Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/c1/c1_LIRGenerator.cpp
32285 views
1
/*
2
* Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "c1/c1_Defs.hpp"
27
#include "c1/c1_Compilation.hpp"
28
#include "c1/c1_FrameMap.hpp"
29
#include "c1/c1_Instruction.hpp"
30
#include "c1/c1_LIRAssembler.hpp"
31
#include "c1/c1_LIRGenerator.hpp"
32
#include "c1/c1_ValueStack.hpp"
33
#include "ci/ciArrayKlass.hpp"
34
#include "ci/ciInstance.hpp"
35
#include "ci/ciObjArray.hpp"
36
#include "gc_implementation/shenandoah/shenandoahHeap.hpp"
37
#include "gc_implementation/shenandoah/c1/shenandoahBarrierSetC1.hpp"
38
#include "runtime/sharedRuntime.hpp"
39
#include "runtime/stubRoutines.hpp"
40
#include "utilities/bitMap.inline.hpp"
41
#include "utilities/macros.hpp"
42
#if INCLUDE_ALL_GCS
43
#include "gc_implementation/g1/heapRegion.hpp"
44
#endif // INCLUDE_ALL_GCS
45
46
#ifdef ASSERT
47
#define __ gen()->lir(__FILE__, __LINE__)->
48
#else
49
#define __ gen()->lir()->
50
#endif
51
52
#ifndef PATCHED_ADDR
53
#define PATCHED_ADDR (max_jint)
54
#endif
55
56
void PhiResolverState::reset(int max_vregs) {
57
// Initialize array sizes
58
_virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
59
_virtual_operands.trunc_to(0);
60
_other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
61
_other_operands.trunc_to(0);
62
_vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
63
_vreg_table.trunc_to(0);
64
}
65
66
67
68
//--------------------------------------------------------------
69
// PhiResolver
70
71
// Resolves cycles:
72
//
73
// r1 := r2 becomes temp := r1
74
// r2 := r1 r1 := r2
75
// r2 := temp
76
// and orders moves:
77
//
78
// r2 := r3 becomes r1 := r2
79
// r1 := r2 r2 := r3
80
81
PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
82
: _gen(gen)
83
, _state(gen->resolver_state())
84
, _temp(LIR_OprFact::illegalOpr)
85
{
86
// reinitialize the shared state arrays
87
_state.reset(max_vregs);
88
}
89
90
91
void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
92
assert(src->is_valid(), "");
93
assert(dest->is_valid(), "");
94
__ move(src, dest);
95
}
96
97
98
void PhiResolver::move_temp_to(LIR_Opr dest) {
99
assert(_temp->is_valid(), "");
100
emit_move(_temp, dest);
101
NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
102
}
103
104
105
void PhiResolver::move_to_temp(LIR_Opr src) {
106
assert(_temp->is_illegal(), "");
107
_temp = _gen->new_register(src->type());
108
emit_move(src, _temp);
109
}
110
111
112
// Traverse assignment graph in depth first order and generate moves in post order
113
// ie. two assignments: b := c, a := b start with node c:
114
// Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
115
// Generates moves in this order: move b to a and move c to b
116
// ie. cycle a := b, b := a start with node a
117
// Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
118
// Generates moves in this order: move b to temp, move a to b, move temp to a
119
void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
120
if (!dest->visited()) {
121
dest->set_visited();
122
for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
123
move(dest, dest->destination_at(i));
124
}
125
} else if (!dest->start_node()) {
126
// cylce in graph detected
127
assert(_loop == NULL, "only one loop valid!");
128
_loop = dest;
129
move_to_temp(src->operand());
130
return;
131
} // else dest is a start node
132
133
if (!dest->assigned()) {
134
if (_loop == dest) {
135
move_temp_to(dest->operand());
136
dest->set_assigned();
137
} else if (src != NULL) {
138
emit_move(src->operand(), dest->operand());
139
dest->set_assigned();
140
}
141
}
142
}
143
144
145
PhiResolver::~PhiResolver() {
146
int i;
147
// resolve any cycles in moves from and to virtual registers
148
for (i = virtual_operands().length() - 1; i >= 0; i --) {
149
ResolveNode* node = virtual_operands()[i];
150
if (!node->visited()) {
151
_loop = NULL;
152
move(NULL, node);
153
node->set_start_node();
154
assert(_temp->is_illegal(), "move_temp_to() call missing");
155
}
156
}
157
158
// generate move for move from non virtual register to abitrary destination
159
for (i = other_operands().length() - 1; i >= 0; i --) {
160
ResolveNode* node = other_operands()[i];
161
for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
162
emit_move(node->operand(), node->destination_at(j)->operand());
163
}
164
}
165
}
166
167
168
ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
169
ResolveNode* node;
170
if (opr->is_virtual()) {
171
int vreg_num = opr->vreg_number();
172
node = vreg_table().at_grow(vreg_num, NULL);
173
assert(node == NULL || node->operand() == opr, "");
174
if (node == NULL) {
175
node = new ResolveNode(opr);
176
vreg_table()[vreg_num] = node;
177
}
178
// Make sure that all virtual operands show up in the list when
179
// they are used as the source of a move.
180
if (source && !virtual_operands().contains(node)) {
181
virtual_operands().append(node);
182
}
183
} else {
184
assert(source, "");
185
node = new ResolveNode(opr);
186
other_operands().append(node);
187
}
188
return node;
189
}
190
191
192
void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
193
assert(dest->is_virtual(), "");
194
// tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
195
assert(src->is_valid(), "");
196
assert(dest->is_valid(), "");
197
ResolveNode* source = source_node(src);
198
source->append(destination_node(dest));
199
}
200
201
202
//--------------------------------------------------------------
203
// LIRItem
204
205
void LIRItem::set_result(LIR_Opr opr) {
206
assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
207
value()->set_operand(opr);
208
209
if (opr->is_virtual()) {
210
_gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
211
}
212
213
_result = opr;
214
}
215
216
void LIRItem::load_item() {
217
if (result()->is_illegal()) {
218
// update the items result
219
_result = value()->operand();
220
}
221
if (!result()->is_register()) {
222
LIR_Opr reg = _gen->new_register(value()->type());
223
__ move(result(), reg);
224
if (result()->is_constant()) {
225
_result = reg;
226
} else {
227
set_result(reg);
228
}
229
}
230
}
231
232
233
void LIRItem::load_for_store(BasicType type) {
234
if (_gen->can_store_as_constant(value(), type)) {
235
_result = value()->operand();
236
if (!_result->is_constant()) {
237
_result = LIR_OprFact::value_type(value()->type());
238
}
239
} else if (type == T_BYTE || type == T_BOOLEAN) {
240
load_byte_item();
241
} else {
242
load_item();
243
}
244
}
245
246
void LIRItem::load_item_force(LIR_Opr reg) {
247
LIR_Opr r = result();
248
if (r != reg) {
249
#if !defined(ARM) && !defined(E500V2)
250
if (r->type() != reg->type()) {
251
// moves between different types need an intervening spill slot
252
r = _gen->force_to_spill(r, reg->type());
253
}
254
#endif
255
__ move(r, reg);
256
_result = reg;
257
}
258
}
259
260
ciObject* LIRItem::get_jobject_constant() const {
261
ObjectType* oc = type()->as_ObjectType();
262
if (oc) {
263
return oc->constant_value();
264
}
265
return NULL;
266
}
267
268
269
jint LIRItem::get_jint_constant() const {
270
assert(is_constant() && value() != NULL, "");
271
assert(type()->as_IntConstant() != NULL, "type check");
272
return type()->as_IntConstant()->value();
273
}
274
275
276
jint LIRItem::get_address_constant() const {
277
assert(is_constant() && value() != NULL, "");
278
assert(type()->as_AddressConstant() != NULL, "type check");
279
return type()->as_AddressConstant()->value();
280
}
281
282
283
jfloat LIRItem::get_jfloat_constant() const {
284
assert(is_constant() && value() != NULL, "");
285
assert(type()->as_FloatConstant() != NULL, "type check");
286
return type()->as_FloatConstant()->value();
287
}
288
289
290
jdouble LIRItem::get_jdouble_constant() const {
291
assert(is_constant() && value() != NULL, "");
292
assert(type()->as_DoubleConstant() != NULL, "type check");
293
return type()->as_DoubleConstant()->value();
294
}
295
296
297
jlong LIRItem::get_jlong_constant() const {
298
assert(is_constant() && value() != NULL, "");
299
assert(type()->as_LongConstant() != NULL, "type check");
300
return type()->as_LongConstant()->value();
301
}
302
303
304
305
//--------------------------------------------------------------
306
307
308
void LIRGenerator::init() {
309
_bs = Universe::heap()->barrier_set();
310
}
311
312
313
void LIRGenerator::block_do_prolog(BlockBegin* block) {
314
#ifndef PRODUCT
315
if (PrintIRWithLIR) {
316
block->print();
317
}
318
#endif
319
320
// set up the list of LIR instructions
321
assert(block->lir() == NULL, "LIR list already computed for this block");
322
_lir = new LIR_List(compilation(), block);
323
block->set_lir(_lir);
324
325
__ branch_destination(block->label());
326
327
if (LIRTraceExecution &&
328
Compilation::current()->hir()->start()->block_id() != block->block_id() &&
329
!block->is_set(BlockBegin::exception_entry_flag)) {
330
assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
331
trace_block_entry(block);
332
}
333
}
334
335
336
void LIRGenerator::block_do_epilog(BlockBegin* block) {
337
#ifndef PRODUCT
338
if (PrintIRWithLIR) {
339
tty->cr();
340
}
341
#endif
342
343
// LIR_Opr for unpinned constants shouldn't be referenced by other
344
// blocks so clear them out after processing the block.
