Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/c1/c1_IR.cpp
32285 views
1
/*
2
* Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "c1/c1_Compilation.hpp"
27
#include "c1/c1_FrameMap.hpp"
28
#include "c1/c1_GraphBuilder.hpp"
29
#include "c1/c1_IR.hpp"
30
#include "c1/c1_InstructionPrinter.hpp"
31
#include "c1/c1_Optimizer.hpp"
32
#include "utilities/bitMap.inline.hpp"
33
34
35
// Implementation of XHandlers
36
//
37
// Note: This code could eventually go away if we are
38
// just using the ciExceptionHandlerStream.
39
40
XHandlers::XHandlers(ciMethod* method) : _list(method->exception_table_length()) {
41
ciExceptionHandlerStream s(method);
42
while (!s.is_done()) {
43
_list.append(new XHandler(s.handler()));
44
s.next();
45
}
46
assert(s.count() == method->exception_table_length(), "exception table lengths inconsistent");
47
}
48
49
// deep copy of all XHandler contained in list
50
XHandlers::XHandlers(XHandlers* other) :
51
_list(other->length())
52
{
53
for (int i = 0; i < other->length(); i++) {
54
_list.append(new XHandler(other->handler_at(i)));
55
}
56
}
57
58
// Returns whether a particular exception type can be caught. Also
59
// returns true if klass is unloaded or any exception handler
60
// classes are unloaded. type_is_exact indicates whether the throw
61
// is known to be exactly that class or it might throw a subtype.
62
bool XHandlers::could_catch(ciInstanceKlass* klass, bool type_is_exact) const {
63
// the type is unknown so be conservative
64
if (!klass->is_loaded()) {
65
return true;
66
}
67
68
for (int i = 0; i < length(); i++) {
69
XHandler* handler = handler_at(i);
70
if (handler->is_catch_all()) {
71
// catch of ANY
72
return true;
73
}
74
ciInstanceKlass* handler_klass = handler->catch_klass();
75
// if it's unknown it might be catchable
76
if (!handler_klass->is_loaded()) {
77
return true;
78
}
79
// if the throw type is definitely a subtype of the catch type
80
// then it can be caught.
81
if (klass->is_subtype_of(handler_klass)) {
82
return true;
83
}
84
if (!type_is_exact) {
85
// If the type isn't exactly known then it can also be caught by
86
// catch statements where the inexact type is a subtype of the
87
// catch type.
88
// given: foo extends bar extends Exception
89
// throw bar can be caught by catch foo, catch bar, and catch
90
// Exception, however it can't be caught by any handlers without
91
// bar in its type hierarchy.
92
if (handler_klass->is_subtype_of(klass)) {
93
return true;
94
}
95
}
96
}
97
98
return false;
99
}
100
101
102
bool XHandlers::equals(XHandlers* others) const {
103
if (others == NULL) return false;
104
if (length() != others->length()) return false;
105
106
for (int i = 0; i < length(); i++) {
107
if (!handler_at(i)->equals(others->handler_at(i))) return false;
108
}
109
return true;
110
}
111
112
bool XHandler::equals(XHandler* other) const {
113
assert(entry_pco() != -1 && other->entry_pco() != -1, "must have entry_pco");
114
115
if (entry_pco() != other->entry_pco()) return false;
116
if (scope_count() != other->scope_count()) return false;
117
if (_desc != other->_desc) return false;
118
119
assert(entry_block() == other->entry_block(), "entry_block must be equal when entry_pco is equal");
120
return true;
121
}
122
123
124
// Implementation of IRScope
125
BlockBegin* IRScope::build_graph(Compilation* compilation, int osr_bci) {
126
GraphBuilder gm(compilation, this);
127
NOT_PRODUCT(if (PrintValueNumbering && Verbose) gm.print_stats());
128
if (compilation->bailed_out()) return NULL;
129
return gm.start();
130
}
131
132
133
IRScope::IRScope(Compilation* compilation, IRScope* caller, int caller_bci, ciMethod* method, int osr_bci, bool create_graph)
134
: _callees(2)
135
, _compilation(compilation)
136
, _requires_phi_function(method->max_locals())
137
{
138
_caller = caller;
139
_level = caller == NULL ? 0 : caller->level() + 1;
140
_method = method;
141
_xhandlers = new XHandlers(method);
142
_number_of_locks = 0;
143
_monitor_pairing_ok = method->has_balanced_monitors();
144
_wrote_final = false;
145
_start = NULL;
146
147
if (osr_bci == -1) {
148
_requires_phi_function.clear();
149
} else {
150
// selective creation of phi functions is not possibel in osr-methods
151
_requires_phi_function.set_range(0, method->max_locals());
152
}
153
154
assert(method->holder()->is_loaded() , "method holder must be loaded");
155
156
// build graph if monitor pairing is ok
157
if (create_graph && monitor_pairing_ok()) _start = build_graph(compilation, osr_bci);
158
}
159
160
161
int IRScope::max_stack() const {
162
int my_max = method()->max_stack();
163
int callee_max = 0;
164
for (int i = 0; i < number_of_callees(); i++) {
165
callee_max = MAX2(callee_max, callee_no(i)->max_stack());
166
}
167
return my_max + callee_max;
168
}
169
170
171
bool IRScopeDebugInfo::should_reexecute() {
172
ciMethod* cur_method = scope()->method();
173
int cur_bci = bci();
174
if (cur_method != NULL && cur_bci != SynchronizationEntryBCI) {
175
Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
176
return Interpreter::bytecode_should_reexecute(code);
177
} else
178
return false;
179
}
180
181
182
// Implementation of CodeEmitInfo
183
184
// Stack must be NON-null
185
CodeEmitInfo::CodeEmitInfo(ValueStack* stack, XHandlers* exception_handlers, bool deoptimize_on_exception)
186
: _scope(stack->scope())
187
, _scope_debug_info(NULL)
188
, _oop_map(NULL)
189
, _stack(stack)
190
, _exception_handlers(exception_handlers)
191
, _is_method_handle_invoke(false)
192
, _deoptimize_on_exception(deoptimize_on_exception) {
193
assert(_stack != NULL, "must be non null");
194
}
195
196
197
CodeEmitInfo::CodeEmitInfo(CodeEmitInfo* info, ValueStack* stack)
198
: _scope(info->_scope)
199
, _exception_handlers(NULL)
200
, _scope_debug_info(NULL)
201
, _oop_map(NULL)
202
, _stack(stack == NULL ? info->_stack : stack)
203
, _is_method_handle_invoke(info->_is_method_handle_invoke)
204
, _deoptimize_on_exception(info->_deoptimize_on_exception) {
205
206
// deep copy of exception handlers
207
if (info->_exception_handlers != NULL) {
208
_exception_handlers = new XHandlers(info->_exception_handlers);
209
}
210
}
211
212
213
void CodeEmitInfo::record_debug_info(DebugInformationRecorder* recorder, int pc_offset) {
214
// record the safepoint before recording the debug info for enclosing scopes
215
recorder->add_safepoint(pc_offset, _oop_map->deep_copy());
216
_scope_debug_info->record_debug_info(recorder, pc_offset, true/*topmost*/, _is_method_handle_invoke);
217
recorder->end_safepoint(pc_offset);
218
}
219
220
221
void CodeEmitInfo::add_register_oop(LIR_Opr opr) {
222
assert(_oop_map != NULL, "oop map must already exist");
223
assert(opr->is_single_cpu(), "should not call otherwise");
224
225
VMReg name = frame_map()->regname(opr);
226
_oop_map->set_oop(name);
227
}
228
229
// Mirror the stack size calculation in the deopt code
230
// How much stack space would we need at this point in the program in
231
// case of deoptimization?
