Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/c1/c1_LIR.cpp
32285 views
1
/*
2
* Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "c1/c1_InstructionPrinter.hpp"
27
#include "c1/c1_LIR.hpp"
28
#include "c1/c1_LIRAssembler.hpp"
29
#include "c1/c1_ValueStack.hpp"
30
#include "ci/ciInstance.hpp"
31
#include "runtime/sharedRuntime.hpp"
32
33
Register LIR_OprDesc::as_register() const {
34
return FrameMap::cpu_rnr2reg(cpu_regnr());
35
}
36
37
Register LIR_OprDesc::as_register_lo() const {
38
return FrameMap::cpu_rnr2reg(cpu_regnrLo());
39
}
40
41
Register LIR_OprDesc::as_register_hi() const {
42
return FrameMap::cpu_rnr2reg(cpu_regnrHi());
43
}
44
45
#if defined(X86)
46
47
XMMRegister LIR_OprDesc::as_xmm_float_reg() const {
48
return FrameMap::nr2xmmreg(xmm_regnr());
49
}
50
51
XMMRegister LIR_OprDesc::as_xmm_double_reg() const {
52
assert(xmm_regnrLo() == xmm_regnrHi(), "assumed in calculation");
53
return FrameMap::nr2xmmreg(xmm_regnrLo());
54
}
55
56
#endif // X86
57
58
#if defined(SPARC) || defined(PPC)
59
60
FloatRegister LIR_OprDesc::as_float_reg() const {
61
return FrameMap::nr2floatreg(fpu_regnr());
62
}
63
64
FloatRegister LIR_OprDesc::as_double_reg() const {
65
return FrameMap::nr2floatreg(fpu_regnrHi());
66
}
67
68
#endif
69
70
#if defined(ARM) || defined(AARCH64)
71
72
FloatRegister LIR_OprDesc::as_float_reg() const {
73
return as_FloatRegister(fpu_regnr());
74
}
75
76
FloatRegister LIR_OprDesc::as_double_reg() const {
77
return as_FloatRegister(fpu_regnrLo());
78
}
79
80
#endif
81
82
83
LIR_Opr LIR_OprFact::illegalOpr = LIR_OprFact::illegal();
84
85
LIR_Opr LIR_OprFact::value_type(ValueType* type) {
86
ValueTag tag = type->tag();
87
switch (tag) {
88
case metaDataTag : {
89
ClassConstant* c = type->as_ClassConstant();
90
if (c != NULL && !c->value()->is_loaded()) {
91
return LIR_OprFact::metadataConst(NULL);
92
} else if (c != NULL) {
93
return LIR_OprFact::metadataConst(c->value()->constant_encoding());
94
} else {
95
MethodConstant* m = type->as_MethodConstant();
96
assert (m != NULL, "not a class or a method?");
97
return LIR_OprFact::metadataConst(m->value()->constant_encoding());
98
}
99
}
100
case objectTag : {
101
return LIR_OprFact::oopConst(type->as_ObjectType()->encoding());
102
}
103
case addressTag: return LIR_OprFact::addressConst(type->as_AddressConstant()->value());
104
case intTag : return LIR_OprFact::intConst(type->as_IntConstant()->value());
105
case floatTag : return LIR_OprFact::floatConst(type->as_FloatConstant()->value());
106
case longTag : return LIR_OprFact::longConst(type->as_LongConstant()->value());
107
case doubleTag : return LIR_OprFact::doubleConst(type->as_DoubleConstant()->value());
108
default: ShouldNotReachHere(); return LIR_OprFact::intConst(-1);
109
}
110
}
111
112
113
LIR_Opr LIR_OprFact::dummy_value_type(ValueType* type) {
114
switch (type->tag()) {
115
case objectTag: return LIR_OprFact::oopConst(NULL);
116
case addressTag:return LIR_OprFact::addressConst(0);
117
case intTag: return LIR_OprFact::intConst(0);
118
case floatTag: return LIR_OprFact::floatConst(0.0);
119
case longTag: return LIR_OprFact::longConst(0);
120
case doubleTag: return LIR_OprFact::doubleConst(0.0);
121
default: ShouldNotReachHere(); return LIR_OprFact::intConst(-1);
122
}
123
return illegalOpr;
124
}
125
126
127
128
//---------------------------------------------------
129
130
131
LIR_Address::Scale LIR_Address::scale(BasicType type) {
132
int elem_size = type2aelembytes(type);
133
switch (elem_size) {
134
case 1: return LIR_Address::times_1;
135
case 2: return LIR_Address::times_2;
136
case 4: return LIR_Address::times_4;
137
case 8: return LIR_Address::times_8;
138
}
139
ShouldNotReachHere();
140
return LIR_Address::times_1;
141
}
142
143
144
#ifndef PRODUCT
145
void LIR_Address::verify0() const {
146
#if defined(SPARC) || defined(PPC)
147
assert(scale() == times_1, "Scaled addressing mode not available on SPARC/PPC and should not be used");
148
assert(disp() == 0 || index()->is_illegal(), "can't have both");
149
#endif
150
#ifdef _LP64
151
assert(base()->is_cpu_register(), "wrong base operand");
152
#ifndef AARCH64
153
assert(index()->is_illegal() || index()->is_double_cpu(), "wrong index operand");
154
#else
155
assert(index()->is_illegal() || index()->is_double_cpu() || index()->is_single_cpu(), "wrong index operand");
156
#endif
157
assert(base()->type() == T_OBJECT || base()->type() == T_LONG || base()->type() == T_METADATA,
158
"wrong type for addresses");
159
#else
160
assert(base()->is_single_cpu(), "wrong base operand");
161
assert(index()->is_illegal() || index()->is_single_cpu(), "wrong index operand");
162
assert(base()->type() == T_OBJECT || base()->type() == T_INT || base()->type() == T_METADATA,
163
"wrong type for addresses");
164
#endif
165
}
166
#endif
167
168
169
//---------------------------------------------------
170
171
char LIR_OprDesc::type_char(BasicType t) {
172
switch (t) {
173
case T_ARRAY:
174
t = T_OBJECT;
175
case T_BOOLEAN:
176
case T_CHAR:
177
case T_FLOAT:
178
case T_DOUBLE:
179
case T_BYTE:
180
case T_SHORT:
181
case T_INT:
182
case T_LONG:
183
case T_OBJECT:
184
case T_ADDRESS:
185
case T_VOID:
186
return ::type2char(t);
187
case T_METADATA:
188
return 'M';
189
case T_ILLEGAL:
190
return '?';
191
192
default:
193
ShouldNotReachHere();
194
return '?';
195
}
196
}
197
198
#ifndef PRODUCT
199
void LIR_OprDesc::validate_type() const {
200
201
#ifdef ASSERT
202
if (!is_pointer() && !is_illegal()) {
203
OprKind kindfield = kind_field(); // Factored out because of compiler bug, see 8002160
204
switch (as_BasicType(type_field())) {
205
case T_LONG:
206
assert((kindfield == cpu_register || kindfield == stack_value) &&
207
size_field() == double_size, "must match");
208
break;
209
case T_FLOAT:
210
// FP return values can be also in CPU registers on ARM and PPC (softfp ABI)
211
assert((kindfield == fpu_register || kindfield == stack_value
212
ARM_ONLY(|| kindfield == cpu_register)
213
PPC_ONLY(|| kindfield == cpu_register) ) &&
214
size_field() == single_size, "must match");
215
break;
216
case T_DOUBLE:
217
// FP return values can be also in CPU registers on ARM and PPC (softfp ABI)
218
assert((kindfield == fpu_register || kindfield == stack_value
219
ARM_ONLY(|| kindfield == cpu_register)
220
PPC_ONLY(|| kindfield == cpu_register) ) &&
221
size_field() == double_size, "must match");
222
break;
223
case T_BOOLEAN:
224
case T_CHAR:
225
case T_BYTE:
226
case T_SHORT:
227
case T_INT:
228
case T_ADDRESS:
229
case T_OBJECT:
230
case T_METADATA:
231
case T_ARRAY:
232
assert((kindfield == cpu_register || kindfield == stack_value) &&
233
size_field() == single_size, "must match");
234
break;
235
236
case T_ILLEGAL:
237
// XXX TKR also means unknown right now
238
// assert(is_illegal(), "must match");
239
break;
240
241
default:
242
ShouldNotReachHere();
243
}
244
}
245
#endif
246
247
}
248
#endif // PRODUCT
249
250
251
bool LIR_OprDesc::is_oop() const {
252
if (is_pointer()) {
253
return pointer()->is_oop_pointer();
254
} else {
255
OprType t= type_field();
256
assert(t != unknown_type, "not set");
257
return t == object_type;
258
}
259
}
260
261
262
263
void LIR_Op2::verify() const {
264
#ifdef ASSERT
265
switch (code()) {
266
case lir_cmove:
267
case lir_xchg:
268
break;
269
270
default:
271
assert(!result_opr()->is_register() || !result_opr()->is_oop_register(),
272
"can't produce oops from arith");
273
}
274
275
if (TwoOperandLIRForm) {
276
switch (code()) {
277
case lir_add:
278
case lir_sub:
279
case lir_mul:
280
case lir_mul_strictfp:
281
case lir_div:
282
case lir_div_strictfp:
283
case lir_rem:
284
case lir_logic_and:
285
case lir_logic_or:
286
case lir_logic_xor:
287
case lir_shl:
288
case lir_shr:
289
assert(in_opr1() == result_opr(), "opr1 and result must match");
290
assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid");
291
break;
292
293
// special handling for lir_ushr because of write barriers
294
case lir_ushr:
295
assert(in_opr1() == result_opr() || in_opr2()->is_constant(), "opr1 and result must match or shift count is constant");
296
assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid");
297
break;
298
299
}
300
}
301
#endif
302
}
303
304
305
LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block)
306
: LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
307
, _cond(cond)
308
, _type(type)
309
, _label(block->label())
310
, _block(block)
311
, _ublock(NULL)
312
, _stub(NULL) {
313
}
314
315
LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub) :
316
LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
317
, _cond(cond)
318
, _type(type)
319
, _label(stub->entry())
320
, _block(NULL)
321
, _ublock(NULL)
322
, _stub(stub) {
323
}
324
325
LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock)
326
: LIR_Op(lir_cond_float_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
327
, _cond(cond)
328
, _type(type)
329
, _label(block->label())
330
, _block(block)
331
, _ublock(ublock)
332
, _stub(NULL)
333
{
334
}
335
336
void LIR_OpBranch::change_block(BlockBegin* b) {
337
assert(_block != NULL, "must have old block");
338
assert(_block->label() == label(), "must be equal");
339
340
_block = b;
341
_label = b->label();
342
}
343
344
void LIR_OpBranch::change_ublock(BlockBegin* b) {
345
assert(_ublock != NULL, "must have old block");
346
_ublock = b;
347
}
348
349
void LIR_OpBranch::negate_cond() {
350
switch (_cond) {
351
case lir_cond_equal: _cond = lir_cond_notEqual; break;
352
case lir_cond_notEqual: _cond = lir_cond_equal; break;
353
case lir_cond_less: _cond = lir_cond_greaterEqual; break;
354
case lir_cond_lessEqual: _cond = lir_cond_greater; break;
355
case lir_cond_greaterEqual: _cond = lir_cond_less; break;
356
case lir_cond_greater: _cond = lir_cond_lessEqual; break;
357
default: ShouldNotReachHere();
358
}
359
}
360
361
362
LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
363
LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3,
364
bool fast_check, CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch,
365
CodeStub* stub)
366
367
: LIR_Op(code, result, NULL)
368
, _object(object)
369
, _array(LIR_OprFact::illegalOpr)
370
, _klass(klass)
371
, _tmp1(tmp1)
372
, _tmp2(tmp2)
373
, _tmp3(tmp3)
374
, _fast_check(fast_check)
375
, _stub(stub)
376
, _info_for_patch(info_for_patch)
377
, _info_for_exception(info_for_exception)
378
, _profiled_method(NULL)
379
, _profiled_bci(-1)
380
, _should_profile(false)
381
{
382
if (code == lir_checkcast) {
383
assert(info_for_exception != NULL, "checkcast throws exceptions");
384
} else if (code == lir_instanceof) {
385
assert(info_for_exception == NULL, "instanceof throws no exceptions");
386
} else {
387
ShouldNotReachHere();
388
}
389
}
390
391
392
393
LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception)
394
: LIR_Op(code, LIR_OprFact::illegalOpr, NULL)
395
, _object(object)
396
, _array(array)
397
, _klass(NULL)
398
, _tmp1(tmp1)
399
, _tmp2(tmp2)
400
, _tmp3(tmp3)
401
, _fast_check(false)
402
, _stub(NULL)
403
, _info_for_patch(NULL)
404
, _info_for_exception(info_for_exception)
405
, _profiled_method(NULL)
406
, _profiled_bci(-1)
407
, _should_profile(false)
408
{
409
if (code == lir_store_check) {
410
_stub = new ArrayStoreExceptionStub(object, info_for_exception);
411
assert(info_for_exception != NULL, "store_check throws exceptions");
412
} else {
413
ShouldNotReachHere();
414
}
415
}
416
417
418
LIR_OpArrayCopy::LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length,
419
LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info)
420
: LIR_Op(lir_arraycopy, LIR_OprFact::illegalOpr, info)
421
, _tmp(tmp)
422
, _src(src)
423
, _src_pos(src_pos)
424
, _dst(dst)
425
, _dst_pos(dst_pos)
426
, _flags(flags)
427
, _expected_type(expected_type)
428
, _length(length) {
429
_stub = new ArrayCopyStub(this);
430
}
431
432
LIR_OpUpdateCRC32::LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res)
433
: LIR_Op(lir_updatecrc32, res, NULL)
434
, _crc(crc)
435
, _val(val) {
436
}
437
438
//-------------------verify--------------------------
439
440
void LIR_Op1::verify() const {
441
switch(code()) {
442
case lir_move:
443
assert(in_opr()->is_valid() && result_opr()->is_valid(), "must be");
444
break;
445
case lir_null_check:
446
assert(in_opr()->is_register(), "must be");
447
break;
448
case lir_return:
449
assert(in_opr()->is_register() || in_opr()->is_illegal(), "must be");
450
break;
451
}
452
}
453
454
void LIR_OpRTCall::verify() const {
455
assert(strcmp(Runtime1::name_for_address(addr()), "<unknown function>") != 0, "unknown function");
456
}
457
458
//-------------------visits--------------------------
459
460
// complete rework of LIR instruction visitor.
461
// The virtual call for each instruction type is replaced by a big
462
// switch that adds the operands for each instruction
463
464
void LIR_OpVisitState::visit(LIR_Op* op) {
465
// copy information from the LIR_Op
466
reset();
467
set_op(op);
468
469
switch (op->code()) {
470
471
// LIR_Op0
472
case lir_word_align: // result and info always invalid
473
case lir_backwardbranch_target: // result and info always invalid
474
case lir_build_frame: // result and info always invalid
475
case lir_fpop_raw: // result and info always invalid
476
case lir_24bit_FPU: // result and info always invalid
477
case lir_reset_FPU: // result and info always invalid
478
case lir_breakpoint: // result and info always invalid
479
case lir_membar: // result and info always invalid
480
case lir_membar_acquire: // result and info always invalid
481
case lir_membar_release: // result and info always invalid
482
case lir_membar_loadload: // result and info always invalid
483
case lir_membar_storestore: // result and info always invalid
484
case lir_membar_loadstore: // result and info always invalid
485
case lir_membar_storeload: // result and info always invalid
486
{
487
assert(op->as_Op0() != NULL, "must be");
488
assert(op->_info == NULL, "info not used by this instruction");
489
assert(op->_result->is_illegal(), "not used");
490
break;
491
}
492
493
case lir_nop: // may have info, result always invalid
494
case lir_std_entry: // may have result, info always invalid
495
case lir_osr_entry: // may have result, info always invalid
496
case lir_get_thread: // may have result, info always invalid
497
{
498
assert(op->as_Op0() != NULL, "must be");
499
if (op->_info != NULL) do_info(op->_info);
500
if (op->_result->is_valid()) do_output(op->_result);
501
break;
502
}
503
504
505
// LIR_OpLabel
506
case lir_label: // result and info always invalid
507
{
508
assert(op->as_OpLabel() != NULL, "must be");
509
assert(op->_info == NULL, "info not used by this instruction");
510
assert(op->_result->is_illegal(), "not used");
511
break;
512
}
513
514
515
// LIR_Op1
516
case lir_fxch: // input always valid, result and info always invalid
517
case lir_fld: // input always valid, result and info always invalid
518
case lir_ffree: // input always valid, result and info always invalid
519
case lir_push: // input always valid, result and info always invalid
520
case lir_pop: // input always valid, result and info always invalid
521
case lir_return: // input always valid, result and info always invalid
522
case lir_leal: // input and result always valid, info always invalid
523
case lir_neg: // input and result always valid, info always invalid
524
case lir_monaddr: // input and result always valid, info always invalid
525
case lir_null_check: // input and info always valid, result always invalid
526
case lir_move: // input and result always valid, may have info
527
case lir_pack64: // input and result always valid
528
case lir_unpack64: // input and result always valid
529
case lir_prefetchr: // input always valid, result and info always invalid
530
case lir_prefetchw: // input always valid, result and info always invalid
531
{
532
assert(op->as_Op1() != NULL, "must be");
533
LIR_Op1* op1 = (LIR_Op1*)op;
534
535
if (op1->_info) do_info(op1->_info);
536
if (op1->_opr->is_valid()) do_input(op1->_opr);
537
if (op1->_result->is_valid()) do_output(op1->_result);
538
539
break;
540
}
541
542
case lir_safepoint:
543
{
544
assert(op->as_Op1() != NULL, "must be");
545
LIR_Op1* op1 = (LIR_Op1*)op;
546
547
assert(op1->_info != NULL, ""); do_info(op1->_info);
548
if (op1->_opr->is_valid()) do_temp(op1->_opr); // safepoints on SPARC need temporary register
549
assert(op1->_result->is_illegal(), "safepoint does not produce value");
550
551
break;
552
}
553
554
// LIR_OpConvert;
555
case lir_convert: // input and result always valid, info always invalid
556
{
557
assert(op->as_OpConvert() != NULL, "must be");
558
LIR_OpConvert* opConvert = (LIR_OpConvert*)op;
559
560
assert(opConvert->_info == NULL, "must be");
561
if (opConvert->_opr->is_valid()) do_input(opConvert->_opr);
562
if (opConvert->_result->is_valid()) do_output(opConvert->_result);
563
#if defined(PPC) || defined(AARCH64)
564
if (opConvert->_tmp1->is_valid()) do_temp(opConvert->_tmp1);
565
if (opConvert->_tmp2->is_valid()) do_temp(opConvert->_tmp2);
566
#endif
567
do_stub(opConvert->_stub);
568
569
break;
570
}
571
572
// LIR_OpBranch;
573
case lir_branch: // may have info, input and result register always invalid
574
case lir_cond_float_branch: // may have info, input and result register always invalid
575
{
576
assert(op->as_OpBranch() != NULL, "must be");
577
LIR_OpBranch* opBranch = (LIR_OpBranch*)op;
578
579
if (opBranch->_info != NULL) do_info(opBranch->_info);
580
assert(opBranch->_result->is_illegal(), "not used");
581
if (opBranch->_stub != NULL) opBranch->stub()->visit(this);
582
583
break;
584
}
585
586
587
// LIR_OpAllocObj
588
case lir_alloc_object:
589
{
590
assert(op->as_OpAllocObj() != NULL, "must be");
591
LIR_OpAllocObj* opAllocObj = (LIR_OpAllocObj*)op;
592
593
if (opAllocObj->_info) do_info(opAllocObj->_info);
594
if (opAllocObj->_opr->is_valid()) { do_input(opAllocObj->_opr);
595
do_temp(opAllocObj->_opr);
596
}
597
if (opAllocObj->_tmp1->is_valid()) do_temp(opAllocObj->_tmp1);
598
if (opAllocObj->_tmp2->is_valid()) do_temp(opAllocObj->_tmp2);
599
if (opAllocObj->_tmp3->is_valid()) do_temp(opAllocObj->_tmp3);
600
if (opAllocObj->_tmp4->is_valid()) do_temp(opAllocObj->_tmp4);
601
if (opAllocObj->_result->is_valid()) do_output(opAllocObj->_result);
602
do_stub(opAllocObj->_stub);
603
break;
604
}
605
606
607
// LIR_OpRoundFP;
608
case lir_roundfp: {
609
assert(op->as_OpRoundFP() != NULL, "must be");
610
LIR_OpRoundFP* opRoundFP = (LIR_OpRoundFP*)op;
611
612
assert(op->_info == NULL, "info not used by this instruction");
613
assert(opRoundFP->_tmp->is_illegal(), "not used");
614
do_input(opRoundFP->_opr);
615
do_output(opRoundFP->_result);
616
617
break;
618
}
619
620
621
// LIR_Op2
622
case lir_cmp:
623
case lir_cmp_l2i:
624
case lir_ucmp_fd2i:
625
case lir_cmp_fd2i:
626
case lir_add:
627
case lir_sub:
628
case lir_mul:
629
case lir_div:
630
case lir_rem:
631
case lir_sqrt:
632
case lir_abs:
633
case lir_logic_and:
634
case lir_logic_or:
635
case lir_logic_xor:
636
case lir_shl:
637
case lir_shr:
638
case lir_ushr:
639
case lir_xadd:
640
case lir_xchg:
641
case lir_assert:
642
{
643
assert(op->as_Op2() != NULL, "must be");
644
LIR_Op2* op2 = (LIR_Op2*)op;
645
assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() &&
646
op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
647
648
if (op2->_info) do_info(op2->_info);
649
if (op2->_opr1->is_valid()) do_input(op2->_opr1);
650
if (op2->_opr2->is_valid()) do_input(op2->_opr2);
651
if (op2->_tmp1->is_valid()) do_temp(op2->_tmp1);
652
if (op2->_result->is_valid()) do_output(op2->_result);
653
if (op->code() == lir_xchg || op->code() == lir_xadd) {
654
// on ARM and PPC, return value is loaded first so could
655
// destroy inputs. On other platforms that implement those
656
// (x86, sparc), the extra constrainsts are harmless.
