Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/c1/c1_Instruction.cpp
32285 views
1
/*
2
* Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "c1/c1_IR.hpp"
27
#include "c1/c1_Instruction.hpp"
28
#include "c1/c1_InstructionPrinter.hpp"
29
#include "c1/c1_ValueStack.hpp"
30
#include "ci/ciObjArrayKlass.hpp"
31
#include "ci/ciTypeArrayKlass.hpp"
32
33
34
// Implementation of Instruction
35
36
37
int Instruction::dominator_depth() {
38
int result = -1;
39
if (block()) {
40
result = block()->dominator_depth();
41
}
42
assert(result != -1 || this->as_Local(), "Only locals have dominator depth -1");
43
return result;
44
}
45
46
Instruction::Condition Instruction::mirror(Condition cond) {
47
switch (cond) {
48
case eql: return eql;
49
case neq: return neq;
50
case lss: return gtr;
51
case leq: return geq;
52
case gtr: return lss;
53
case geq: return leq;
54
case aeq: return beq;
55
case beq: return aeq;
56
}
57
ShouldNotReachHere();
58
return eql;
59
}
60
61
62
Instruction::Condition Instruction::negate(Condition cond) {
63
switch (cond) {
64
case eql: return neq;
65
case neq: return eql;
66
case lss: return geq;
67
case leq: return gtr;
68
case gtr: return leq;
69
case geq: return lss;
70
case aeq: assert(false, "Above equal cannot be negated");
71
case beq: assert(false, "Below equal cannot be negated");
72
}
73
ShouldNotReachHere();
74
return eql;
75
}
76
77
void Instruction::update_exception_state(ValueStack* state) {
78
if (state != NULL && (state->kind() == ValueStack::EmptyExceptionState || state->kind() == ValueStack::ExceptionState)) {
79
assert(state->kind() == ValueStack::EmptyExceptionState || Compilation::current()->env()->should_retain_local_variables(), "unexpected state kind");
80
_exception_state = state;
81
} else {
82
_exception_state = NULL;
83
}
84
}
85
86
// Prev without need to have BlockBegin
87
Instruction* Instruction::prev() {
88
Instruction* p = NULL;
89
Instruction* q = block();
90
while (q != this) {
91
assert(q != NULL, "this is not in the block's instruction list");
92
p = q; q = q->next();
93
}
94
return p;
95
}
96
97
98
void Instruction::state_values_do(ValueVisitor* f) {
99
if (state_before() != NULL) {
100
state_before()->values_do(f);
101
}
102
if (exception_state() != NULL){
103
exception_state()->values_do(f);
104
}
105
}
106
107
ciType* Instruction::exact_type() const {
108
ciType* t = declared_type();
109
if (t != NULL && t->is_klass()) {
110
return t->as_klass()->exact_klass();
111
}
112
return NULL;
113
}
114
115
116
#ifndef PRODUCT
117
void Instruction::check_state(ValueStack* state) {
118
if (state != NULL) {
119
state->verify();
120
}
121
}
122
123
124
void Instruction::print() {
125
InstructionPrinter ip;
126
print(ip);
127
}
128
129
130
void Instruction::print_line() {
131
InstructionPrinter ip;
132
ip.print_line(this);
133
}
134
135
136
void Instruction::print(InstructionPrinter& ip) {
137
ip.print_head();
138
ip.print_line(this);
139
tty->cr();
140
}
141
#endif // PRODUCT
142
143
144
// perform constant and interval tests on index value
145
bool AccessIndexed::compute_needs_range_check() {
146
if (length()) {
147
Constant* clength = length()->as_Constant();
148
Constant* cindex = index()->as_Constant();
149
if (clength && cindex) {
150
IntConstant* l = clength->type()->as_IntConstant();
151
IntConstant* i = cindex->type()->as_IntConstant();
152
if (l && i && i->value() < l->value() && i->value() >= 0) {
153
return false;
154
}
155
}
156
}
157
158
if (!this->check_flag(NeedsRangeCheckFlag)) {
159
return false;
160
}
161
162
return true;
163
}
164
165
166
ciType* Constant::exact_type() const {
167
if (type()->is_object() && type()->as_ObjectType()->is_loaded()) {
168
return type()->as_ObjectType()->exact_type();
169
}
170
return NULL;
171
}
172
173
ciType* LoadIndexed::exact_type() const {
174
ciType* array_type = array()->exact_type();
175
if (array_type != NULL) {
176
assert(array_type->is_array_klass(), "what else?");
177
ciArrayKlass* ak = (ciArrayKlass*)array_type;
178
179
if (ak->element_type()->is_instance_klass()) {
180
ciInstanceKlass* ik = (ciInstanceKlass*)ak->element_type();
181
if (ik->is_loaded() && ik->is_final()) {