345
for (int i = 0; i < _unpinned_constants.length(); i++) {
346
_unpinned_constants.at(i)->clear_operand();
347
}
348
_unpinned_constants.trunc_to(0);
349
350
// clear our any registers for other local constants
351
_constants.trunc_to(0);
352
_reg_for_constants.trunc_to(0);
353
}
354
355
356
void LIRGenerator::block_do(BlockBegin* block) {
357
CHECK_BAILOUT();
358
359
block_do_prolog(block);
360
set_block(block);
361
362
for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
363
if (instr->is_pinned()) do_root(instr);
364
}
365
366
set_block(NULL);
367
block_do_epilog(block);
368
}
369
370
371
//-------------------------LIRGenerator-----------------------------
372
373
// This is where the tree-walk starts; instr must be root;
374
void LIRGenerator::do_root(Value instr) {
375
CHECK_BAILOUT();
376
377
InstructionMark im(compilation(), instr);
378
379
assert(instr->is_pinned(), "use only with roots");
380
assert(instr->subst() == instr, "shouldn't have missed substitution");
381
382
instr->visit(this);
383
384
assert(!instr->has_uses() || instr->operand()->is_valid() ||
385
instr->as_Constant() != NULL || bailed_out(), "invalid item set");
386
}
387
388
389
// This is called for each node in tree; the walk stops if a root is reached
390
void LIRGenerator::walk(Value instr) {
391
InstructionMark im(compilation(), instr);
392
//stop walk when encounter a root
393
if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
394
assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
395
} else {
396
assert(instr->subst() == instr, "shouldn't have missed substitution");
397
instr->visit(this);
398
// assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
399
}
400
}
401
402
403
CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
404
assert(state != NULL, "state must be defined");
405
406
#ifndef PRODUCT
407
state->verify();
408
#endif
409
410
ValueStack* s = state;
411
for_each_state(s) {
412
if (s->kind() == ValueStack::EmptyExceptionState) {
413
assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
414
continue;
415
}
416
417
int index;
418
Value value;
419
for_each_stack_value(s, index, value) {
420
assert(value->subst() == value, "missed substitution");
421
if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
422
walk(value);
423
assert(value->operand()->is_valid(), "must be evaluated now");
424
}
425
}
426
427
int bci = s->bci();
428
IRScope* scope = s->scope();
429
ciMethod* method = scope->method();
430
431
MethodLivenessResult liveness = method->liveness_at_bci(bci);
432
if (bci == SynchronizationEntryBCI) {
433
if (x->as_ExceptionObject() || x->as_Throw()) {
434
// all locals are dead on exit from the synthetic unlocker
435
liveness.clear();
436
} else {
437
assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
438
}
439
}
440
if (!liveness.is_valid()) {
441
// Degenerate or breakpointed method.
442
bailout("Degenerate or breakpointed method");
443
} else {
444
assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
445
for_each_local_value(s, index, value) {
446
assert(value->subst() == value, "missed substition");
447
if (liveness.at(index) && !value->type()->is_illegal()) {
448
if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
449
walk(value);
450
assert(value->operand()->is_valid(), "must be evaluated now");
451
}
452
} else {
453
// NULL out this local so that linear scan can assume that all non-NULL values are live.
454
s->invalidate_local(index);
455
}
456
}
457
}
458
}
459
460
return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
461
}
462
463
464
CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
465
return state_for(x, x->exception_state());
466
}
467
468
469
void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
470
/* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
471
* is active and the class hasn't yet been resolved we need to emit a patch that resolves
472
* the class. */
473
if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
474
assert(info != NULL, "info must be set if class is not loaded");
475
__ klass2reg_patch(NULL, r, info);
476
} else {
477
// no patching needed
478
__ metadata2reg(obj->constant_encoding(), r);
479
}
480
}
481
482
483
void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
484
CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
485
CodeStub* stub = new RangeCheckStub(range_check_info, index);
486
if (index->is_constant()) {
487
cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
488
index->as_jint(), null_check_info);
489
__ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
490
} else {
491
cmp_reg_mem(lir_cond_aboveEqual, index, array,
492
arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
493
__ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
494
}
495
}
496
497
498
void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
499
CodeStub* stub = new RangeCheckStub(info, index, true);
500
if (index->is_constant()) {
501
cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
502
__ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
503
} else {
504
cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
505
java_nio_Buffer::limit_offset(), T_INT, info);
506
__ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
507
}
508
__ move(index, result);
509
}
510
511
512
513
void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
514
LIR_Opr result_op = result;
515
LIR_Opr left_op = left;
516
LIR_Opr right_op = right;
517
518
if (TwoOperandLIRForm && left_op != result_op) {
519
assert(right_op != result_op, "malformed");
520
__ move(left_op, result_op);
521
left_op = result_op;
522
}
523
524
switch(code) {
525
case Bytecodes::_dadd:
526
case Bytecodes::_fadd:
527
case Bytecodes::_ladd:
528
case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break;
529
case Bytecodes::_fmul:
530
case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break;
531
532
case Bytecodes::_dmul:
533
{
534
if (is_strictfp) {
535
__ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
536
} else {
537
__ mul(left_op, right_op, result_op); break;
538
}
539
}
540
break;
541
542
case Bytecodes::_imul:
543
{
544
bool did_strength_reduce = false;
545
546
if (right->is_constant()) {
547
jint c = right->as_jint();
548
if (c > 0 && is_power_of_2(c)) {
549
// do not need tmp here
550
__ shift_left(left_op, exact_log2(c), result_op);
551
did_strength_reduce = true;
552
} else {
553
did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
554
}
555
}
556
// we couldn't strength reduce so just emit the multiply
557
if (!did_strength_reduce) {
558
__ mul(left_op, right_op, result_op);
559
}
560
}
561
break;
562
563
case Bytecodes::_dsub:
564
case Bytecodes::_fsub:
565
case Bytecodes::_lsub:
566
case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
567
568
case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
569
// ldiv and lrem are implemented with a direct runtime call
570
571
case Bytecodes::_ddiv:
572
{
573
if (is_strictfp) {
574
__ div_strictfp (left_op, right_op, result_op, tmp_op); break;
575
} else {
576
__ div (left_op, right_op, result_op); break;
577
}
578
}
579
break;
580
581
case Bytecodes::_drem:
582
case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
583
584
default: ShouldNotReachHere();
585
}
586
}
587
588
589
void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
590
arithmetic_op(code, result, left, right, false, tmp);
591
}
592
593
594
void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
595
arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
596
}
597
598
599
void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
600
arithmetic_op(code, result, left, right, is_strictfp, tmp);
601
}
602
603
604
void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
605
if (TwoOperandLIRForm && value != result_op) {
606
assert(count != result_op, "malformed");
607
__ move(value, result_op);
608
value = result_op;
609
}
610
611
assert(count->is_constant() || count->is_register(), "must be");
612
switch(code) {
613
case Bytecodes::_ishl:
614
case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
615
case Bytecodes::_ishr:
616
case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
617
case Bytecodes::_iushr:
618
case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
619
default: ShouldNotReachHere();
620
}
621
}
622
623
624
void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
625
if (TwoOperandLIRForm && left_op != result_op) {
626
assert(right_op != result_op, "malformed");
627
__ move(left_op, result_op);
628
left_op = result_op;
629
}
630
631
switch(code) {
632
case Bytecodes::_iand:
633
case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break;
634
635
case Bytecodes::_ior:
636
case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break;
637
638
case Bytecodes::_ixor:
639
case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break;
640
641
default: ShouldNotReachHere();
642
}
643
}
644
645
646
void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
647
if (!GenerateSynchronizationCode) return;
648
// for slow path, use debug info for state after successful locking
649
CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
650
__ load_stack_address_monitor(monitor_no, lock);
651
// for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
652
__ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
653
}
654
655
656
void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
657
if (!GenerateSynchronizationCode) return;
658
// setup registers
659
LIR_Opr hdr = lock;
660
lock = new_hdr;
661
CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
662
__ load_stack_address_monitor(monitor_no, lock);
663
__ unlock_object(hdr, object, lock, scratch, slow_path);
664
}
665
666
#ifndef PRODUCT
667
void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
668
if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
669
tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci());
670
} else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
671
tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci());
672
}
673
}
674
#endif
675
676
void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
677
klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
678
// If klass is not loaded we do not know if the klass has finalizers:
679
if (UseFastNewInstance && klass->is_loaded()
680
&& !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
681
682
Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
683
684
CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
685
686
assert(klass->is_loaded(), "must be loaded");
687
// allocate space for instance
688
assert(klass->size_helper() >= 0, "illegal instance size");
689
const int instance_size = align_object_size(klass->size_helper());
690
__ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
691
oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
692
} else {
693
CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
694
__ branch(lir_cond_always, T_ILLEGAL, slow_path);
695
__ branch_destination(slow_path->continuation());
696
}
697
}
698
699
700
static bool is_constant_zero(Instruction* inst) {
701
IntConstant* c = inst->type()->as_IntConstant();
702
if (c) {
703
return (c->value() == 0);
704
}
705
return false;
706
}
707
708
709
static bool positive_constant(Instruction* inst) {
710
IntConstant* c = inst->type()->as_IntConstant();
711
if (c) {
712
return (c->value() >= 0);
713
}
714
return false;
715
}
716
717
718
static ciArrayKlass* as_array_klass(ciType* type) {
719
if (type != NULL && type->is_array_klass() && type->is_loaded()) {
720
return (ciArrayKlass*)type;
721
} else {
722
return NULL;
723
}
724
}
725
726
static ciType* phi_declared_type(Phi* phi) {
727
ciType* t = phi->operand_at(0)->declared_type();
728
if (t == NULL) {
729
return NULL;
730
}
731
for(int i = 1; i < phi->operand_count(); i++) {
732
if (t != phi->operand_at(i)->declared_type()) {
733
return NULL;
734
}
735
}
736
return t;
737
}
738
739
void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
740
Instruction* src = x->argument_at(0);
741
Instruction* src_pos = x->argument_at(1);
742
Instruction* dst = x->argument_at(2);
743
Instruction* dst_pos = x->argument_at(3);
744
Instruction* length = x->argument_at(4);
745
746
// first try to identify the likely type of the arrays involved
747
ciArrayKlass* expected_type = NULL;
748
bool is_exact = false, src_objarray = false, dst_objarray = false;
749
{
750
ciArrayKlass* src_exact_type = as_array_klass(src->exact_type());
751
ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
752
Phi* phi;
753
if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
754
src_declared_type = as_array_klass(phi_declared_type(phi));
755
}
756
ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type());
757
ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
758
if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
759
dst_declared_type = as_array_klass(phi_declared_type(phi));
760
}
761
762
if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
763
// the types exactly match so the type is fully known
764
is_exact = true;
765
expected_type = src_exact_type;
766
} else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
767
ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
768
ciArrayKlass* src_type = NULL;
769
if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
770
src_type = (ciArrayKlass*) src_exact_type;
771
} else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
772
src_type = (ciArrayKlass*) src_declared_type;
773
}
774
if (src_type != NULL) {
775
if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
776
is_exact = true;
777
expected_type = dst_type;
778
}
779
}
780
}
781
// at least pass along a good guess
782
if (expected_type == NULL) expected_type = dst_exact_type;
783
if (expected_type == NULL) expected_type = src_declared_type;
784
if (expected_type == NULL) expected_type = dst_declared_type;
785
786
src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
787
dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
788
}
789
790
// if a probable array type has been identified, figure out if any
791
// of the required checks for a fast case can be elided.