232
int CodeEmitInfo::interpreter_frame_size() const {
233
ValueStack* state = _stack;
234
int size = 0;
235
int callee_parameters = 0;
236
int callee_locals = 0;
237
int extra_args = state->scope()->method()->max_stack() - state->stack_size();
238
239
while (state != NULL) {
240
int locks = state->locks_size();
241
int temps = state->stack_size();
242
bool is_top_frame = (state == _stack);
243
ciMethod* method = state->scope()->method();
244
245
int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(),
246
temps + callee_parameters,
247
extra_args,
248
locks,
249
callee_parameters,
250
callee_locals,
251
is_top_frame);
252
size += frame_size;
253
254
callee_parameters = method->size_of_parameters();
255
callee_locals = method->max_locals();
256
extra_args = 0;
257
state = state->caller_state();
258
}
259
return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord;
260
}
261
262
// Implementation of IR
263
264
IR::IR(Compilation* compilation, ciMethod* method, int osr_bci) :
265
_locals_size(in_WordSize(-1))
266
, _num_loops(0) {
267
// setup IR fields
268
_compilation = compilation;
269
_top_scope = new IRScope(compilation, NULL, -1, method, osr_bci, true);
270
_code = NULL;
271
}
272
273
274
void IR::optimize_blocks() {
275
Optimizer opt(this);
276
if (!compilation()->profile_branches()) {
277
if (DoCEE) {
278
opt.eliminate_conditional_expressions();
279
#ifndef PRODUCT
280
if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after CEE"); print(true); }
281
if (PrintIR || PrintIR1 ) { tty->print_cr("IR after CEE"); print(false); }
282
#endif
283
}
284
if (EliminateBlocks) {
285
opt.eliminate_blocks();
286
#ifndef PRODUCT
287
if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after block elimination"); print(true); }
288
if (PrintIR || PrintIR1 ) { tty->print_cr("IR after block elimination"); print(false); }
289
#endif
290
}
291
}
292
}
293
294
void IR::eliminate_null_checks() {
295
Optimizer opt(this);
296
if (EliminateNullChecks) {
297
opt.eliminate_null_checks();
298
#ifndef PRODUCT
299
if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after null check elimination"); print(true); }
300
if (PrintIR || PrintIR1 ) { tty->print_cr("IR after null check elimination"); print(false); }
301
#endif
302
}
303
}
304
305
306
static int sort_pairs(BlockPair** a, BlockPair** b) {
307
if ((*a)->from() == (*b)->from()) {
308
return (*a)->to()->block_id() - (*b)->to()->block_id();
309
} else {
310
return (*a)->from()->block_id() - (*b)->from()->block_id();
311
}
312
}
313
314
315
class CriticalEdgeFinder: public BlockClosure {
316
BlockPairList blocks;
317
IR* _ir;
318
319
public:
320
CriticalEdgeFinder(IR* ir): _ir(ir) {}
321
void block_do(BlockBegin* bb) {
322
BlockEnd* be = bb->end();
323
int nos = be->number_of_sux();
324
if (nos >= 2) {
325
for (int i = 0; i < nos; i++) {
326
BlockBegin* sux = be->sux_at(i);
327
if (sux->number_of_preds() >= 2) {
328
blocks.append(new BlockPair(bb, sux));
329
}
330
}
331
}
332
}
333
334
void split_edges() {
335
BlockPair* last_pair = NULL;
336
blocks.sort(sort_pairs);
337
for (int i = 0; i < blocks.length(); i++) {
338
BlockPair* pair = blocks.at(i);
339
if (last_pair != NULL && pair->is_same(last_pair)) continue;
340
BlockBegin* from = pair->from();
341
BlockBegin* to = pair->to();
342
BlockBegin* split = from->insert_block_between(to);
343
#ifndef PRODUCT
344
if ((PrintIR || PrintIR1) && Verbose) {
345
tty->print_cr("Split critical edge B%d -> B%d (new block B%d)",
346
from->block_id(), to->block_id(), split->block_id());
347
}
348
#endif
349
last_pair = pair;
350
}
351
}
352
};
353
354
void IR::split_critical_edges() {
355
CriticalEdgeFinder cef(this);
356
357
iterate_preorder(&cef);
358
cef.split_edges();
359
}
360
361
362
class UseCountComputer: public ValueVisitor, BlockClosure {
363
private:
364
void visit(Value* n) {
365
// Local instructions and Phis for expression stack values at the
366
// start of basic blocks are not added to the instruction list
367
if (!(*n)->is_linked() && (*n)->can_be_linked()) {
368
assert(false, "a node was not appended to the graph");
369
Compilation::current()->bailout("a node was not appended to the graph");
370
}
371
// use n's input if not visited before
372
if (!(*n)->is_pinned() && !(*n)->has_uses()) {
373
// note: a) if the instruction is pinned, it will be handled by compute_use_count
374
// b) if the instruction has uses, it was touched before
375
// => in both cases we don't need to update n's values
376
uses_do(n);
377
}
378
// use n
379
(*n)->_use_count++;
380
}
381
382
Values* worklist;
383
int depth;
384
enum {
385
max_recurse_depth = 20
386
};
387
388
void uses_do(Value* n) {
389
depth++;
390
if (depth > max_recurse_depth) {
391
// don't allow the traversal to recurse too deeply
392
worklist->push(*n);
393
} else {
394
(*n)->input_values_do(this);
395
// special handling for some instructions
396
if ((*n)->as_BlockEnd() != NULL) {
397
// note on BlockEnd:
398
// must 'use' the stack only if the method doesn't
399
// terminate, however, in those cases stack is empty
400
(*n)->state_values_do(this);
401
}
402
}
403
depth--;
404
}
405
406
void block_do(BlockBegin* b) {
407
depth = 0;
408
// process all pinned nodes as the roots of expression trees
409
for (Instruction* n = b; n != NULL; n = n->next()) {
410
if (n->is_pinned()) uses_do(&n);
411
}
412
assert(depth == 0, "should have counted back down");
413
414
// now process any unpinned nodes which recursed too deeply
415
while (worklist->length() > 0) {
416
Value t = worklist->pop();
417
if (!t->is_pinned()) {
418
// compute the use count
419
uses_do(&t);
420
421
// pin the instruction so that LIRGenerator doesn't recurse
422
// too deeply during it's evaluation.