657
if (op2->_opr1->is_valid()) do_temp(op2->_opr1);
658
if (op2->_opr2->is_valid()) do_temp(op2->_opr2);
659
}
660
661
break;
662
}
663
664
// special handling for cmove: right input operand must not be equal
665
// to the result operand, otherwise the backend fails
666
case lir_cmove:
667
{
668
assert(op->as_Op2() != NULL, "must be");
669
LIR_Op2* op2 = (LIR_Op2*)op;
670
671
assert(op2->_info == NULL && op2->_tmp1->is_illegal() && op2->_tmp2->is_illegal() &&
672
op2->_tmp3->is_illegal() && op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
673
assert(op2->_opr1->is_valid() && op2->_opr2->is_valid() && op2->_result->is_valid(), "used");
674
675
do_input(op2->_opr1);
676
do_input(op2->_opr2);
677
do_temp(op2->_opr2);
678
do_output(op2->_result);
679
680
break;
681
}
682
683
// vspecial handling for strict operations: register input operands
684
// as temp to guarantee that they do not overlap with other
685
// registers
686
case lir_mul_strictfp:
687
case lir_div_strictfp:
688
{
689
assert(op->as_Op2() != NULL, "must be");
690
LIR_Op2* op2 = (LIR_Op2*)op;
691
692
assert(op2->_info == NULL, "not used");
693
assert(op2->_opr1->is_valid(), "used");
694
assert(op2->_opr2->is_valid(), "used");
695
assert(op2->_result->is_valid(), "used");
696
assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() &&
697
op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
698
699
do_input(op2->_opr1); do_temp(op2->_opr1);
700
do_input(op2->_opr2); do_temp(op2->_opr2);
701
if (op2->_tmp1->is_valid()) do_temp(op2->_tmp1);
702
do_output(op2->_result);
703
704
break;
705
}
706
707
case lir_throw: {
708
assert(op->as_Op2() != NULL, "must be");
709
LIR_Op2* op2 = (LIR_Op2*)op;
710
711
if (op2->_info) do_info(op2->_info);
712
if (op2->_opr1->is_valid()) do_temp(op2->_opr1);
713
if (op2->_opr2->is_valid()) do_input(op2->_opr2); // exception object is input parameter
714
assert(op2->_result->is_illegal(), "no result");
715
assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() &&
716
op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
717
718
break;
719
}
720
721
case lir_unwind: {
722
assert(op->as_Op1() != NULL, "must be");
723
LIR_Op1* op1 = (LIR_Op1*)op;
724
725
assert(op1->_info == NULL, "no info");
726
assert(op1->_opr->is_valid(), "exception oop"); do_input(op1->_opr);
727
assert(op1->_result->is_illegal(), "no result");
728
729
break;
730
}
731
732
733
case lir_tan:
734
case lir_sin:
735
case lir_cos:
736
case lir_log:
737
case lir_log10:
738
case lir_exp: {
739
assert(op->as_Op2() != NULL, "must be");
740
LIR_Op2* op2 = (LIR_Op2*)op;
741
742
// On x86 tan/sin/cos need two temporary fpu stack slots and
743
// log/log10 need one so handle opr2 and tmp as temp inputs.
744
// Register input operand as temp to guarantee that it doesn't
745
// overlap with the input.
746
assert(op2->_info == NULL, "not used");
747
assert(op2->_tmp5->is_illegal(), "not used");
748
assert(op2->_tmp2->is_valid() == (op->code() == lir_exp), "not used");
749
assert(op2->_tmp3->is_valid() == (op->code() == lir_exp), "not used");
750
assert(op2->_tmp4->is_valid() == (op->code() == lir_exp), "not used");
751
assert(op2->_opr1->is_valid(), "used");
752
do_input(op2->_opr1); do_temp(op2->_opr1);
753
754
if (op2->_opr2->is_valid()) do_temp(op2->_opr2);
755
if (op2->_tmp1->is_valid()) do_temp(op2->_tmp1);
756
if (op2->_tmp2->is_valid()) do_temp(op2->_tmp2);
757
if (op2->_tmp3->is_valid()) do_temp(op2->_tmp3);
758
if (op2->_tmp4->is_valid()) do_temp(op2->_tmp4);
759
if (op2->_result->is_valid()) do_output(op2->_result);
760
761
break;
762
}
763
764
case lir_pow: {
765
assert(op->as_Op2() != NULL, "must be");
766
LIR_Op2* op2 = (LIR_Op2*)op;
767
768
// On x86 pow needs two temporary fpu stack slots: tmp1 and
769
// tmp2. Register input operands as temps to guarantee that it
770
// doesn't overlap with the temporary slots.
771
assert(op2->_info == NULL, "not used");
772
assert(op2->_opr1->is_valid() && op2->_opr2->is_valid(), "used");
773
assert(op2->_tmp1->is_valid() && op2->_tmp2->is_valid() && op2->_tmp3->is_valid()
774
&& op2->_tmp4->is_valid() && op2->_tmp5->is_valid(), "used");
775
assert(op2->_result->is_valid(), "used");
776
777
do_input(op2->_opr1); do_temp(op2->_opr1);
778
do_input(op2->_opr2); do_temp(op2->_opr2);
779
do_temp(op2->_tmp1);
780
do_temp(op2->_tmp2);
781
do_temp(op2->_tmp3);
782
do_temp(op2->_tmp4);
783
do_temp(op2->_tmp5);
784
do_output(op2->_result);
785
786
break;
787
}
788
789
// LIR_Op3
790
case lir_idiv:
791
case lir_irem: {
792
assert(op->as_Op3() != NULL, "must be");
793
LIR_Op3* op3= (LIR_Op3*)op;
794
795
if (op3->_info) do_info(op3->_info);
796
if (op3->_opr1->is_valid()) do_input(op3->_opr1);
797
798
// second operand is input and temp, so ensure that second operand
799
// and third operand get not the same register
800
if (op3->_opr2->is_valid()) do_input(op3->_opr2);
801
if (op3->_opr2->is_valid()) do_temp(op3->_opr2);
802
if (op3->_opr3->is_valid()) do_temp(op3->_opr3);
803
804
if (op3->_result->is_valid()) do_output(op3->_result);
805
806
break;
807
}
808
809
810
// LIR_OpJavaCall
811
case lir_static_call:
812
case lir_optvirtual_call:
813
case lir_icvirtual_call:
814
case lir_virtual_call:
815
case lir_dynamic_call: {
816
LIR_OpJavaCall* opJavaCall = op->as_OpJavaCall();
817
assert(opJavaCall != NULL, "must be");
818
819
if (opJavaCall->_receiver->is_valid()) do_input(opJavaCall->_receiver);
820
821
// only visit register parameters
822
int n = opJavaCall->_arguments->length();
823
for (int i = opJavaCall->_receiver->is_valid() ? 1 : 0; i < n; i++) {
824
if (!opJavaCall->_arguments->at(i)->is_pointer()) {
825
do_input(*opJavaCall->_arguments->adr_at(i));
826
}
827
}
828
829
if (opJavaCall->_info) do_info(opJavaCall->_info);
830
if (FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr &&
831
opJavaCall->is_method_handle_invoke()) {
832
opJavaCall->_method_handle_invoke_SP_save_opr = FrameMap::method_handle_invoke_SP_save_opr();
833
do_temp(opJavaCall->_method_handle_invoke_SP_save_opr);
834
}
835
do_call();
836
if (opJavaCall->_result->is_valid()) do_output(opJavaCall->_result);
837
838
break;
839
}
840
841
842
// LIR_OpRTCall
843
case lir_rtcall: {
844
assert(op->as_OpRTCall() != NULL, "must be");
845
LIR_OpRTCall* opRTCall = (LIR_OpRTCall*)op;
846
847
// only visit register parameters
848
int n = opRTCall->_arguments->length();
849
for (int i = 0; i < n; i++) {
850
if (!opRTCall->_arguments->at(i)->is_pointer()) {
851
do_input(*opRTCall->_arguments->adr_at(i));
852
}
853
}
854
if (opRTCall->_info) do_info(opRTCall->_info);
855
if (opRTCall->_tmp->is_valid()) do_temp(opRTCall->_tmp);
856
do_call();
857
if (opRTCall->_result->is_valid()) do_output(opRTCall->_result);
858
859
break;
860
}
861
862
863
// LIR_OpArrayCopy
864
case lir_arraycopy: {
865
assert(op->as_OpArrayCopy() != NULL, "must be");
866
LIR_OpArrayCopy* opArrayCopy = (LIR_OpArrayCopy*)op;
867
868
assert(opArrayCopy->_result->is_illegal(), "unused");
869
assert(opArrayCopy->_src->is_valid(), "used"); do_input(opArrayCopy->_src); do_temp(opArrayCopy->_src);
870
assert(opArrayCopy->_src_pos->is_valid(), "used"); do_input(opArrayCopy->_src_pos); do_temp(opArrayCopy->_src_pos);
871
assert(opArrayCopy->_dst->is_valid(), "used"); do_input(opArrayCopy->_dst); do_temp(opArrayCopy->_dst);
872
assert(opArrayCopy->_dst_pos->is_valid(), "used"); do_input(opArrayCopy->_dst_pos); do_temp(opArrayCopy->_dst_pos);
873
assert(opArrayCopy->_length->is_valid(), "used"); do_input(opArrayCopy->_length); do_temp(opArrayCopy->_length);
874
assert(opArrayCopy->_tmp->is_valid(), "used"); do_temp(opArrayCopy->_tmp);
875
if (opArrayCopy->_info) do_info(opArrayCopy->_info);
876
877
// the implementation of arraycopy always has a call into the runtime
878
do_call();
879
880
break;
881
}
882
883
884
// LIR_OpUpdateCRC32
885
case lir_updatecrc32: {
886
assert(op->as_OpUpdateCRC32() != NULL, "must be");
887
LIR_OpUpdateCRC32* opUp = (LIR_OpUpdateCRC32*)op;
888
889
assert(opUp->_crc->is_valid(), "used"); do_input(opUp->_crc); do_temp(opUp->_crc);
890
assert(opUp->_val->is_valid(), "used"); do_input(opUp->_val); do_temp(opUp->_val);
891
assert(opUp->_result->is_valid(), "used"); do_output(opUp->_result);
892
assert(opUp->_info == NULL, "no info for LIR_OpUpdateCRC32");
893
894
break;
895
}
896
897
898
// LIR_OpLock
899
case lir_lock:
900
case lir_unlock: {
901
assert(op->as_OpLock() != NULL, "must be");
902
LIR_OpLock* opLock = (LIR_OpLock*)op;
903
904
if (opLock->_info) do_info(opLock->_info);
905
906
// TODO: check if these operands really have to be temp
907
// (or if input is sufficient). This may have influence on the oop map!