792
int flags = LIR_OpArrayCopy::all_flags;
793
794
if (!src_objarray)
795
flags &= ~LIR_OpArrayCopy::src_objarray;
796
if (!dst_objarray)
797
flags &= ~LIR_OpArrayCopy::dst_objarray;
798
799
if (!x->arg_needs_null_check(0))
800
flags &= ~LIR_OpArrayCopy::src_null_check;
801
if (!x->arg_needs_null_check(2))
802
flags &= ~LIR_OpArrayCopy::dst_null_check;
803
804
805
if (expected_type != NULL) {
806
Value length_limit = NULL;
807
808
IfOp* ifop = length->as_IfOp();
809
if (ifop != NULL) {
810
// look for expressions like min(v, a.length) which ends up as
811
// x > y ? y : x or x >= y ? y : x
812
if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
813
ifop->x() == ifop->fval() &&
814
ifop->y() == ifop->tval()) {
815
length_limit = ifop->y();
816
}
817
}
818
819
// try to skip null checks and range checks
820
NewArray* src_array = src->as_NewArray();
821
if (src_array != NULL) {
822
flags &= ~LIR_OpArrayCopy::src_null_check;
823
if (length_limit != NULL &&
824
src_array->length() == length_limit &&
825
is_constant_zero(src_pos)) {
826
flags &= ~LIR_OpArrayCopy::src_range_check;
827
}
828
}
829
830
NewArray* dst_array = dst->as_NewArray();
831
if (dst_array != NULL) {
832
flags &= ~LIR_OpArrayCopy::dst_null_check;
833
if (length_limit != NULL &&
834
dst_array->length() == length_limit &&
835
is_constant_zero(dst_pos)) {
836
flags &= ~LIR_OpArrayCopy::dst_range_check;
837
}
838
}
839
840
// check from incoming constant values
841
if (positive_constant(src_pos))
842
flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
843
if (positive_constant(dst_pos))
844
flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
845
if (positive_constant(length))
846
flags &= ~LIR_OpArrayCopy::length_positive_check;
847
848
// see if the range check can be elided, which might also imply
849
// that src or dst is non-null.
850
ArrayLength* al = length->as_ArrayLength();
851
if (al != NULL) {
852
if (al->array() == src) {
853
// it's the length of the source array
854
flags &= ~LIR_OpArrayCopy::length_positive_check;
855
flags &= ~LIR_OpArrayCopy::src_null_check;
856
if (is_constant_zero(src_pos))
857
flags &= ~LIR_OpArrayCopy::src_range_check;
858
}
859
if (al->array() == dst) {
860
// it's the length of the destination array
861
flags &= ~LIR_OpArrayCopy::length_positive_check;
862
flags &= ~LIR_OpArrayCopy::dst_null_check;
863
if (is_constant_zero(dst_pos))
864
flags &= ~LIR_OpArrayCopy::dst_range_check;
865
}
866
}
867
if (is_exact) {
868
flags &= ~LIR_OpArrayCopy::type_check;
869
}
870
}
871
872
IntConstant* src_int = src_pos->type()->as_IntConstant();
873
IntConstant* dst_int = dst_pos->type()->as_IntConstant();
874
if (src_int && dst_int) {
875
int s_offs = src_int->value();
876
int d_offs = dst_int->value();
877
if (src_int->value() >= dst_int->value()) {
878
flags &= ~LIR_OpArrayCopy::overlapping;
879
}
880
if (expected_type != NULL) {
881
BasicType t = expected_type->element_type()->basic_type();
882
int element_size = type2aelembytes(t);
883
if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
884
((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
885
flags &= ~LIR_OpArrayCopy::unaligned;
886
}
887
}
888
} else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
889
// src and dest positions are the same, or dst is zero so assume
890
// nonoverlapping copy.
891
flags &= ~LIR_OpArrayCopy::overlapping;
892
}
893
894
if (src == dst) {
895
// moving within a single array so no type checks are needed
896
if (flags & LIR_OpArrayCopy::type_check) {
897
flags &= ~LIR_OpArrayCopy::type_check;
898
}
899
}
900
*flagsp = flags;
901
*expected_typep = (ciArrayKlass*)expected_type;
902
}
903
904
905
LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
906
assert(opr->is_register(), "why spill if item is not register?");
907
908
if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
909
LIR_Opr result = new_register(T_FLOAT);
910
set_vreg_flag(result, must_start_in_memory);
911
assert(opr->is_register(), "only a register can be spilled");
912
assert(opr->value_type()->is_float(), "rounding only for floats available");
913
__ roundfp(opr, LIR_OprFact::illegalOpr, result);
914
return result;
915
}
916
return opr;
917
}
918
919
920
LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
921
assert(type2size[t] == type2size[value->type()],
922
err_msg_res("size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())));
923
if (!value->is_register()) {
924
// force into a register
925
LIR_Opr r = new_register(value->type());
926
__ move(value, r);
927
value = r;
928
}
929
930
// create a spill location
931
LIR_Opr tmp = new_register(t);
932
set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
933
934
// move from register to spill
935
__ move(value, tmp);
936
return tmp;
937
}
938
939
void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
940
if (if_instr->should_profile()) {
941
ciMethod* method = if_instr->profiled_method();
942
assert(method != NULL, "method should be set if branch is profiled");
943
ciMethodData* md = method->method_data_or_null();
944
assert(md != NULL, "Sanity");
945
ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
946
assert(data != NULL, "must have profiling data");
947
assert(data->is_BranchData(), "need BranchData for two-way branches");
948
int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
949
int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
950
if (if_instr->is_swapped()) {
951
int t = taken_count_offset;
952
taken_count_offset = not_taken_count_offset;
953
not_taken_count_offset = t;
954
}
955
956
LIR_Opr md_reg = new_register(T_METADATA);
957
__ metadata2reg(md->constant_encoding(), md_reg);
958
959
LIR_Opr data_offset_reg = new_pointer_register();
960
__ cmove(lir_cond(cond),
961
LIR_OprFact::intptrConst(taken_count_offset),
962
LIR_OprFact::intptrConst(not_taken_count_offset),
963
data_offset_reg, as_BasicType(if_instr->x()->type()));
964
965
// MDO cells are intptr_t, so the data_reg width is arch-dependent.
966
LIR_Opr data_reg = new_pointer_register();
967
LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
968
__ move(data_addr, data_reg);
969
// Use leal instead of add to avoid destroying condition codes on x86
970
LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
971
__ leal(LIR_OprFact::address(fake_incr_value), data_reg);
972
__ move(data_reg, data_addr);
973
}
974
}
975
976
// Phi technique:
977
// This is about passing live values from one basic block to the other.
978
// In code generated with Java it is rather rare that more than one
979
// value is on the stack from one basic block to the other.
980
// We optimize our technique for efficient passing of one value
981
// (of type long, int, double..) but it can be extended.
982
// When entering or leaving a basic block, all registers and all spill
983
// slots are release and empty. We use the released registers
984
// and spill slots to pass the live values from one block
985
// to the other. The topmost value, i.e., the value on TOS of expression
986
// stack is passed in registers. All other values are stored in spilling
987
// area. Every Phi has an index which designates its spill slot
988
// At exit of a basic block, we fill the register(s) and spill slots.
989
// At entry of a basic block, the block_prolog sets up the content of phi nodes
990
// and locks necessary registers and spilling slots.
991
992
993
// move current value to referenced phi function
994
void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
995
Phi* phi = sux_val->as_Phi();
996
// cur_val can be null without phi being null in conjunction with inlining
997
if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
998
LIR_Opr operand = cur_val->operand();
999
if (cur_val->operand()->is_illegal()) {
1000
assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1001
"these can be produced lazily");
1002
operand = operand_for_instruction(cur_val);
1003
}
1004
resolver->move(operand, operand_for_instruction(phi));
1005
}
1006
}
1007
1008
1009
// Moves all stack values into their PHI position
1010
void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1011
BlockBegin* bb = block();
1012
if (bb->number_of_sux() == 1) {
1013
BlockBegin* sux = bb->sux_at(0);
1014
assert(sux->number_of_preds() > 0, "invalid CFG");
1015
1016
// a block with only one predecessor never has phi functions
1017
if (sux->number_of_preds() > 1) {
1018
int max_phis = cur_state->stack_size() + cur_state->locals_size();
1019
PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1020
1021
ValueStack* sux_state = sux->state();
1022
Value sux_value;
1023
int index;
1024
1025
assert(cur_state->scope() == sux_state->scope(), "not matching");
1026
assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1027
assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1028
1029
for_each_stack_value(sux_state, index, sux_value) {
1030
move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1031
}
1032
1033
for_each_local_value(sux_state, index, sux_value) {
1034
move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1035
}
1036
1037
assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1038
}
1039
}
1040
}
1041
1042
1043
LIR_Opr LIRGenerator::new_register(BasicType type) {
1044
int vreg = _virtual_register_number;
1045
// add a little fudge factor for the bailout, since the bailout is
1046
// only checked periodically. This gives a few extra registers to
1047
// hand out before we really run out, which helps us keep from
1048
// tripping over assertions.