182
return ik;
183
}
184
}
185
}
186
return Instruction::exact_type();
187
}
188
189
190
ciType* LoadIndexed::declared_type() const {
191
ciType* array_type = array()->declared_type();
192
if (array_type == NULL || !array_type->is_loaded()) {
193
return NULL;
194
}
195
assert(array_type->is_array_klass(), "what else?");
196
ciArrayKlass* ak = (ciArrayKlass*)array_type;
197
return ak->element_type();
198
}
199
200
201
ciType* LoadField::declared_type() const {
202
return field()->type();
203
}
204
205
206
ciType* NewTypeArray::exact_type() const {
207
return ciTypeArrayKlass::make(elt_type());
208
}
209
210
ciType* NewObjectArray::exact_type() const {
211
return ciObjArrayKlass::make(klass());
212
}
213
214
ciType* NewArray::declared_type() const {
215
return exact_type();
216
}
217
218
ciType* NewInstance::exact_type() const {
219
return klass();
220
}
221
222
ciType* NewInstance::declared_type() const {
223
return exact_type();
224
}
225
226
ciType* CheckCast::declared_type() const {
227
return klass();
228
}
229
230
// Implementation of ArithmeticOp
231
232
bool ArithmeticOp::is_commutative() const {
233
switch (op()) {
234
case Bytecodes::_iadd: // fall through
235
case Bytecodes::_ladd: // fall through
236
case Bytecodes::_fadd: // fall through
237
case Bytecodes::_dadd: // fall through
238
case Bytecodes::_imul: // fall through
239
case Bytecodes::_lmul: // fall through
240
case Bytecodes::_fmul: // fall through
241
case Bytecodes::_dmul: return true;
242
}
243
return false;
244
}
245
246
247
bool ArithmeticOp::can_trap() const {
248
switch (op()) {
249
case Bytecodes::_idiv: // fall through
250
case Bytecodes::_ldiv: // fall through
251
case Bytecodes::_irem: // fall through
252
case Bytecodes::_lrem: return true;
253
}
254
return false;
255
}
256
257
258
// Implementation of LogicOp
259
260
bool LogicOp::is_commutative() const {
261
#ifdef ASSERT
262
switch (op()) {
263
case Bytecodes::_iand: // fall through
264
case Bytecodes::_land: // fall through
265
case Bytecodes::_ior : // fall through
266
case Bytecodes::_lor : // fall through
267
case Bytecodes::_ixor: // fall through
268
case Bytecodes::_lxor: break;
269
default : ShouldNotReachHere();
270
}
271
#endif
272
// all LogicOps are commutative
273
return true;
274
}
275
276
277
// Implementation of IfOp
278
279
bool IfOp::is_commutative() const {
280
return cond() == eql || cond() == neq;
281
}
282
283
284
// Implementation of StateSplit
285
286
void StateSplit::substitute(BlockList& list, BlockBegin* old_block, BlockBegin* new_block) {
287
NOT_PRODUCT(bool assigned = false;)
288
for (int i = 0; i < list.length(); i++) {
289
BlockBegin** b = list.adr_at(i);
290
if (*b == old_block) {
291
*b = new_block;
292
NOT_PRODUCT(assigned = true;)
293
}
294
}
295
assert(assigned == true, "should have assigned at least once");
296
}
297
298
299
IRScope* StateSplit::scope() const {
300
return _state->scope();
301
}
302
303
304
void StateSplit::state_values_do(ValueVisitor* f) {
305
Instruction::state_values_do(f);
306
if (state() != NULL) state()->values_do(f);
307
}
308
309
310
void BlockBegin::state_values_do(ValueVisitor* f) {
311
StateSplit::state_values_do(f);
312
313
if (is_set(BlockBegin::exception_entry_flag)) {
314
for (int i = 0; i < number_of_exception_states(); i++) {
315
exception_state_at(i)->values_do(f);
316
}
317
}
318
}
319
320
321
// Implementation of Invoke
322
323
324
Invoke::Invoke(Bytecodes::Code code, ValueType* result_type, Value recv, Values* args,
325
int vtable_index, ciMethod* target, ValueStack* state_before)
326
: StateSplit(result_type, state_before)
327
, _code(code)
328
, _recv(recv)
329
, _args(args)
330
, _vtable_index(vtable_index)
331
, _target(target)
332
{
333
set_flag(TargetIsLoadedFlag, target->is_loaded());
334
set_flag(TargetIsFinalFlag, target_is_loaded() && target->is_final_method());
335
set_flag(TargetIsStrictfpFlag, target_is_loaded() && target->is_strict());
336
337
assert(args != NULL, "args must exist");
338
#ifdef ASSERT
339
AssertValues assert_value;
340
values_do(&assert_value);
341
#endif
342
343
// provide an initial guess of signature size.