908
assert(opLock->_lock->is_valid(), "used"); do_temp(opLock->_lock);
909
assert(opLock->_hdr->is_valid(), "used"); do_temp(opLock->_hdr);
910
assert(opLock->_obj->is_valid(), "used"); do_temp(opLock->_obj);
911
912
if (opLock->_scratch->is_valid()) do_temp(opLock->_scratch);
913
assert(opLock->_result->is_illegal(), "unused");
914
915
do_stub(opLock->_stub);
916
917
break;
918
}
919
920
921
// LIR_OpDelay
922
case lir_delay_slot: {
923
assert(op->as_OpDelay() != NULL, "must be");
924
LIR_OpDelay* opDelay = (LIR_OpDelay*)op;
925
926
visit(opDelay->delay_op());
927
break;
928
}
929
930
// LIR_OpTypeCheck
931
case lir_instanceof:
932
case lir_checkcast:
933
case lir_store_check: {
934
assert(op->as_OpTypeCheck() != NULL, "must be");
935
LIR_OpTypeCheck* opTypeCheck = (LIR_OpTypeCheck*)op;
936
937
if (opTypeCheck->_info_for_exception) do_info(opTypeCheck->_info_for_exception);
938
if (opTypeCheck->_info_for_patch) do_info(opTypeCheck->_info_for_patch);
939
if (opTypeCheck->_object->is_valid()) do_input(opTypeCheck->_object);
940
if (op->code() == lir_store_check && opTypeCheck->_object->is_valid()) {
941
do_temp(opTypeCheck->_object);
942
}
943
if (opTypeCheck->_array->is_valid()) do_input(opTypeCheck->_array);
944
if (opTypeCheck->_tmp1->is_valid()) do_temp(opTypeCheck->_tmp1);
945
if (opTypeCheck->_tmp2->is_valid()) do_temp(opTypeCheck->_tmp2);
946
if (opTypeCheck->_tmp3->is_valid()) do_temp(opTypeCheck->_tmp3);
947
if (opTypeCheck->_result->is_valid()) do_output(opTypeCheck->_result);
948
do_stub(opTypeCheck->_stub);
949
break;
950
}
951
952
// LIR_OpCompareAndSwap
953
case lir_cas_long:
954
case lir_cas_obj:
955
case lir_cas_int: {
956
assert(op->as_OpCompareAndSwap() != NULL, "must be");
957
LIR_OpCompareAndSwap* opCompareAndSwap = (LIR_OpCompareAndSwap*)op;
958
959
assert(opCompareAndSwap->_addr->is_valid(), "used");
960
assert(opCompareAndSwap->_cmp_value->is_valid(), "used");
961
assert(opCompareAndSwap->_new_value->is_valid(), "used");
962
if (opCompareAndSwap->_info) do_info(opCompareAndSwap->_info);
963
do_input(opCompareAndSwap->_addr);
964
do_temp(opCompareAndSwap->_addr);
965
do_input(opCompareAndSwap->_cmp_value);
966
do_temp(opCompareAndSwap->_cmp_value);
967
do_input(opCompareAndSwap->_new_value);
968
do_temp(opCompareAndSwap->_new_value);
969
if (opCompareAndSwap->_tmp1->is_valid()) do_temp(opCompareAndSwap->_tmp1);
970
if (opCompareAndSwap->_tmp2->is_valid()) do_temp(opCompareAndSwap->_tmp2);
971
if (opCompareAndSwap->_result->is_valid()) do_output(opCompareAndSwap->_result);
972
973
break;
974
}
975
976
977
// LIR_OpAllocArray;
978
case lir_alloc_array: {
979
assert(op->as_OpAllocArray() != NULL, "must be");
980
LIR_OpAllocArray* opAllocArray = (LIR_OpAllocArray*)op;
981
982
if (opAllocArray->_info) do_info(opAllocArray->_info);
983
if (opAllocArray->_klass->is_valid()) do_input(opAllocArray->_klass); do_temp(opAllocArray->_klass);
984
if (opAllocArray->_len->is_valid()) do_input(opAllocArray->_len); do_temp(opAllocArray->_len);
985
if (opAllocArray->_tmp1->is_valid()) do_temp(opAllocArray->_tmp1);
986
if (opAllocArray->_tmp2->is_valid()) do_temp(opAllocArray->_tmp2);
987
if (opAllocArray->_tmp3->is_valid()) do_temp(opAllocArray->_tmp3);
988
if (opAllocArray->_tmp4->is_valid()) do_temp(opAllocArray->_tmp4);
989
if (opAllocArray->_result->is_valid()) do_output(opAllocArray->_result);
990
do_stub(opAllocArray->_stub);
991
break;
992
}
993
994
// LIR_OpProfileCall:
995
case lir_profile_call: {
996
assert(op->as_OpProfileCall() != NULL, "must be");
997
LIR_OpProfileCall* opProfileCall = (LIR_OpProfileCall*)op;
998
999
if (opProfileCall->_recv->is_valid()) do_temp(opProfileCall->_recv);
1000
assert(opProfileCall->_mdo->is_valid(), "used"); do_temp(opProfileCall->_mdo);
1001
assert(opProfileCall->_tmp1->is_valid(), "used"); do_temp(opProfileCall->_tmp1);
1002
break;
1003
}
1004
1005
// LIR_OpProfileType:
1006
case lir_profile_type: {
1007
assert(op->as_OpProfileType() != NULL, "must be");
1008
LIR_OpProfileType* opProfileType = (LIR_OpProfileType*)op;
1009
1010
do_input(opProfileType->_mdp); do_temp(opProfileType->_mdp);
1011
do_input(opProfileType->_obj);
1012
do_temp(opProfileType->_tmp);
1013
break;
1014
}
1015
default:
1016
ShouldNotReachHere();
1017
}
1018
}
1019
1020
1021
void LIR_OpVisitState::do_stub(CodeStub* stub) {
1022
if (stub != NULL) {
1023
stub->visit(this);
1024
}
1025
}
1026
1027
XHandlers* LIR_OpVisitState::all_xhandler() {
1028
XHandlers* result = NULL;
1029
1030
int i;
1031
for (i = 0; i < info_count(); i++) {
1032
if (info_at(i)->exception_handlers() != NULL) {
1033
result = info_at(i)->exception_handlers();
1034
break;
1035
}
1036
}
1037
1038
#ifdef ASSERT
1039
for (i = 0; i < info_count(); i++) {
1040
assert(info_at(i)->exception_handlers() == NULL ||
1041
info_at(i)->exception_handlers() == result,
1042
"only one xhandler list allowed per LIR-operation");
1043
}
1044
#endif
1045
1046
if (result != NULL) {
1047
return result;
1048
} else {
1049
return new XHandlers();
1050
}
1051
1052
return result;
1053
}
1054
1055
1056
#ifdef ASSERT
1057
bool LIR_OpVisitState::no_operands(LIR_Op* op) {
1058
visit(op);
1059
1060
return opr_count(inputMode) == 0 &&
1061
opr_count(outputMode) == 0 &&
1062
opr_count(tempMode) == 0 &&
1063
info_count() == 0 &&
1064
!has_call() &&
1065
!has_slow_case();
1066
}
1067
#endif
1068
1069
//---------------------------------------------------
1070
1071
1072
void LIR_OpJavaCall::emit_code(LIR_Assembler* masm) {
1073
masm->emit_call(this);
1074
}
1075
1076
void LIR_OpRTCall::emit_code(LIR_Assembler* masm) {
1077
masm->emit_rtcall(this);
1078
}
1079
1080
void LIR_OpLabel::emit_code(LIR_Assembler* masm) {
1081
masm->emit_opLabel(this);
1082
}
1083
1084
void LIR_OpArrayCopy::emit_code(LIR_Assembler* masm) {
1085
masm->emit_arraycopy(this);
1086
masm->append_code_stub(stub());
1087
}
1088
1089
void LIR_OpUpdateCRC32::emit_code(LIR_Assembler* masm) {
1090
masm->emit_updatecrc32(this);
1091
}
1092
1093
void LIR_Op0::emit_code(LIR_Assembler* masm) {
1094
masm->emit_op0(this);
1095
}
1096
1097
void LIR_Op1::emit_code(LIR_Assembler* masm) {
1098
masm->emit_op1(this);
1099
}
1100
1101
void LIR_OpAllocObj::emit_code(LIR_Assembler* masm) {
1102
masm->emit_alloc_obj(this);
1103
masm->append_code_stub(stub());
1104
}
1105
1106
void LIR_OpBranch::emit_code(LIR_Assembler* masm) {
1107
masm->emit_opBranch(this);
1108
if (stub()) {
1109
masm->append_code_stub(stub());
1110
}
1111
}
1112
1113
void LIR_OpConvert::emit_code(LIR_Assembler* masm) {
1114
masm->emit_opConvert(this);
1115
if (stub() != NULL) {
1116
masm->append_code_stub(stub());
1117
}
1118
}
1119
1120
void LIR_Op2::emit_code(LIR_Assembler* masm) {
1121
masm->emit_op2(this);
1122
}
1123
1124
void LIR_OpAllocArray::emit_code(LIR_Assembler* masm) {
1125
masm->emit_alloc_array(this);
1126
masm->append_code_stub(stub());
1127
}
1128
1129
void LIR_OpTypeCheck::emit_code(LIR_Assembler* masm) {
1130
masm->emit_opTypeCheck(this);
1131
if (stub()) {
1132
masm->append_code_stub(stub());
1133
}
1134
}
1135
1136
void LIR_OpCompareAndSwap::emit_code(LIR_Assembler* masm) {
1137
masm->emit_compare_and_swap(this);
1138
}
1139
1140
void LIR_Op3::emit_code(LIR_Assembler* masm) {
1141
masm->emit_op3(this);
1142
}
1143
1144
void LIR_OpLock::emit_code(LIR_Assembler* masm) {
1145
masm->emit_lock(this);
1146
if (stub()) {
1147
masm->append_code_stub(stub());
1148
}
1149
}
1150
1151
#ifdef ASSERT
1152
void LIR_OpAssert::emit_code(LIR_Assembler* masm) {
1153
masm->emit_assert(this);
1154
}
1155
#endif
1156
1157
void LIR_OpDelay::emit_code(LIR_Assembler* masm) {
1158
masm->emit_delay(this);
1159
}
1160
1161
void LIR_OpProfileCall::emit_code(LIR_Assembler* masm) {
1162
masm->emit_profile_call(this);
1163
}
1164
1165
void LIR_OpProfileType::emit_code(LIR_Assembler* masm) {
1166
masm->emit_profile_type(this);
1167
}
1168
1169
// LIR_List
1170
LIR_List::LIR_List(Compilation* compilation, BlockBegin* block)
1171