423
t->pin();
424
}
425
}
426
assert(depth == 0, "should have counted back down");
427
}
428
429
UseCountComputer() {
430
worklist = new Values();
431
depth = 0;
432
}
433
434
public:
435
static void compute(BlockList* blocks) {
436
UseCountComputer ucc;
437
blocks->iterate_backward(&ucc);
438
}
439
};
440
441
442
// helper macro for short definition of trace-output inside code
443
#ifndef PRODUCT
444
#define TRACE_LINEAR_SCAN(level, code) \
445
if (TraceLinearScanLevel >= level) { \
446
code; \
447
}
448
#else
449
#define TRACE_LINEAR_SCAN(level, code)
450
#endif
451
452
class ComputeLinearScanOrder : public StackObj {
453
private:
454
int _max_block_id; // the highest block_id of a block
455
int _num_blocks; // total number of blocks (smaller than _max_block_id)
456
int _num_loops; // total number of loops
457
bool _iterative_dominators;// method requires iterative computation of dominatiors
458
459
BlockList* _linear_scan_order; // the resulting list of blocks in correct order
460
461
BitMap _visited_blocks; // used for recursive processing of blocks
462
BitMap _active_blocks; // used for recursive processing of blocks
463
BitMap _dominator_blocks; // temproary BitMap used for computation of dominator
464
intArray _forward_branches; // number of incoming forward branches for each block
465
BlockList _loop_end_blocks; // list of all loop end blocks collected during count_edges
466
BitMap2D _loop_map; // two-dimensional bit set: a bit is set if a block is contained in a loop
467
BlockList _work_list; // temporary list (used in mark_loops and compute_order)
468
BlockList _loop_headers;
469
470
Compilation* _compilation;
471
472
// accessors for _visited_blocks and _active_blocks
473
void init_visited() { _active_blocks.clear(); _visited_blocks.clear(); }
474
bool is_visited(BlockBegin* b) const { return _visited_blocks.at(b->block_id()); }
475
bool is_active(BlockBegin* b) const { return _active_blocks.at(b->block_id()); }
476
void set_visited(BlockBegin* b) { assert(!is_visited(b), "already set"); _visited_blocks.set_bit(b->block_id()); }
477
void set_active(BlockBegin* b) { assert(!is_active(b), "already set"); _active_blocks.set_bit(b->block_id()); }
478
void clear_active(BlockBegin* b) { assert(is_active(b), "not already"); _active_blocks.clear_bit(b->block_id()); }
479
480
// accessors for _forward_branches
481
void inc_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) + 1); }
482
int dec_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) - 1); return _forward_branches.at(b->block_id()); }
483
484
// accessors for _loop_map
485
bool is_block_in_loop (int loop_idx, BlockBegin* b) const { return _loop_map.at(loop_idx, b->block_id()); }
486
void set_block_in_loop (int loop_idx, BlockBegin* b) { _loop_map.set_bit(loop_idx, b->block_id()); }
487
void clear_block_in_loop(int loop_idx, int block_id) { _loop_map.clear_bit(loop_idx, block_id); }
488
489
// count edges between blocks
490
void count_edges(BlockBegin* cur, BlockBegin* parent);
491
492
// loop detection
493
void mark_loops();
494
void clear_non_natural_loops(BlockBegin* start_block);
495
void assign_loop_depth(BlockBegin* start_block);
496
497
// computation of final block order
498
BlockBegin* common_dominator(BlockBegin* a, BlockBegin* b);
499
void compute_dominator(BlockBegin* cur, BlockBegin* parent);
500
int compute_weight(BlockBegin* cur);
501
bool ready_for_processing(BlockBegin* cur);
502
void sort_into_work_list(BlockBegin* b);
503
void append_block(BlockBegin* cur);
504
void compute_order(BlockBegin* start_block);
505
506
// fixup of dominators for non-natural loops
507
bool compute_dominators_iter();
508
void compute_dominators();
509
510
// debug functions
511
NOT_PRODUCT(void print_blocks();)
512
DEBUG_ONLY(void verify();)
513
514
Compilation* compilation() const { return _compilation; }
515
public:
516
ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block);
517
518
// accessors for final result
519
BlockList* linear_scan_order() const { return _linear_scan_order; }
520
int num_loops() const { return _num_loops; }
521
};
522
523
524
ComputeLinearScanOrder::ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block) :
525
_max_block_id(BlockBegin::number_of_blocks()),
526
_num_blocks(0),
527
_num_loops(0),
528
_iterative_dominators(false),
529
_visited_blocks(_max_block_id),
530
_active_blocks(_max_block_id),
531
_dominator_blocks(_max_block_id),
532
_forward_branches(_max_block_id, 0),
533
_loop_end_blocks(8),
534
_work_list(8),
535
_linear_scan_order(NULL), // initialized later with correct size
536
_loop_map(0, 0), // initialized later with correct size
537
_compilation(c)
538
{
539
TRACE_LINEAR_SCAN(2, tty->print_cr("***** computing linear-scan block order"));
540
541
init_visited();
542
count_edges(start_block, NULL);
543
544
if (compilation()->is_profiling()) {
545
ciMethod *method = compilation()->method();
546
if (!method->is_accessor()) {
547
ciMethodData* md = method->method_data_or_null();
548
assert(md != NULL, "Sanity");
549
md->set_compilation_stats(_num_loops, _num_blocks);
550
}
551
}
552
553
if (_num_loops > 0) {
554
mark_loops();
555
clear_non_natural_loops(start_block);
556
assign_loop_depth(start_block);
557
}
558
559
compute_order(start_block);
560
compute_dominators();
561
562
NOT_PRODUCT(print_blocks());
563
DEBUG_ONLY(verify());
564
}
565
566
567
// Traverse the CFG:
568
// * count total number of blocks
569
// * count all incoming edges and backward incoming edges
570
// * number loop header blocks
571
// * create a list with all loop end blocks
572
void ComputeLinearScanOrder::count_edges(BlockBegin* cur, BlockBegin* parent) {
573
TRACE_LINEAR_SCAN(3, tty->print_cr("Enter count_edges for block B%d coming from B%d", cur->block_id(), parent != NULL ? parent->block_id() : -1));
574
assert(cur->dominator() == NULL, "dominator already initialized");
575
576
if (is_active(cur)) {
577
TRACE_LINEAR_SCAN(3, tty->print_cr("backward branch"));
578
assert(is_visited(cur), "block must be visisted when block is active");
579
assert(parent != NULL, "must have parent");
580
581
cur->set(BlockBegin::backward_branch_target_flag);
582
583
// When a loop header is also the start of an exception handler, then the backward branch is
584
// an exception edge. Because such edges are usually critical edges which cannot be split, the
585
// loop must be excluded here from processing.