344
_signature = new BasicTypeList(number_of_arguments() + (has_receiver() ? 1 : 0));
345
if (has_receiver()) {
346
_signature->append(as_BasicType(receiver()->type()));
347
}
348
for (int i = 0; i < number_of_arguments(); i++) {
349
ValueType* t = argument_at(i)->type();
350
BasicType bt = as_BasicType(t);
351
_signature->append(bt);
352
}
353
}
354
355
356
void Invoke::state_values_do(ValueVisitor* f) {
357
StateSplit::state_values_do(f);
358
if (state_before() != NULL) state_before()->values_do(f);
359
if (state() != NULL) state()->values_do(f);
360
}
361
362
ciType* Invoke::declared_type() const {
363
ciSignature* declared_signature = state()->scope()->method()->get_declared_signature_at_bci(state()->bci());
364
ciType *t = declared_signature->return_type();
365
assert(t->basic_type() != T_VOID, "need return value of void method?");
366
return t;
367
}
368
369
// Implementation of Contant
370
intx Constant::hash() const {
371
if (state_before() == NULL) {
372
switch (type()->tag()) {
373
case intTag:
374
return HASH2(name(), type()->as_IntConstant()->value());
375
case addressTag:
376
return HASH2(name(), type()->as_AddressConstant()->value());
377
case longTag:
378
{
379
jlong temp = type()->as_LongConstant()->value();
380
return HASH3(name(), high(temp), low(temp));
381
}
382
case floatTag:
383
return HASH2(name(), jint_cast(type()->as_FloatConstant()->value()));
384
case doubleTag:
385
{
386
jlong temp = jlong_cast(type()->as_DoubleConstant()->value());
387
return HASH3(name(), high(temp), low(temp));
388
}
389
case objectTag:
390
assert(type()->as_ObjectType()->is_loaded(), "can't handle unloaded values");
391
return HASH2(name(), type()->as_ObjectType()->constant_value());
392
case metaDataTag:
393
assert(type()->as_MetadataType()->is_loaded(), "can't handle unloaded values");
394
return HASH2(name(), type()->as_MetadataType()->constant_value());
395
default:
396
ShouldNotReachHere();
397
}
398
}
399
return 0;
400
}
401
402
bool Constant::is_equal(Value v) const {
403
if (v->as_Constant() == NULL) return false;
404
405
switch (type()->tag()) {
406
case intTag:
407
{
408
IntConstant* t1 = type()->as_IntConstant();
409
IntConstant* t2 = v->type()->as_IntConstant();
410
return (t1 != NULL && t2 != NULL &&
411
t1->value() == t2->value());
412
}
413
case longTag:
414
{
415
LongConstant* t1 = type()->as_LongConstant();
416
LongConstant* t2 = v->type()->as_LongConstant();
417
return (t1 != NULL && t2 != NULL &&
418
t1->value() == t2->value());
419
}
420
case floatTag:
421
{
422
FloatConstant* t1 = type()->as_FloatConstant();
423
FloatConstant* t2 = v->type()->as_FloatConstant();
424
return (t1 != NULL && t2 != NULL &&
425
jint_cast(t1->value()) == jint_cast(t2->value()));
426
}
427
case doubleTag:
428
{
429
DoubleConstant* t1 = type()->as_DoubleConstant();
430
DoubleConstant* t2 = v->type()->as_DoubleConstant();
431
return (t1 != NULL && t2 != NULL &&
432
jlong_cast(t1->value()) == jlong_cast(t2->value()));
433
}
434
case objectTag:
435
{
436
ObjectType* t1 = type()->as_ObjectType();
437
ObjectType* t2 = v->type()->as_ObjectType();
438
return (t1 != NULL && t2 != NULL &&
439
t1->is_loaded() && t2->is_loaded() &&
440
t1->constant_value() == t2->constant_value());
441
}
442
case metaDataTag:
443
{
444