1049
if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1050
bailout("out of virtual registers");
1051
if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1052
// wrap it around
1053
_virtual_register_number = LIR_OprDesc::vreg_base;
1054
}
1055
}
1056
_virtual_register_number += 1;
1057
return LIR_OprFact::virtual_register(vreg, type);
1058
}
1059
1060
1061
// Try to lock using register in hint
1062
LIR_Opr LIRGenerator::rlock(Value instr) {
1063
return new_register(instr->type());
1064
}
1065
1066
1067
// does an rlock and sets result
1068
LIR_Opr LIRGenerator::rlock_result(Value x) {
1069
LIR_Opr reg = rlock(x);
1070
set_result(x, reg);
1071
return reg;
1072
}
1073
1074
1075
// does an rlock and sets result
1076
LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1077
LIR_Opr reg;
1078
switch (type) {
1079
case T_BYTE:
1080
case T_BOOLEAN:
1081
reg = rlock_byte(type);
1082
break;
1083
default:
1084
reg = rlock(x);
1085
break;
1086
}
1087
1088
set_result(x, reg);
1089
return reg;
1090
}
1091
1092
1093
//---------------------------------------------------------------------
1094
ciObject* LIRGenerator::get_jobject_constant(Value value) {
1095
ObjectType* oc = value->type()->as_ObjectType();
1096
if (oc) {
1097
return oc->constant_value();
1098
}
1099
return NULL;
1100
}
1101
1102
1103
void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1104
assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1105
assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1106
1107
// no moves are created for phi functions at the begin of exception
1108
// handlers, so assign operands manually here
1109
for_each_phi_fun(block(), phi,
1110
operand_for_instruction(phi));
1111
1112
LIR_Opr thread_reg = getThreadPointer();
1113
__ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1114
exceptionOopOpr());
1115
__ move_wide(LIR_OprFact::oopConst(NULL),
1116
new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1117
__ move_wide(LIR_OprFact::oopConst(NULL),
1118
new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1119
1120
LIR_Opr result = new_register(T_OBJECT);
1121
__ move(exceptionOopOpr(), result);
1122
set_result(x, result);
1123
}
1124
1125
1126
//----------------------------------------------------------------------
1127
//----------------------------------------------------------------------
1128
//----------------------------------------------------------------------
1129
//----------------------------------------------------------------------
1130
// visitor functions
1131
//----------------------------------------------------------------------
1132
//----------------------------------------------------------------------
1133
//----------------------------------------------------------------------
1134
//----------------------------------------------------------------------
1135
1136
void LIRGenerator::do_Phi(Phi* x) {
1137
// phi functions are never visited directly
1138
ShouldNotReachHere();
1139
}
1140
1141
1142
// Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1143
void LIRGenerator::do_Constant(Constant* x) {
1144
if (x->state_before() != NULL) {
1145
// Any constant with a ValueStack requires patching so emit the patch here
1146
LIR_Opr reg = rlock_result(x);
1147
CodeEmitInfo* info = state_for(x, x->state_before());
1148
__ oop2reg_patch(NULL, reg, info);
1149
} else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1150
if (!x->is_pinned()) {
1151
// unpinned constants are handled specially so that they can be
1152
// put into registers when they are used multiple times within a
1153
// block. After the block completes their operand will be
1154
// cleared so that other blocks can't refer to that register.
1155
set_result(x, load_constant(x));
1156
} else {
1157
LIR_Opr res = x->operand();
1158
if (!res->is_valid()) {
1159
res = LIR_OprFact::value_type(x->type());
1160
}
1161
if (res->is_constant()) {
1162
LIR_Opr reg = rlock_result(x);
1163
__ move(res, reg);
1164
} else {
1165
set_result(x, res);
1166
}
1167
}
1168
} else {
1169
set_result(x, LIR_OprFact::value_type(x->type()));
1170
}
1171
}
1172
1173
1174
void LIRGenerator::do_Local(Local* x) {
1175
// operand_for_instruction has the side effect of setting the result
1176
// so there's no need to do it here.
1177
operand_for_instruction(x);
1178
}
1179
1180
1181
void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1182
Unimplemented();
1183
}
1184
1185
1186
void LIRGenerator::do_Return(Return* x) {
1187
if (compilation()->env()->dtrace_method_probes()) {
1188
BasicTypeList signature;
1189
signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
1190
signature.append(T_METADATA); // Method*
1191
LIR_OprList* args = new LIR_OprList();
1192
args->append(getThreadPointer());
1193
LIR_Opr meth = new_register(T_METADATA);
1194
__ metadata2reg(method()->constant_encoding(), meth);
1195
args->append(meth);
1196
call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1197
}
1198
1199
if (x->type()->is_void()) {
1200
__ return_op(LIR_OprFact::illegalOpr);
1201
} else {
1202
#ifdef AARCH32
1203
LIR_Opr reg = java_result_register_for(x->type(), /*callee=*/true);
1204
#else
1205
LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1206
#endif
1207
LIRItem result(x->result(), this);
1208
1209
result.load_item_force(reg);
1210
__ return_op(result.result());
1211
}
1212
set_no_result(x);
1213
}
1214
1215
// Examble: ref.get()
1216
// Combination of LoadField and g1 pre-write barrier
1217
void LIRGenerator::do_Reference_get(Intrinsic* x) {
1218
1219
const int referent_offset = java_lang_ref_Reference::referent_offset;
1220
guarantee(referent_offset > 0, "referent offset not initialized");
1221
1222
assert(x->number_of_arguments() == 1, "wrong type");
1223
1224
LIRItem reference(x->argument_at(0), this);
1225
reference.load_item();
1226
1227
// need to perform the null check on the reference objecy
1228
CodeEmitInfo* info = NULL;
1229
if (x->needs_null_check()) {
1230
info = state_for(x);
1231
}
1232
1233
LIR_Address* referent_field_adr =
1234
new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1235
1236
LIR_Opr result = rlock_result(x);
1237
1238
#if INCLUDE_ALL_GCS
1239
if (UseShenandoahGC) {
1240
LIR_Opr tmp = new_register(T_OBJECT);
1241
LIR_Opr addr = ShenandoahBarrierSet::barrier_set()->bsc1()->resolve_address(this, referent_field_adr, T_OBJECT, NULL);
1242
__ load(addr->as_address_ptr(), tmp, info);
1243
tmp = ShenandoahBarrierSet::barrier_set()->bsc1()->load_reference_barrier(this, tmp, addr);
1244
__ move(tmp, result);
1245
} else
1246
#endif
1247
__ load(referent_field_adr, result, info);
1248
1249
// Register the value in the referent field with the pre-barrier
1250
pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1251
result /* pre_val */,
1252
false /* do_load */,
1253
false /* patch */,
1254
NULL /* info */);
1255
}
1256
1257
// Example: clazz.isInstance(object)
1258
void LIRGenerator::do_isInstance(Intrinsic* x) {
1259
assert(x->number_of_arguments() == 2, "wrong type");
1260
1261
// TODO could try to substitute this node with an equivalent InstanceOf
1262
// if clazz is known to be a constant Class. This will pick up newly found
1263
// constants after HIR construction. I'll leave this to a future change.
1264
1265
// as a first cut, make a simple leaf call to runtime to stay platform independent.
1266
// could follow the aastore example in a future change.
1267
1268
LIRItem clazz(x->argument_at(0), this);
1269
LIRItem object(x->argument_at(1), this);
1270
clazz.load_item();
1271
object.load_item();
1272
LIR_Opr result = rlock_result(x);
1273
1274
// need to perform null check on clazz
1275
if (x->needs_null_check()) {
1276
CodeEmitInfo* info = state_for(x);
1277
__ null_check(clazz.result(), info);
1278
}
1279
1280
LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1281
CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1282
x->type(),
1283
NULL); // NULL CodeEmitInfo results in a leaf call
1284
__ move(call_result, result);
1285
}
1286
1287
// Example: object.getClass ()
1288
void LIRGenerator::do_getClass(Intrinsic* x) {
1289
assert(x->number_of_arguments() == 1, "wrong type");
1290
1291
LIRItem rcvr(x->argument_at(0), this);
1292
rcvr.load_item();
1293
LIR_Opr temp = new_register(T_METADATA);
1294
LIR_Opr result = rlock_result(x);
1295
1296
// need to perform the null check on the rcvr
1297
CodeEmitInfo* info = NULL;
1298
if (x->needs_null_check()) {
1299
info = state_for(x);
1300
}
1301
1302
// FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1303
// meaning of these two is mixed up (see JDK-8026837).
1304
__ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1305
__ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
1306
}
1307
1308
1309
// Example: Thread.currentThread()
1310
void LIRGenerator::do_currentThread(Intrinsic* x) {
1311
assert(x->number_of_arguments() == 0, "wrong type");
1312
LIR_Opr reg = rlock_result(x);
1313
__ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1314
}
1315
1316
1317
void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1318
assert(x->number_of_arguments() == 1, "wrong type");
1319
LIRItem receiver(x->argument_at(0), this);
1320
1321
receiver.load_item();
1322
BasicTypeList signature;
1323
signature.append(T_OBJECT); // receiver
1324
LIR_OprList* args = new LIR_OprList();
1325
args->append(receiver.result());
1326
CodeEmitInfo* info = state_for(x, x->state());
1327
call_runtime(&signature, args,
1328
CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1329
voidType, info);
1330
1331
set_no_result(x);
1332
}
1333
1334
1335
//------------------------local access--------------------------------------
1336
1337
LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1338
if (x->operand()->is_illegal()) {
1339
Constant* c = x->as_Constant();
1340
if (c != NULL) {
1341
x->set_operand(LIR_OprFact::value_type(c->type()));
1342
} else {
1343
assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1344
// allocate a virtual register for this local or phi
1345
x->set_operand(rlock(x));
1346
_instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1347
}
1348
}
1349
return x->operand();
1350
}
1351
1352
1353
Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1354
if (opr->is_virtual()) {
1355
return instruction_for_vreg(opr->vreg_number());
1356
}
1357
return NULL;
1358
}
1359
1360
1361
Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1362
if (reg_num < _instruction_for_operand.length()) {
1363
return _instruction_for_operand.at(reg_num);
1364
}
1365
return NULL;
1366
}
1367
1368
1369
void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1370
if (_vreg_flags.size_in_bits() == 0) {
1371
BitMap2D temp(100, num_vreg_flags);
1372
temp.clear();
1373
_vreg_flags = temp;
1374
}
1375
_vreg_flags.at_put_grow(vreg_num, f, true);
1376
}
1377
1378
bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1379
if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1380
return false;
1381
}
1382
return _vreg_flags.at(vreg_num, f);
1383
}
1384
1385
1386
// Block local constant handling. This code is useful for keeping
1387
// unpinned constants and constants which aren't exposed in the IR in
1388
// registers. Unpinned Constant instructions have their operands
1389
// cleared when the block is finished so that other blocks can't end
1390
// up referring to their registers.
1391
1392
LIR_Opr LIRGenerator::load_constant(Constant* x) {
1393
assert(!x->is_pinned(), "only for unpinned constants");
1394
_unpinned_constants.append(x);
1395
return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1396
}
1397
1398
1399
LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1400
BasicType t = c->type();
1401
for (int i = 0; i < _constants.length(); i++) {
1402
LIR_Const* other = _constants.at(i);
1403
if (t == other->type()) {
1404
switch (t) {
1405
case T_INT:
1406
case T_FLOAT:
1407
if (c->as_jint_bits() != other->as_jint_bits()) continue;
1408
break;
1409
case T_LONG:
1410
case T_DOUBLE:
1411
if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1412
if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1413
break;
1414
case T_OBJECT:
1415
if (c->as_jobject() != other->as_jobject()) continue;
1416
break;
1417
}
1418
return _reg_for_constants.at(i);
1419
}
1420
}
1421
1422
LIR_Opr result = new_register(t);
1423
__ move((LIR_Opr)c, result);
1424
_constants.append(c);
1425
_reg_for_constants.append(result);
1426
return result;
1427
}
1428
1429
// Various barriers
1430
1431
void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1432
bool do_load, bool patch, CodeEmitInfo* info) {
1433
// Do the pre-write barrier, if any.
