD")) {
430
fprintf(fp," st->print(\"#%%f\", _c%d);\n", i);
431
fprintf(fp," jlong _c%dl = JavaValue(_c%d).get_jlong();\n", i, i);
432
fprintf(fp," st->print(\"/\" PTR64_FORMAT, (uint64_t)_c%dl);\n", i);
433
++i;
434
}
435
else if (!strcmp(ideal_type, "Bool")) {
436
defineCCodeDump(oper, fp,i);
437
++i;
438
}
439
440
return i;
441
}
442
443
// Generate the format rule for an operand
444
void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file = false) {
445
if (!for_c_file) {
446
// invoked after output #ifndef PRODUCT to ad_<arch>.hpp
447
// compile the bodies separately, to cut down on recompilations
448
fprintf(fp," virtual void int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const;\n");
449
fprintf(fp," virtual void ext_format(PhaseRegAlloc *ra, const MachNode *node, int idx, outputStream *st) const;\n");
450
return;
451
}
452
453
// Local pointer indicates remaining part of format rule
454
int idx = 0; // position of operand in match rule
455
456
// Generate internal format function, used when stored locally
457
fprintf(fp, "\n#ifndef PRODUCT\n");
458
fprintf(fp,"void %sOper::int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const {\n", oper._ident);
459
// Generate the user-defined portion of the format
460
if (oper._format) {
461
if ( oper._format->_strings.count() != 0 ) {
462
// No initialization code for int_format
463
464
// Build the format from the entries in strings and rep_vars
465
const char *string = NULL;
466
oper._format->_rep_vars.reset();
467
oper._format->_strings.reset();
468
while ( (string = oper._format->_strings.iter()) != NULL ) {
469
470
// Check if this is a standard string or a replacement variable
471
if ( string != NameList::_signal ) {
472
// Normal string
473
// Pass through to st->print
474
fprintf(fp," st->print_raw(\"%s\");\n", string);
475
} else {
476
// Replacement variable
477
const char *rep_var = oper._format->_rep_vars.iter();
478
// Check that it is a local name, and an operand
479
const Form* form = oper._localNames[rep_var];
480
if (form == NULL) {
481
globalAD->syntax_err(oper._linenum,
482
"\'%s\' not found in format for %s\n", rep_var, oper._ident);
483
assert(form, "replacement variable was not found in local names");
484
}
485
OperandForm *op = form->is_operand();
486
// Get index if register or constant
487
if ( op->_matrule && op->_matrule->is_base_register(globals) ) {
488
idx = oper.register_position( globals, rep_var);
489
}
490
else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
491
idx = oper.constant_position( globals, rep_var);
492
} else {
493
idx = 0;
494
}
495
496
// output invocation of "$..."s format function
497
if ( op != NULL ) op->int_format(fp, globals, idx);
498
499
if ( idx == -1 ) {
500
fprintf(stderr,
501
"Using a name, %s, that isn't in match rule\n", rep_var);
502
assert( strcmp(op->_ident,"label")==0, "Unimplemented");
503
}
504
} // Done with a replacement variable
505
} // Done with all format strings
506
} else {
507
// Default formats for base operands (RegI, RegP, ConI, ConP, ...)
508
oper.int_format(fp, globals, 0);
509
}
510
511
} else { // oper._format == NULL
512
// Provide a few special case formats where the AD writer cannot.
513
if ( strcmp(oper._ident,"Universe")==0 ) {
514
fprintf(fp, " st->print(\"$$univ\");\n");
515
}
516
// labelOper::int_format is defined in ad_<...>.cpp
517
}
518
// ALWAYS! Provide a special case output for condition codes.
519
if( oper.is_ideal_bool() ) {
520
defineCCodeDump(&oper, fp,0);
521
}
522
fprintf(fp,"}\n");
523
524
// Generate external format function, when data is stored externally
525
fprintf(fp,"void %sOper::ext_format(PhaseRegAlloc *ra, const MachNode *node, int idx, outputStream *st) const {\n", oper._ident);
526
// Generate the user-defined portion of the format
527
if (oper._format) {
528
if ( oper._format->_strings.count() != 0 ) {
529
530
// Check for a replacement string "$..."
531
if ( oper._format->_rep_vars.count() != 0 ) {
532
// Initialization code for ext_format
533
}
534
535
// Build the format from the entries in strings and rep_vars
536
const char *string = NULL;
537
oper._format->_rep_vars.reset();
538
oper._format->_strings.reset();
539
while ( (string = oper._format->_strings.iter()) != NULL ) {
540
541
// Check if this is a standard string or a replacement variable
542
if ( string != NameList::_signal ) {
543
// Normal string
544
// Pass through to st->print
545
fprintf(fp," st->print_raw(\"%s\");\n", string);
546
} else {
547
// Replacement variable
548
const char *rep_var = oper._format->_rep_vars.iter();
549
// Check that it is a local name, and an operand
550
const Form* form = oper._localNames[rep_var];
551
if (form == NULL) {
552
globalAD->syntax_err(oper._linenum,
553
"\'%s\' not found in format for %s\n", rep_var, oper._ident);
554
assert(form, "replacement variable was not found in local names");
555
}
556
OperandForm *op = form->is_operand();
557
// Get index if register or constant
558
if ( op->_matrule && op->_matrule->is_base_register(globals) ) {
559
idx = oper.register_position( globals, rep_var);
560
}
561
else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
562
idx = oper.constant_position( globals, rep_var);
563
} else {
564
idx = 0;
565
}
566
// output invocation of "$..."s format function
567
if ( op != NULL ) op->ext_format(fp, globals, idx);
568
569
// Lookup the index position of the replacement variable
570
idx = oper._components.operand_position_format(rep_var, &oper);
571
if ( idx == -1 ) {
572
fprintf(stderr,
573
"Using a name, %s, that isn't in match rule\n", rep_var);
574
assert( strcmp(op->_ident,"label")==0, "Unimplemented");
575
}
576
} // Done with a replacement variable
577
} // Done with all format strings
578
579
} else {
580
// Default formats for base operands (RegI, RegP, ConI, ConP, ...)
581
oper.ext_format(fp, globals, 0);
582
}
583
} else { // oper._format == NULL
584
// Provide a few special case formats where the AD writer cannot.
585
if ( strcmp(oper._ident,"Universe")==0 ) {
586
fprintf(fp, " st->print(\"$$univ\");\n");
587
}
588
// labelOper::ext_format is defined in ad_<...>.cpp
589
}
590
// ALWAYS! Provide a special case output for condition codes.
591
if( oper.is_ideal_bool() ) {
592
defineCCodeDump(&oper, fp,0);
593
}
594
fprintf(fp, "}\n");
595
fprintf(fp, "#endif\n");
596
}
597
598
599
// Generate the format rule for an instruction
600
void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &inst, bool for_c_file = false) {
601
if (!for_c_file) {
602
// compile the bodies separately, to cut down on recompilations
603
// #ifndef PRODUCT region generated by caller
604
fprintf(fp," virtual void format(PhaseRegAlloc *ra, outputStream *st) const;\n");
605
return;
606
}
607
608
// Define the format function
609
fprintf(fp, "#ifndef PRODUCT\n");
610
fprintf(fp, "void %sNode::format(PhaseRegAlloc *ra, outputStream *st) const {\n", inst._ident);
611
612
// Generate the user-defined portion of the format
613
if( inst._format ) {
614
// If there are replacement variables,
615
// Generate index values needed for determining the operand position
616
if( inst._format->_rep_vars.count() )
617
inst.index_temps(fp, globals);
618
619
// Build the format from the entries in strings and rep_vars
620
const char *string = NULL;
621
inst._format->_rep_vars.reset();
622
inst._format->_strings.reset();
623
while( (string = inst._format->_strings.iter()) != NULL ) {
624
fprintf(fp," ");
625
// Check if this is a standard string or a replacement variable
626
if( string == NameList::_signal ) { // Replacement variable
627
const char* rep_var = inst._format->_rep_vars.iter();
628
inst.rep_var_format( fp, rep_var);
629
} else if( string == NameList::_signal3 ) { // Replacement variable in raw text
630
const char* rep_var = inst._format->_rep_vars.iter();
631
const Form *form = inst._localNames[rep_var];
632
if (form == NULL) {
633
fprintf(stderr, "unknown replacement variable in format statement: '%s'\n", rep_var);
634
assert(false, "ShouldNotReachHere()");
635
}
636
OpClassForm *opc = form->is_opclass();
637
assert( opc, "replacement variable was not found in local names");
638
// Lookup the index position of the replacement variable
639
int idx = inst.operand_position_format(rep_var);
640
if ( idx == -1 ) {
641
assert( strcmp(opc->_ident,"label")==0, "Unimplemented");
642
assert( false, "ShouldNotReachHere()");
643
}
644
645
if (inst.is_noninput_operand(idx)) {
646
assert( false, "ShouldNotReachHere()");
647
} else {
648
// Output the format call for this operand
649
fprintf(fp,"opnd_array(%d)",idx);
650
}
651
rep_var = inst._format->_rep_vars.iter();
652
inst._format->_strings.iter();
653
if ( strcmp(rep_var,"$constant") == 0 && opc->is_operand()) {
654
Form::DataType constant_type = form->is_operand()->is_base_constant(globals);
655
if ( constant_type == Form::idealD ) {
656
fprintf(fp,"->constantD()");
657
} else if ( constant_type == Form::idealF ) {
658
fprintf(fp,"->constantF()");
659
} else if ( constant_type == Form::idealL ) {
660
fprintf(fp,"->constantL()");
661
} else {
662
fprintf(fp,"->constant()");
663
}
664
} else if ( strcmp(rep_var,"$cmpcode") == 0) {
665
fprintf(fp,"->ccode()");
666
} else {
667
assert( false, "ShouldNotReachHere()");
668
}
669
} else if( string == NameList::_signal2 ) // Raw program text
670
fputs(inst._format->_strings.iter(), fp);
671
else
672
fprintf(fp,"st->print_raw(\"%s\");\n", string);
673
} // Done with all format strings
674
} // Done generating the user-defined portion of the format
675
676
// Add call debug info automatically
677
Form::CallType call_type = inst.is_ideal_call();
678
if( call_type != Form::invalid_type ) {
679
switch( call_type ) {
680
case Form::JAVA_DYNAMIC:
681
fprintf(fp," _method->print_short_name(st);\n");
682
break;
683
case Form::JAVA_STATIC:
684
fprintf(fp," if( _method ) _method->print_short_name(st);\n");
685
fprintf(fp," else st->print(\" wrapper for: %%s\", _name);\n");
686
fprintf(fp," if( !_method ) dump_trap_args(st);\n");
687
break;
688
case Form::JAVA_COMPILED:
689
case Form::JAVA_INTERP:
690
break;
691