586
if (cur->is_set(BlockBegin::exception_entry_flag)) {
587
// Make sure that dominators are correct in this weird situation
588
_iterative_dominators = true;
589
return;
590
}
591
592
cur->set(BlockBegin::linear_scan_loop_header_flag);
593
parent->set(BlockBegin::linear_scan_loop_end_flag);
594
595
assert(parent->number_of_sux() == 1 && parent->sux_at(0) == cur,
596
"loop end blocks must have one successor (critical edges are split)");
597
598
_loop_end_blocks.append(parent);
599
return;
600
}
601
602
// increment number of incoming forward branches
603
inc_forward_branches(cur);
604
605
if (is_visited(cur)) {
606
TRACE_LINEAR_SCAN(3, tty->print_cr("block already visited"));
607
return;
608
}
609
610
_num_blocks++;
611
set_visited(cur);
612
set_active(cur);
613
614
// recursive call for all successors
615
int i;
616
for (i = cur->number_of_sux() - 1; i >= 0; i--) {
617
count_edges(cur->sux_at(i), cur);
618
}
619
for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
620
count_edges(cur->exception_handler_at(i), cur);
621
}
622
623
clear_active(cur);
624
625
// Each loop has a unique number.
626
// When multiple loops are nested, assign_loop_depth assumes that the
627
// innermost loop has the lowest number. This is guaranteed by setting
628
// the loop number after the recursive calls for the successors above
629
// have returned.
630
if (cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
631
assert(cur->loop_index() == -1, "cannot set loop-index twice");
632
TRACE_LINEAR_SCAN(3, tty->print_cr("Block B%d is loop header of loop %d", cur->block_id(), _num_loops));
633
634
cur->set_loop_index(_num_loops);
635
_loop_headers.append(cur);
636
_num_loops++;
637
}
638
639
TRACE_LINEAR_SCAN(3, tty->print_cr("Finished count_edges for block B%d", cur->block_id()));
640
}
641
642
643
void ComputeLinearScanOrder::mark_loops() {
644
TRACE_LINEAR_SCAN(3, tty->print_cr("----- marking loops"));
645
646
_loop_map = BitMap2D(_num_loops, _max_block_id);
647
_loop_map.clear();
648
649
for (int i = _loop_end_blocks.length() - 1; i >= 0; i--) {
650
BlockBegin* loop_end = _loop_end_blocks.at(i);
651
BlockBegin* loop_start = loop_end->sux_at(0);
652
int loop_idx = loop_start->loop_index();
653
654
TRACE_LINEAR_SCAN(3, tty->print_cr("Processing loop from B%d to B%d (loop %d):", loop_start->block_id(), loop_end->block_id(), loop_idx));
655
assert(loop_end->is_set(BlockBegin::linear_scan_loop_end_flag), "loop end flag must be set");
656
assert(loop_end->number_of_sux() == 1, "incorrect number of successors");
657
assert(loop_start->is_set(BlockBegin::linear_scan_loop_header_flag), "loop header flag must be set");
658
assert(loop_idx >= 0 && loop_idx < _num_loops, "loop index not set");
659
assert(_work_list.is_empty(), "work list must be empty before processing");
660
661
// add the end-block of the loop to the working list
662
_work_list.push(loop_end);
663
set_block_in_loop(loop_idx, loop_end);
664
do {
665
BlockBegin* cur = _work_list.pop();
666
667
TRACE_LINEAR_SCAN(3, tty->print_cr(" processing B%d", cur->block_id()));
668
assert(is_block_in_loop(loop_idx, cur), "bit in loop map must be set when block is in work list");
669
670
// recursive processing of all predecessors ends when start block of loop is reached
671
if (cur != loop_start && !cur->is_set(BlockBegin::osr_entry_flag)) {
672
for (int j = cur->number_of_preds() - 1; j >= 0; j--) {
673
BlockBegin* pred = cur->pred_at(j);
674
675
if (!is_block_in_loop(loop_idx, pred) /*&& !pred->is_set(BlockBeginosr_entry_flag)*/) {
676
// this predecessor has not been processed yet, so add it to work list
677
TRACE_LINEAR_SCAN(3, tty->print_cr(" pushing B%d", pred->block_id()));
678
_work_list.push(pred);
679
set_block_in_loop(loop_idx, pred);
680
}
681
}
682
}
683
} while (!_work_list.is_empty());
684
}
685
}
686
687
688
// check for non-natural loops (loops where the loop header does not dominate
689
// all other loop blocks = loops with mulitple entries).