MetadataType* t1 = type()->as_MetadataType();
445
MetadataType* t2 = v->type()->as_MetadataType();
446
return (t1 != NULL && t2 != NULL &&
447
t1->is_loaded() && t2->is_loaded() &&
448
t1->constant_value() == t2->constant_value());
449
}
450
}
451
return false;
452
}
453
454
Constant::CompareResult Constant::compare(Instruction::Condition cond, Value right) const {
455
Constant* rc = right->as_Constant();
456
// other is not a constant
457
if (rc == NULL) return not_comparable;
458
459
ValueType* lt = type();
460
ValueType* rt = rc->type();
461
// different types
462
if (lt->base() != rt->base()) return not_comparable;
463
switch (lt->tag()) {
464
case intTag: {
465
int x = lt->as_IntConstant()->value();
466
int y = rt->as_IntConstant()->value();
467
switch (cond) {
468
case If::eql: return x == y ? cond_true : cond_false;
469
case If::neq: return x != y ? cond_true : cond_false;
470
case If::lss: return x < y ? cond_true : cond_false;
471
case If::leq: return x <= y ? cond_true : cond_false;
472
case If::gtr: return x > y ? cond_true : cond_false;
473
case If::geq: return x >= y ? cond_true : cond_false;
474
}
475
break;
476
}
477
case longTag: {
478
jlong x = lt->as_LongConstant()->value();
479
jlong y = rt->as_LongConstant()->value();
480
switch (cond) {
481
case If::eql: return x == y ? cond_true : cond_false;
482
case If::neq: return x != y ? cond_true : cond_false;
483
case If::lss: return x < y ? cond_true : cond_false;
484
case If::leq: return x <= y ? cond_true : cond_false;
485
case If::gtr: return x > y ? cond_true : cond_false;
486
case If::geq: return x >= y ? cond_true : cond_false;
487
}
488
break;
489
}
490
case objectTag: {
491
ciObject* xvalue = lt->as_ObjectType()->constant_value();
492
ciObject* yvalue = rt->as_ObjectType()->constant_value();
493
assert(xvalue != NULL && yvalue != NULL, "not constants");
494
if (xvalue->is_loaded() && yvalue->is_loaded()) {
495
switch (cond) {
496
case If::eql: return xvalue == yvalue ? cond_true : cond_false;
497
case If::neq: return xvalue != yvalue ? cond_true : cond_false;
498
}
499
}
500
break;
501
}
502
case metaDataTag: {
503
ciMetadata* xvalue = lt->as_MetadataType()->constant_value();
504
ciMetadata* yvalue = rt->as_MetadataType()->constant_value();
505
assert(xvalue != NULL && yvalue != NULL, "not constants");
506
if (xvalue->is_loaded() && yvalue->is_loaded()) {
507
switch (cond) {
508
case If::eql: return xvalue == yvalue ? cond_true : cond_false;
509
case If::neq: return xvalue != yvalue ? cond_true : cond_false;
510
}
511
}
512
break;
513
}
514
}
515
return not_comparable;
516
}
517
518
519
// Implementation of BlockBegin
520
521
void BlockBegin::set_end(BlockEnd* end) {
522
assert(end != NULL, "should not reset block end to NULL");
523
if (end == _end) {
524
return;
525
}
526
clear_end();
527
528
// Set the new end
529
_end = end;
530
531
_successors.clear();
532
// Now reset successors list based on BlockEnd
533
for (int i = 0; i < end->number_of_sux(); i++) {
534
BlockBegin* sux = end->sux_at(i);
535
_successors.append(sux);
536
sux->_predecessors.append(this);
537
}
538
_end->set_begin(this);
539
}
540
541
542
void BlockBegin::clear_end() {
543
// Must make the predecessors/successors match up with the
544
// BlockEnd's notion.