: _operations(8)
1172
, _compilation(compilation)
1173
#ifndef PRODUCT
1174
, _block(block)
1175
#endif
1176
#ifdef ASSERT
1177
, _file(NULL)
1178
, _line(0)
1179
#endif
1180
{ }
1181
1182
1183
#ifdef ASSERT
1184
void LIR_List::set_file_and_line(const char * file, int line) {
1185
const char * f = strrchr(file, '/');
1186
if (f == NULL) f = strrchr(file, '\\');
1187
if (f == NULL) {
1188
f = file;
1189
} else {
1190
f++;
1191
}
1192
_file = f;
1193
_line = line;
1194
}
1195
#endif
1196
1197
1198
void LIR_List::append(LIR_InsertionBuffer* buffer) {
1199
assert(this == buffer->lir_list(), "wrong lir list");
1200
const int n = _operations.length();
1201
1202
if (buffer->number_of_ops() > 0) {
1203
// increase size of instructions list
1204
_operations.at_grow(n + buffer->number_of_ops() - 1, NULL);
1205
// insert ops from buffer into instructions list
1206
int op_index = buffer->number_of_ops() - 1;
1207
int ip_index = buffer->number_of_insertion_points() - 1;
1208
int from_index = n - 1;
1209
int to_index = _operations.length() - 1;
1210
for (; ip_index >= 0; ip_index --) {
1211
int index = buffer->index_at(ip_index);
1212
// make room after insertion point
1213
while (index < from_index) {
1214
_operations.at_put(to_index --, _operations.at(from_index --));
1215
}
1216
// insert ops from buffer
1217
for (int i = buffer->count_at(ip_index); i > 0; i --) {
1218
_operations.at_put(to_index --, buffer->op_at(op_index --));
1219
}
1220
}
1221
}
1222
1223
buffer->finish();
1224
}
1225
1226
1227
void LIR_List::oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info) {
1228
assert(reg->type() == T_OBJECT, "bad reg");
1229
append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o), reg, T_OBJECT, lir_patch_normal, info));
1230
}
1231
1232
void LIR_List::klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info) {
1233
assert(reg->type() == T_METADATA, "bad reg");
1234
append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg, T_METADATA, lir_patch_normal, info));
1235
}
1236
1237
void LIR_List::load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1238
append(new LIR_Op1(
1239
lir_move,
1240
LIR_OprFact::address(addr),
1241
src,
1242
addr->type(),
1243
patch_code,
1244
info));
1245
}
1246
1247
1248
void LIR_List::volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1249
append(new LIR_Op1(
1250
lir_move,
1251
LIR_OprFact::address(address),
1252
dst,
1253
address->type(),
1254
patch_code,
1255
info, lir_move_volatile));
1256
}
1257
1258
void LIR_List::volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1259
append(new LIR_Op1(
1260
lir_move,
1261
LIR_OprFact::address(new LIR_Address(base, offset, type)),
1262
dst,
1263
type,
1264
patch_code,
1265
info, lir_move_volatile));
1266
}
1267
1268
1269
void LIR_List::prefetch(LIR_Address* addr, bool is_store) {
1270
append(new LIR_Op1(
1271
is_store ? lir_prefetchw : lir_prefetchr,
1272
LIR_OprFact::address(addr)));
1273
}
1274
1275
1276
void LIR_List::store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1277
append(new LIR_Op1(
1278
lir_move,
1279
LIR_OprFact::intConst(v),
1280
LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)),
1281
type,
1282
patch_code,
1283
info));
1284
}
1285
1286
1287
void LIR_List::store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1288
append(new LIR_Op1(
1289
lir_move,
1290
LIR_OprFact::oopConst(o),
1291
LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)),
1292
type,
1293
patch_code,
1294
info));
1295
}
1296
1297
1298
void LIR_List::store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1299
append(new LIR_Op1(
1300
lir_move,
1301
src,
1302
LIR_OprFact::address(addr),
1303
addr->type(),
1304
patch_code,
1305
info));
1306
}
1307
1308
1309
void LIR_List::volatile_store_mem_reg(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1310
append(new LIR_Op1(
1311
lir_move,
1312
src,
1313
LIR_OprFact::address(addr),
1314
addr->type(),
1315
patch_code,
1316
info,
1317
lir_move_volatile));
1318
}
1319
1320
void LIR_List::volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1321
append(new LIR_Op1(
1322
lir_move,
1323
src,
1324
LIR_OprFact::address(new LIR_Address(base, offset, type)),
1325
type,
1326
patch_code,
1327
info, lir_move_volatile));
1328
}
1329
1330
1331
void LIR_List::idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1332
append(new LIR_Op3(
1333
lir_idiv,
1334
left,
1335
right,
1336
tmp,
1337
res,
1338
info));
1339
}
1340
1341
1342
void LIR_List::idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1343
append(new LIR_Op3(
1344
lir_idiv,
1345
left,
1346
LIR_OprFact::intConst(right),
1347
tmp,
1348
res,
1349
info));
1350
}
1351
1352
1353
void LIR_List::irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1354
append(new LIR_Op3(
1355
lir_irem,
1356
left,
1357
right,
1358
tmp,
1359
res,
1360
info));
1361
}
1362
1363
1364
void LIR_List::irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1365
append(new LIR_Op3(
1366
lir_irem,
1367
left,
1368
LIR_OprFact::intConst(right),
1369
tmp,
1370
res,
1371
info));
1372
}
1373
1374
1375
void LIR_List::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
1376
append(new LIR_Op2(
1377
lir_cmp,
1378
condition,
1379
LIR_OprFact::address(new LIR_Address(base, disp, T_INT)),
1380
LIR_OprFact::intConst(c),
1381
info));
1382
}
1383
1384
1385
void LIR_List::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info) {
1386
append(new LIR_Op2(
1387
lir_cmp,
1388
condition,
1389
reg,
1390
LIR_OprFact::address(addr),
1391
info));
1392
}
1393
1394
void LIR_List::allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1395
int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub) {
1396
append(new LIR_OpAllocObj(
1397
klass,
1398
dst,
1399
t1,
1400
t2,
1401
t3,
1402
t4,
1403
header_size,
1404
object_size,
1405
init_check,
1406
stub));
1407
}
1408
1409
void LIR_List::allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub) {
1410
append(new LIR_OpAllocArray(
1411
klass,
1412
len,
1413
dst,
1414
t1,
1415
t2,
1416
t3,
1417
t4,
1418
type,
1419
stub));
1420
}
1421
1422
void LIR_List::shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1423
append(new LIR_Op2(
1424
lir_shl,
1425
value,
1426
count,
1427
dst,
1428
tmp));
1429
}
1430
1431
void LIR_List::shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1432
append(new LIR_Op2(
1433
lir_shr,
1434
value,
1435
count,
1436
dst,
1437
tmp));
1438
}
1439
1440
1441
void LIR_List::unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1442
append(new LIR_Op2(
1443
lir_ushr,
1444
value,
1445
count,
1446
dst,
1447
tmp));
1448
}
1449
1450
void LIR_List::fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less) {
1451
append(new LIR_Op2(is_unordered_less ? lir_ucmp_fd2i : lir_cmp_fd2i,
1452
left,
1453
right,
1454
dst));
1455
}
1456
1457
void LIR_List::lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info) {
1458
append(new LIR_OpLock(
1459
lir_lock,
1460
hdr,
1461
obj,
1462
lock,
1463
scratch,
1464
stub,
1465
info));
1466
}
1467
1468
void LIR_List::unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub) {
1469
append(new LIR_OpLock(
1470
lir_unlock,
1471
hdr,
1472
obj,
1473
lock,
1474
scratch,
1475
stub,
1476
NULL));
1477
}
1478
1479
1480
void check_LIR() {
1481
// cannot do the proper checking as PRODUCT and other modes return different results
1482
// guarantee(sizeof(LIR_OprDesc) == wordSize, "may not have a v-table");
1483
}
1484
1485
1486
1487
void LIR_List::checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
1488
LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1489
CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
1490
ciMethod* profiled_method, int profiled_bci) {
1491
LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_checkcast, result, object, klass,
1492
tmp1, tmp2, tmp3, fast_check, info_for_exception, info_for_patch, stub);
1493
if (profiled_method != NULL) {
1494
c->set_profiled_method(profiled_method);
1495
c->set_profiled_bci(profiled_bci);
1496