1434
switch (_bs->kind()) {
1435
#if INCLUDE_ALL_GCS
1436
case BarrierSet::G1SATBCT:
1437
case BarrierSet::G1SATBCTLogging:
1438
G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1439
break;
1440
case BarrierSet::ShenandoahBarrierSet:
1441
if (ShenandoahSATBBarrier) {
1442
G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1443
}
1444
break;
1445
#endif // INCLUDE_ALL_GCS
1446
case BarrierSet::CardTableModRef:
1447
case BarrierSet::CardTableExtension:
1448
// No pre barriers
1449
break;
1450
case BarrierSet::ModRef:
1451
case BarrierSet::Other:
1452
// No pre barriers
1453
break;
1454
default :
1455
ShouldNotReachHere();
1456
1457
}
1458
}
1459
1460
void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1461
switch (_bs->kind()) {
1462
#if INCLUDE_ALL_GCS
1463
case BarrierSet::G1SATBCT:
1464
case BarrierSet::G1SATBCTLogging:
1465
G1SATBCardTableModRef_post_barrier(addr, new_val);
1466
break;
1467
case BarrierSet::ShenandoahBarrierSet:
1468
ShenandoahBarrierSetC1::bsc1()->storeval_barrier(this, new_val, NULL, false);
1469
break;
1470
#endif // INCLUDE_ALL_GCS
1471
case BarrierSet::CardTableModRef:
1472
case BarrierSet::CardTableExtension:
1473
CardTableModRef_post_barrier(addr, new_val);
1474
break;
1475
case BarrierSet::ModRef:
1476
case BarrierSet::Other:
1477
// No post barriers
1478
break;
1479
default :
1480
ShouldNotReachHere();
1481
}
1482
}
1483
1484
////////////////////////////////////////////////////////////////////////
1485
#if INCLUDE_ALL_GCS
1486
1487
void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1488
bool do_load, bool patch, CodeEmitInfo* info) {
1489
// First we test whether marking is in progress.
1490
BasicType flag_type;
1491
if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
1492
flag_type = T_INT;
1493
} else {
1494
guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
1495
"Assumption");
1496
flag_type = T_BYTE;
1497
}
1498
LIR_Opr thrd = getThreadPointer();
1499
LIR_Address* mark_active_flag_addr =
1500
new LIR_Address(thrd,
1501
in_bytes(JavaThread::satb_mark_queue_offset() +
1502
PtrQueue::byte_offset_of_active()),
1503
flag_type);
1504
// Read the marking-in-progress flag.
1505
LIR_Opr flag_val = new_register(T_INT);
1506
__ load(mark_active_flag_addr, flag_val);
1507
__ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1508
1509
LIR_PatchCode pre_val_patch_code = lir_patch_none;
1510
1511
CodeStub* slow;
1512
1513
if (do_load) {
1514
assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1515
assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1516
1517
if (patch)
1518
pre_val_patch_code = lir_patch_normal;
1519
1520
pre_val = new_register(T_OBJECT);
1521
1522
if (!addr_opr->is_address()) {
1523
assert(addr_opr->is_register(), "must be");
1524
addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1525
}
1526
slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1527
} else {
1528
assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1529
assert(pre_val->is_register(), "must be");
1530
assert(pre_val->type() == T_OBJECT, "must be an object");
1531
assert(info == NULL, "sanity");
1532
1533
slow = new G1PreBarrierStub(pre_val);
1534
}
1535
1536
__ branch(lir_cond_notEqual, T_INT, slow);
1537
__ branch_destination(slow->continuation());
1538
}
1539
1540
void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1541
// If the "new_val" is a constant NULL, no barrier is necessary.
1542
if (new_val->is_constant() &&
1543
new_val->as_constant_ptr()->as_jobject() == NULL) return;
1544
1545
if (!new_val->is_register()) {
1546
LIR_Opr new_val_reg = new_register(T_OBJECT);
1547
if (new_val->is_constant()) {
1548
__ move(new_val, new_val_reg);
1549
} else {
1550
__ leal(new_val, new_val_reg);
1551
}
1552
new_val = new_val_reg;
1553
}
1554
assert(new_val->is_register(), "must be a register at this point");
1555
1556
if (addr->is_address()) {
1557
LIR_Address* address = addr->as_address_ptr();
1558
LIR_Opr ptr = new_pointer_register();
1559
if (!address->index()->is_valid() && address->disp() == 0) {
1560
__ move(address->base(), ptr);
1561
} else {
1562
assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1563
__ leal(addr, ptr);
1564
}
1565
addr = ptr;
1566
}
1567
assert(addr->is_register(), "must be a register at this point");
1568
1569
LIR_Opr xor_res = new_pointer_register();
1570
LIR_Opr xor_shift_res = new_pointer_register();
1571
if (TwoOperandLIRForm ) {
1572
__ move(addr, xor_res);
1573
__ logical_xor(xor_res, new_val, xor_res);
1574
__ move(xor_res, xor_shift_res);
1575
__ unsigned_shift_right(xor_shift_res,
1576
LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1577
xor_shift_res,
1578
LIR_OprDesc::illegalOpr());
1579
} else {
1580
__ logical_xor(addr, new_val, xor_res);
1581
__ unsigned_shift_right(xor_res,
1582
LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1583
xor_shift_res,
1584
LIR_OprDesc::illegalOpr());
1585
}
1586
1587
if (!new_val->is_register()) {
1588
LIR_Opr new_val_reg = new_register(T_OBJECT);
1589
__ leal(new_val, new_val_reg);
1590
new_val = new_val_reg;
1591
}
1592
assert(new_val->is_register(), "must be a register at this point");
1593
1594
__ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1595
1596
CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1597
__ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1598
__ branch_destination(slow->continuation());
1599
}
1600
1601
#endif // INCLUDE_ALL_GCS
1602
////////////////////////////////////////////////////////////////////////
1603
1604
void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1605
1606
assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
1607
LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
1608
if (addr->is_address()) {
1609
LIR_Address* address = addr->as_address_ptr();
1610
// ptr cannot be an object because we use this barrier for array card marks
1611
// and addr can point in the middle of an array.
1612
LIR_Opr ptr = new_pointer_register();
1613
if (!address->index()->is_valid() && address->disp() == 0) {
1614
__ move(address->base(), ptr);
1615
} else {
1616
assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1617
__ leal(addr, ptr);
1618
}
1619
addr = ptr;
1620
}
1621
assert(addr->is_register(), "must be a register at this point");
1622
1623
#ifdef CARDTABLEMODREF_POST_BARRIER_HELPER
1624
CardTableModRef_post_barrier_helper(addr, card_table_base);
1625
#else
1626
LIR_Opr tmp = new_pointer_register();
1627
if (TwoOperandLIRForm) {
1628
__ move(addr, tmp);
1629
__ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1630
} else {
1631
__ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1632
}
1633
1634
if (UseConcMarkSweepGC && CMSPrecleaningEnabled) {
1635
__ membar_storestore();
1636
}
1637
1638
if (can_inline_as_constant(card_table_base)) {
1639
__ move(LIR_OprFact::intConst(0),
1640
new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
1641
} else {
1642
__ move(LIR_OprFact::intConst(0),
1643
new LIR_Address(tmp, load_constant(card_table_base),
1644
T_BYTE));
1645
}
1646
#endif
1647
}
1648
1649
1650
//------------------------field access--------------------------------------
1651
1652
// Comment copied form templateTable_i486.cpp
1653
// ----------------------------------------------------------------------------
1654
// Volatile variables demand their effects be made known to all CPU's in
1655
// order. Store buffers on most chips allow reads & writes to reorder; the
1656
// JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1657
// memory barrier (i.e., it's not sufficient that the interpreter does not
1658
// reorder volatile references, the hardware also must not reorder them).
1659
//
1660
// According to the new Java Memory Model (JMM):
1661
// (1) All volatiles are serialized wrt to each other.
1662
// ALSO reads & writes act as aquire & release, so:
1663
// (2) A read cannot let unrelated NON-volatile memory refs that happen after
1664
// the read float up to before the read. It's OK for non-volatile memory refs
1665
// that happen before the volatile read to float down below it.
1666
// (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1667
// that happen BEFORE the write float down to after the write. It's OK for
1668
// non-volatile memory refs that happen after the volatile write to float up
1669
// before it.
1670
//
1671
// We only put in barriers around volatile refs (they are expensive), not
1672
// _between_ memory refs (that would require us to track the flavor of the
1673
// previous memory refs). Requirements (2) and (3) require some barriers
1674
// before volatile stores and after volatile loads. These nearly cover
1675
// requirement (1) but miss the volatile-store-volatile-load case. This final
1676
// case is placed after volatile-stores although it could just as well go
1677
// before volatile-loads.
1678
1679
1680
void LIRGenerator::do_StoreField(StoreField* x) {
1681
bool needs_patching = x->needs_patching();
1682
bool is_volatile = x->field()->is_volatile();
1683
BasicType field_type = x->field_type();
1684
bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1685
1686
CodeEmitInfo* info = NULL;
1687
if (needs_patching) {
1688
assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1689
info = state_for(x, x->state_before());
1690
} else if (x->needs_null_check()) {
1691
NullCheck* nc = x->explicit_null_check();
1692
if (nc == NULL) {
1693
info = state_for(x);
1694
} else {
1695
info = state_for(nc);
1696
}
1697
}
1698
1699
1700
LIRItem object(x->obj(), this);
1701
LIRItem value(x->value(), this);
1702
1703
object.load_item();
1704
1705
if (is_volatile || needs_patching) {
1706
// load item if field is volatile (fewer special cases for volatiles)
1707
// load item if field not initialized
1708
// load item if field not constant
1709
// because of code patching we cannot inline constants
1710
if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1711
value.load_byte_item();
1712
} else {
1713
value.load_item();
1714
}
1715
} else {
1716
value.load_for_store(field_type);
1717
}
1718
1719
set_no_result(x);
1720
1721
#ifndef PRODUCT
1722
if (PrintNotLoaded && needs_patching) {
1723
tty->print_cr(" ###class not loaded at store_%s bci %d",
1724
x->is_static() ? "static" : "field", x->printable_bci());
1725
}
1726
#endif
1727
1728
if (x->needs_null_check() &&
1729
(needs_patching ||
1730
MacroAssembler::needs_explicit_null_check(x->offset()))) {
1731
// Emit an explicit null check because the offset is too large.