case Form::JAVA_RUNTIME:
692
case Form::JAVA_LEAF:
693
case Form::JAVA_NATIVE:
694
fprintf(fp," st->print(\" %%s\", _name);");
695
break;
696
default:
697
assert(0,"ShouldNotReachHere");
698
}
699
fprintf(fp, " st->cr();\n" );
700
fprintf(fp, " if (_jvms) _jvms->format(ra, this, st); else st->print_cr(\" No JVM State Info\");\n" );
701
fprintf(fp, " st->print(\" # \");\n" );
702
fprintf(fp, " if( _jvms && _oop_map ) _oop_map->print_on(st);\n");
703
}
704
else if(inst.is_ideal_safepoint()) {
705
fprintf(fp, " st->print_raw(\"\");\n" );
706
fprintf(fp, " if (_jvms) _jvms->format(ra, this, st); else st->print_cr(\" No JVM State Info\");\n" );
707
fprintf(fp, " st->print(\" # \");\n" );
708
fprintf(fp, " if( _jvms && _oop_map ) _oop_map->print_on(st);\n");
709
}
710
else if( inst.is_ideal_if() ) {
711
fprintf(fp, " st->print(\" P=%%f C=%%f\",_prob,_fcnt);\n" );
712
}
713
else if( inst.is_ideal_mem() ) {
714
// Print out the field name if available to improve readability
715
fprintf(fp, " if (ra->C->alias_type(adr_type())->field() != NULL) {\n");
716
fprintf(fp, " ciField* f = ra->C->alias_type(adr_type())->field();\n");
717
fprintf(fp, " st->print(\" %s Field: \");\n", commentSeperator);
718
fprintf(fp, " if (f->is_volatile())\n");
719
fprintf(fp, " st->print(\"volatile \");\n");
720
fprintf(fp, " f->holder()->name()->print_symbol_on(st);\n");
721
fprintf(fp, " st->print(\".\");\n");
722
fprintf(fp, " f->name()->print_symbol_on(st);\n");
723
fprintf(fp, " if (f->is_constant())\n");
724
fprintf(fp, " st->print(\" (constant)\");\n");
725
fprintf(fp, " } else {\n");
726
// Make sure 'Volatile' gets printed out
727
fprintf(fp, " if (ra->C->alias_type(adr_type())->is_volatile())\n");
728
fprintf(fp, " st->print(\" volatile!\");\n");
729
fprintf(fp, " }\n");
730
}
731
732
// Complete the definition of the format function
733
fprintf(fp, "}\n#endif\n");
734
}
735
736
void ArchDesc::declare_pipe_classes(FILE *fp_hpp) {
737
if (!_pipeline)
738
return;
739
740
fprintf(fp_hpp, "\n");
741
fprintf(fp_hpp, "// Pipeline_Use_Cycle_Mask Class\n");
742
fprintf(fp_hpp, "class Pipeline_Use_Cycle_Mask {\n");
743
744
if (_pipeline->_maxcycleused <=
745
#ifdef SPARC
746
64
747
#else
748
32
749
#endif
750
) {
751
fprintf(fp_hpp, "protected:\n");
752
fprintf(fp_hpp, " %s _mask;\n\n", _pipeline->_maxcycleused <= 32 ? "uint" : "uint64_t" );
753
fprintf(fp_hpp, "public:\n");
754
fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask() : _mask(0) {}\n\n");
755
if (_pipeline->_maxcycleused <= 32)
756
fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask(uint mask) : _mask(mask) {}\n\n");
757
else {
758
fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask(uint mask1, uint mask2) : _mask((((uint64_t)mask1) << 32) | mask2) {}\n\n");
759
fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask(uint64_t mask) : _mask(mask) {}\n\n");
760
}
761
fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask& operator=(const Pipeline_Use_Cycle_Mask &in) {\n");
762
fprintf(fp_hpp, " _mask = in._mask;\n");
763
fprintf(fp_hpp, " return *this;\n");
764
fprintf(fp_hpp, " }\n\n");
765
fprintf(fp_hpp, " bool overlaps(const Pipeline_Use_Cycle_Mask &in2) const {\n");
766
fprintf(fp_hpp, " return ((_mask & in2._mask) != 0);\n");
767
fprintf(fp_hpp, " }\n\n");
768
fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask& operator<<=(int n) {\n");
769
fprintf(fp_hpp, " _mask <<= n;\n");
770
fprintf(fp_hpp, " return *this;\n");
771
fprintf(fp_hpp, " }\n\n");
772
fprintf(fp_hpp, " void Or(const Pipeline_Use_Cycle_Mask &in2) {\n");
773
fprintf(fp_hpp, " _mask |= in2._mask;\n");
774
fprintf(fp_hpp, " }\n\n");
775
fprintf(fp_hpp, " friend Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n");
776
fprintf(fp_hpp, " friend Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n\n");
777
}
778
else {
779
fprintf(fp_hpp, "protected:\n");
780
uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
781
uint l;
782
fprintf(fp_hpp, " uint ");
783
for (l = 1; l <= masklen; l++)
784
fprintf(fp_hpp, "_mask%d%s", l, l < masklen ? ", " : ";\n\n");
785
fprintf(fp_hpp, "public:\n");
786
fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask() : ");
787
for (l = 1; l <= masklen; l++)
788
fprintf(fp_hpp, "_mask%d(0)%s", l, l < masklen ? ", " : " {}\n\n");
789
fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask(");
790
for (l = 1; l <= masklen; l++)
791
fprintf(fp_hpp, "uint mask%d%s", l, l < masklen ? ", " : ") : ");
792
for (l = 1; l <= masklen; l++)
793
fprintf(fp_hpp, "_mask%d(mask%d)%s", l, l, l < masklen ? ", " : " {}\n\n");
794
795
fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask& operator=(const Pipeline_Use_Cycle_Mask &in) {\n");
796
for (l = 1; l <= masklen; l++)
797
fprintf(fp_hpp, " _mask%d = in._mask%d;\n", l, l);
798
fprintf(fp_hpp, " return *this;\n");
799
fprintf(fp_hpp, " }\n\n");
800
fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask intersect(const Pipeline_Use_Cycle_Mask &in2) {\n");
801
fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask out;\n");
802
for (l = 1; l <= masklen; l++)
803
fprintf(fp_hpp, " out._mask%d = _mask%d & in2._mask%d;\n", l, l, l);
804
fprintf(fp_hpp, " return out;\n");
805
fprintf(fp_hpp, " }\n\n");
806
fprintf(fp_hpp, " bool overlaps(const Pipeline_Use_Cycle_Mask &in2) const {\n");
807
fprintf(fp_hpp, " return (");
808
for (l = 1; l <= masklen; l++)
809
fprintf(fp_hpp, "((_mask%d & in2._mask%d) != 0)%s", l, l, l < masklen ? " || " : "");
810
fprintf(fp_hpp, ") ? true : false;\n");
811
fprintf(fp_hpp, " }\n\n");
812
fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask& operator<<=(int n) {\n");
813
fprintf(fp_hpp, " if (n >= 32)\n");
814
fprintf(fp_hpp, " do {\n ");
815
for (l = masklen; l > 1; l--)
816
fprintf(fp_hpp, " _mask%d = _mask%d;", l, l-1);
817
fprintf(fp_hpp, " _mask%d = 0;\n", 1);
818
fprintf(fp_hpp, " } while ((n -= 32) >= 32);\n\n");
819
fprintf(fp_hpp, " if (n > 0) {\n");
820
fprintf(fp_hpp, " uint m = 32 - n;\n");
821
fprintf(fp_hpp, " uint mask = (1 << n) - 1;\n");
822
fprintf(fp_hpp, " uint temp%d = mask & (_mask%d >> m); _mask%d <<= n;\n", 2, 1, 1);
823
for (l = 2; l < masklen; l++) {
824
fprintf(fp_hpp, " uint temp%d = mask & (_mask%d >> m); _mask%d <<= n; _mask%d |= temp%d;\n", l+1, l, l, l, l);
825
}
826
fprintf(fp_hpp, " _mask%d <<= n; _mask%d |= temp%d;\n", masklen, masklen, masklen);
827
fprintf(fp_hpp, " }\n");
828
829
fprintf(fp_hpp, " return *this;\n");
830
fprintf(fp_hpp, " }\n\n");
831
fprintf(fp_hpp, " void Or(const Pipeline_Use_Cycle_Mask &);\n\n");
832
fprintf(fp_hpp, " friend Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n");
833
fprintf(fp_hpp, " friend Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n\n");
834
}
835
836
fprintf(fp_hpp, " friend class Pipeline_Use;\n\n");
837
fprintf(fp_hpp, " friend class Pipeline_Use_Element;\n\n");
838
fprintf(fp_hpp, "};\n\n");
839
840
uint rescount = 0;
841
const char *resource;
842
843
for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
844
int mask = _pipeline->_resdict[resource]->is_resource()->mask();
845
if ((mask & (mask-1)) == 0)
846
rescount++;
847
}
848
849
fprintf(fp_hpp, "// Pipeline_Use_Element Class\n");
850
fprintf(fp_hpp, "class Pipeline_Use_Element {\n");
851
fprintf(fp_hpp, "protected:\n");
852
fprintf(fp_hpp, " // Mask of used functional units\n");
853
fprintf(fp_hpp, " uint _used;\n\n");
854
fprintf(fp_hpp, " // Lower and upper bound of functional unit number range\n");
855
fprintf(fp_hpp, " uint _lb, _ub;\n\n");
856
fprintf(fp_hpp, " // Indicates multiple functionals units available\n");
857
fprintf(fp_hpp, " bool _multiple;\n\n");
858
fprintf(fp_hpp, " // Mask of specific used cycles\n");
859
fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask _mask;\n\n");
860
fprintf(fp_hpp, "public:\n");
861
fprintf(fp_hpp, " Pipeline_Use_Element() {}\n\n");
862
fprintf(fp_hpp, " Pipeline_Use_Element(uint used, uint lb, uint ub, bool multiple, Pipeline_Use_Cycle_Mask mask)\n");
863
fprintf(fp_hpp, " : _used(used), _lb(lb), _ub(ub), _multiple(multiple), _mask(mask) {}\n\n");
864
fprintf(fp_hpp, " uint used() const { return _used; }\n\n");
865
fprintf(fp_hpp, " uint lowerBound() const { return _lb; }\n\n");
866
fprintf(fp_hpp, " uint upperBound() const { return _ub; }\n\n");
867
fprintf(fp_hpp, " bool multiple() const { return _multiple; }\n\n");
868
fprintf(fp_hpp, " Pipeline_Use_Cycle_Mask mask() const { return _mask; }\n\n");
869
fprintf(fp_hpp, " bool overlaps(const Pipeline_Use_Element &in2) const {\n");
870
fprintf(fp_hpp, " return ((_used & in2._used) != 0 && _mask.overlaps(in2._mask));\n");
871
fprintf(fp_hpp, " }\n\n");
872
fprintf(fp_hpp, " void step(uint cycles) {\n");
873
fprintf(fp_hpp, " _used = 0;\n");
874
fprintf(fp_hpp, " _mask <<= cycles;\n");
875
fprintf(fp_hpp, " }\n\n");
876
fprintf(fp_hpp, " friend class Pipeline_Use;\n");
877
fprintf(fp_hpp, "};\n\n");
878
879
fprintf(fp_hpp, "// Pipeline_Use Class\n");
880
fprintf(fp_hpp, "class Pipeline_Use {\n");
881
fprintf(fp_hpp, "protected:\n");
882
fprintf(fp_hpp, " // These resources can be used\n");
883
fprintf(fp_hpp, " uint _resources_used;\n\n");
884
fprintf(fp_hpp, " // These resources are used; excludes multiple choice functional units\n");
885
fprintf(fp_hpp, " uint _resources_used_exclusively;\n\n");
886
fprintf(fp_hpp, " // Number of elements\n");
887
fprintf(fp_hpp, " uint _count;\n\n");
888
fprintf(fp_hpp, " // This is the array of Pipeline_Use_Elements\n");
889
fprintf(fp_hpp, " Pipeline_Use_Element * _elements;\n\n");
890
fprintf(fp_hpp, "public:\n");
891
fprintf(fp_hpp, " Pipeline_Use(uint resources_used, uint resources_used_exclusively, uint count, Pipeline_Use_Element *elements)\n");
892
fprintf(fp_hpp, " : _resources_used(resources_used)\n");
893
fprintf(fp_hpp, " , _resources_used_exclusively(resources_used_exclusively)\n");
894
fprintf(fp_hpp, " , _count(count)\n");
895
fprintf(fp_hpp, " , _elements(elements)\n");
896
fprintf(fp_hpp, " {}\n\n");
897
fprintf(fp_hpp, " uint resourcesUsed() const { return _resources_used; }\n\n");
898
fprintf(fp_hpp, " uint resourcesUsedExclusively() const { return _resources_used_exclusively; }\n\n");