545
if (_end != NULL) {
546
// disconnect from the old end
547
_end->set_begin(NULL);
548
549
// disconnect this block from it's current successors
550
for (int i = 0; i < _successors.length(); i++) {
551
_successors.at(i)->remove_predecessor(this);
552
}
553
_end = NULL;
554
}
555
}
556
557
558
void BlockBegin::disconnect_edge(BlockBegin* from, BlockBegin* to) {
559
// disconnect any edges between from and to
560
#ifndef PRODUCT
561
if (PrintIR && Verbose) {
562
tty->print_cr("Disconnected edge B%d -> B%d", from->block_id(), to->block_id());
563
}
564
#endif
565
for (int s = 0; s < from->number_of_sux();) {
566
BlockBegin* sux = from->sux_at(s);
567
if (sux == to) {
568
int index = sux->_predecessors.index_of(from);
569
if (index >= 0) {
570
sux->_predecessors.remove_at(index);
571
}
572
from->_successors.remove_at(s);
573
} else {
574
s++;
575
}
576
}
577
}
578
579
580
void BlockBegin::disconnect_from_graph() {
581
// disconnect this block from all other blocks
582
for (int p = 0; p < number_of_preds(); p++) {
583
pred_at(p)->remove_successor(this);
584
}
585
for (int s = 0; s < number_of_sux(); s++) {
586
sux_at(s)->remove_predecessor(this);
587
}
588
}
589
590
void BlockBegin::substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux) {
591
// modify predecessors before substituting successors
592
for (int i = 0; i < number_of_sux(); i++) {
593
if (sux_at(i) == old_sux) {
594
// remove old predecessor before adding new predecessor
595
// otherwise there is a dead predecessor in the list
596
new_sux->remove_predecessor(old_sux);
597
new_sux->add_predecessor(this);
598
}
599
}
600
old_sux->remove_predecessor(this);
601
end()->substitute_sux(old_sux, new_sux);
602
}
603
604
605
606
// In general it is not possible to calculate a value for the field "depth_first_number"
607
// of the inserted block, without recomputing the values of the other blocks
608
// in the CFG. Therefore the value of "depth_first_number" in BlockBegin becomes meaningless.
609
BlockBegin* BlockBegin::insert_block_between(BlockBegin* sux) {
610
int bci = sux->bci();
611
// critical edge splitting may introduce a goto after a if and array
612
// bound check elimination may insert a predicate between the if and
613
// goto. The bci of the goto can't be the one of the if otherwise
614
// the state and bci are inconsistent and a deoptimization triggered
615
// by the predicate would lead to incorrect execution/a crash.
616
BlockBegin* new_sux = new BlockBegin(bci);
617
618
// mark this block (special treatment when block order is computed)
619
new_sux->set(critical_edge_split_flag);
620
621
// This goto is not a safepoint.
622
Goto* e = new Goto(sux, false);
623
new_sux->set_next(e, bci);
624
new_sux->set_end(e);
625
// setup states
626
ValueStack* s = end()->state();
627
new_sux->set_state(s->copy(s->kind(), bci));
628
e->set_state(s->copy(s->kind(), bci));
629
assert(new_sux->state()->locals_size() == s->locals_size(), "local size mismatch!");
630
assert(new_sux->state()->stack_size() == s->stack_size(), "stack size mismatch!");
631
assert(new_sux->state()->locks_size() == s->locks_size(), "locks size mismatch!");
632
633
// link predecessor to new block
634
end()->substitute_sux(sux, new_sux);
635
636
// The ordering needs to be the same, so remove the link that the
637
// set_end call above added and substitute the new_sux for this
638
// block.
639
sux->remove_predecessor(new_sux);
640
641
// the successor could be the target of a switch so it might have
642
// multiple copies of this predecessor, so substitute the new_sux
643
// for the first and delete the rest.
644
bool assigned = false;
645
BlockList& list = sux->_predecessors;
646
for (int i = 0; i < list.length(); i++) {
647
BlockBegin** b = list.adr_at(i);
648
if (*b == this) {
649
if (assigned) {
650
list.remove_at(i);
651
// reprocess this index
652
i--;
653
} else {
654
assigned = true;
655
*b = new_sux;
656
}
657
// link the new block back to it's predecessors.