1732
// If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1733
// NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1734
__ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1735
}
1736
1737
LIR_Address* address;
1738
if (needs_patching) {
1739
// we need to patch the offset in the instruction so don't allow
1740
// generate_address to try to be smart about emitting the -1.
1741
// Otherwise the patching code won't know how to find the
1742
// instruction to patch.
1743
address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1744
} else {
1745
address = generate_address(object.result(), x->offset(), field_type);
1746
}
1747
1748
if (is_volatile && os::is_MP()) {
1749
__ membar_release();
1750
}
1751
1752
if (is_oop) {
1753
// Do the pre-write barrier, if any.
1754
pre_barrier(LIR_OprFact::address(address),
1755
LIR_OprFact::illegalOpr /* pre_val */,
1756
true /* do_load*/,
1757
needs_patching,
1758
(info ? new CodeEmitInfo(info) : NULL));
1759
}
1760
1761
if (is_volatile && !needs_patching) {
1762
volatile_field_store(value.result(), address, info);
1763
} else {
1764
LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1765
__ store(value.result(), address, info, patch_code);
1766
}
1767
1768
if (is_oop) {
1769
// Store to object so mark the card of the header
1770
post_barrier(object.result(), value.result());
1771
}
1772
1773
if (is_volatile && os::is_MP()) {
1774
__ membar();
1775
}
1776
}
1777
1778
1779
void LIRGenerator::do_LoadField(LoadField* x) {
1780
bool needs_patching = x->needs_patching();
1781
bool is_volatile = x->field()->is_volatile();
1782
BasicType field_type = x->field_type();
1783
1784
CodeEmitInfo* info = NULL;
1785
if (needs_patching) {
1786
assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1787
info = state_for(x, x->state_before());
1788
} else if (x->needs_null_check()) {
1789
NullCheck* nc = x->explicit_null_check();
1790
if (nc == NULL) {
1791
info = state_for(x);
1792
} else {
1793
info = state_for(nc);
1794
}
1795
}
1796
1797
LIRItem object(x->obj(), this);
1798
1799
object.load_item();
1800
1801
#ifndef PRODUCT
1802
if (PrintNotLoaded && needs_patching) {
1803
tty->print_cr(" ###class not loaded at load_%s bci %d",
1804
x->is_static() ? "static" : "field", x->printable_bci());
1805
}
1806
#endif
1807
1808
bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1809
if (x->needs_null_check() &&
1810
(needs_patching ||
1811
MacroAssembler::needs_explicit_null_check(x->offset()) ||
1812
stress_deopt)) {
1813
LIR_Opr obj = object.result();
1814
if (stress_deopt) {
1815
obj = new_register(T_OBJECT);
1816
__ move(LIR_OprFact::oopConst(NULL), obj);
1817
}
1818
// Emit an explicit null check because the offset is too large.
1819
// If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1820
// NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1821
__ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1822
}
1823
1824
LIR_Opr reg = rlock_result(x, field_type);
1825
LIR_Address* address;
1826
if (needs_patching) {
1827
// we need to patch the offset in the instruction so don't allow
1828
// generate_address to try to be smart about emitting the -1.
1829
// Otherwise the patching code won't know how to find the
1830
// instruction to patch.
1831
address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1832
} else {
1833
address = generate_address(object.result(), x->offset(), field_type);
1834
}
1835
1836
#if INCLUDE_ALL_GCS
1837
if (UseShenandoahGC && (field_type == T_OBJECT || field_type == T_ARRAY)) {
1838
LIR_Opr tmp = new_register(T_OBJECT);
1839
LIR_Opr addr = ShenandoahBarrierSet::barrier_set()->bsc1()->resolve_address(this, address, field_type, needs_patching ? info : NULL);
1840
if (is_volatile) {
1841
volatile_field_load(addr->as_address_ptr(), tmp, info);
1842
} else {
1843
__ load(addr->as_address_ptr(), tmp, info);
1844
}
1845
if (is_volatile && os::is_MP()) {
1846
__ membar_acquire();
1847
}
1848
tmp = ShenandoahBarrierSet::barrier_set()->bsc1()->load_reference_barrier(this, tmp, addr);
1849
__ move(tmp, reg);
1850
} else
1851
#endif
1852
{
1853
if (is_volatile && !needs_patching) {
1854
volatile_field_load(address, reg, info);
1855
} else {
1856
LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1857
__ load(address, reg, info, patch_code);
1858
}
1859
if (is_volatile && os::is_MP()) {
1860
__ membar_acquire();
1861
}
1862
}
1863
}
1864
1865
1866
//------------------------java.nio.Buffer.checkIndex------------------------
1867
1868
// int java.nio.Buffer.checkIndex(int)
1869
void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1870
// NOTE: by the time we are in checkIndex() we are guaranteed that
1871
// the buffer is non-null (because checkIndex is package-private and
1872
// only called from within other methods in the buffer).
1873
assert(x->number_of_arguments() == 2, "wrong type");
1874
LIRItem buf (x->argument_at(0), this);
1875
LIRItem index(x->argument_at(1), this);
1876
buf.load_item();
1877
index.load_item();
1878
1879
LIR_Opr result = rlock_result(x);
1880
if (GenerateRangeChecks) {
1881
CodeEmitInfo* info = state_for(x);
1882
CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1883
if (index.result()->is_constant()) {
1884
cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1885
__ branch(lir_cond_belowEqual, T_INT, stub);
1886
} else {
1887
cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1888
java_nio_Buffer::limit_offset(), T_INT, info);
1889
__ branch(lir_cond_aboveEqual, T_INT, stub);
1890
}
1891
__ move(index.result(), result);
1892
} else {
1893
// Just load the index into the result register
1894
__ move(index.result(), result);
1895
}
1896
}
1897
1898
1899
//------------------------array access--------------------------------------
1900
1901
1902
void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1903
LIRItem array(x->array(), this);
1904
array.load_item();
1905
LIR_Opr reg = rlock_result(x);
1906
1907
CodeEmitInfo* info = NULL;
1908
if (x->needs_null_check()) {
1909
NullCheck* nc = x->explicit_null_check();
1910
if (nc == NULL) {
1911
info = state_for(x);
1912
} else {
1913
info = state_for(nc);
1914
}
1915
if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1916
LIR_Opr obj = new_register(T_OBJECT);
1917
__ move(LIR_OprFact::oopConst(NULL), obj);
1918
__ null_check(obj, new CodeEmitInfo(info));
1919
}
1920
}
1921
__ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1922
}
1923
1924
1925
void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1926
bool use_length = x->length() != NULL;
1927
LIRItem array(x->array(), this);
1928
LIRItem index(x->index(), this);
1929
LIRItem length(this);
1930
bool needs_range_check = x->compute_needs_range_check();
1931
1932
if (use_length && needs_range_check) {
1933
length.set_instruction(x->length());
1934
length.load_item();
1935
}
1936
1937
array.load_item();
1938
if (index.is_constant() && can_inline_as_constant(x->index())) {
1939
// let it be a constant
1940
index.dont_load_item();
1941
} else {
1942
index.load_item();
1943
}
1944
1945
CodeEmitInfo* range_check_info = state_for(x);
1946
CodeEmitInfo* null_check_info = NULL;
1947
if (x->needs_null_check()) {
1948
NullCheck* nc = x->explicit_null_check();
1949
if (nc != NULL) {
1950
null_check_info = state_for(nc);
1951
} else {
1952
null_check_info = range_check_info;
1953
}
1954
if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1955
LIR_Opr obj = new_register(T_OBJECT);
1956
__ move(LIR_OprFact::oopConst(NULL), obj);
1957
__ null_check(obj, new CodeEmitInfo(null_check_info));
1958
}
1959
}
1960
1961
// emit array address setup early so it schedules better
1962
LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1963
1964
if (GenerateRangeChecks && needs_range_check) {
1965
if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1966
__ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
1967
} else if (use_length) {
1968
// TODO: use a (modified) version of array_range_check that does not require a
1969
// constant length to be loaded to a register
1970
__ cmp(lir_cond_belowEqual, length.result(), index.result());
1971
__ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1972
} else {
1973
array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1974
// The range check performs the null check, so clear it out for the load
1975
null_check_info = NULL;
1976
}
1977
}
1978
1979
LIR_Opr result = rlock_result(x, x->elt_type());
1980
1981
#if INCLUDE_ALL_GCS
1982
if (UseShenandoahGC && (x->elt_type() == T_OBJECT || x->elt_type() == T_ARRAY)) {
1983
LIR_Opr tmp = new_register(T_OBJECT);
1984
LIR_Opr addr = ShenandoahBarrierSet::barrier_set()->bsc1()->resolve_address(this, array_addr, x->elt_type(), NULL);
1985
__ move(addr->as_address_ptr(), tmp, null_check_info);
1986
tmp = ShenandoahBarrierSet::barrier_set()->bsc1()->load_reference_barrier(this, tmp, addr);
1987
__ move(tmp, result);
1988
} else
1989
#endif
1990
__ move(array_addr, result, null_check_info);
1991
1992
}
1993
1994
1995
void LIRGenerator::do_NullCheck(NullCheck* x) {
1996
if (x->can_trap()) {
1997
LIRItem value(x->obj(), this);
1998
value.load_item();
1999
CodeEmitInfo* info = state_for(x);
2000
__ null_check(value.result(), info);
2001
}
2002
}
2003
2004
2005
void LIRGenerator::do_TypeCast(TypeCast* x) {
2006
LIRItem value(x->obj(), this);
2007
value.load_item();
2008
// the result is the same as from the node we are casting
2009
set_result(x, value.result());
2010
}
2011
2012
2013
void LIRGenerator::do_Throw(Throw* x) {
2014
LIRItem exception(x->exception(), this);
2015
exception.load_item();
2016
set_no_result(x);
2017
LIR_Opr exception_opr = exception.result();
2018
CodeEmitInfo* info = state_for(x, x->state());
2019
2020
#ifndef PRODUCT
2021
if (PrintC1Statistics) {
2022
increment_counter(Runtime1::throw_count_address(), T_INT);
2023
}
2024
#endif
2025
2026
// check if the instruction has an xhandler in any of the nested scopes
2027
bool unwind = false;
2028
if (info->exception_handlers()->length() == 0) {
2029
// this throw is not inside an xhandler
2030
unwind = true;
2031
} else {
2032
// get some idea of the throw type
2033
bool type_is_exact = true;
2034
ciType* throw_type = x->exception()->exact_type();
2035
if (throw_type == NULL) {
2036
type_is_exact = false;
2037
throw_type = x->exception()->declared_type();
2038
}
2039
if (throw_type != NULL && throw_type->is_instance_klass()) {
2040
ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2041
unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2042
}
2043
}
2044
2045
// do null check before moving exception oop into fixed register
2046
// to avoid a fixed interval with an oop during the null check.