899
fprintf(fp_hpp, " uint count() const { return _count; }\n\n");
900
fprintf(fp_hpp, " Pipeline_Use_Element * element(uint i) const { return &_elements[i]; }\n\n");
901
fprintf(fp_hpp, " uint full_latency(uint delay, const Pipeline_Use &pred) const;\n\n");
902
fprintf(fp_hpp, " void add_usage(const Pipeline_Use &pred);\n\n");
903
fprintf(fp_hpp, " void reset() {\n");
904
fprintf(fp_hpp, " _resources_used = _resources_used_exclusively = 0;\n");
905
fprintf(fp_hpp, " };\n\n");
906
fprintf(fp_hpp, " void step(uint cycles) {\n");
907
fprintf(fp_hpp, " reset();\n");
908
fprintf(fp_hpp, " for (uint i = 0; i < %d; i++)\n",
909
rescount);
910
fprintf(fp_hpp, " (&_elements[i])->step(cycles);\n");
911
fprintf(fp_hpp, " };\n\n");
912
fprintf(fp_hpp, " static const Pipeline_Use elaborated_use;\n");
913
fprintf(fp_hpp, " static const Pipeline_Use_Element elaborated_elements[%d];\n\n",
914
rescount);
915
fprintf(fp_hpp, " friend class Pipeline;\n");
916
fprintf(fp_hpp, "};\n\n");
917
918
fprintf(fp_hpp, "// Pipeline Class\n");
919
fprintf(fp_hpp, "class Pipeline {\n");
920
fprintf(fp_hpp, "public:\n");
921
922
fprintf(fp_hpp, " static bool enabled() { return %s; }\n\n",
923
_pipeline ? "true" : "false" );
924
925
assert( _pipeline->_maxInstrsPerBundle &&
926
( _pipeline->_instrUnitSize || _pipeline->_bundleUnitSize) &&
927
_pipeline->_instrFetchUnitSize &&
928
_pipeline->_instrFetchUnits,
929
"unspecified pipeline architecture units");
930
931
uint unitSize = _pipeline->_instrUnitSize ? _pipeline->_instrUnitSize : _pipeline->_bundleUnitSize;
932
933
fprintf(fp_hpp, " enum {\n");
934
fprintf(fp_hpp, " _variable_size_instructions = %d,\n",
935
_pipeline->_variableSizeInstrs ? 1 : 0);
936
fprintf(fp_hpp, " _fixed_size_instructions = %d,\n",
937
_pipeline->_variableSizeInstrs ? 0 : 1);
938
fprintf(fp_hpp, " _branch_has_delay_slot = %d,\n",
939
_pipeline->_branchHasDelaySlot ? 1 : 0);
940
fprintf(fp_hpp, " _max_instrs_per_bundle = %d,\n",
941
_pipeline->_maxInstrsPerBundle);
942
fprintf(fp_hpp, " _max_bundles_per_cycle = %d,\n",
943
_pipeline->_maxBundlesPerCycle);
944
fprintf(fp_hpp, " _max_instrs_per_cycle = %d\n",
945
_pipeline->_maxBundlesPerCycle * _pipeline->_maxInstrsPerBundle);
946
fprintf(fp_hpp, " };\n\n");
947
948
fprintf(fp_hpp, " static bool instr_has_unit_size() { return %s; }\n\n",
949
_pipeline->_instrUnitSize != 0 ? "true" : "false" );
950
if( _pipeline->_bundleUnitSize != 0 )
951
if( _pipeline->_instrUnitSize != 0 )
952
fprintf(fp_hpp, "// Individual Instructions may be bundled together by the hardware\n\n");
953
else
954
fprintf(fp_hpp, "// Instructions exist only in bundles\n\n");
955
else
956
fprintf(fp_hpp, "// Bundling is not supported\n\n");
957
if( _pipeline->_instrUnitSize != 0 )
958
fprintf(fp_hpp, " // Size of an instruction\n");
959
else
960
fprintf(fp_hpp, " // Size of an individual instruction does not exist - unsupported\n");
961
fprintf(fp_hpp, " static uint instr_unit_size() {");
962
if( _pipeline->_instrUnitSize == 0 )
963
fprintf(fp_hpp, " assert( false, \"Instructions are only in bundles\" );");
964
fprintf(fp_hpp, " return %d; };\n\n", _pipeline->_instrUnitSize);
965
966
if( _pipeline->_bundleUnitSize != 0 )
967
fprintf(fp_hpp, " // Size of a bundle\n");
968
else
969
fprintf(fp_hpp, " // Bundles do not exist - unsupported\n");
970
fprintf(fp_hpp, " static uint bundle_unit_size() {");
971
if( _pipeline->_bundleUnitSize == 0 )
972
fprintf(fp_hpp, " assert( false, \"Bundles are not supported\" );");
973
fprintf(fp_hpp, " return %d; };\n\n", _pipeline->_bundleUnitSize);
974
975
fprintf(fp_hpp, " static bool requires_bundling() { return %s; }\n\n",
976
_pipeline->_bundleUnitSize != 0 && _pipeline->_instrUnitSize == 0 ? "true" : "false" );
977
978
fprintf(fp_hpp, "private:\n");
979
fprintf(fp_hpp, " Pipeline(); // Not a legal constructor\n");
980
fprintf(fp_hpp, "\n");
981
fprintf(fp_hpp, " const unsigned char _read_stage_count;\n");
982
fprintf(fp_hpp, " const unsigned char _write_stage;\n");
983
fprintf(fp_hpp, " const unsigned char _fixed_latency;\n");
984
fprintf(fp_hpp, " const unsigned char _instruction_count;\n");
985
fprintf(fp_hpp, " const bool _has_fixed_latency;\n");
986
fprintf(fp_hpp, " const bool _has_branch_delay;\n");
987
fprintf(fp_hpp, " const bool _has_multiple_bundles;\n");
988
fprintf(fp_hpp, " const bool _force_serialization;\n");
989
fprintf(fp_hpp, " const bool _may_have_no_code;\n");
990
fprintf(fp_hpp, " const enum machPipelineStages * const _read_stages;\n");
991
fprintf(fp_hpp, " const enum machPipelineStages * const _resource_stage;\n");
992
fprintf(fp_hpp, " const uint * const _resource_cycles;\n");
993
fprintf(fp_hpp, " const Pipeline_Use _resource_use;\n");
994
fprintf(fp_hpp, "\n");
995
fprintf(fp_hpp, "public:\n");
996
fprintf(fp_hpp, " Pipeline(uint write_stage,\n");
997
fprintf(fp_hpp, " uint count,\n");
998
fprintf(fp_hpp, " bool has_fixed_latency,\n");
999
fprintf(fp_hpp, " uint fixed_latency,\n");
1000
fprintf(fp_hpp, " uint instruction_count,\n");
1001
fprintf(fp_hpp, " bool has_branch_delay,\n");
1002
fprintf(fp_hpp, " bool has_multiple_bundles,\n");
1003
fprintf(fp_hpp, " bool force_serialization,\n");
1004
fprintf(fp_hpp, " bool may_have_no_code,\n");
1005
fprintf(fp_hpp, " enum machPipelineStages * const dst,\n");
1006
fprintf(fp_hpp, " enum machPipelineStages * const stage,\n");
1007
fprintf(fp_hpp, " uint * const cycles,\n");
1008
fprintf(fp_hpp, " Pipeline_Use resource_use)\n");
1009
fprintf(fp_hpp, " : _write_stage(write_stage)\n");
1010
fprintf(fp_hpp, " , _read_stage_count(count)\n");
1011
fprintf(fp_hpp, " , _has_fixed_latency(has_fixed_latency)\n");
1012
fprintf(fp_hpp, " , _fixed_latency(fixed_latency)\n");
1013
fprintf(fp_hpp, " , _read_stages(dst)\n");
1014
fprintf(fp_hpp, " , _resource_stage(stage)\n");
1015
fprintf(fp_hpp, " , _resource_cycles(cycles)\n");
1016
fprintf(fp_hpp, " , _resource_use(resource_use)\n");
1017
fprintf(fp_hpp, " , _instruction_count(instruction_count)\n");
1018
fprintf(fp_hpp, " , _has_branch_delay(has_branch_delay)\n");
1019
fprintf(fp_hpp, " , _has_multiple_bundles(has_multiple_bundles)\n");
1020
fprintf(fp_hpp, " , _force_serialization(force_serialization)\n");
1021
fprintf(fp_hpp, " , _may_have_no_code(may_have_no_code)\n");
1022
fprintf(fp_hpp, " {};\n");
1023
fprintf(fp_hpp, "\n");
1024
fprintf(fp_hpp, " uint writeStage() const {\n");
1025
fprintf(fp_hpp, " return (_write_stage);\n");
1026
fprintf(fp_hpp, " }\n");
1027
fprintf(fp_hpp, "\n");
1028
fprintf(fp_hpp, " enum machPipelineStages readStage(int ndx) const {\n");
1029
fprintf(fp_hpp, " return (ndx < _read_stage_count ? _read_stages[ndx] : stage_undefined);");
1030
fprintf(fp_hpp, " }\n\n");
1031
fprintf(fp_hpp, " uint resourcesUsed() const {\n");
1032
fprintf(fp_hpp, " return _resource_use.resourcesUsed();\n }\n\n");
1033
fprintf(fp_hpp, " uint resourcesUsedExclusively() const {\n");
1034
fprintf(fp_hpp, " return _resource_use.resourcesUsedExclusively();\n }\n\n");
1035
fprintf(fp_hpp, " bool hasFixedLatency() const {\n");
1036
fprintf(fp_hpp, " return (_has_fixed_latency);\n }\n\n");
1037
fprintf(fp_hpp, " uint fixedLatency() const {\n");
1038
fprintf(fp_hpp, " return (_fixed_latency);\n }\n\n");
1039
fprintf(fp_hpp, " uint functional_unit_latency(uint start, const Pipeline *pred) const;\n\n");
1040
fprintf(fp_hpp, " uint operand_latency(uint opnd, const Pipeline *pred) const;\n\n");
1041
fprintf(fp_hpp, " const Pipeline_Use& resourceUse() const {\n");
1042
fprintf(fp_hpp, " return (_resource_use); }\n\n");
1043
fprintf(fp_hpp, " const Pipeline_Use_Element * resourceUseElement(uint i) const {\n");
1044
fprintf(fp_hpp, " return (&_resource_use._elements[i]); }\n\n");
1045
fprintf(fp_hpp, " uint resourceUseCount() const {\n");
1046
fprintf(fp_hpp, " return (_resource_use._count); }\n\n");
1047
fprintf(fp_hpp, " uint instructionCount() const {\n");
1048
fprintf(fp_hpp, " return (_instruction_count); }\n\n");
1049
fprintf(fp_hpp, " bool hasBranchDelay() const {\n");
1050
fprintf(fp_hpp, " return (_has_branch_delay); }\n\n");
1051
fprintf(fp_hpp, " bool hasMultipleBundles() const {\n");
1052
fprintf(fp_hpp, " return (_has_multiple_bundles); }\n\n");
1053
fprintf(fp_hpp, " bool forceSerialization() const {\n");
1054
fprintf(fp_hpp, " return (_force_serialization); }\n\n");
1055
fprintf(fp_hpp, " bool mayHaveNoCode() const {\n");
1056
fprintf(fp_hpp, " return (_may_have_no_code); }\n\n");
1057
fprintf(fp_hpp, "//const Pipeline_Use_Cycle_Mask& resourceUseMask(int resource) const {\n");
1058
fprintf(fp_hpp, "// return (_resource_use_masks[resource]); }\n\n");
1059
fprintf(fp_hpp, "\n#ifndef PRODUCT\n");
1060
fprintf(fp_hpp, " static const char * stageName(uint i);\n");
1061
fprintf(fp_hpp, "#endif\n");
1062
fprintf(fp_hpp, "};\n\n");
1063
1064
fprintf(fp_hpp, "// Bundle class\n");
1065
fprintf(fp_hpp, "class Bundle {\n");
1066
1067
uint mshift = 0;
1068
for (uint msize = _pipeline->_maxInstrsPerBundle * _pipeline->_maxBundlesPerCycle; msize != 0; msize >>= 1)
1069
mshift++;
1070
1071
uint rshift = rescount;
1072
1073
fprintf(fp_hpp, "protected:\n");
1074
fprintf(fp_hpp, " enum {\n");
1075
fprintf(fp_hpp, " _unused_delay = 0x%x,\n", 0);
1076
fprintf(fp_hpp, " _use_nop_delay = 0x%x,\n", 1);
1077
fprintf(fp_hpp, " _use_unconditional_delay = 0x%x,\n", 2);
1078
fprintf(fp_hpp, " _use_conditional_delay = 0x%x,\n", 3);
1079
fprintf(fp_hpp, " _used_in_conditional_delay = 0x%x,\n", 4);
1080
fprintf(fp_hpp, " _used_in_unconditional_delay = 0x%x,\n", 5);
1081
fprintf(fp_hpp, " _used_in_all_conditional_delays = 0x%x,\n", 6);
1082
fprintf(fp_hpp, "\n");
1083
fprintf(fp_hpp, " _use_delay = 0x%x,\n", 3);
1084
fprintf(fp_hpp, " _used_in_delay = 0x%x\n", 4);
1085
fprintf(fp_hpp, " };\n\n");
1086
fprintf(fp_hpp, " uint _flags : 3,\n");
1087
fprintf(fp_hpp, " _starts_bundle : 1,\n");
1088
fprintf(fp_hpp, " _instr_count : %d,\n", mshift);
1089
fprintf(fp_hpp, " _resources_used : %d;\n", rshift);
1090
fprintf(fp_hpp, "public:\n");
1091
fprintf(fp_hpp, " Bundle() : _flags(_unused_delay), _starts_bundle(0), _instr_count(0), _resources_used(0) {}\n\n");