690
// such loops are ignored
691
void ComputeLinearScanOrder::clear_non_natural_loops(BlockBegin* start_block) {
692
for (int i = _num_loops - 1; i >= 0; i--) {
693
if (is_block_in_loop(i, start_block)) {
694
// loop i contains the entry block of the method
695
// -> this is not a natural loop, so ignore it
696
TRACE_LINEAR_SCAN(2, tty->print_cr("Loop %d is non-natural, so it is ignored", i));
697
698
BlockBegin *loop_header = _loop_headers.at(i);
699
assert(loop_header->is_set(BlockBegin::linear_scan_loop_header_flag), "Must be loop header");
700
701
for (int j = 0; j < loop_header->number_of_preds(); j++) {
702
BlockBegin *pred = loop_header->pred_at(j);
703
pred->clear(BlockBegin::linear_scan_loop_end_flag);
704
}
705
706
loop_header->clear(BlockBegin::linear_scan_loop_header_flag);
707
708
for (int block_id = _max_block_id - 1; block_id >= 0; block_id--) {
709
clear_block_in_loop(i, block_id);
710
}
711
_iterative_dominators = true;
712
}
713
}
714
}
715
716
void ComputeLinearScanOrder::assign_loop_depth(BlockBegin* start_block) {
717
TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing loop-depth and weight"));
718
init_visited();
719
720
assert(_work_list.is_empty(), "work list must be empty before processing");
721
_work_list.append(start_block);
722
723
do {
724
BlockBegin* cur = _work_list.pop();
725
726
if (!is_visited(cur)) {
727
set_visited(cur);
728
TRACE_LINEAR_SCAN(4, tty->print_cr("Computing loop depth for block B%d", cur->block_id()));
729
730
// compute loop-depth and loop-index for the block
731
assert(cur->loop_depth() == 0, "cannot set loop-depth twice");
732
int i;
733
int loop_depth = 0;
734
int min_loop_idx = -1;
735
for (i = _num_loops - 1; i >= 0; i--) {
736
if (is_block_in_loop(i, cur)) {
737
loop_depth++;
738
min_loop_idx = i;
739
}
740
}
741
cur->set_loop_depth(loop_depth);
742
cur->set_loop_index(min_loop_idx);
743
744
// append all unvisited successors to work list
745
for (i = cur->number_of_sux() - 1; i >= 0; i--) {
746
_work_list.append(cur->sux_at(i));
747
}
748
for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
749
_work_list.append(cur->exception_handler_at(i));
750
}
751
}
752
} while (!_work_list.is_empty());
753
}
754
755
756
BlockBegin* ComputeLinearScanOrder::common_dominator(BlockBegin* a, BlockBegin* b) {
757
assert(a != NULL && b != NULL, "must have input blocks");
758
759
_dominator_blocks.clear();
760
while (a != NULL) {
761
_dominator_blocks.set_bit(a->block_id());
762
assert(a->dominator() != NULL || a == _linear_scan_order->at(0), "dominator must be initialized");
763
a = a->dominator();
764
}
765
while (b != NULL && !_dominator_blocks.at(b->block_id())) {
766
assert(b->dominator() != NULL || b == _linear_scan_order->at(0), "dominator must be initialized");
767
b = b->dominator();
768
}
769
770
assert(b != NULL, "could not find dominator");
771
return b;
772
}
773
774
void ComputeLinearScanOrder::compute_dominator(BlockBegin* cur, BlockBegin* parent) {
775
if (cur->dominator() == NULL) {
776
TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: initializing dominator of B%d to B%d", cur->block_id(), parent->block_id()));
777
cur->set_dominator(parent);
778
779
} else if (!(cur->is_set(BlockBegin::linear_scan_loop_header_flag) && parent->is_set(BlockBegin::linear_scan_loop_end_flag))) {
780
TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: computing dominator of B%d: common dominator of B%d and B%d is B%d", cur->block_id(), parent->block_id(), cur->dominator()->block_id(), common_dominator(cur->dominator(), parent)->block_id()));
781
// Does not hold for exception blocks
782
assert(cur->number_of_preds() > 1 || cur->is_set(BlockBegin::exception_entry_flag), "");
783
cur->set_dominator(common_dominator(cur->dominator(), parent));
784
}
785
786
// Additional edge to xhandler of all our successors
787
// range check elimination needs that the state at the end of a
788
// block be valid in every block it dominates so cur must dominate
789
// the exception handlers of its successors.
790
int num_cur_xhandler = cur->number_of_exception_handlers();
791
for (int j = 0; j < num_cur_xhandler; j++) {
792
BlockBegin* xhandler = cur->exception_handler_at(j);
793
compute_dominator(xhandler, parent);
794
}
795
}
796
797
798
int ComputeLinearScanOrder::compute_weight(BlockBegin* cur) {
799
BlockBegin* single_sux = NULL;
800
if (cur->number_of_sux() == 1) {
801
single_sux = cur->sux_at(0);
802
}
803
804
// limit loop-depth to 15 bit (only for security reason, it will never be so big)
805
int weight = (cur->loop_depth() & 0x7FFF) << 16;
806
807
// general macro for short definition of weight flags
808
// the first instance of INC_WEIGHT_IF has the highest priority
809
int cur_bit = 15;
810
#define INC_WEIGHT_IF(condition) if ((condition)) { weight |= (1 << cur_bit); } cur_bit--;
811
812
// this is necessery for the (very rare) case that two successing blocks have
813
// the same loop depth, but a different loop index (can happen for endless loops
814
// with exception handlers)
815
INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_header_flag));
816
817
// loop end blocks (blocks that end with a backward branch) are added
818
// after all other blocks of the loop.
819
INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_end_flag));
820
821
// critical edge split blocks are prefered because than they have a bigger
822
// proability to be completely empty
823
INC_WEIGHT_IF(cur->is_set(BlockBegin::critical_edge_split_flag));
824
825
// exceptions should not be thrown in normal control flow, so these blocks
826
// are added as late as possible
827
INC_WEIGHT_IF(cur->end()->as_Throw() == NULL && (single_sux == NULL || single_sux->end()->as_Throw() == NULL));
828
INC_WEIGHT_IF(cur->end()->as_Return() == NULL && (single_sux == NULL || single_sux->end()->as_Return() == NULL));
829
830
// exceptions handlers are added as late as possible
831
INC_WEIGHT_IF(!cur->is_set(BlockBegin::exception_entry_flag));
832
833
// guarantee that weight is > 0
834
weight |= 1;
835
836
#undef INC_WEIGHT_IF
837
assert(cur_bit >= 0, "too many flags");
838
assert(weight > 0, "weight cannot become negative");
839
840
return weight;
841
}
842
843
bool ComputeLinearScanOrder::ready_for_processing(BlockBegin* cur) {
844
// Discount the edge just traveled.
845
// When the number drops to zero, all forward branches were processed
846
if (dec_forward_branches(cur) != 0) {
847
return false;
848
}
849
850
assert(_linear_scan_order->index_of(cur) == -1, "block already processed (block can be ready only once)");
851
assert(_work_list.index_of(cur) == -1, "block already in work-list (block can be ready only once)");
852
return true;
853
}
854
855
void ComputeLinearScanOrder::sort_into_work_list(BlockBegin* cur) {
856
assert(_work_list.index_of(cur) == -1, "block already in work list");
857
858
int cur_weight = compute_weight(cur);
859
860
// the linear_scan_number is used to cache the weight of a block
861
cur->set_linear_scan_number(cur_weight);
862
863
#ifndef PRODUCT
864
if (StressLinearScan) {
865
_work_list.insert_before(0, cur);
866
return;
867
}
868
#endif
869
870
_work_list.append(NULL); // provide space for new element
871
872
int insert_idx = _work_list.length() - 1;
873
while (insert_idx > 0 && _work_list.at(insert_idx - 1)->linear_scan_number() > cur_weight) {
874
_work_list.at_put(insert_idx, _work_list.at(insert_idx - 1));
875
insert_idx--;
876
}
877
_work_list.at_put(insert_idx, cur);
878
879
TRACE_LINEAR_SCAN(3, tty->print_cr("Sorted B%d into worklist. new worklist:", cur->block_id()));
880
TRACE_LINEAR_SCAN(3, for (int i = 0; i < _work_list.length(); i++) tty->print_cr("%8d B%2d weight:%6x", i, _work_list.at(i)->block_id(), _work_list.at(i)->linear_scan_number()));
881
882
#ifdef ASSERT
883
for (int i = 0; i < _work_list.length(); i++) {
884
assert(_work_list.at(i)->linear_scan_number() > 0, "weight not set");
885
assert(i == 0 || _work_list.at(i - 1)->linear_scan_number() <= _work_list.at(i)->linear_scan_number(), "incorrect order in worklist");
886
}
887
#endif
888
}
889
890
void ComputeLinearScanOrder::append_block(BlockBegin* cur) {
891
TRACE_LINEAR_SCAN(3, tty->print_cr("appending block B%d (weight 0x%6x) to linear-scan order", cur->block_id(), cur->linear_scan_number()));
892
assert(_linear_scan_order->index_of(cur) == -1, "cannot add the same block twice");
893
894
// currently, the linear scan order and code emit order are equal.