2047
// Use a copy of the CodeEmitInfo because debug information is
2048
// different for null_check and throw.
2049
if (GenerateCompilerNullChecks &&
2050
(x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
2051
// if the exception object wasn't created using new then it might be null.
2052
__ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2053
}
2054
2055
if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2056
// we need to go through the exception lookup path to get JVMTI
2057
// notification done
2058
unwind = false;
2059
}
2060
2061
// move exception oop into fixed register
2062
__ move(exception_opr, exceptionOopOpr());
2063
2064
if (unwind) {
2065
__ unwind_exception(exceptionOopOpr());
2066
} else {
2067
__ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2068
}
2069
}
2070
2071
2072
void LIRGenerator::do_RoundFP(RoundFP* x) {
2073
LIRItem input(x->input(), this);
2074
input.load_item();
2075
LIR_Opr input_opr = input.result();
2076
assert(input_opr->is_register(), "why round if value is not in a register?");
2077
assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2078
if (input_opr->is_single_fpu()) {
2079
set_result(x, round_item(input_opr)); // This code path not currently taken
2080
} else {
2081
LIR_Opr result = new_register(T_DOUBLE);
2082
set_vreg_flag(result, must_start_in_memory);
2083
__ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2084
set_result(x, result);
2085
}
2086
}
2087
2088
// Here UnsafeGetRaw may have x->base() and x->index() be int or long
2089
// on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2090
void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2091
LIRItem base(x->base(), this);
2092
LIRItem idx(this);
2093
2094
base.load_item();
2095
if (x->has_index()) {
2096
idx.set_instruction(x->index());
2097
idx.load_nonconstant();
2098
}
2099
2100
LIR_Opr reg = rlock_result(x, x->basic_type());
2101
2102
int log2_scale = 0;
2103
if (x->has_index()) {
2104
log2_scale = x->log2_scale();
2105
}
2106
2107
assert(!x->has_index() || idx.value() == x->index(), "should match");
2108
2109
LIR_Opr base_op = base.result();
2110
LIR_Opr index_op = idx.result();
2111
#ifndef _LP64
2112
if (base_op->type() == T_LONG) {
2113
base_op = new_register(T_INT);
2114
__ convert(Bytecodes::_l2i, base.result(), base_op);
2115
}
2116
if (x->has_index()) {
2117
if (index_op->type() == T_LONG) {
2118
LIR_Opr long_index_op = index_op;
2119
if (index_op->is_constant()) {
2120
long_index_op = new_register(T_LONG);
2121
__ move(index_op, long_index_op);
2122
}
2123
index_op = new_register(T_INT);
2124
__ convert(Bytecodes::_l2i, long_index_op, index_op);
2125
} else {
2126
assert(x->index()->type()->tag() == intTag, "must be");
2127
}
2128
}
2129
// At this point base and index should be all ints.
2130
assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2131
assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2132
#else
2133
if (x->has_index()) {
2134
if (index_op->type() == T_INT) {
2135
if (!index_op->is_constant()) {
2136
index_op = new_register(T_LONG);
2137
__ convert(Bytecodes::_i2l, idx.result(), index_op);
2138
}
2139
} else {
2140
assert(index_op->type() == T_LONG, "must be");
2141
if (index_op->is_constant()) {
2142
index_op = new_register(T_LONG);
2143
__ move(idx.result(), index_op);
2144
}
2145
}
2146
}
2147
// At this point base is a long non-constant
2148
// Index is a long register or a int constant.
2149
// We allow the constant to stay an int because that would allow us a more compact encoding by
2150
// embedding an immediate offset in the address expression. If we have a long constant, we have to
2151
// move it into a register first.
2152
assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2153
assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2154
(index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2155
#endif
2156
2157
BasicType dst_type = x->basic_type();
2158
2159
LIR_Address* addr;
2160
if (index_op->is_constant()) {
2161
assert(log2_scale == 0, "must not have a scale");
2162
assert(index_op->type() == T_INT, "only int constants supported");
2163
addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2164
} else {
2165
#if defined(X86) || defined(AARCH64)
2166
addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2167
#elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2168
addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2169
#else
2170
if (index_op->is_illegal() || log2_scale == 0) {
2171
addr = new LIR_Address(base_op, index_op, dst_type);
2172
} else {
2173
LIR_Opr tmp = new_pointer_register();
2174
__ shift_left(index_op, log2_scale, tmp);
2175
addr = new LIR_Address(base_op, tmp, dst_type);
2176
}
2177
#endif
2178
}
2179
2180
if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2181
__ unaligned_move(addr, reg);
2182
} else {
2183
if (dst_type == T_OBJECT && x->is_wide()) {
2184
__ move_wide(addr, reg);
2185
} else {
2186
__ move(addr, reg);
2187
}
2188
}
2189
}
2190
2191
2192
void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2193
int log2_scale = 0;
2194
BasicType type = x->basic_type();
2195
2196
if (x->has_index()) {
2197
log2_scale = x->log2_scale();
2198
}
2199
2200
LIRItem base(x->base(), this);
2201
LIRItem value(x->value(), this);
2202
LIRItem idx(this);
2203
2204
base.load_item();
2205
if (x->has_index()) {
2206
idx.set_instruction(x->index());
2207
idx.load_item();
2208
}
2209
2210
if (type == T_BYTE || type == T_BOOLEAN) {
2211
value.load_byte_item();
2212
} else {
2213
value.load_item();
2214
}
2215
2216
set_no_result(x);
2217
2218
LIR_Opr base_op = base.result();
2219
LIR_Opr index_op = idx.result();
2220
2221
#ifdef GENERATE_ADDRESS_IS_PREFERRED
2222
LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2223
#else
2224
#ifndef _LP64
2225
if (base_op->type() == T_LONG) {
2226
base_op = new_register(T_INT);
2227
__ convert(Bytecodes::_l2i, base.result(), base_op);
2228
}
2229
if (x->has_index()) {
2230
if (index_op->type() == T_LONG) {
2231
index_op = new_register(T_INT);
2232
__ convert(Bytecodes::_l2i, idx.result(), index_op);
2233
}
2234
}
2235
// At this point base and index should be all ints and not constants
2236
assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2237
assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2238
#else
2239
if (x->has_index()) {
2240
if (index_op->type() == T_INT) {
2241
index_op = new_register(T_LONG);
2242
__ convert(Bytecodes::_i2l, idx.result(), index_op);
2243
}
2244
}
2245
// At this point base and index are long and non-constant
2246
assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2247
assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2248
#endif
2249
2250
if (log2_scale != 0) {
2251
// temporary fix (platform dependent code without shift on Intel would be better)
2252
// TODO: ARM also allows embedded shift in the address
2253
LIR_Opr tmp = new_pointer_register();
2254
if (TwoOperandLIRForm) {
2255
__ move(index_op, tmp);
2256
index_op = tmp;
2257
}
2258
__ shift_left(index_op, log2_scale, tmp);
2259
if (!TwoOperandLIRForm) {
2260
index_op = tmp;
2261
}
2262
}
2263
2264
LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2265
#endif // !GENERATE_ADDRESS_IS_PREFERRED
2266
__ move(value.result(), addr);
2267
}
2268
2269
2270
void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2271
BasicType type = x->basic_type();
2272
LIRItem src(x->object(), this);
2273
LIRItem off(x->offset(), this);
2274
2275
off.load_item();
2276
src.load_item();
2277
2278
LIR_Opr value = rlock_result(x, x->basic_type());
2279
2280
#if INCLUDE_ALL_GCS
2281
if (UseShenandoahGC && (type == T_OBJECT || type == T_ARRAY)) {
2282
LIR_Opr tmp = new_register(T_OBJECT);
2283
get_Object_unsafe(tmp, src.result(), off.result(), type, x->is_volatile());
2284
tmp = ShenandoahBarrierSet::barrier_set()->bsc1()->load_reference_barrier(this, tmp, LIR_OprFact::addressConst(0));
2285
__ move(tmp, value);
2286
} else
2287
#endif
2288
get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
2289
2290
#if INCLUDE_ALL_GCS
2291
// We might be reading the value of the referent field of a
2292
// Reference object in order to attach it back to the live
2293
// object graph. If G1 is enabled then we need to record
2294
// the value that is being returned in an SATB log buffer.
2295
//
2296
// We need to generate code similar to the following...
2297
//
2298
// if (offset == java_lang_ref_Reference::referent_offset) {
2299
// if (src != NULL) {
2300
// if (klass(src)->reference_type() != REF_NONE) {
2301
// pre_barrier(..., value, ...);
2302
// }
2303
// }
2304
// }
2305
2306
if ((UseShenandoahGC || UseG1GC) && type == T_OBJECT) {
2307
bool gen_pre_barrier = true; // Assume we need to generate pre_barrier.
2308
bool gen_offset_check = true; // Assume we need to generate the offset guard.
2309
bool gen_source_check = true; // Assume we need to check the src object for null.
2310
bool gen_type_check = true; // Assume we need to check the reference_type.
2311
2312
if (off.is_constant()) {
2313
jlong off_con = (off.type()->is_int() ?
2314
(jlong) off.get_jint_constant() :
2315
off.get_jlong_constant());
2316
2317
2318
if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2319
// The constant offset is something other than referent_offset.
2320
// We can skip generating/checking the remaining guards and
2321
// skip generation of the code stub.
2322
gen_pre_barrier = false;
2323
} else {
2324
// The constant offset is the same as referent_offset -
2325
// we do not need to generate a runtime offset check.
2326
gen_offset_check = false;
2327
}
2328
}
2329
2330
// We don't need to generate stub if the source object is an array
2331
if (gen_pre_barrier && src.type()->is_array()) {
2332
gen_pre_barrier = false;
2333
}
2334
2335
if (gen_pre_barrier) {
2336
// We still need to continue with the checks.