c->set_should_profile(true);
1497
}
1498
append(c);
1499
}
1500
1501
void LIR_List::instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci) {
1502
LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_instanceof, result, object, klass, tmp1, tmp2, tmp3, fast_check, NULL, info_for_patch, NULL);
1503
if (profiled_method != NULL) {
1504
c->set_profiled_method(profiled_method);
1505
c->set_profiled_bci(profiled_bci);
1506
c->set_should_profile(true);
1507
}
1508
append(c);
1509
}
1510
1511
1512
void LIR_List::store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3,
1513
CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci) {
1514
LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_store_check, object, array, tmp1, tmp2, tmp3, info_for_exception);
1515
if (profiled_method != NULL) {
1516
c->set_profiled_method(profiled_method);
1517
c->set_profiled_bci(profiled_bci);
1518
c->set_should_profile(true);
1519
}
1520
append(c);
1521
}
1522
1523
void LIR_List::null_check(LIR_Opr opr, CodeEmitInfo* info, bool deoptimize_on_null) {
1524
if (deoptimize_on_null) {
1525
// Emit an explicit null check and deoptimize if opr is null
1526
CodeStub* deopt = new DeoptimizeStub(info);
1527
cmp(lir_cond_equal, opr, LIR_OprFact::oopConst(NULL));
1528
branch(lir_cond_equal, T_OBJECT, deopt);
1529
} else {
1530
// Emit an implicit null check
1531
append(new LIR_Op1(lir_null_check, opr, info));
1532
}
1533
}
1534
1535
void LIR_List::cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1536
LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1537
append(new LIR_OpCompareAndSwap(lir_cas_long, addr, cmp_value, new_value, t1, t2, result));
1538
}
1539
1540
void LIR_List::cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1541
LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1542
append(new LIR_OpCompareAndSwap(lir_cas_obj, addr, cmp_value, new_value, t1, t2, result));
1543
}
1544
1545
void LIR_List::cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1546
LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1547
append(new LIR_OpCompareAndSwap(lir_cas_int, addr, cmp_value, new_value, t1, t2, result));
1548
}
1549
1550
1551
#ifdef PRODUCT
1552
1553
void print_LIR(BlockList* blocks) {
1554
}
1555
1556
#else
1557
// LIR_OprDesc
1558
void LIR_OprDesc::print() const {
1559
print(tty);
1560
}
1561
1562
void LIR_OprDesc::print(outputStream* out) const {
1563
if (is_illegal()) {
1564
return;
1565
}
1566
1567
out->print("[");
1568
if (is_pointer()) {
1569
pointer()->print_value_on(out);
1570
} else if (is_single_stack()) {
1571
out->print("stack:%d", single_stack_ix());
1572
} else if (is_double_stack()) {
1573
out->print("dbl_stack:%d",double_stack_ix());
1574
} else if (is_virtual()) {
1575
out->print("R%d", vreg_number());
1576
} else if (is_single_cpu()) {
1577
out->print("%s", as_register()->name());
1578
} else if (is_double_cpu()) {
1579
out->print("%s", as_register_hi()->name());
1580
out->print("%s", as_register_lo()->name());
1581
#if defined(AARCH64)
1582
} else if (is_single_fpu()) {
1583
out->print("fpu%d", fpu_regnr());
1584
} else if (is_double_fpu()) {
1585
out->print("fpu%d", fpu_regnrLo());
1586
#elif defined(X86)
1587
} else if (is_single_xmm()) {
1588
out->print("%s", as_xmm_float_reg()->name());
1589
} else if (is_double_xmm()) {
1590
out->print("%s", as_xmm_double_reg()->name());
1591
} else if (is_single_fpu()) {
1592
out->print("fpu%d", fpu_regnr());
1593
} else if (is_double_fpu()) {
1594
out->print("fpu%d", fpu_regnrLo());
1595
#elif defined(ARM)
1596
} else if (is_single_fpu()) {
1597
out->print("s%d", fpu_regnr());
1598
} else if (is_double_fpu()) {
1599
out->print("d%d", fpu_regnrLo() >> 1);
1600
#else
1601
} else if (is_single_fpu()) {
1602
out->print("%s", as_float_reg()->name());
1603
} else if (is_double_fpu()) {
1604
out->print("%s", as_double_reg()->name());
1605
#endif
1606
1607
} else if (is_illegal()) {
1608
out->print("-");
1609
} else {
1610
out->print("Unknown Operand");
1611
}
1612
if (!is_illegal()) {
1613
out->print("|%c", type_char());
1614
}
1615
if (is_register() && is_last_use()) {
1616
out->print("(last_use)");
1617
}
1618
out->print("]");
1619
}
1620
1621
1622
// LIR_Address
1623
void LIR_Const::print_value_on(outputStream* out) const {
1624
switch (type()) {
1625
case T_ADDRESS:out->print("address:%d",as_jint()); break;
1626
case T_INT: out->print("int:%d", as_jint()); break;
1627
case T_LONG: out->print("lng:" JLONG_FORMAT, as_jlong()); break;
1628
case T_FLOAT: out->print("flt:%f", as_jfloat()); break;
1629
case T_DOUBLE: out->print("dbl:%f", as_jdouble()); break;
1630
case T_OBJECT: out->print("obj:" INTPTR_FORMAT, p2i(as_jobject())); break;
1631
case T_METADATA: out->print("metadata:" INTPTR_FORMAT, p2i(as_metadata()));break;
1632
default: out->print("%3d:0x" UINT64_FORMAT_X, type(), (uint64_t)as_jlong()); break;
1633
}
1634
}
1635
1636
// LIR_Address
1637
void LIR_Address::print_value_on(outputStream* out) const {
1638
out->print("Base:"); _base->print(out);
1639
if (!_index->is_illegal()) {
1640
out->print(" Index:"); _index->print(out);
1641
switch (scale()) {
1642
case times_1: break;
1643
case times_2: out->print(" * 2"); break;
1644
case times_4: out->print(" * 4"); break;
1645
case times_8: out->print(" * 8"); break;
1646
}
1647
}
1648
out->print(" Disp: " INTX_FORMAT, _disp);
1649
}
1650
1651
// debug output of block header without InstructionPrinter
1652
// (because phi functions are not necessary for LIR)
1653
static void print_block(BlockBegin* x) {
1654
// print block id
1655
BlockEnd* end = x->end();
1656
tty->print("B%d ", x->block_id());
1657
1658
// print flags
1659
if (x->is_set(BlockBegin::std_entry_flag)) tty->print("std ");
1660
if (x->is_set(BlockBegin::osr_entry_flag)) tty->print("osr ");
1661
if (x->is_set(BlockBegin::exception_entry_flag)) tty->print("ex ");
1662
if (x->is_set(BlockBegin::subroutine_entry_flag)) tty->print("jsr ");
1663
if (x->is_set(BlockBegin::backward_branch_target_flag)) tty->print("bb ");
1664
if (x->is_set(BlockBegin::linear_scan_loop_header_flag)) tty->print("lh ");
1665
if (x->is_set(BlockBegin::linear_scan_loop_end_flag)) tty->print("le ");
1666
1667
// print block bci range
1668
tty->print("[%d, %d] ", x->bci(), (end == NULL ? -1 : end->printable_bci()));
1669
1670
// print predecessors and successors
1671
if (x->number_of_preds() > 0) {
1672
tty->print("preds: ");
1673
for (int i = 0; i < x->number_of_preds(); i ++) {
1674
tty->print("B%d ", x->pred_at(i)->block_id());
1675
}
1676
}
1677
1678
if (x->number_of_sux() > 0) {
1679
tty->print("sux: ");
1680
for (int i = 0; i < x->number_of_sux(); i ++) {
1681
tty->print("B%d ", x->sux_at(i)->block_id());
1682
}
1683
}
1684
1685
// print exception handlers
1686
if (x->number_of_exception_handlers() > 0) {
1687
tty->print("xhandler: ");
1688
for (int i = 0; i < x->number_of_exception_handlers(); i++) {
1689
tty->print("B%d ", x->exception_handler_at(i)->block_id());
1690
}
1691
}
1692
1693
tty->cr();
1694
}
1695
1696
void print_LIR(BlockList* blocks) {
1697
tty->print_cr("LIR:");
1698
int i;
1699
for (i = 0; i < blocks->length(); i++) {
1700
BlockBegin* bb = blocks->at(i);
1701
print_block(bb);
1702
tty->print("__id_Instruction___________________________________________"); tty->cr();
1703
bb->lir()->print_instructions();
1704
}
1705
}
1706
1707
void LIR_List::print_instructions() {
1708
for (int i = 0; i < _operations.length(); i++) {
1709
_operations.at(i)->print(); tty->cr();
1710
}
1711
tty->cr();
1712
}
1713
1714
// LIR_Ops printing routines
1715
// LIR_Op
1716
void LIR_Op::print_on(outputStream* out) const {
1717
if (id() != -1 || PrintCFGToFile) {
1718
out->print("%4d ", id());
1719
} else {
1720
out->print(" ");
1721
}
1722
out->print("%s ", name());
1723
print_instr(out);
1724
if (info() != NULL) out->print(" [bci:%d]", info()->stack()->bci());
1725
#ifdef ASSERT
1726
if (Verbose && _file != NULL) {
1727
out->print(" (%s:%d)", _file, _line);