895
// therefore the linear_scan_number and the weight of a block must also
896
// be equal.
897
cur->set_linear_scan_number(_linear_scan_order->length());
898
_linear_scan_order->append(cur);
899
}
900
901
void ComputeLinearScanOrder::compute_order(BlockBegin* start_block) {
902
TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing final block order"));
903
904
// the start block is always the first block in the linear scan order
905
_linear_scan_order = new BlockList(_num_blocks);
906
append_block(start_block);
907
908
assert(start_block->end()->as_Base() != NULL, "start block must end with Base-instruction");
909
BlockBegin* std_entry = ((Base*)start_block->end())->std_entry();
910
BlockBegin* osr_entry = ((Base*)start_block->end())->osr_entry();
911
912
BlockBegin* sux_of_osr_entry = NULL;
913
if (osr_entry != NULL) {
914
// special handling for osr entry:
915
// ignore the edge between the osr entry and its successor for processing
916
// the osr entry block is added manually below
917
assert(osr_entry->number_of_sux() == 1, "osr entry must have exactly one successor");
918
assert(osr_entry->sux_at(0)->number_of_preds() >= 2, "sucessor of osr entry must have two predecessors (otherwise it is not present in normal control flow");
919
920
sux_of_osr_entry = osr_entry->sux_at(0);
921
dec_forward_branches(sux_of_osr_entry);
922
923
compute_dominator(osr_entry, start_block);
924
_iterative_dominators = true;
925
}
926
compute_dominator(std_entry, start_block);
927
928
// start processing with standard entry block
929
assert(_work_list.is_empty(), "list must be empty before processing");
930
931
if (ready_for_processing(std_entry)) {
932
sort_into_work_list(std_entry);
933
} else {
934
assert(false, "the std_entry must be ready for processing (otherwise, the method has no start block)");
935
}
936
937
do {
938
BlockBegin* cur = _work_list.pop();
939
940
if (cur == sux_of_osr_entry) {
941
// the osr entry block is ignored in normal processing, it is never added to the
942
// work list. Instead, it is added as late as possible manually here.
943
append_block(osr_entry);
944
compute_dominator(cur, osr_entry);
945
}
946
append_block(cur);
947
948
int i;
949
int num_sux = cur->number_of_sux();
950
// changed loop order to get "intuitive" order of if- and else-blocks
951
for (i = 0; i < num_sux; i++) {
952
BlockBegin* sux = cur->sux_at(i);
953
compute_dominator(sux, cur);
954
if (ready_for_processing(sux)) {
955
sort_into_work_list(sux);
956
}
957
}
958
num_sux = cur->number_of_exception_handlers();
959
for (i = 0; i < num_sux; i++) {
960
BlockBegin* sux = cur->exception_handler_at(i);
961
if (ready_for_processing(sux)) {
962
sort_into_work_list(sux);
963
}
964
}
965
} while (_work_list.length() > 0);
966
}
967
968
969
bool ComputeLinearScanOrder::compute_dominators_iter() {
970
bool changed = false;
971
int num_blocks = _linear_scan_order->length();
972
973
assert(_linear_scan_order->at(0)->dominator() == NULL, "must not have dominator");
974
assert(_linear_scan_order->at(0)->number_of_preds() == 0, "must not have predecessors");
975
for (int i = 1; i < num_blocks; i++) {
976
BlockBegin* block = _linear_scan_order->at(i);
977
978
BlockBegin* dominator = block->pred_at(0);
979
int num_preds = block->number_of_preds();
980
981
TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: Processing B%d", block->block_id()));
982
983
for (int j = 0; j < num_preds; j++) {
984
985
BlockBegin *pred = block->pred_at(j);
986
TRACE_LINEAR_SCAN(4, tty->print_cr(" DOM: Subrocessing B%d", pred->block_id()));
987
988
if (block->is_set(BlockBegin::exception_entry_flag)) {
989
dominator = common_dominator(dominator, pred);
990
int num_pred_preds = pred->number_of_preds();
991
for (int k = 0; k < num_pred_preds; k++) {
992
dominator = common_dominator(dominator, pred->pred_at(k));
993
}
994
} else {
995
dominator = common_dominator(dominator, pred);
996
}
997
}
998
999
if (dominator != block->dominator()) {
1000
TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: updating dominator of B%d from B%d to B%d", block->block_id(), block->dominator()->block_id(), dominator->block_id()));
1001
1002
block->set_dominator(dominator);
1003
changed = true;
1004
}
1005
}
1006
return changed;
1007
}
1008
1009
void ComputeLinearScanOrder::compute_dominators() {
1010
TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing dominators (iterative computation reqired: %d)", _iterative_dominators));
1011
1012
// iterative computation of dominators is only required for methods with non-natural loops
1013
// and OSR-methods. For all other methods, the dominators computed when generating the
1014
// linear scan block order are correct.