658
new_sux->add_predecessor(this);
659
}
660
}
661
assert(assigned == true, "should have assigned at least once");
662
return new_sux;
663
}
664
665
666
void BlockBegin::remove_successor(BlockBegin* pred) {
667
int idx;
668
while ((idx = _successors.index_of(pred)) >= 0) {
669
_successors.remove_at(idx);
670
}
671
}
672
673
674
void BlockBegin::add_predecessor(BlockBegin* pred) {
675
_predecessors.append(pred);
676
}
677
678
679
void BlockBegin::remove_predecessor(BlockBegin* pred) {
680
int idx;
681
while ((idx = _predecessors.index_of(pred)) >= 0) {
682
_predecessors.remove_at(idx);
683
}
684
}
685
686
687
void BlockBegin::add_exception_handler(BlockBegin* b) {
688
assert(b != NULL && (b->is_set(exception_entry_flag)), "exception handler must exist");
689
// add only if not in the list already
690
if (!_exception_handlers.contains(b)) _exception_handlers.append(b);
691
}
692
693
int BlockBegin::add_exception_state(ValueStack* state) {
694
assert(is_set(exception_entry_flag), "only for xhandlers");
695
if (_exception_states == NULL) {
696
_exception_states = new ValueStackStack(4);
697
}
698
_exception_states->append(state);
699
return _exception_states->length() - 1;
700
}
701
702
703
void BlockBegin::iterate_preorder(boolArray& mark, BlockClosure* closure) {
704
if (!mark.at(block_id())) {
705
mark.at_put(block_id(), true);
706
closure->block_do(this);
707
BlockEnd* e = end(); // must do this after block_do because block_do may change it!
708
{ for (int i = number_of_exception_handlers() - 1; i >= 0; i--) exception_handler_at(i)->iterate_preorder(mark, closure); }
709
{ for (int i = e->number_of_sux () - 1; i >= 0; i--) e->sux_at (i)->iterate_preorder(mark, closure); }
710
}
711
}
712
713
714
void BlockBegin::iterate_postorder(boolArray& mark, BlockClosure* closure) {
715
if (!mark.at(block_id())) {
716
mark.at_put(block_id(), true);
717
BlockEnd* e = end();
718
{ for (int i = number_of_exception_handlers() - 1; i >= 0; i--) exception_handler_at(i)->iterate_postorder(mark, closure); }
719
{ for (int i = e->number_of_sux () - 1; i >= 0; i--) e->sux_at (i)->iterate_postorder(mark, closure); }
720
closure->block_do(this);
721
}
722
}
723
724
725
void BlockBegin::iterate_preorder(BlockClosure* closure) {
726
boolArray mark(number_of_blocks(), false);
727
iterate_preorder(mark, closure);
728
}
729
730
731
void BlockBegin::iterate_postorder(BlockClosure* closure) {
732
boolArray mark(number_of_blocks(), false);
733
iterate_postorder(mark, closure);
734
}
735
736
737
void BlockBegin::block_values_do(ValueVisitor* f) {
738
for (Instruction* n = this; n != NULL; n = n->next()) n->values_do(f);
739
}
740
741
742
#ifndef PRODUCT
743
#define TRACE_PHI(code) if (PrintPhiFunctions) { code; }
744
#else
745
#define TRACE_PHI(coce)
746
#endif
747
748
749
bool BlockBegin::try_merge(ValueStack* new_state) {
750
TRACE_PHI(tty->print_cr("********** try_merge for block B%d", block_id()));
751
752
// local variables used for state iteration
753
int index;
754
Value new_value, existing_value;
755
756
ValueStack* existing_state = state();
757
if (existing_state == NULL) {
758
TRACE_PHI(tty->print_cr("first call of try_merge for this block"));
759
760
if (is_set(BlockBegin::was_visited_flag)) {
761
// this actually happens for complicated jsr/ret structures
762
return false; // BAILOUT in caller
763
}
764
765
// copy state because it is altered
766
new_state = new_state->copy(ValueStack::BlockBeginState, bci());
767
768
// Use method liveness to invalidate dead locals
769
MethodLivenessResult liveness = new_state->scope()->method()->liveness_at_bci(bci());
770
if (liveness.is_valid()) {
771
assert((int)liveness.size() == new_state->locals_size(), "error in use of liveness");
772
773
for_each_local_value(new_state, index, new_value) {
774
if (!liveness.at(index) || new_value->type()->is_illegal()) {
775
new_state->invalidate_local(index);
776
TRACE_PHI(tty->print_cr("invalidating dead local %d", index));
777
}
778
}
779
}
780
781
if (is_set(BlockBegin::parser_loop_header_flag)) {
782
TRACE_PHI(tty->print_cr("loop header block, initializing phi functions"));
783
784
for_each_stack_value(new_state, index, new_value) {
785