1092
fprintf(fp_hpp, " void set_instr_count(uint i) { _instr_count = i; }\n");
1093
fprintf(fp_hpp, " void set_resources_used(uint i) { _resources_used = i; }\n");
1094
fprintf(fp_hpp, " void clear_usage() { _flags = _unused_delay; }\n");
1095
fprintf(fp_hpp, " void set_starts_bundle() { _starts_bundle = true; }\n");
1096
1097
fprintf(fp_hpp, " uint flags() const { return (_flags); }\n");
1098
fprintf(fp_hpp, " uint instr_count() const { return (_instr_count); }\n");
1099
fprintf(fp_hpp, " uint resources_used() const { return (_resources_used); }\n");
1100
fprintf(fp_hpp, " bool starts_bundle() const { return (_starts_bundle != 0); }\n");
1101
1102
fprintf(fp_hpp, " void set_use_nop_delay() { _flags = _use_nop_delay; }\n");
1103
fprintf(fp_hpp, " void set_use_unconditional_delay() { _flags = _use_unconditional_delay; }\n");
1104
fprintf(fp_hpp, " void set_use_conditional_delay() { _flags = _use_conditional_delay; }\n");
1105
fprintf(fp_hpp, " void set_used_in_unconditional_delay() { _flags = _used_in_unconditional_delay; }\n");
1106
fprintf(fp_hpp, " void set_used_in_conditional_delay() { _flags = _used_in_conditional_delay; }\n");
1107
fprintf(fp_hpp, " void set_used_in_all_conditional_delays() { _flags = _used_in_all_conditional_delays; }\n");
1108
1109
fprintf(fp_hpp, " bool use_nop_delay() { return (_flags == _use_nop_delay); }\n");
1110
fprintf(fp_hpp, " bool use_unconditional_delay() { return (_flags == _use_unconditional_delay); }\n");
1111
fprintf(fp_hpp, " bool use_conditional_delay() { return (_flags == _use_conditional_delay); }\n");
1112
fprintf(fp_hpp, " bool used_in_unconditional_delay() { return (_flags == _used_in_unconditional_delay); }\n");
1113
fprintf(fp_hpp, " bool used_in_conditional_delay() { return (_flags == _used_in_conditional_delay); }\n");
1114
fprintf(fp_hpp, " bool used_in_all_conditional_delays() { return (_flags == _used_in_all_conditional_delays); }\n");
1115
fprintf(fp_hpp, " bool use_delay() { return ((_flags & _use_delay) != 0); }\n");
1116
fprintf(fp_hpp, " bool used_in_delay() { return ((_flags & _used_in_delay) != 0); }\n\n");
1117
1118
fprintf(fp_hpp, " enum {\n");
1119
fprintf(fp_hpp, " _nop_count = %d\n",
1120
_pipeline->_nopcnt);
1121
fprintf(fp_hpp, " };\n\n");
1122
fprintf(fp_hpp, " static void initialize_nops(MachNode *nop_list[%d], Compile* C);\n\n",
1123
_pipeline->_nopcnt);
1124
fprintf(fp_hpp, "#ifndef PRODUCT\n");
1125
fprintf(fp_hpp, " void dump(outputStream *st = tty) const;\n");
1126
fprintf(fp_hpp, "#endif\n");
1127
fprintf(fp_hpp, "};\n\n");
1128
1129
// const char *classname;
1130
// for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
1131
// PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
1132
// fprintf(fp_hpp, "// Pipeline Class Instance for \"%s\"\n", classname);
1133
// }
1134
}
1135
1136
//------------------------------declareClasses---------------------------------
1137
// Construct the class hierarchy of MachNode classes from the instruction &
1138
// operand lists
1139
void ArchDesc::declareClasses(FILE *fp) {
1140
1141
// Declare an array containing the machine register names, strings.
1142
declareRegNames(fp, _register);
1143
1144
// Declare an array containing the machine register encoding values
1145
declareRegEncodes(fp, _register);
1146
1147
// Generate declarations for the total number of operands
1148
fprintf(fp,"\n");
1149
fprintf(fp,"// Total number of operands defined in architecture definition\n");
1150
int num_operands = 0;
1151
OperandForm *op;
1152
for (_operands.reset(); (op = (OperandForm*)_operands.iter()) != NULL; ) {
1153
// Ensure this is a machine-world instruction
1154
if (op->ideal_only()) continue;
1155
1156
++num_operands;
1157
}
1158
int first_operand_class = num_operands;
1159
OpClassForm *opc;
1160
for (_opclass.reset(); (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
1161
// Ensure this is a machine-world instruction
1162
if (opc->ideal_only()) continue;
1163
1164
++num_operands;
1165
}
1166
fprintf(fp,"#define FIRST_OPERAND_CLASS %d\n", first_operand_class);
1167
fprintf(fp,"#define NUM_OPERANDS %d\n", num_operands);
1168
fprintf(fp,"\n");
1169
// Generate declarations for the total number of instructions
1170
fprintf(fp,"// Total number of instructions defined in architecture definition\n");
1171
fprintf(fp,"#define NUM_INSTRUCTIONS %d\n",instructFormCount());
1172
1173
1174
// Generate Machine Classes for each operand defined in AD file
1175
fprintf(fp,"\n");
1176
fprintf(fp,"//----------------------------Declare classes derived from MachOper----------\n");
1177
// Iterate through all operands
1178
_operands.reset();
1179
OperandForm *oper;
1180
for( ; (oper = (OperandForm*)_operands.iter()) != NULL;) {
1181
// Ensure this is a machine-world instruction
1182
if (oper->ideal_only() ) continue;
1183
// The declaration of labelOper is in machine-independent file: machnode
1184
if ( strcmp(oper->_ident,"label") == 0 ) continue;
1185
// The declaration of methodOper is in machine-independent file: machnode
1186
if ( strcmp(oper->_ident,"method") == 0 ) continue;
1187
1188
// Build class definition for this operand
1189
fprintf(fp,"\n");
1190
fprintf(fp,"class %sOper : public MachOper { \n",oper->_ident);
1191
fprintf(fp,"private:\n");
1192
// Operand definitions that depend upon number of input edges
1193
{
1194
uint num_edges = oper->num_edges(_globalNames);
1195
if( num_edges != 1 ) { // Use MachOper::num_edges() {return 1;}
1196
fprintf(fp," virtual uint num_edges() const { return %d; }\n",
1197
num_edges );
1198
}
1199
if( num_edges > 0 ) {
1200
in_RegMask(fp);
1201
}
1202
}
1203
1204
// Support storing constants inside the MachOper
1205
declareConstStorage(fp,_globalNames,oper);
1206
1207
// Support storage of the condition codes
1208
if( oper->is_ideal_bool() ) {
1209
fprintf(fp," virtual int ccode() const { \n");
1210
fprintf(fp," switch (_c0) {\n");
1211
fprintf(fp," case BoolTest::eq : return equal();\n");
1212
fprintf(fp," case BoolTest::gt : return greater();\n");
1213
fprintf(fp," case BoolTest::lt : return less();\n");
1214
fprintf(fp," case BoolTest::ne : return not_equal();\n");
1215
fprintf(fp," case BoolTest::le : return less_equal();\n");
1216
fprintf(fp," case BoolTest::ge : return greater_equal();\n");
1217
fprintf(fp," case BoolTest::overflow : return overflow();\n");
1218
fprintf(fp," case BoolTest::no_overflow: return no_overflow();\n");
1219
fprintf(fp," default : ShouldNotReachHere(); return 0;\n");
1220
fprintf(fp," }\n");
1221
fprintf(fp," };\n");
1222
}
1223
1224
// Support storage of the condition codes
1225
if( oper->is_ideal_bool() ) {
1226
fprintf(fp," virtual void negate() { \n");
1227
fprintf(fp," _c0 = (BoolTest::mask)((int)_c0^0x4); \n");
1228
fprintf(fp," };\n");
1229
}
1230
1231
// Declare constructor.
1232
// Parameters start with condition code, then all other constants
1233
//
1234
// (1) MachXOper(int32 ccode, int32 c0, int32 c1, ..., int32 cn)
1235
// (2) : _ccode(ccode), _c0(c0), _c1(c1), ..., _cn(cn) { }
1236
//
1237
Form::DataType constant_type = oper->simple_type(_globalNames);
1238
defineConstructor(fp, oper->_ident, oper->num_consts(_globalNames),
1239
oper->_components, oper->is_ideal_bool(),
1240
constant_type, _globalNames);
1241
1242
// Clone function
1243
fprintf(fp," virtual MachOper *clone(Compile* C) const;\n");
1244
1245
// Support setting a spill offset into a constant operand.
1246
// We only support setting an 'int' offset, while in the
1247
// LP64 build spill offsets are added with an AddP which
1248
// requires a long constant. Thus we don't support spilling
1249
// in frames larger than 4Gig.
1250
if( oper->has_conI(_globalNames) ||
1251
oper->has_conL(_globalNames) )
1252
fprintf(fp, " virtual void set_con( jint c0 ) { _c0 = c0; }\n");
1253
1254
// virtual functions for encoding and format
1255
// fprintf(fp," virtual void encode() const {\n %s }\n",
1256
// (oper->_encrule)?(oper->_encrule->_encrule):"");
1257
// Check the interface type, and generate the correct query functions
1258
// encoding queries based upon MEMORY_INTER, REG_INTER, CONST_INTER.
1259
1260
fprintf(fp," virtual uint opcode() const { return %s; }\n",
1261
machOperEnum(oper->_ident));
1262
1263
// virtual function to look up ideal return type of machine instruction
1264
//
1265
// (1) virtual const Type *type() const { return .....; }
1266
//
1267
if ((oper->_matrule) && (oper->_matrule->_lChild == NULL) &&
1268
(oper->_matrule->_rChild == NULL)) {
1269
unsigned int position = 0;
1270
const char *opret, *opname, *optype;
1271
oper->_matrule->base_operand(position,_globalNames,opret,opname,optype);
1272
fprintf(fp," virtual const Type *type() const {");
1273
const char *type = getIdealType(optype);
1274
if( type != NULL ) {
1275
Form::DataType data_type = oper->is_base_constant(_globalNames);
1276
// Check if we are an ideal pointer type
1277
if( data_type == Form::idealP || data_type == Form::idealN || data_type == Form::idealNKlass ) {
1278
// Return the ideal type we already have: <TypePtr *>
1279
fprintf(fp," return _c0;");
1280
} else {
1281
// Return the appropriate bottom type
1282
fprintf(fp," return %s;", getIdealType(optype));
1283
}
1284
} else {
1285
fprintf(fp," ShouldNotCallThis(); return Type::BOTTOM;");
1286
}
1287
fprintf(fp," }\n");
1288
} else {
1289
// Check for user-defined stack slots, based upon sRegX
1290
Form::DataType data_type = oper->is_user_name_for_sReg();
1291
if( data_type != Form::none ){
1292
const char *type = NULL;
1293
switch( data_type ) {
1294
case Form::idealI: type = "TypeInt::INT"; break;
1295
case Form::idealP: type = "TypePtr::BOTTOM";break;
1296
case Form::idealF: type = "Type::FLOAT"; break;
1297
case Form::idealD: type = "Type::DOUBLE"; break;
1298
case Form::idealL: type = "TypeLong::LONG"; break;
1299
case Form::none: // fall through
1300
default:
1301
assert( false, "No support for this type of stackSlot");
1302
}
1303
fprintf(fp," virtual const Type *type() const { return %s; } // stackSlotX\n", type);
1304
}
1305
}
1306
1307
1308
//
1309
// virtual functions for defining the encoding interface.