1728
}
1729
#endif
1730
}
1731
1732
const char * LIR_Op::name() const {
1733
const char* s = NULL;
1734
switch(code()) {
1735
// LIR_Op0
1736
case lir_membar: s = "membar"; break;
1737
case lir_membar_acquire: s = "membar_acquire"; break;
1738
case lir_membar_release: s = "membar_release"; break;
1739
case lir_membar_loadload: s = "membar_loadload"; break;
1740
case lir_membar_storestore: s = "membar_storestore"; break;
1741
case lir_membar_loadstore: s = "membar_loadstore"; break;
1742
case lir_membar_storeload: s = "membar_storeload"; break;
1743
case lir_word_align: s = "word_align"; break;
1744
case lir_label: s = "label"; break;
1745
case lir_nop: s = "nop"; break;
1746
case lir_backwardbranch_target: s = "backbranch"; break;
1747
case lir_std_entry: s = "std_entry"; break;
1748
case lir_osr_entry: s = "osr_entry"; break;
1749
case lir_build_frame: s = "build_frm"; break;
1750
case lir_fpop_raw: s = "fpop_raw"; break;
1751
case lir_24bit_FPU: s = "24bit_FPU"; break;
1752
case lir_reset_FPU: s = "reset_FPU"; break;
1753
case lir_breakpoint: s = "breakpoint"; break;
1754
case lir_get_thread: s = "get_thread"; break;
1755
// LIR_Op1
1756
case lir_fxch: s = "fxch"; break;
1757
case lir_fld: s = "fld"; break;
1758
case lir_ffree: s = "ffree"; break;
1759
case lir_push: s = "push"; break;
1760
case lir_pop: s = "pop"; break;
1761
case lir_null_check: s = "null_check"; break;
1762
case lir_return: s = "return"; break;
1763
case lir_safepoint: s = "safepoint"; break;
1764
case lir_neg: s = "neg"; break;
1765
case lir_leal: s = "leal"; break;
1766
case lir_branch: s = "branch"; break;
1767
case lir_cond_float_branch: s = "flt_cond_br"; break;
1768
case lir_move: s = "move"; break;
1769
case lir_roundfp: s = "roundfp"; break;
1770
case lir_rtcall: s = "rtcall"; break;
1771
case lir_throw: s = "throw"; break;
1772
case lir_unwind: s = "unwind"; break;
1773
case lir_convert: s = "convert"; break;
1774
case lir_alloc_object: s = "alloc_obj"; break;
1775
case lir_monaddr: s = "mon_addr"; break;
1776
case lir_pack64: s = "pack64"; break;
1777
case lir_unpack64: s = "unpack64"; break;
1778
// LIR_Op2
1779
case lir_cmp: s = "cmp"; break;
1780
case lir_cmp_l2i: s = "cmp_l2i"; break;
1781
case lir_ucmp_fd2i: s = "ucomp_fd2i"; break;
1782
case lir_cmp_fd2i: s = "comp_fd2i"; break;
1783
case lir_cmove: s = "cmove"; break;
1784
case lir_add: s = "add"; break;
1785
case lir_sub: s = "sub"; break;
1786
case lir_mul: s = "mul"; break;
1787
case lir_mul_strictfp: s = "mul_strictfp"; break;
1788
case lir_div: s = "div"; break;
1789
case lir_div_strictfp: s = "div_strictfp"; break;
1790
case lir_rem: s = "rem"; break;
1791
case lir_abs: s = "abs"; break;
1792
case lir_sqrt: s = "sqrt"; break;
1793
case lir_sin: s = "sin"; break;
1794
case lir_cos: s = "cos"; break;
1795
case lir_tan: s = "tan"; break;
1796
case lir_log: s = "log"; break;
1797
case lir_log10: s = "log10"; break;
1798
case lir_exp: s = "exp"; break;
1799
case lir_pow: s = "pow"; break;
1800
case lir_logic_and: s = "logic_and"; break;
1801
case lir_logic_or: s = "logic_or"; break;
1802
case lir_logic_xor: s = "logic_xor"; break;
1803
case lir_shl: s = "shift_left"; break;
1804
case lir_shr: s = "shift_right"; break;
1805
case lir_ushr: s = "ushift_right"; break;
1806
case lir_alloc_array: s = "alloc_array"; break;
1807
case lir_xadd: s = "xadd"; break;
1808
case lir_xchg: s = "xchg"; break;
1809
// LIR_Op3
1810
case lir_idiv: s = "idiv"; break;
1811
case lir_irem: s = "irem"; break;
1812
// LIR_OpJavaCall
1813
case lir_static_call: s = "static"; break;
1814
case lir_optvirtual_call: s = "optvirtual"; break;
1815
case lir_icvirtual_call: s = "icvirtual"; break;
1816
case lir_virtual_call: s = "virtual"; break;
1817
case lir_dynamic_call: s = "dynamic"; break;
1818
// LIR_OpArrayCopy
1819
case lir_arraycopy: s = "arraycopy"; break;
1820
// LIR_OpUpdateCRC32
1821
case lir_updatecrc32: s = "updatecrc32"; break;
1822
// LIR_OpLock
1823
case lir_lock: s = "lock"; break;
1824
case lir_unlock: s = "unlock"; break;
1825
// LIR_OpDelay
1826
case lir_delay_slot: s = "delay"; break;
1827
// LIR_OpTypeCheck
1828
case lir_instanceof: s = "instanceof"; break;
1829
case lir_checkcast: s = "checkcast"; break;
1830
case lir_store_check: s = "store_check"; break;
1831
// LIR_OpCompareAndSwap
1832
case lir_cas_long: s = "cas_long"; break;
1833
case lir_cas_obj: s = "cas_obj"; break;
1834
case lir_cas_int: s = "cas_int"; break;
1835
// LIR_OpProfileCall
1836
case lir_profile_call: s = "profile_call"; break;
1837
// LIR_OpProfileType
1838
case lir_profile_type: s = "profile_type"; break;
1839
// LIR_OpAssert
1840
#ifdef ASSERT
1841
case lir_assert: s = "assert"; break;
1842
#endif
1843
case lir_none: ShouldNotReachHere();break;
1844
default: s = "illegal_op"; break;
1845
}
1846
return s;
1847
}
1848
1849
// LIR_OpJavaCall
1850
void LIR_OpJavaCall::print_instr(outputStream* out) const {
1851
out->print("call: ");
1852
out->print("[addr: " INTPTR_FORMAT "]", p2i(address()));
1853
if (receiver()->is_valid()) {
1854
out->print(" [recv: "); receiver()->print(out); out->print("]");
1855
}
1856
if (result_opr()->is_valid()) {
1857
out->print(" [result: "); result_opr()->print(out); out->print("]");
1858
}
1859
}
1860
1861
// LIR_OpLabel
1862
void LIR_OpLabel::print_instr(outputStream* out) const {
1863
out->print("[label:" INTPTR_FORMAT "]", p2i(_label));
1864
}
1865
1866
// LIR_OpArrayCopy
1867
void LIR_OpArrayCopy::print_instr(outputStream* out) const {
1868
src()->print(out); out->print(" ");
1869
src_pos()->print(out); out->print(" ");
1870
dst()->print(out); out->print(" ");
1871
dst_pos()->print(out); out->print(" ");
1872
length()->print(out); out->print(" ");
1873
tmp()->print(out); out->print(" ");
1874
}
1875
1876
// LIR_OpUpdateCRC32
1877
void LIR_OpUpdateCRC32::print_instr(outputStream* out) const {
1878
crc()->print(out); out->print(" ");
1879
val()->print(out); out->print(" ");
1880
result_opr()->print(out); out->print(" ");
1881
}
1882
1883
// LIR_OpCompareAndSwap
1884
void LIR_OpCompareAndSwap::print_instr(outputStream* out) const {
1885
addr()->print(out); out->print(" ");
1886
cmp_value()->print(out); out->print(" ");
1887
new_value()->print(out); out->print(" ");
1888
tmp1()->print(out); out->print(" ");
1889
tmp2()->print(out); out->print(" ");
1890
1891
}
1892
1893
// LIR_Op0
1894
void LIR_Op0::print_instr(outputStream* out) const {
1895
result_opr()->print(out);
1896
}
1897
1898
// LIR_Op1
1899
const char * LIR_Op1::name() const {
1900
if (code() == lir_move) {
1901
switch (move_kind()) {
1902
case lir_move_normal:
1903
return "move";
1904
case lir_move_unaligned:
1905
return "unaligned move";
1906
case lir_move_volatile:
1907
return "volatile_move";
1908
case lir_move_wide:
1909
return "wide_move";
1910
default:
1911
ShouldNotReachHere();
1912
return "illegal_op";
1913
}
1914
} else {
1915
return LIR_Op::name();
1916
}
1917
}
1918
1919
1920
void LIR_Op1::print_instr(outputStream* out) const {
1921
_opr->print(out); out->print(" ");
1922
result_opr()->print(out); out->print(" ");
1923
print_patch_code(out, patch_code());
1924
}
1925
1926
1927
// LIR_Op1
1928
void LIR_OpRTCall::print_instr(outputStream* out) const {
1929
intx a = (intx)addr();
1930
out->print("%s", Runtime1::name_for_address(addr()));
1931
out->print(" ");
1932
tmp()->print(out);
1933
}
1934
1935
void LIR_Op1::print_patch_code(outputStream* out, LIR_PatchCode code) {
1936
switch(code) {
1937
case lir_patch_none: break;
1938
case lir_patch_low: out->print("[patch_low]"); break;
1939
case lir_patch_high: out->print("[patch_high]"); break;
1940
case lir_patch_normal: out->print("[patch_normal]"); break;
1941
default: ShouldNotReachHere();
1942
}
1943
}
1944
1945
// LIR_OpBranch
1946
void LIR_OpBranch::print_instr(outputStream* out) const {
1947
print_condition(out, cond()); out->print(" ");
1948
if (block() != NULL) {
1949
out->print("[B%d] ", block()->block_id());
1950