new_state->setup_phi_for_stack(this, index);
786
TRACE_PHI(tty->print_cr("creating phi-function %c%d for stack %d", new_state->stack_at(index)->type()->tchar(), new_state->stack_at(index)->id(), index));
787
}
788
789
BitMap requires_phi_function = new_state->scope()->requires_phi_function();
790
791
for_each_local_value(new_state, index, new_value) {
792
bool requires_phi = requires_phi_function.at(index) || (new_value->type()->is_double_word() && requires_phi_function.at(index + 1));
793
if (requires_phi || !SelectivePhiFunctions) {
794
new_state->setup_phi_for_local(this, index);
795
TRACE_PHI(tty->print_cr("creating phi-function %c%d for local %d", new_state->local_at(index)->type()->tchar(), new_state->local_at(index)->id(), index));
796
}
797
}
798
}
799
800
// initialize state of block
801
set_state(new_state);
802
803
} else if (existing_state->is_same(new_state)) {
804
TRACE_PHI(tty->print_cr("exisiting state found"));
805
806
assert(existing_state->scope() == new_state->scope(), "not matching");
807
assert(existing_state->locals_size() == new_state->locals_size(), "not matching");
808
assert(existing_state->stack_size() == new_state->stack_size(), "not matching");
809
810
if (is_set(BlockBegin::was_visited_flag)) {
811
TRACE_PHI(tty->print_cr("loop header block, phis must be present"));
812
813
if (!is_set(BlockBegin::parser_loop_header_flag)) {
814
// this actually happens for complicated jsr/ret structures
815
return false; // BAILOUT in caller
816
}
817
818
for_each_local_value(existing_state, index, existing_value) {
819
Value new_value = new_state->local_at(index);
820
if (new_value == NULL || new_value->type()->tag() != existing_value->type()->tag()) {
821
// The old code invalidated the phi function here
822
// Because dead locals are replaced with NULL, this is a very rare case now, so simply bail out
823
return false; // BAILOUT in caller
824
}
825
}
826
827
#ifdef ASSERT
828
// check that all necessary phi functions are present
829
for_each_stack_value(existing_state, index, existing_value) {
830
assert(existing_value->as_Phi() != NULL && existing_value->as_Phi()->block() == this, "phi function required");
831
}
832
for_each_local_value(existing_state, index, existing_value) {
833
assert(existing_value == new_state->local_at(index) || (existing_value->as_Phi() != NULL && existing_value->as_Phi()->as_Phi()->block() == this), "phi function required");
834
}
835
#endif
836
837
} else {
838
TRACE_PHI(tty->print_cr("creating phi functions on demand"));
839
840
// create necessary phi functions for stack
841
for_each_stack_value(existing_state, index, existing_value) {
842
Value new_value = new_state->stack_at(index);
843
Phi* existing_phi = existing_value->as_Phi();
844
845
if (new_value != existing_value && (existing_phi == NULL || existing_phi->block() != this)) {
846
existing_state->setup_phi_for_stack(this, index);
847
TRACE_PHI(tty->print_cr("creating phi-function %c%d for stack %d", existing_state->stack_at(index)->type()->tchar(), existing_state->stack_at(index)->id(), index));
848
}
849
}
850
851
// create necessary phi functions for locals
852
for_each_local_value(existing_state, index, existing_value) {
853
Value new_value = new_state->local_at(index);
854
Phi* existing_phi = existing_value->as_Phi();
855
856
if (new_value == NULL || new_value->type()->tag() != existing_value->type()->tag()) {
857
existing_state->invalidate_local(index);
858
TRACE_PHI(tty->print_cr("invalidating local %d because of type mismatch", index));
859
} else if (new_value != existing_value && (existing_phi == NULL || existing_phi->block() != this)) {
860
existing_state->setup_phi_for_local(this, index);
861
TRACE_PHI(tty->print_cr("creating phi-function %c%d for local %d", existing_state->local_at(index)->type()->tchar(), existing_state->local_at(index)->id(), index));
862
}
863
}
864
}
865
866
assert(existing_state->caller_state() == new_state->caller_state(), "caller states must be equal");
867
868
} else {
869
assert(false, "stack or locks not matching (invalid bytecodes)");
870
return false;
871
}
872
873
TRACE_PHI(tty->print_cr("********** try_merge for block B%d successful", block_id()));
874
875