1310
//
1311
// Access the linearized ideal register mask,
1312
// map to physical register encoding
1313
if ( oper->_matrule && oper->_matrule->is_base_register(_globalNames) ) {
1314
// Just use the default virtual 'reg' call
1315
} else if ( oper->ideal_to_sReg_type(oper->_ident) != Form::none ) {
1316
// Special handling for operand 'sReg', a Stack Slot Register.
1317
// Map linearized ideal register mask to stack slot number
1318
fprintf(fp," virtual int reg(PhaseRegAlloc *ra_, const Node *node) const {\n");
1319
fprintf(fp," return (int)OptoReg::reg2stack(ra_->get_reg_first(node));/* sReg */\n");
1320
fprintf(fp," }\n");
1321
fprintf(fp," virtual int reg(PhaseRegAlloc *ra_, const Node *node, int idx) const {\n");
1322
fprintf(fp," return (int)OptoReg::reg2stack(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
1323
fprintf(fp," }\n");
1324
}
1325
1326
// Output the operand specific access functions used by an enc_class
1327
// These are only defined when we want to override the default virtual func
1328
if (oper->_interface != NULL) {
1329
fprintf(fp,"\n");
1330
// Check if it is a Memory Interface
1331
if ( oper->_interface->is_MemInterface() != NULL ) {
1332
MemInterface *mem_interface = oper->_interface->is_MemInterface();
1333
const char *base = mem_interface->_base;
1334
if( base != NULL ) {
1335
define_oper_interface(fp, *oper, _globalNames, "base", base);
1336
}
1337
char *index = mem_interface->_index;
1338
if( index != NULL ) {
1339
define_oper_interface(fp, *oper, _globalNames, "index", index);
1340
}
1341
const char *scale = mem_interface->_scale;
1342
if( scale != NULL ) {
1343
define_oper_interface(fp, *oper, _globalNames, "scale", scale);
1344
}
1345
const char *disp = mem_interface->_disp;
1346
if( disp != NULL ) {
1347
define_oper_interface(fp, *oper, _globalNames, "disp", disp);
1348
oper->disp_is_oop(fp, _globalNames);
1349
}
1350
if( oper->stack_slots_only(_globalNames) ) {
1351
// should not call this:
1352
fprintf(fp," virtual int constant_disp() const { return Type::OffsetBot; }");
1353
} else if ( disp != NULL ) {
1354
define_oper_interface(fp, *oper, _globalNames, "constant_disp", disp);
1355
}
1356
} // end Memory Interface
1357
// Check if it is a Conditional Interface
1358
else if (oper->_interface->is_CondInterface() != NULL) {
1359
CondInterface *cInterface = oper->_interface->is_CondInterface();
1360
const char *equal = cInterface->_equal;
1361
if( equal != NULL ) {
1362
define_oper_interface(fp, *oper, _globalNames, "equal", equal);
1363
}
1364
const char *not_equal = cInterface->_not_equal;
1365
if( not_equal != NULL ) {
1366
define_oper_interface(fp, *oper, _globalNames, "not_equal", not_equal);
1367
}
1368
const char *less = cInterface->_less;
1369
if( less != NULL ) {
1370
define_oper_interface(fp, *oper, _globalNames, "less", less);
1371
}
1372
const char *greater_equal = cInterface->_greater_equal;
1373
if( greater_equal != NULL ) {
1374
define_oper_interface(fp, *oper, _globalNames, "greater_equal", greater_equal);
1375
}
1376
const char *less_equal = cInterface->_less_equal;
1377
if( less_equal != NULL ) {
1378
define_oper_interface(fp, *oper, _globalNames, "less_equal", less_equal);
1379
}
1380
const char *greater = cInterface->_greater;
1381
if( greater != NULL ) {
1382
define_oper_interface(fp, *oper, _globalNames, "greater", greater);
1383
}
1384
const char *overflow = cInterface->_overflow;
1385
if( overflow != NULL ) {
1386
define_oper_interface(fp, *oper, _globalNames, "overflow", overflow);
1387
}
1388
const char *no_overflow = cInterface->_no_overflow;
1389
if( no_overflow != NULL ) {
1390
define_oper_interface(fp, *oper, _globalNames, "no_overflow", no_overflow);
1391
}
1392
} // end Conditional Interface
1393
// Check if it is a Constant Interface
1394
else if (oper->_interface->is_ConstInterface() != NULL ) {
1395
assert( oper->num_consts(_globalNames) == 1,
1396
"Must have one constant when using CONST_INTER encoding");
1397
if (!strcmp(oper->ideal_type(_globalNames), "ConI")) {
1398
// Access the locally stored constant
1399
fprintf(fp," virtual intptr_t constant() const {");
1400
fprintf(fp, " return (intptr_t)_c0;");
1401
fprintf(fp," }\n");
1402
}
1403
else if (!strcmp(oper->ideal_type(_globalNames), "ConP")) {
1404
// Access the locally stored constant
1405
fprintf(fp," virtual intptr_t constant() const {");
1406
fprintf(fp, " return _c0->get_con();");
1407
fprintf(fp, " }\n");
1408
// Generate query to determine if this pointer is an oop
1409
fprintf(fp," virtual relocInfo::relocType constant_reloc() const {");
1410
fprintf(fp, " return _c0->reloc();");
1411
fprintf(fp, " }\n");
1412
}
1413
else if (!strcmp(oper->ideal_type(_globalNames), "ConN")) {
1414
// Access the locally stored constant
1415
fprintf(fp," virtual intptr_t constant() const {");
1416
fprintf(fp, " return _c0->get_ptrtype()->get_con();");
1417
fprintf(fp, " }\n");
1418
// Generate query to determine if this pointer is an oop
1419
fprintf(fp," virtual relocInfo::relocType constant_reloc() const {");
1420
fprintf(fp, " return _c0->get_ptrtype()->reloc();");
1421
fprintf(fp, " }\n");
1422
}
1423
else if (!strcmp(oper->ideal_type(_globalNames), "ConNKlass")) {
1424
// Access the locally stored constant
1425
fprintf(fp," virtual intptr_t constant() const {");
1426
fprintf(fp, " return _c0->get_ptrtype()->get_con();");
1427
fprintf(fp, " }\n");
1428
// Generate query to determine if this pointer is an oop
1429
fprintf(fp," virtual relocInfo::relocType constant_reloc() const {");
1430
fprintf(fp, " return _c0->get_ptrtype()->reloc();");
1431
fprintf(fp, " }\n");
1432
}
1433
else if (!strcmp(oper->ideal_type(_globalNames), "ConL")) {
1434
fprintf(fp," virtual intptr_t constant() const {");
1435
// We don't support addressing modes with > 4Gig offsets.
1436
// Truncate to int.
1437
fprintf(fp, " return (intptr_t)_c0;");
1438
fprintf(fp, " }\n");
1439
fprintf(fp," virtual jlong constantL() const {");
1440
fprintf(fp, " return _c0;");
1441
fprintf(fp, " }\n");
1442
}
1443
else if (!strcmp(oper->ideal_type(_globalNames), "ConF")) {
1444
fprintf(fp," virtual intptr_t constant() const {");
1445
fprintf(fp, " ShouldNotReachHere(); return 0; ");
1446
fprintf(fp, " }\n");
1447
fprintf(fp," virtual jfloat constantF() const {");
1448
fprintf(fp, " return (jfloat)_c0;");
1449
fprintf(fp, " }\n");
1450
}
1451
else if (!strcmp(oper->ideal_type(_globalNames), "ConD")) {
1452
fprintf(fp," virtual intptr_t constant() const {");
1453
fprintf(fp, " ShouldNotReachHere(); return 0; ");
1454
fprintf(fp, " }\n");
1455
fprintf(fp," virtual jdouble constantD() const {");
1456
fprintf(fp, " return _c0;");
1457
fprintf(fp, " }\n");
1458
}
1459
}
1460
else if (oper->_interface->is_RegInterface() != NULL) {
1461
// make sure that a fixed format string isn't used for an
1462
// operand which might be assiged to multiple registers.
1463
// Otherwise the opto assembly output could be misleading.
1464
if (oper->_format->_strings.count() != 0 && !oper->is_bound_register()) {
1465
syntax_err(oper->_linenum,
1466
"Only bound registers can have fixed formats: %s\n",
1467
oper->_ident);
1468
}
1469
}
1470
else {
1471
assert( false, "ShouldNotReachHere();");
1472
}
1473
}
1474
1475
fprintf(fp,"\n");
1476
// // Currently all XXXOper::hash() methods are identical (990820)
1477
// declare_hash(fp);
1478
// // Currently all XXXOper::Cmp() methods are identical (990820)
1479
// declare_cmp(fp);
1480
1481
// Do not place dump_spec() and Name() into PRODUCT code
1482
// int_format and ext_format are not needed in PRODUCT code either
1483
fprintf(fp, "#ifndef PRODUCT\n");
1484
1485
// Declare int_format() and ext_format()
1486
gen_oper_format(fp, _globalNames, *oper);
1487
1488
// Machine independent print functionality for debugging
1489
// IF we have constants, create a dump_spec function for the derived class
1490
//
1491
// (1) virtual void dump_spec() const {
1492
// (2) st->print("#%d", _c#); // Constant != ConP
1493
// OR _c#->dump_on(st); // Type ConP
1494
// ...
1495
// (3) }
1496
uint num_consts = oper->num_consts(_globalNames);
1497
if( num_consts > 0 ) {
1498
// line (1)
1499
fprintf(fp, " virtual void dump_spec(outputStream *st) const {\n");
1500
// generate format string for st->print
1501
// Iterate over the component list & spit out the right thing
1502
uint i = 0;
1503
const char *type = oper->ideal_type(_globalNames);
1504
Component *comp;
1505
oper->_components.reset();
1506
if ((comp = oper->_components.iter()) == NULL) {
1507
assert(num_consts == 1, "Bad component list detected.\n");
1508
i = dump_spec_constant( fp, type, i, oper );
1509
// Check that type actually matched
1510
assert( i != 0, "Non-constant operand lacks component list.");
1511
} // end if NULL
1512
else {
1513
// line (2)
1514
// dump all components
1515
oper->_components.reset();
1516
while((comp = oper->_components.iter()) != NULL) {
1517
type = comp->base_type(_globalNames);
1518
i = dump_spec_constant( fp, type, i, NULL );
1519
}
1520
}
1521
// finish line (3)
1522
fprintf(fp," }\n");
1523
}
1524
1525
fprintf(fp," virtual const char *Name() const { return \"%s\";}\n",
1526
oper->_ident);
1527
1528
fprintf(fp,"#endif\n");
1529
1530
// Close definition of this XxxMachOper
1531
fprintf(fp,"};\n");
1532
}
1533
1534
1535
// Generate Machine Classes for each instruction defined in AD file
1536
fprintf(fp,"\n");
1537
fprintf(fp,"//----------------------------Declare classes for Pipelines-----------------\n");
1538
declare_pipe_classes(fp);
1539
1540
// Generate Machine Classes for each instruction defined in AD file
1541
fprintf(fp,"\n");
1542
fprintf(fp,"//----------------------------Declare classes derived from MachNode----------\n");
1543
_instructions.reset();
1544
InstructForm *instr;
1545
for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
1546
// Ensure this is a machine-world instruction
1547
if ( instr->ideal_only() ) continue;
1548
1549
// Build class definition for this instruction
1550
fprintf(fp,"\n");
1551
fprintf(fp,"class %sNode : public %s { \n",
1552
instr->_ident, instr->mach_base_class(_globalNames) );
1553
fprintf(fp,"private:\n");
1554
fprintf(fp," MachOper *_opnd_array[%d];\n", instr->num_opnds() );
1555
if ( instr->is_ideal_jump() ) {
1556
fprintf(fp, " GrowableArray<Label*> _index2label;\n");
1557
}
1558
1559
fprintf(fp, "public:\n");
1560
1561
Attribute *att = instr->_attribs;
1562
// Fields of the node specified in the ad file.