1015
if (_iterative_dominators) {
1016
do {
1017
TRACE_LINEAR_SCAN(1, tty->print_cr("DOM: next iteration of fix-point calculation"));
1018
} while (compute_dominators_iter());
1019
}
1020
1021
// check that dominators are correct
1022
assert(!compute_dominators_iter(), "fix point not reached");
1023
1024
// Add Blocks to dominates-Array
1025
int num_blocks = _linear_scan_order->length();
1026
for (int i = 0; i < num_blocks; i++) {
1027
BlockBegin* block = _linear_scan_order->at(i);
1028
1029
BlockBegin *dom = block->dominator();
1030
if (dom) {
1031
assert(dom->dominator_depth() != -1, "Dominator must have been visited before");
1032
dom->dominates()->append(block);
1033
block->set_dominator_depth(dom->dominator_depth() + 1);
1034
} else {
1035
block->set_dominator_depth(0);
1036
}
1037
}
1038
}
1039
1040
1041
#ifndef PRODUCT
1042
void ComputeLinearScanOrder::print_blocks() {
1043
if (TraceLinearScanLevel >= 2) {
1044
tty->print_cr("----- loop information:");
1045
for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
1046
BlockBegin* cur = _linear_scan_order->at(block_idx);
1047
1048
tty->print("%4d: B%2d: ", cur->linear_scan_number(), cur->block_id());
1049
for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
1050
tty->print ("%d ", is_block_in_loop(loop_idx, cur));
1051
}
1052
tty->print_cr(" -> loop_index: %2d, loop_depth: %2d", cur->loop_index(), cur->loop_depth());
1053
}
1054
}
1055
1056
if (TraceLinearScanLevel >= 1) {
1057
tty->print_cr("----- linear-scan block order:");
1058
for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
1059
BlockBegin* cur = _linear_scan_order->at(block_idx);
1060
tty->print("%4d: B%2d loop: %2d depth: %2d", cur->linear_scan_number(), cur->block_id(), cur->loop_index(), cur->loop_depth());
1061
1062
tty->print(cur->is_set(BlockBegin::exception_entry_flag) ? " ex" : " ");
1063
tty->print(cur->is_set(BlockBegin::critical_edge_split_flag) ? " ce" : " ");
1064
tty->print(cur->is_set(BlockBegin::linear_scan_loop_header_flag) ? " lh" : " ");
1065
tty->print(cur->is_set(BlockBegin::linear_scan_loop_end_flag) ? " le" : " ");
1066
1067
if (cur->dominator() != NULL) {
1068
tty->print(" dom: B%d ", cur->dominator()->block_id());
1069
} else {
1070
tty->print(" dom: NULL ");
1071
}
1072
1073
if (cur->number_of_preds() > 0) {
1074
tty->print(" preds: ");
1075
for (int j = 0; j < cur->number_of_preds(); j++) {
1076
BlockBegin* pred = cur->pred_at(j);
1077
tty->print("B%d ", pred->block_id());
1078
}
1079
}
1080
if (cur->number_of_sux() > 0) {
1081
tty->print(" sux: ");
1082
for (int j = 0; j < cur->number_of_sux(); j++) {
1083
BlockBegin* sux = cur->sux_at(j);
1084
tty->print("B%d ", sux->block_id());
1085
}
1086
}
1087
if (cur->number_of_exception_handlers() > 0) {
1088
tty->print(" ex: ");
1089
for (int j = 0; j < cur->number_of_exception_handlers(); j++) {
1090
BlockBegin* ex = cur->exception_handler_at(j);
1091
tty->print("B%d ", ex->block_id());
1092
}
1093
}
1094
tty->cr();
1095
}
1096
}
1097
}
1098
#endif
1099
1100
#ifdef ASSERT
1101
void ComputeLinearScanOrder::verify() {
1102
assert(_linear_scan_order->length() == _num_blocks, "wrong number of blocks in list");
1103
1104
if (StressLinearScan) {
1105
// blocks are scrambled when StressLinearScan is used
1106
return;
1107
}
1108
1109
// check that all successors of a block have a higher linear-scan-number
1110
// and that all predecessors of a block have a lower linear-scan-number
1111
// (only backward branches of loops are ignored)
1112
int i;
1113
for (i = 0; i < _linear_scan_order->length(); i++) {
1114
BlockBegin* cur = _linear_scan_order->at(i);
1115
1116
assert(cur->linear_scan_number() == i, "incorrect linear_scan_number");
1117
assert(cur->linear_scan_number() >= 0 && cur->linear_scan_number() == _linear_scan_order->index_of(cur), "incorrect linear_scan_number");
1118
1119
int j;
1120
for (j = cur->number_of_sux() - 1; j >= 0; j--) {
1121
BlockBegin* sux = cur->sux_at(j);
1122
1123
assert(sux->linear_scan_number() >= 0 && sux->linear_scan_number() == _linear_scan_order->index_of(sux), "incorrect linear_scan_number");
1124
if (!sux->is_set(BlockBegin::backward_branch_target_flag)) {
1125
assert(cur->linear_scan_number() < sux->linear_scan_number(), "invalid order");
1126
}
1127
if (cur->loop_depth() == sux->loop_depth()) {
1128
assert(cur->loop_index() == sux->loop_index() || sux->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
1129
}
1130
}
1131
1132
for (j = cur->number_of_preds() - 1; j >= 0; j--) {
1133
BlockBegin* pred = cur->pred_at(j);
1134
1135
assert(pred->linear_scan_number() >= 0 && pred->linear_scan_number() == _linear_scan_order->index_of(pred), "incorrect linear_scan_number");
1136
if (!cur->is_set(BlockBegin::backward_branch_target_flag)) {
1137
assert(cur->linear_scan_number() > pred->linear_scan_number(), "invalid order");
1138
}
1139
if (cur->loop_depth() == pred->loop_depth()) {
1140
assert(cur->loop_index() == pred->loop_index() || cur->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
1141
}
1142
1143
assert(cur->dominator()->linear_scan_number() <= cur->pred_at(j)->linear_scan_number(), "dominator must be before predecessors");
1144
}
1145
1146
// check dominator
1147
if (i == 0) {
1148
assert(cur->dominator() == NULL, "first block has no dominator");
1149
} else {
1150
assert(cur->dominator() != NULL, "all but first block must have dominator");
1151
}
1152
// Assertion does not hold for exception handlers
1153
assert(cur->number_of_preds() != 1 || cur->dominator() == cur->pred_at(0) || cur->is_set(BlockBegin::exception_entry_flag), "Single predecessor must also be dominator");
1154
}
1155
1156
// check that all loops are continuous
1157
for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
1158
int block_idx = 0;
1159
assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "the first block must not be present in any loop");
1160
1161
// skip blocks before the loop
1162
while (block_idx < _num_blocks && !is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
1163
block_idx++;
1164
}
1165
// skip blocks of loop
1166
while (block_idx < _num_blocks && is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
1167
block_idx++;
1168
}
1169
// after the first non-loop block, there must not be another loop-block
1170
while (block_idx < _num_blocks) {
1171
assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "loop not continuous in linear-scan order");
1172
block_idx++;
1173
}
1174
}
1175
}
1176
#endif
1177
1178
1179
void IR::compute_code() {
1180
assert(is_valid(), "IR must be valid");
1181
1182
ComputeLinearScanOrder compute_order(compilation(), start());
1183
_num_loops = compute_order.num_loops();
1184
_code = compute_order.linear_scan_order();
1185
}
1186
1187
1188
void IR::compute_use_counts() {
1189
// make sure all values coming out of this block get evaluated.