return true;
876
}
877
878
879
#ifndef PRODUCT
880
void BlockBegin::print_block() {
881
InstructionPrinter ip;
882
print_block(ip, false);
883
}
884
885
886
void BlockBegin::print_block(InstructionPrinter& ip, bool live_only) {
887
ip.print_instr(this); tty->cr();
888
ip.print_stack(this->state()); tty->cr();
889
ip.print_inline_level(this);
890
ip.print_head();
891
for (Instruction* n = next(); n != NULL; n = n->next()) {
892
if (!live_only || n->is_pinned() || n->use_count() > 0) {
893
ip.print_line(n);
894
}
895
}
896
tty->cr();
897
}
898
#endif // PRODUCT
899
900
901
// Implementation of BlockList
902
903
void BlockList::iterate_forward (BlockClosure* closure) {
904
const int l = length();
905
for (int i = 0; i < l; i++) closure->block_do(at(i));
906
}
907
908
909
void BlockList::iterate_backward(BlockClosure* closure) {
910
for (int i = length() - 1; i >= 0; i--) closure->block_do(at(i));
911
}
912
913
914
void BlockList::blocks_do(void f(BlockBegin*)) {
915
for (int i = length() - 1; i >= 0; i--) f(at(i));
916
}
917
918
919
void BlockList::values_do(ValueVisitor* f) {
920
for (int i = length() - 1; i >= 0; i--) at(i)->block_values_do(f);
921
}
922
923
924
#ifndef PRODUCT
925
void BlockList::print(bool cfg_only, bool live_only) {
926
InstructionPrinter ip;
927
for (int i = 0; i < length(); i++) {
928
BlockBegin* block = at(i);
929
if (cfg_only) {
930
ip.print_instr(block); tty->cr();
931
} else {
932
block->print_block(ip, live_only);
933
}
934
}
935
}
936
#endif // PRODUCT
937
938
939
// Implementation of BlockEnd
940
941
void BlockEnd::set_begin(BlockBegin* begin) {
942
BlockList* sux = NULL;
943
if (begin != NULL) {
944
sux = begin->successors();
945
} else if (this->begin() != NULL) {
946
// copy our sux list
947
BlockList* sux = new BlockList(this->begin()->number_of_sux());
948
for (int i = 0; i < this->begin()->number_of_sux(); i++) {
949
sux->append(this->begin()->sux_at(i));
950
}
951
}
952
_sux = sux;
953
}
954
955
956
void BlockEnd::substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux) {
957
substitute(*_sux, old_sux, new_sux);
958
}
959
960
961
// Implementation of Phi
962
963
// Normal phi functions take their operands from the last instruction of the
964
// predecessor. Special handling is needed for xhanlder entries because there
965
// the state of arbitrary instructions are needed.
966
967
Value Phi::operand_at(int i) const {
968
ValueStack* state;
969
if (_block->is_set(BlockBegin::exception_entry_flag)) {
970
state = _block->exception_state_at(i);
971
} else {
972
state = _block->pred_at(i)->end()->state();
973
}
974
assert(state != NULL, "");
975
976
if (is_local()) {
977
return state->local_at(local_index());
978
} else {
979
return state->stack_at(stack_index());
980
}
981
}
982
983
984
int Phi::operand_count() const {
985
if (_block->is_set(BlockBegin::exception_entry_flag)) {
986
return _block->number_of_exception_states();
987
} else {
988
return _block->number_of_preds();
989
}
990
}
991
992
#ifdef ASSERT
993
// Constructor of Assert
994
Assert::Assert(Value x, Condition cond, bool unordered_is_true, Value y) : Instruction(illegalType)
995
, _x(x)
996
, _cond(cond)
997
, _y(y)
998
{
999
set_flag(UnorderedIsTrueFlag, unordered_is_true);
1000
assert(x->type()->tag() == y->type()->tag(), "types must match");
1001
pin();
1002
1003
stringStream strStream;
1004
Compilation::current()->method()->print_name(&strStream);
1005
1006
stringStream strStream1;
1007
InstructionPrinter ip1(1, &strStream1);
1008
ip1.print_instr(x);
1009
1010
stringStream strStream2;
1011
InstructionPrinter ip2(1, &strStream2);
1012
ip2.print_instr(y);
1013
1014
stringStream ss;
1015
ss.print("Assertion %s %s %s in method %s", strStream1.as_string(), ip2.cond_name(cond), strStream2.as_string(), strStream.as_string());
1016
1017
_message = ss.as_string();
1018
}
1019
#endif
1020
1021
void RangeCheckPredicate::check_state() {
1022
assert(state()->kind() != ValueStack::EmptyExceptionState && state()->kind() != ValueStack::ExceptionState, "will deopt with empty state");
1023
}
1024
1025
void ProfileInvoke::state_values_do(ValueVisitor* f) {
1026
if (state() != NULL) state()->values_do(f);
1027
}
1028
1029