1563
while (att != NULL) {
1564
if (strncmp(att->_ident, "ins_field_", 10) == 0) {
1565
const char *field_name = att->_ident+10;
1566
const char *field_type = att->_val;
1567
fprintf(fp, " %s _%s;\n", field_type, field_name);
1568
}
1569
att = (Attribute *)att->_next;
1570
}
1571
1572
fprintf(fp," MachOper *opnd_array(uint operand_index) const {\n");
1573
fprintf(fp," assert(operand_index < _num_opnds, \"invalid _opnd_array index\");\n");
1574
fprintf(fp," return _opnd_array[operand_index];\n");
1575
fprintf(fp," }\n");
1576
fprintf(fp," void set_opnd_array(uint operand_index, MachOper *operand) {\n");
1577
fprintf(fp," assert(operand_index < _num_opnds, \"invalid _opnd_array index\");\n");
1578
fprintf(fp," _opnd_array[operand_index] = operand;\n");
1579
fprintf(fp," }\n");
1580
fprintf(fp,"private:\n");
1581
if ( instr->is_ideal_jump() ) {
1582
fprintf(fp," virtual void add_case_label(int index_num, Label* blockLabel) {\n");
1583
fprintf(fp," _index2label.at_put_grow(index_num, blockLabel);\n");
1584
fprintf(fp," }\n");
1585
}
1586
if( can_cisc_spill() && (instr->cisc_spill_alternate() != NULL) ) {
1587
fprintf(fp," const RegMask *_cisc_RegMask;\n");
1588
}
1589
1590
out_RegMask(fp); // output register mask
1591
fprintf(fp," virtual uint rule() const { return %s_rule; }\n",
1592
instr->_ident);
1593
1594
// If this instruction contains a labelOper
1595
// Declare Node::methods that set operand Label's contents
1596
int label_position = instr->label_position();
1597
if( label_position != -1 ) {
1598
// Set/Save the label, stored in labelOper::_branch_label
1599
fprintf(fp," virtual void label_set( Label* label, uint block_num );\n");
1600
fprintf(fp," virtual void save_label( Label** label, uint* block_num );\n");
1601
}
1602
1603
// If this instruction contains a methodOper
1604
// Declare Node::methods that set operand method's contents
1605
int method_position = instr->method_position();
1606
if( method_position != -1 ) {
1607
// Set the address method, stored in methodOper::_method
1608
fprintf(fp," virtual void method_set( intptr_t method );\n");
1609
}
1610
1611
// virtual functions for attributes
1612
//
1613
// Each instruction attribute results in a virtual call of same name.
1614
// The ins_cost is not handled here.
1615
Attribute *attr = instr->_attribs;
1616
Attribute *avoid_back_to_back_attr = NULL;
1617
while (attr != NULL) {
1618
if (strcmp (attr->_ident, "ins_is_TrapBasedCheckNode") == 0) {
1619
fprintf(fp, " virtual bool is_TrapBasedCheckNode() const { return %s; }\n", attr->_val);
1620
} else if (strcmp (attr->_ident, "ins_cost") != 0 &&
1621
strncmp(attr->_ident, "ins_field_", 10) != 0 &&
1622
// Must match function in node.hpp: return type bool, no prefix "ins_".
1623
strcmp (attr->_ident, "ins_is_TrapBasedCheckNode") != 0 &&
1624
strcmp (attr->_ident, "ins_short_branch") != 0) {
1625
fprintf(fp, " virtual int %s() const { return %s; }\n", attr->_ident, attr->_val);
1626
}
1627
if (strcmp(attr->_ident, "ins_avoid_back_to_back") == 0) {
1628
avoid_back_to_back_attr = attr;
1629
}
1630
attr = (Attribute *)attr->_next;
1631
}
1632
1633
// virtual functions for encode and format
1634
1635
// Virtual function for evaluating the constant.
1636
if (instr->is_mach_constant()) {
1637
fprintf(fp," virtual void eval_constant(Compile* C);\n");
1638
}
1639
1640
// Output the opcode function and the encode function here using the
1641
// encoding class information in the _insencode slot.
1642
if ( instr->_insencode ) {
1643
if (instr->postalloc_expands()) {
1644
fprintf(fp," virtual bool requires_postalloc_expand() const { return true; }\n");
1645
fprintf(fp," virtual void postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_);\n");
1646
} else {
1647
fprintf(fp," virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;\n");
1648
}
1649
}
1650
1651
// virtual function for getting the size of an instruction
1652
if ( instr->_size ) {
1653
fprintf(fp," virtual uint size(PhaseRegAlloc *ra_) const;\n");
1654
}
1655
1656
// Return the top-level ideal opcode.
1657
// Use MachNode::ideal_Opcode() for nodes based on MachNode class
1658
// if the ideal_Opcode == Op_Node.
1659
if ( strcmp("Node", instr->ideal_Opcode(_globalNames)) != 0 ||
1660
strcmp("MachNode", instr->mach_base_class(_globalNames)) != 0 ) {
1661
fprintf(fp," virtual int ideal_Opcode() const { return Op_%s; }\n",
1662
instr->ideal_Opcode(_globalNames) );
1663
}
1664
1665
if (instr->needs_constant_base() &&
1666
!instr->is_mach_constant()) { // These inherit the funcion from MachConstantNode.
1667
fprintf(fp," virtual uint mach_constant_base_node_input() const { ");
1668
if (instr->is_ideal_call() != Form::invalid_type &&
1669
instr->is_ideal_call() != Form::JAVA_LEAF) {
1670
// MachConstantBase goes behind arguments, but before jvms.
1671
fprintf(fp,"assert(tf() && tf()->domain(), \"\"); return tf()->domain()->cnt();");
1672
} else {
1673
fprintf(fp,"return req()-1;");
1674
}
1675
fprintf(fp," }\n");
1676
}
1677
1678
// Allow machine-independent optimization, invert the sense of the IF test
1679
if( instr->is_ideal_if() ) {
1680
fprintf(fp," virtual void negate() { \n");
1681
// Identify which operand contains the negate(able) ideal condition code
1682
int idx = 0;
1683
instr->_components.reset();
1684
for( Component *comp; (comp = instr->_components.iter()) != NULL; ) {
1685
// Check that component is an operand
1686
Form *form = (Form*)_globalNames[comp->_type];
1687
OperandForm *opForm = form ? form->is_operand() : NULL;
1688
if( opForm == NULL ) continue;
1689
1690
// Lookup the position of the operand in the instruction.
1691
if( opForm->is_ideal_bool() ) {
1692
idx = instr->operand_position(comp->_name, comp->_usedef);
1693
assert( idx != NameList::Not_in_list, "Did not find component in list that contained it.");
1694
break;
1695
}
1696
}
1697
fprintf(fp," opnd_array(%d)->negate();\n", idx);
1698
fprintf(fp," _prob = 1.0f - _prob;\n");
1699
fprintf(fp," };\n");
1700
}
1701
1702
1703
// Identify which input register matches the input register.
1704
uint matching_input = instr->two_address(_globalNames);
1705
1706
// Generate the method if it returns != 0 otherwise use MachNode::two_adr()
1707
if( matching_input != 0 ) {
1708
fprintf(fp," virtual uint two_adr() const ");
1709
fprintf(fp,"{ return oper_input_base()");
1710
for( uint i = 2; i <= matching_input; i++ )
1711
fprintf(fp," + opnd_array(%d)->num_edges()",i-1);
1712
fprintf(fp,"; }\n");
1713
}
1714
1715
// Declare cisc_version, if applicable
1716
// MachNode *cisc_version( int offset /* ,... */ );
1717
instr->declare_cisc_version(*this, fp);
1718
1719
// If there is an explicit peephole rule, build it
1720
if ( instr->peepholes() != NULL ) {
1721
fprintf(fp," virtual MachNode *peephole(Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile *C);\n");
1722
}
1723
1724
// Output the declaration for number of relocation entries
1725
if ( instr->reloc(_globalNames) != 0 ) {
1726
fprintf(fp," virtual int reloc() const;\n");
1727
}
1728
1729
if (instr->alignment() != 1) {
1730
fprintf(fp," virtual int alignment_required() const { return %d; }\n", instr->alignment());
1731
fprintf(fp," virtual int compute_padding(int current_offset) const;\n");
1732
}
1733
1734
// Starting point for inputs matcher wants.
1735
// Use MachNode::oper_input_base() for nodes based on MachNode class
1736
// if the base == 1.
1737
if ( instr->oper_input_base(_globalNames) != 1 ||
1738
strcmp("MachNode", instr->mach_base_class(_globalNames)) != 0 ) {
1739
fprintf(fp," virtual uint oper_input_base() const { return %d; }\n",
1740
instr->oper_input_base(_globalNames));
1741
}
1742
1743
// Make the constructor and following methods 'public:'
1744
fprintf(fp,"public:\n");
1745
1746
// Constructor
1747
if ( instr->is_ideal_jump() ) {
1748
fprintf(fp," %sNode() : _index2label(MinJumpTableSize*2) { ", instr->_ident);
1749
} else {
1750
fprintf(fp," %sNode() { ", instr->_ident);
1751
if( can_cisc_spill() && (instr->cisc_spill_alternate() != NULL) ) {
1752
fprintf(fp,"_cisc_RegMask = NULL; ");
1753
}
1754
}
1755
1756
fprintf(fp," _num_opnds = %d; _opnds = _opnd_array; ", instr->num_opnds());
1757
1758
bool node_flags_set = false;
1759
// flag: if this instruction matches an ideal 'Copy*' node
1760
if ( instr->is_ideal_copy() != 0 ) {
1761
fprintf(fp,"init_flags(Flag_is_Copy");
1762
node_flags_set = true;
1763
}
1764
1765
// Is an instruction is a constant? If so, get its type
1766
Form::DataType data_type;
1767
const char *opType = NULL;
1768
const char *result = NULL;
1769
data_type = instr->is_chain_of_constant(_globalNames, opType, result);
1770
// Check if this instruction is a constant
1771
if ( data_type != Form::none ) {
1772
if ( node_flags_set ) {
1773
fprintf(fp," | Flag_is_Con");
1774
} else {
1775
fprintf(fp,"init_flags(Flag_is_Con");
1776
node_flags_set = true;
1777
}
1778
}
1779
1780
// flag: if this instruction is cisc alternate
1781
if ( can_cisc_spill() && instr->is_cisc_alternate() ) {
1782
if ( node_flags_set ) {
1783
fprintf(fp," | Flag_is_cisc_alternate");
1784
} else {
1785
fprintf(fp,"init_flags(Flag_is_cisc_alternate");
1786
node_flags_set = true;
1787
}
1788
}
1789
1790
// flag: if this instruction has short branch form
1791
if ( instr->has_short_branch_form() ) {
1792
if ( node_flags_set ) {
1793
fprintf(fp," | Flag_may_be_short_branch");
1794
} else {
1795
fprintf(fp,"init_flags(Flag_may_be_short_branch");
1796
node_flags_set = true;
1797
}
1798
}
1799
1800
// flag: if this instruction should not be generated back to back.