} else if (stub() != NULL) {
1951
out->print("[");
1952
stub()->print_name(out);
1953
out->print(": " INTPTR_FORMAT "]", p2i(stub()));
1954
if (stub()->info() != NULL) out->print(" [bci:%d]", stub()->info()->stack()->bci());
1955
} else {
1956
out->print("[label:" INTPTR_FORMAT "] ", p2i(label()));
1957
}
1958
if (ublock() != NULL) {
1959
out->print("unordered: [B%d] ", ublock()->block_id());
1960
}
1961
}
1962
1963
void LIR_Op::print_condition(outputStream* out, LIR_Condition cond) {
1964
switch(cond) {
1965
case lir_cond_equal: out->print("[EQ]"); break;
1966
case lir_cond_notEqual: out->print("[NE]"); break;
1967
case lir_cond_less: out->print("[LT]"); break;
1968
case lir_cond_lessEqual: out->print("[LE]"); break;
1969
case lir_cond_greaterEqual: out->print("[GE]"); break;
1970
case lir_cond_greater: out->print("[GT]"); break;
1971
case lir_cond_belowEqual: out->print("[BE]"); break;
1972
case lir_cond_aboveEqual: out->print("[AE]"); break;
1973
case lir_cond_always: out->print("[AL]"); break;
1974
default: out->print("[%d]",cond); break;
1975
}
1976
}
1977
1978
// LIR_OpConvert
1979
void LIR_OpConvert::print_instr(outputStream* out) const {
1980
print_bytecode(out, bytecode());
1981
in_opr()->print(out); out->print(" ");
1982
result_opr()->print(out); out->print(" ");
1983
#if defined(PPC) || defined(AARCH64)
1984
if(tmp1()->is_valid()) {
1985
tmp1()->print(out); out->print(" ");
1986
tmp2()->print(out); out->print(" ");
1987
}
1988
#endif
1989
}
1990
1991
void LIR_OpConvert::print_bytecode(outputStream* out, Bytecodes::Code code) {
1992
switch(code) {
1993
case Bytecodes::_d2f: out->print("[d2f] "); break;
1994
case Bytecodes::_d2i: out->print("[d2i] "); break;
1995
case Bytecodes::_d2l: out->print("[d2l] "); break;
1996
case Bytecodes::_f2d: out->print("[f2d] "); break;
1997
case Bytecodes::_f2i: out->print("[f2i] "); break;
1998
case Bytecodes::_f2l: out->print("[f2l] "); break;
1999
case Bytecodes::_i2b: out->print("[i2b] "); break;
2000
case Bytecodes::_i2c: out->print("[i2c] "); break;
2001
case Bytecodes::_i2d: out->print("[i2d] "); break;
2002
case Bytecodes::_i2f: out->print("[i2f] "); break;
2003
case Bytecodes::_i2l: out->print("[i2l] "); break;
2004
case Bytecodes::_i2s: out->print("[i2s] "); break;
2005
case Bytecodes::_l2i: out->print("[l2i] "); break;
2006
case Bytecodes::_l2f: out->print("[l2f] "); break;
2007
case Bytecodes::_l2d: out->print("[l2d] "); break;
2008
default:
2009
out->print("[?%d]",code);
2010
break;
2011
}
2012
}
2013
2014
void LIR_OpAllocObj::print_instr(outputStream* out) const {
2015
klass()->print(out); out->print(" ");
2016
obj()->print(out); out->print(" ");
2017
tmp1()->print(out); out->print(" ");
2018
tmp2()->print(out); out->print(" ");
2019
tmp3()->print(out); out->print(" ");
2020
tmp4()->print(out); out->print(" ");
2021
out->print("[hdr:%d]", header_size()); out->print(" ");
2022
out->print("[obj:%d]", object_size()); out->print(" ");
2023
out->print("[lbl:" INTPTR_FORMAT "]", p2i(stub()->entry()));
2024
}
2025
2026
void LIR_OpRoundFP::print_instr(outputStream* out) const {
2027
_opr->print(out); out->print(" ");
2028
tmp()->print(out); out->print(" ");
2029
result_opr()->print(out); out->print(" ");
2030
}
2031
2032
// LIR_Op2
2033
void LIR_Op2::print_instr(outputStream* out) const {
2034
if (code() == lir_cmove) {
2035
print_condition(out, condition()); out->print(" ");
2036
}
2037
in_opr1()->print(out); out->print(" ");
2038
in_opr2()->print(out); out->print(" ");
2039
if (tmp1_opr()->is_valid()) { tmp1_opr()->print(out); out->print(" "); }
2040
if (tmp2_opr()->is_valid()) { tmp2_opr()->print(out); out->print(" "); }
2041
if (tmp3_opr()->is_valid()) { tmp3_opr()->print(out); out->print(" "); }
2042
if (tmp4_opr()->is_valid()) { tmp4_opr()->print(out); out->print(" "); }
2043
if (tmp5_opr()->is_valid()) { tmp5_opr()->print(out); out->print(" "); }
2044
result_opr()->print(out);
2045
}
2046
2047
void LIR_OpAllocArray::print_instr(outputStream* out) const {
2048
klass()->print(out); out->print(" ");
2049
len()->print(out); out->print(" ");
2050
obj()->print(out); out->print(" ");
2051
tmp1()->print(out); out->print(" ");
2052
tmp2()->print(out); out->print(" ");
2053
tmp3()->print(out); out->print(" ");
2054
tmp4()->print(out); out->print(" ");
2055
out->print("[type:0x%x]", type()); out->print(" ");
2056
out->print("[label:" INTPTR_FORMAT "]", p2i(stub()->entry()));
2057
}
2058
2059
2060
void LIR_OpTypeCheck::print_instr(outputStream* out) const {
2061
object()->print(out); out->print(" ");
2062
if (code() == lir_store_check) {
2063
array()->print(out); out->print(" ");
2064
}
2065
if (code() != lir_store_check) {
2066
klass()->print_name_on(out); out->print(" ");
2067
if (fast_check()) out->print("fast_check ");
2068
}
2069
tmp1()->print(out); out->print(" ");
2070
tmp2()->print(out); out->print(" ");
2071
tmp3()->print(out); out->print(" ");
2072
result_opr()->print(out); out->print(" ");
2073
if (info_for_exception() != NULL) out->print(" [bci:%d]", info_for_exception()->stack()->bci());
2074
}
2075
2076
2077
// LIR_Op3
2078
void LIR_Op3::print_instr(outputStream* out) const {
2079
in_opr1()->print(out); out->print(" ");
2080
in_opr2()->print(out); out->print(" ");
2081
in_opr3()->print(out); out->print(" ");
2082
result_opr()->print(out);
2083
}
2084
2085
2086
void LIR_OpLock::print_instr(outputStream* out) const {
2087
hdr_opr()->print(out); out->print(" ");
2088
obj_opr()->print(out); out->print(" ");
2089
lock_opr()->print(out); out->print(" ");
2090
if (_scratch->is_valid()) {
2091
_scratch->print(out); out->print(" ");
2092
}
2093
out->print("[lbl:" INTPTR_FORMAT "]", p2i(stub()->entry()));
2094
}
2095
2096
#ifdef ASSERT
2097
void LIR_OpAssert::print_instr(outputStream* out) const {
2098
print_condition(out, condition()); out->print(" ");
2099
in_opr1()->print(out); out->print(" ");
2100
in_opr2()->print(out); out->print(", \"");
2101
out->print("%s", msg()); out->print("\"");
2102
}
2103
#endif
2104
2105
2106
void LIR_OpDelay::print_instr(outputStream* out) const {
2107
_op->print_on(out);
2108
}
2109
2110
2111
// LIR_OpProfileCall
2112
void LIR_OpProfileCall::print_instr(outputStream* out) const {
2113
profiled_method()->name()->print_symbol_on(out);
2114
out->print(".");
2115
profiled_method()->holder()->name()->print_symbol_on(out);
2116
out->print(" @ %d ", profiled_bci());
2117
mdo()->print(out); out->print(" ");
2118
recv()->print(out); out->print(" ");
2119
tmp1()->print(out); out->print(" ");
2120
}
2121
2122
// LIR_OpProfileType
2123
void LIR_OpProfileType::print_instr(outputStream* out) const {
2124
out->print("exact = ");
2125
if (exact_klass() == NULL) {
2126
out->print("unknown");
2127
} else {
2128
exact_klass()->print_name_on(out);
2129
}
2130
out->print(" current = "); ciTypeEntries::print_ciklass(out, current_klass());
2131
out->print(" ");
2132
mdp()->print(out); out->print(" ");
2133
obj()->print(out); out->print(" ");
2134
tmp()->print(out); out->print(" ");
2135
}
2136
2137
#endif // PRODUCT
2138
2139
// Implementation of LIR_InsertionBuffer
2140
2141
void LIR_InsertionBuffer::append(int index, LIR_Op* op) {
2142
assert(_index_and_count.length() % 2 == 0, "must have a count for each index");
2143
2144
int i = number_of_insertion_points() - 1;
2145
if (i < 0 || index_at(i) < index) {
2146
append_new(index, 1);
2147
} else {
2148
assert(index_at(i) == index, "can append LIR_Ops in ascending order only");
2149
assert(count_at(i) > 0, "check");
2150
set_count_at(i, count_at(i) + 1);
2151
}
2152
_ops.push(op);
2153
2154
DEBUG_ONLY(verify());
2155
}
2156
2157
#ifdef ASSERT
2158
void LIR_InsertionBuffer::verify() {
2159
int sum = 0;
2160
int prev_idx = -1;
2161
2162
for (int i = 0; i < number_of_insertion_points(); i++) {
2163
assert(prev_idx < index_at(i), "index must be ordered ascending");
2164
sum += count_at(i);
2165
}
2166
assert(sum == number_of_ops(), "wrong total sum");
2167
}
2168
#endif
2169
2170