1190
int num_blocks = _code->length();
1191
for (int i = 0; i < num_blocks; i++) {
1192
_code->at(i)->end()->state()->pin_stack_for_linear_scan();
1193
}
1194
1195
// compute use counts
1196
UseCountComputer::compute(_code);
1197
}
1198
1199
1200
void IR::iterate_preorder(BlockClosure* closure) {
1201
assert(is_valid(), "IR must be valid");
1202
start()->iterate_preorder(closure);
1203
}
1204
1205
1206
void IR::iterate_postorder(BlockClosure* closure) {
1207
assert(is_valid(), "IR must be valid");
1208
start()->iterate_postorder(closure);
1209
}
1210
1211
void IR::iterate_linear_scan_order(BlockClosure* closure) {
1212
linear_scan_order()->iterate_forward(closure);
1213
}
1214
1215
1216
#ifndef PRODUCT
1217
class BlockPrinter: public BlockClosure {
1218
private:
1219
InstructionPrinter* _ip;
1220
bool _cfg_only;
1221
bool _live_only;
1222
1223
public:
1224
BlockPrinter(InstructionPrinter* ip, bool cfg_only, bool live_only = false) {
1225
_ip = ip;
1226
_cfg_only = cfg_only;
1227
_live_only = live_only;
1228
}
1229
1230
virtual void block_do(BlockBegin* block) {
1231
if (_cfg_only) {
1232
_ip->print_instr(block); tty->cr();
1233
} else {
1234
block->print_block(*_ip, _live_only);
1235
}
1236
}
1237
};
1238
1239
1240
void IR::print(BlockBegin* start, bool cfg_only, bool live_only) {
1241
ttyLocker ttyl;
1242
InstructionPrinter ip(!cfg_only);
1243
BlockPrinter bp(&ip, cfg_only, live_only);
1244
start->iterate_preorder(&bp);
1245
tty->cr();
1246
}
1247
1248
void IR::print(bool cfg_only, bool live_only) {
1249
if (is_valid()) {
1250
print(start(), cfg_only, live_only);
1251
} else {
1252
tty->print_cr("invalid IR");
1253
}
1254
}
1255
1256
1257
define_array(BlockListArray, BlockList*)
1258
define_stack(BlockListList, BlockListArray)
1259
1260
class PredecessorValidator : public BlockClosure {
1261
private:
1262
BlockListList* _predecessors;
1263
BlockList* _blocks;
1264
1265
static int cmp(BlockBegin** a, BlockBegin** b) {
1266
return (*a)->block_id() - (*b)->block_id();
1267
}
1268
1269
public:
1270
PredecessorValidator(IR* hir) {
1271
ResourceMark rm;
1272
_predecessors = new BlockListList(BlockBegin::number_of_blocks(), NULL);
1273
_blocks = new BlockList();
1274
1275
int i;
1276
hir->start()->iterate_preorder(this);
1277
if (hir->code() != NULL) {
1278
assert(hir->code()->length() == _blocks->length(), "must match");
1279
for (i = 0; i < _blocks->length(); i++) {
1280
assert(hir->code()->contains(_blocks->at(i)), "should be in both lists");
1281
}
1282
}
1283
1284
for (i = 0; i < _blocks->length(); i++) {
1285
BlockBegin* block = _blocks->at(i);
1286
BlockList* preds = _predecessors->at(block->block_id());
1287
if (preds == NULL) {
1288
assert(block->number_of_preds() == 0, "should be the same");
1289
continue;
1290
}
1291
1292
// clone the pred list so we can mutate it
1293
BlockList* pred_copy = new BlockList();
1294
int j;
1295
for (j = 0; j < block->number_of_preds(); j++) {
1296
pred_copy->append(block->pred_at(j));
1297
}
1298
// sort them in the same order
1299
preds->sort(cmp);
1300
pred_copy->sort(cmp);
1301
int length = MIN2(preds->length(), block->number_of_preds());
1302
for (j = 0; j < block->number_of_preds(); j++) {
1303
assert(preds->at(j) == pred_copy->at(j), "must match");
1304
}
1305
1306
assert(preds->length() == block->number_of_preds(), "should be the same");
1307
}
1308
}
1309
1310
virtual void block_do(BlockBegin* block) {
1311
_blocks->append(block);
1312
BlockEnd* be = block->end();
1313
int n = be->number_of_sux();
1314
int i;
1315
for (i = 0; i < n; i++) {
1316
BlockBegin* sux = be->sux_at(i);
1317
assert(!sux->is_set(BlockBegin::exception_entry_flag), "must not be xhandler");
1318
1319
BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
1320
if (preds == NULL) {
1321
preds = new BlockList();
1322
_predecessors->at_put(sux->block_id(), preds);
1323
}
1324
preds->append(block);
1325
}
1326
1327
n = block->number_of_exception_handlers();
1328
for (i = 0; i < n; i++) {
1329
BlockBegin* sux = block->exception_handler_at(i);
1330
assert(sux->is_set(BlockBegin::exception_entry_flag), "must be xhandler");
1331
1332
BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
1333
if (preds == NULL) {
1334
preds = new BlockList();
1335
_predecessors->at_put(sux->block_id(), preds);
1336
}
1337
preds->append(block);
1338
}
1339
}
1340
};
1341
1342
class VerifyBlockBeginField : public BlockClosure {
1343
1344
public:
1345
1346
virtual void block_do(BlockBegin *block) {
1347
for ( Instruction *cur = block; cur != NULL; cur = cur->next()) {
1348
assert(cur->block() == block, "Block begin is not correct");
1349
}
1350
}
1351
};
1352
1353
void IR::verify() {
1354
#ifdef ASSERT
1355
PredecessorValidator pv(this);
1356
VerifyBlockBeginField verifier;
1357
this->iterate_postorder(&verifier);
1358
#endif
1359
}
1360
1361
#endif // PRODUCT
1362
1363
void SubstitutionResolver::visit(Value* v) {
1364
Value v0 = *v;
1365
if (v0) {
1366
Value vs = v0->subst();
1367
if (vs != v0) {
1368
*v = v0->subst();
1369
}
1370
}
1371
}
1372
1373
#ifdef ASSERT
1374
class SubstitutionChecker: public ValueVisitor {
1375
void visit(Value* v) {
1376
Value v0 = *v;
1377
if (v0) {
1378
Value vs = v0->subst();
1379
assert(vs == v0, "missed substitution");
1380
}
1381
}
1382
};
1383
#endif
1384
1385
1386
void SubstitutionResolver::block_do(BlockBegin* block) {
1387
Instruction* last = NULL;
1388
for (Instruction* n = block; n != NULL;) {
1389
n->values_do(this);
1390
// need to remove this instruction from the instruction stream
1391
if (n->subst() != n) {
1392
assert(last != NULL, "must have last");
1393
last->set_next(n->next());
1394
} else {
1395
last = n;
1396
}
1397
n = last->next();
1398
}
1399
1400
#ifdef ASSERT
1401
SubstitutionChecker check_substitute;
1402
if (block->state()) block->state()->values_do(&check_substitute);
1403
block->block_values_do(&check_substitute);
1404
if (block->end() && block->end()->state()) block->end()->state()->values_do(&check_substitute);
1405
#endif
1406
}
1407
1408