1801
if (avoid_back_to_back_attr != NULL) {
1802
if (node_flags_set) {
1803
fprintf(fp," | (%s)", avoid_back_to_back_attr->_val);
1804
} else {
1805
fprintf(fp,"init_flags((%s)", avoid_back_to_back_attr->_val);
1806
node_flags_set = true;
1807
}
1808
}
1809
1810
// Check if machine instructions that USE memory, but do not DEF memory,
1811
// depend upon a node that defines memory in machine-independent graph.
1812
if ( instr->needs_anti_dependence_check(_globalNames) ) {
1813
if ( node_flags_set ) {
1814
fprintf(fp," | Flag_needs_anti_dependence_check");
1815
} else {
1816
fprintf(fp,"init_flags(Flag_needs_anti_dependence_check");
1817
node_flags_set = true;
1818
}
1819
}
1820
1821
// flag: if this instruction is implemented with a call
1822
if ( instr->_has_call ) {
1823
if ( node_flags_set ) {
1824
fprintf(fp," | Flag_has_call");
1825
} else {
1826
fprintf(fp,"init_flags(Flag_has_call");
1827
node_flags_set = true;
1828
}
1829
}
1830
1831
if ( node_flags_set ) {
1832
fprintf(fp,"); ");
1833
}
1834
1835
fprintf(fp,"}\n");
1836
1837
// size_of, used by base class's clone to obtain the correct size.
1838
fprintf(fp," virtual uint size_of() const {");
1839
fprintf(fp, " return sizeof(%sNode);", instr->_ident);
1840
fprintf(fp, " }\n");
1841
1842
// Virtual methods which are only generated to override base class
1843
if( instr->expands() || instr->needs_projections() ||
1844
instr->has_temps() ||
1845
instr->is_mach_constant() ||
1846
instr->needs_constant_base() ||
1847
instr->_matrule != NULL &&
1848
instr->num_opnds() != instr->num_unique_opnds() ) {
1849
fprintf(fp," virtual MachNode *Expand(State *state, Node_List &proj_list, Node* mem);\n");
1850
}
1851
1852
if (instr->is_pinned(_globalNames)) {
1853
fprintf(fp," virtual bool pinned() const { return ");
1854
if (instr->is_parm(_globalNames)) {
1855
fprintf(fp,"_in[0]->pinned();");
1856
} else {
1857
fprintf(fp,"true;");
1858
}
1859
fprintf(fp," }\n");
1860
}
1861
if (instr->is_projection(_globalNames)) {
1862
fprintf(fp," virtual const Node *is_block_proj() const { return this; }\n");
1863
}
1864
if ( instr->num_post_match_opnds() != 0
1865
|| instr->is_chain_of_constant(_globalNames) ) {
1866
fprintf(fp," friend MachNode *State::MachNodeGenerator(int opcode, Compile* C);\n");
1867
}
1868
if ( instr->rematerialize(_globalNames, get_registers()) ) {
1869
fprintf(fp," // Rematerialize %s\n", instr->_ident);
1870
}
1871
1872
// Declare short branch methods, if applicable
1873
instr->declare_short_branch_methods(fp);
1874
1875
// See if there is an "ins_pipe" declaration for this instruction
1876
if (instr->_ins_pipe) {
1877
fprintf(fp," static const Pipeline *pipeline_class();\n");
1878
fprintf(fp," virtual const Pipeline *pipeline() const;\n");
1879
}
1880
1881
// Generate virtual function for MachNodeX::bottom_type when necessary
1882
//
1883
// Note on accuracy: Pointer-types of machine nodes need to be accurate,
1884
// or else alias analysis on the matched graph may produce bad code.
1885
// Moreover, the aliasing decisions made on machine-node graph must be
1886
// no less accurate than those made on the ideal graph, or else the graph
1887
// may fail to schedule. (Reason: Memory ops which are reordered in
1888
// the ideal graph might look interdependent in the machine graph,
1889
// thereby removing degrees of scheduling freedom that the optimizer
1890
// assumed would be available.)
1891
//
1892
// %%% We should handle many of these cases with an explicit ADL clause:
1893
// instruct foo() %{ ... bottom_type(TypeRawPtr::BOTTOM); ... %}
1894
if( data_type != Form::none ) {
1895
// A constant's bottom_type returns a Type containing its constant value
1896
1897
// !!!!!
1898
// Convert all ints, floats, ... to machine-independent TypeXs
1899
// as is done for pointers
1900
//
1901
// Construct appropriate constant type containing the constant value.
1902
fprintf(fp," virtual const class Type *bottom_type() const {\n");
1903
switch( data_type ) {
1904
case Form::idealI:
1905
fprintf(fp," return TypeInt::make(opnd_array(1)->constant());\n");
1906
break;
1907
case Form::idealP:
1908
case Form::idealN:
1909
case Form::idealNKlass:
1910
fprintf(fp," return opnd_array(1)->type();\n");
1911
break;
1912
case Form::idealD:
1913
fprintf(fp," return TypeD::make(opnd_array(1)->constantD());\n");
1914
break;
1915
case Form::idealF:
1916
fprintf(fp," return TypeF::make(opnd_array(1)->constantF());\n");
1917
break;
1918
case Form::idealL:
1919
fprintf(fp," return TypeLong::make(opnd_array(1)->constantL());\n");
1920
break;
1921
default:
1922
assert( false, "Unimplemented()" );
1923
break;
1924
}
1925
fprintf(fp," };\n");
1926
}
1927
/* else if ( instr->_matrule && instr->_matrule->_rChild &&
1928
( strcmp("ConvF2I",instr->_matrule->_rChild->_opType)==0
1929
|| strcmp("ConvD2I",instr->_matrule->_rChild->_opType)==0 ) ) {
1930
// !!!!! !!!!!
1931
// Provide explicit bottom type for conversions to int
1932
// On Intel the result operand is a stackSlot, untyped.
1933
fprintf(fp," virtual const class Type *bottom_type() const {");
1934
fprintf(fp, " return TypeInt::INT;");
1935
fprintf(fp, " };\n");
1936
}*/
1937
else if( instr->is_ideal_copy() &&
1938
!strcmp(instr->_matrule->_lChild->_opType,"stackSlotP") ) {
1939
// !!!!!
1940
// Special hack for ideal Copy of pointer. Bottom type is oop or not depending on input.
1941
fprintf(fp," const Type *bottom_type() const { return in(1)->bottom_type(); } // Copy?\n");
1942
}
1943
else if( instr->is_ideal_loadPC() ) {
1944
// LoadPCNode provides the return address of a call to native code.
1945
// Define its bottom type to be TypeRawPtr::BOTTOM instead of TypePtr::BOTTOM
1946
// since it is a pointer to an internal VM location and must have a zero offset.
1947
// Allocation detects derived pointers, in part, by their non-zero offsets.
1948
fprintf(fp," const Type *bottom_type() const { return TypeRawPtr::BOTTOM; } // LoadPC?\n");
1949
}
1950
else if( instr->is_ideal_box() ) {
1951
// BoxNode provides the address of a stack slot.
1952
// Define its bottom type to be TypeRawPtr::BOTTOM instead of TypePtr::BOTTOM
1953
// This prevent s insert_anti_dependencies from complaining. It will
1954
// complain if it sees that the pointer base is TypePtr::BOTTOM since
1955
// it doesn't understand what that might alias.
1956
fprintf(fp," const Type *bottom_type() const { return TypeRawPtr::BOTTOM; } // Box?\n");
1957
}
1958
else if( instr->_matrule && instr->_matrule->_rChild && !strcmp(instr->_matrule->_rChild->_opType,"CMoveP") ) {
1959
int offset = 1;
1960
// Special special hack to see if the Cmp? has been incorporated in the conditional move
1961
MatchNode *rl = instr->_matrule->_rChild->_lChild;
1962
if( rl && !strcmp(rl->_opType, "Binary") ) {
1963
MatchNode *rlr = rl->_rChild;
1964
if (rlr && strncmp(rlr->_opType, "Cmp", 3) == 0)
1965
offset = 2;
1966
}
1967
// Special hack for ideal CMoveP; ideal type depends on inputs
1968
fprintf(fp," const Type *bottom_type() const { const Type *t = in(oper_input_base()+%d)->bottom_type(); return (req() <= oper_input_base()+%d) ? t : t->meet(in(oper_input_base()+%d)->bottom_type()); } // CMoveP\n",
1969
offset, offset+1, offset+1);
1970
}
1971
else if( instr->_matrule && instr->_matrule->_rChild && !strcmp(instr->_matrule->_rChild->_opType,"CMoveN") ) {
1972
int offset = 1;
1973
// Special special hack to see if the Cmp? has been incorporated in the conditional move
1974
MatchNode *rl = instr->_matrule->_rChild->_lChild;
1975
if( rl && !strcmp(rl->_opType, "Binary") ) {
1976
MatchNode *rlr = rl->_rChild;
1977
if (rlr && strncmp(rlr->_opType, "Cmp", 3) == 0)
1978
offset = 2;
1979
}
1980
// Special hack for ideal CMoveN; ideal type depends on inputs
1981
fprintf(fp," const Type *bottom_type() const { const Type *t = in(oper_input_base()+%d)->bottom_type(); return (req() <= oper_input_base()+%d) ? t : t->meet(in(oper_input_base()+%d)->bottom_type()); } // CMoveN\n",
1982
offset, offset+1, offset+1);
1983
}
1984
else if (instr->is_tls_instruction()) {
1985
// Special hack for tlsLoadP
1986
fprintf(fp," const Type *bottom_type() const { return TypeRawPtr::BOTTOM; } // tlsLoadP\n");
1987
}
1988
else if ( instr->is_ideal_if() ) {
1989
fprintf(fp," const Type *bottom_type() const { return TypeTuple::IFBOTH; } // matched IfNode\n");
1990
}
1991
else if ( instr->is_ideal_membar() ) {
1992
fprintf(fp," const Type *bottom_type() const { return TypeTuple::MEMBAR; } // matched MemBar\n");
1993
}
1994
1995
// Check where 'ideal_type' must be customized
1996
/*
1997
if ( instr->_matrule && instr->_matrule->_rChild &&
1998
( strcmp("ConvF2I",instr->_matrule->_rChild->_opType)==0
1999
|| strcmp("ConvD2I",instr->_matrule->_rChild->_opType)==0 ) ) {
2000
fprintf(fp," virtual uint ideal_reg() const { return Compile::current()->matcher()->base2reg[Type::Int]; }\n");
2001
}*/
2002
2003
// Analyze machine instructions that either USE or DEF memory.
2004
int memory_operand = instr->memory_operand(_globalNames);
2005
if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
2006
if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
2007
fprintf(fp," virtual const TypePtr *adr_type() const;\n");
2008
}
2009
fprintf(fp," virtual const MachOper *memory_operand() const;\n");
2010
}
2011
2012
fprintf(fp, "#ifndef PRODUCT\n");
2013
2014
// virtual function for generating the user's assembler output
2015
gen_inst_format(fp, _globalNames,*instr);
2016
2017
// Machine independent print functionality for debugging
2018
fprintf(fp," virtual const char *Name() const { return \"%s\";}\n",
2019
instr->_ident);
2020
2021
fprintf(fp, "#endif\n");
2022
2023
// Close definition of this XxxMachNode
2024
fprintf(fp,"};\n");
2025
};
2026
2027
}
2028
2029
void ArchDesc::defineStateClass(FILE *fp) {
2030
static const char *state__valid = "_valid[((uint)index) >> 5] & (0x1 << (((uint)index) & 0x0001F))";
2031
static const char *state__set_valid= "_valid[((uint)index) >> 5] |= (0x1 << (((uint)index) & 0x0001F))";
2032
2033
fprintf(fp,"\n");
2034
fprintf(fp,"// MACROS to inline and constant fold State::valid(index)...\n");
2035
fprintf(fp,"// when given a constant 'index' in dfa_<arch>.cpp\n");
2036
fprintf(fp,"// uint word = index >> 5; // Shift out bit position\n");
2037
fprintf(fp,"// uint bitpos = index & 0x0001F; // Mask off word bits\n");
2038
fprintf(fp,"#define STATE__VALID(index) ");
2039
fprintf(fp," (%s)\n", state__valid);
2040
fprintf(fp,"\n");
2041
fprintf(fp,"#define STATE__NOT_YET_VALID(index) ");
2042
fprintf(fp," ( (%s) == 0 )\n", state__valid);
2043
fprintf(fp,"\n");
2044
fprintf(fp,"#define STATE__VALID_CHILD(state,index) ");
2045
fprintf(fp," ( state && (state->%s) )\n", state__valid);
2046
fprintf(fp,"\n");
2047
fprintf(fp,"#define STATE__SET_VALID(index) ");
2048
fprintf(fp," (%s)\n", state__set_valid);
2049
fprintf(fp,"\n");
2050
fprintf(fp,
2051
"//---------------------------State-------------------------------------------\n");
2052
fprintf(fp,"// State contains an integral cost vector, indexed by machine operand opcodes,\n");
2053
fprintf(fp,"// a rule vector consisting of machine operand/instruction opcodes, and also\n");
2054
fprintf(fp,"// indexed by machine operand opcodes, pointers to the children in the label\n");
2055
fprintf(fp,"// tree generated by the Label routines in ideal nodes (currently limited to\n");
2056
fprintf(fp,"// two for convenience, but this could change).\n");
2057
fprintf(fp,"class State : public ResourceObj {\n");
2058
fprintf(fp,"public:\n");
2059
fprintf(fp," int _id; // State identifier\n");
2060
fprintf(fp," Node *_leaf; // Ideal (non-machine-node) leaf of match tree\n");
2061
fprintf(fp," State *_kids[2]; // Children of state node in label tree\n");
2062
fprintf(fp," unsigned int _cost[_LAST_MACH_OPER]; // Cost vector, indexed by operand opcodes\n");
2063
fprintf(fp," unsigned int _rule[_LAST_MACH_OPER]; // Rule vector, indexed by operand opcodes\n");
2064
fprintf(fp," unsigned int _valid[(_LAST_MACH_OPER/32)+1]; // Bit Map of valid Cost/Rule entries\n");
2065
fprintf(fp,"\n");
2066
fprintf(fp," State(void); // Constructor\n");
2067
fprintf(fp," DEBUG_ONLY( ~State(void); ) // Destructor\n");
2068
fprintf(fp,"\n");
2069
fprintf(fp," // Methods created by ADLC and invoked by Reduce\n");
2070
fprintf(fp," MachOper *MachOperGenerator( int opcode, Compile* C );\n");
2071
fprintf(fp," MachNode *MachNodeGenerator( int opcode, Compile* C );\n");
2072
fprintf(fp,"\n");
2073
fprintf(fp," // Assign a state to a node, definition of method produced by ADLC\n");
2074
fprintf(fp," bool DFA( int opcode, const Node *ideal );\n");
2075
fprintf(fp,"\n");
2076
fprintf(fp," // Access function for _valid bit vector\n");
2077
fprintf(fp," bool valid(uint index) {\n");
2078
fprintf(fp," return( STATE__VALID(index) != 0 );\n");
2079
fprintf(fp," }\n");
2080
fprintf(fp,"\n");
2081
fprintf(fp," // Set function for _valid bit vector\n");
2082
fprintf(fp," void set_valid(uint index) {\n");
2083
fprintf(fp," STATE__SET_VALID(index);\n");
2084
fprintf(fp," }\n");
2085
fprintf(fp,"\n");
2086
fprintf(fp,"#ifndef PRODUCT\n");
2087
fprintf(fp," void dump(); // Debugging prints\n");
2088
fprintf(fp," void dump(int depth);\n");
2089
fprintf(fp,"#endif\n");
2090
if (_dfa_small) {
2091
// Generate the routine name we'll need
2092
for (int i = 1; i < _last_opcode; i++) {
2093
if (_mlistab[i] == NULL) continue;
2094
fprintf(fp, " void _sub_Op_%s(const Node *n);\n", NodeClassNames[i]);
2095
}
2096
}
2097
fprintf(fp,"};\n");
2098
fprintf(fp,"\n");
2099
fprintf(fp,"\n");
2100
2101
}
2102
2103
2104
//---------------------------buildMachOperEnum---------------------------------
2105
// Build enumeration for densely packed operands.
2106
// This enumeration is used to index into the arrays in the State objects
2107
// that indicate cost and a successfull rule match.
2108
2109
// Information needed to generate the ReduceOp mapping for the DFA
2110
class OutputMachOperands : public OutputMap {
2111
public:
2112
OutputMachOperands(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
2113
: OutputMap(hpp, cpp, globals, AD, "MachOperands") {};
2114
2115
void declaration() { }
2116
void definition() { fprintf(_cpp, "enum MachOperands {\n"); }
2117
void closing() { fprintf(_cpp, " _LAST_MACH_OPER\n");
2118
OutputMap::closing();
2119
}
2120
void map(OpClassForm &opc) {
2121
const char* opc_ident_to_upper = _AD.machOperEnum(opc._ident);
2122
fprintf(_cpp, " %s", opc_ident_to_upper);
2123
delete[] opc_ident_to_upper;
2124
}
2125
void map(OperandForm &oper) {
2126
const char* oper_ident_to_upper = _AD.machOperEnum(oper._ident);
2127
fprintf(_cpp, " %s", oper_ident_to_upper);
2128
delete[] oper_ident_to_upper;
2129
}
2130
void map(char *name) {
2131
const char* name_to_upper = _AD.machOperEnum(name);
2132
fprintf(_cpp, " %s", name_to_upper);
2133
delete[] name_to_upper;
2134
}
2135
2136
bool do_instructions() { return false; }
2137
void map(InstructForm &inst){ assert( false, "ShouldNotCallThis()"); }
2138
};
2139
2140
2141
void ArchDesc::buildMachOperEnum(FILE *fp_hpp) {
2142
// Construct the table for MachOpcodes
2143
OutputMachOperands output_mach_operands(fp_hpp, fp_hpp, _globalNames, *this);
2144
build_map(output_mach_operands);
2145
}
2146
2147
2148
//---------------------------buildMachEnum----------------------------------
2149
// Build enumeration for all MachOpers and all MachNodes
2150
2151
// Information needed to generate the ReduceOp mapping for the DFA
2152
class OutputMachOpcodes : public OutputMap {
2153
int begin_inst_chain_rule;
2154
int end_inst_chain_rule;
2155
int begin_rematerialize;
2156
int end_rematerialize;
2157
int end_instructions;
2158
public:
2159
OutputMachOpcodes(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
2160
: OutputMap(hpp, cpp, globals, AD, "MachOpcodes"),
2161
begin_inst_chain_rule(-1), end_inst_chain_rule(-1),
2162
begin_rematerialize(-1), end_rematerialize(-1),
2163
end_instructions(-1)
2164
{};
2165
2166
void declaration() { }
2167
void definition() { fprintf(_cpp, "enum MachOpcodes {\n"); }
2168
void closing() {
2169
if( begin_inst_chain_rule != -1 )
2170
fprintf(_cpp, " _BEGIN_INST_CHAIN_RULE = %d,\n", begin_inst_chain_rule);
2171
if( end_inst_chain_rule != -1 )
2172
fprintf(_cpp, " _END_INST_CHAIN_RULE = %d,\n", end_inst_chain_rule);
2173
if( begin_rematerialize != -1 )
2174
fprintf(_cpp, " _BEGIN_REMATERIALIZE = %d,\n", begin_rematerialize);
2175
if( end_rematerialize != -1 )
2176
fprintf(_cpp, " _END_REMATERIALIZE = %d,\n", end_rematerialize);
2177
// always execute since do_instructions() is true, and avoids trailing comma
2178
fprintf(_cpp, " _last_Mach_Node = %d \n", end_instructions);
2179
OutputMap::closing();
2180
}
2181
void map(OpClassForm &opc) { fprintf(_cpp, " %s_rule", opc._ident ); }
2182
void map(OperandForm &oper) { fprintf(_cpp, " %s_rule", oper._ident ); }
2183
void map(char *name) { if (name) fprintf(_cpp, " %s_rule", name);
2184
else fprintf(_cpp, " 0"); }
2185
void map(InstructForm &inst) {fprintf(_cpp, " %s_rule", inst._ident ); }
2186
2187
void record_position(OutputMap::position place, int idx ) {
2188
switch(place) {
2189
case OutputMap::BEGIN_INST_CHAIN_RULES :
2190
begin_inst_chain_rule = idx;
2191
break;
2192
case OutputMap::END_INST_CHAIN_RULES :
2193
end_inst_chain_rule = idx;
2194
break;
2195
case OutputMap::BEGIN_REMATERIALIZE :
2196
begin_rematerialize = idx;
2197
break;
2198
case OutputMap::END_REMATERIALIZE :
2199
end_rematerialize = idx;
2200
break;
2201
case OutputMap::END_INSTRUCTIONS :
2202
end_instructions = idx;
2203
break;
2204
default:
2205
break;
2206
}
2207
}
2208
};
2209
2210
2211
void ArchDesc::buildMachOpcodesEnum(FILE *fp_hpp) {
2212
// Construct the table for MachOpcodes
2213
OutputMachOpcodes output_mach_opcodes(fp_hpp, fp_hpp, _globalNames, *this);
2214
build_map(output_mach_opcodes);
2215
}
2216
2217
2218
// Generate an enumeration of the pipeline states, and both
2219
// the functional units (resources) and the masks for
2220
// specifying resources
2221
void ArchDesc::build_pipeline_enums(FILE *fp_hpp) {
2222
int stagelen = (int)strlen("undefined");
2223
int stagenum = 0;
2224
2225
if (_pipeline) { // Find max enum string length
2226
const char *stage;
2227
for ( _pipeline->_stages.reset(); (stage = _pipeline->_stages.iter()) != NULL; ) {
2228
int len = (int)strlen(stage);
2229
if (stagelen < len) stagelen = len;
2230
}
2231
}
2232
2233
// Generate a list of stages
2234
fprintf(fp_hpp, "\n");
2235
fprintf(fp_hpp, "// Pipeline Stages\n");
2236
fprintf(fp_hpp, "enum machPipelineStages {\n");
2237
fprintf(fp_hpp, " stage_%-*s = 0,\n", stagelen, "undefined");
2238
2239
if( _pipeline ) {
2240
const char *stage;
2241
for ( _pipeline->_stages.reset(); (stage = _pipeline->_stages.iter()) != NULL; )
2242
fprintf(fp_hpp, " stage_%-*s = %d,\n", stagelen, stage, ++stagenum);
2243
}
2244
2245
fprintf(fp_hpp, " stage_%-*s = %d\n", stagelen, "count", stagenum);
2246
fprintf(fp_hpp, "};\n");
2247
2248
fprintf(fp_hpp, "\n");
2249
fprintf(fp_hpp, "// Pipeline Resources\n");
2250
fprintf(fp_hpp, "enum machPipelineResources {\n");
2251
int rescount = 0;
2252
2253
if( _pipeline ) {
2254
const char *resource;
2255
int reslen = 0;
2256
2257
// Generate a list of resources, and masks
2258
for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
2259
int len = (int)strlen(resource);
2260
if (reslen < len)
2261
reslen = len;
2262
}
2263
2264
for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
2265
const ResourceForm *resform = _pipeline->_resdict[resource]->is_resource();
2266
int mask = resform->mask();
2267
if ((mask & (mask-1)) == 0)
2268
fprintf(fp_hpp, " resource_%-*s = %d,\n", reslen, resource, rescount++);
2269
}
2270
fprintf(fp_hpp, "\n");
2271
for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
2272
const ResourceForm *resform = _pipeline->_resdict[resource]->is_resource();
2273
fprintf(fp_hpp, " res_mask_%-*s = 0x%08x,\n", reslen, resource, resform->mask());
2274
}
2275
fprintf(fp_hpp, "\n");
2276
}
2277
fprintf(fp_hpp, " resource_count = %d\n", rescount);
2278
fprintf(fp_hpp, "};\n");
2279
}
2280
2281