2337
if (src.is_constant()) {
2338
ciObject* src_con = src.get_jobject_constant();
2339
guarantee(src_con != NULL, "no source constant");
2340
2341
if (src_con->is_null_object()) {
2342
// The constant src object is null - We can skip
2343
// generating the code stub.
2344
gen_pre_barrier = false;
2345
} else {
2346
// Non-null constant source object. We still have to generate
2347
// the slow stub - but we don't need to generate the runtime
2348
// null object check.
2349
gen_source_check = false;
2350
}
2351
}
2352
}
2353
if (gen_pre_barrier && !PatchALot) {
2354
// Can the klass of object be statically determined to be
2355
// a sub-class of Reference?
2356
ciType* type = src.value()->declared_type();
2357
if ((type != NULL) && type->is_loaded()) {
2358
if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
2359
gen_type_check = false;
2360
} else if (type->is_klass() &&
2361
!compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
2362
// Not Reference and not Object klass.
2363
gen_pre_barrier = false;
2364
}
2365
}
2366
}
2367
2368
if (gen_pre_barrier) {
2369
LabelObj* Lcont = new LabelObj();
2370
2371
// We can have generate one runtime check here. Let's start with
2372
// the offset check.
2373
// Allocate temp register to src and load it here, otherwise
2374
// control flow below may confuse register allocator.
2375
LIR_Opr src_reg = new_register(T_OBJECT);
2376
__ move(src.result(), src_reg);
2377
if (gen_offset_check) {
2378
// if (offset != referent_offset) -> continue
2379
// If offset is an int then we can do the comparison with the
2380
// referent_offset constant; otherwise we need to move
2381
// referent_offset into a temporary register and generate
2382
// a reg-reg compare.
2383
2384
LIR_Opr referent_off;
2385
2386
if (off.type()->is_int()) {
2387
referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2388
} else {
2389
assert(off.type()->is_long(), "what else?");
2390
referent_off = new_register(T_LONG);
2391
__ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2392
}
2393
__ cmp(lir_cond_notEqual, off.result(), referent_off);
2394
__ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
2395
}
2396
if (gen_source_check) {
2397
// offset is a const and equals referent offset
2398
// if (source == null) -> continue
2399
__ cmp(lir_cond_equal, src_reg, LIR_OprFact::oopConst(NULL));
2400
__ branch(lir_cond_equal, T_OBJECT, Lcont->label());
2401
}
2402
LIR_Opr src_klass = new_register(T_METADATA);
2403
if (gen_type_check) {
2404
// We have determined that offset == referent_offset && src != null.
2405
// if (src->_klass->_reference_type == REF_NONE) -> continue
2406
__ move(new LIR_Address(src_reg, oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
2407
LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
2408
LIR_Opr reference_type = new_register(T_INT);
2409
__ move(reference_type_addr, reference_type);
2410
__ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
2411
__ branch(lir_cond_equal, T_INT, Lcont->label());
2412
}
2413
{
2414
// We have determined that src->_klass->_reference_type != REF_NONE
2415
// so register the value in the referent field with the pre-barrier.
2416
pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
2417
value /* pre_val */,
2418
false /* do_load */,
2419
false /* patch */,
2420
NULL /* info */);
2421
}
2422
__ branch_destination(Lcont->label());
2423
}
2424
}
2425
#endif // INCLUDE_ALL_GCS
2426
2427
if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2428
}
2429
2430
2431
void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2432
BasicType type = x->basic_type();
2433
LIRItem src(x->object(), this);
2434
LIRItem off(x->offset(), this);
2435
LIRItem data(x->value(), this);
2436
2437
src.load_item();
2438
if (type == T_BOOLEAN || type == T_BYTE) {
2439
data.load_byte_item();
2440
} else {
2441
data.load_item();
2442
}
2443
off.load_item();
2444
2445
set_no_result(x);
2446
2447
if (x->is_volatile() && os::is_MP()) __ membar_release();
2448
put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2449
if (x->is_volatile() && os::is_MP()) __ membar();
2450
}
2451
2452
2453
void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
2454
LIRItem src(x->object(), this);
2455
LIRItem off(x->offset(), this);
2456
2457
src.load_item();
2458
if (off.is_constant() && can_inline_as_constant(x->offset())) {
2459
// let it be a constant
2460
off.dont_load_item();
2461
} else {
2462
off.load_item();
2463
}
2464
2465
set_no_result(x);
2466
2467
LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
2468
__ prefetch(addr, is_store);
2469
}
2470
2471
2472
void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
2473
do_UnsafePrefetch(x, false);
2474
}
2475
2476
2477
void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
2478
do_UnsafePrefetch(x, true);
2479
}
2480
2481
2482
void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2483
int lng = x->length();
2484
2485
for (int i = 0; i < lng; i++) {
2486
SwitchRange* one_range = x->at(i);
2487
int low_key = one_range->low_key();
2488
int high_key = one_range->high_key();
2489
BlockBegin* dest = one_range->sux();
2490
if (low_key == high_key) {
2491
__ cmp(lir_cond_equal, value, low_key);
2492
__ branch(lir_cond_equal, T_INT, dest);
2493
} else if (high_key - low_key == 1) {
2494
__ cmp(lir_cond_equal, value, low_key);
2495
__ branch(lir_cond_equal, T_INT, dest);
2496
__ cmp(lir_cond_equal, value, high_key);
2497
__ branch(lir_cond_equal, T_INT, dest);
2498
} else {
2499
LabelObj* L = new LabelObj();
2500
__ cmp(lir_cond_less, value, low_key);
2501
__ branch(lir_cond_less, T_INT, L->label());
2502
__ cmp(lir_cond_lessEqual, value, high_key);
2503
__ branch(lir_cond_lessEqual, T_INT, dest);
2504
__ branch_destination(L->label());
2505
}
2506
}
2507
__ jump(default_sux);
2508
}
2509
2510
2511
SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2512
SwitchRangeList* res = new SwitchRangeList();
2513
int len = x->length();
2514
if (len > 0) {
2515
BlockBegin* sux = x->sux_at(0);
2516
int key = x->lo_key();
2517
BlockBegin* default_sux = x->default_sux();
2518
SwitchRange* range = new SwitchRange(key, sux);
2519
for (int i = 0; i < len; i++, key++) {
2520
BlockBegin* new_sux = x->sux_at(i);
2521
if (sux == new_sux) {
2522
// still in same range
2523
range->set_high_key(key);
2524
} else {
2525
// skip tests which explicitly dispatch to the default
2526
if (sux != default_sux) {
2527
res->append(range);
2528
}
2529
range = new SwitchRange(key, new_sux);
2530
}
2531
sux = new_sux;
2532
}
2533
if (res->length() == 0 || res->last() != range) res->append(range);
2534
}
2535
return res;
2536
}
2537
2538
2539
// we expect the keys to be sorted by increasing value
2540
SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2541
SwitchRangeList* res = new SwitchRangeList();
2542
int len = x->length();
2543
if (len > 0) {
2544
BlockBegin* default_sux = x->default_sux();
2545
int key = x->key_at(0);
2546
BlockBegin* sux = x->sux_at(0);
2547
SwitchRange* range = new SwitchRange(key, sux);
2548
for (int i = 1; i < len; i++) {
2549
int new_key = x->key_at(i);
2550
BlockBegin* new_sux = x->sux_at(i);
2551
if (key+1 == new_key && sux == new_sux) {
2552
// still in same range
2553
range->set_high_key(new_key);
2554
} else {
2555
// skip tests which explicitly dispatch to the default
2556
if (range->sux() != default_sux) {
2557
res->append(range);
2558
}
2559
range = new SwitchRange(new_key, new_sux);
2560
}
2561
key = new_key;
2562
sux = new_sux;
2563
}
2564
if (res->length() == 0 || res->last() != range) res->append(range);
2565
}
2566
return res;
2567
}
2568
2569
2570
void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2571
LIRItem tag(x->tag(), this);
2572
tag.load_item();
2573
set_no_result(x);
2574
2575
if (x->is_safepoint()) {
2576
__ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2577
}
2578
2579
// move values into phi locations
2580
move_to_phi(x->state());
2581
2582
int lo_key = x->lo_key();
2583
int len = x->length();
2584
assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2585
LIR_Opr value = tag.result();
2586
if (UseTableRanges) {
2587
do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2588
} else {
2589
for (int i = 0; i < len; i++) {
2590
__ cmp(lir_cond_equal, value, i + lo_key);
2591
__ branch(lir_cond_equal, T_INT, x->sux_at(i));
2592
}
2593
__ jump(x->default_sux());
2594
}
2595
}
2596
2597
2598
void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2599
LIRItem tag(x->tag(), this);
2600
tag.load_item();
2601
set_no_result(x);
2602
2603
if (x->is_safepoint()) {
2604
__ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2605
}
2606
2607
// move values into phi locations
2608
move_to_phi(x->state());
2609
2610
LIR_Opr value = tag.result();
2611
if (UseTableRanges) {
2612
do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2613
} else {
2614
int len = x->length();
2615
for (int i = 0; i < len; i++) {
2616
__ cmp(lir_cond_equal, value, x->key_at(i));
2617
__ branch(lir_cond_equal, T_INT, x->sux_at(i));
2618
}
2619
__ jump(x->default_sux());
2620
}
2621
}
2622
2623
2624
void LIRGenerator::do_Goto(Goto* x) {
2625
set_no_result(x);
2626
2627
if (block()->next()->as_OsrEntry()) {
2628
// need to free up storage used for OSR entry point
2629
LIR_Opr osrBuffer = block()->next()->operand();
2630
BasicTypeList signature;
2631
signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2632
CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2633
__ move(osrBuffer, cc->args()->at(0));
2634
__ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2635
getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2636
}
2637
2638
if (x->is_safepoint()) {
2639
ValueStack* state = x->state_before() ? x->state_before() : x->state();
2640
2641
// increment backedge counter if needed
2642
CodeEmitInfo* info = state_for(x, state);
2643
increment_backedge_counter(info, x->profiled_bci());
2644
CodeEmitInfo* safepoint_info = state_for(x, state);
2645
__ safepoint(safepoint_poll_register(), safepoint_info);
2646
}
2647
2648
// Gotos can be folded Ifs, handle this case.
2649
if (x->should_profile()) {
2650
ciMethod* method = x->profiled_method();
2651
assert(method != NULL, "method should be set if branch is profiled");
2652
ciMethodData* md = method->method_data_or_null();
2653
assert(md != NULL, "Sanity");
2654
ciProfileData* data = md->bci_to_data(x->profiled_bci());
2655
assert(data != NULL, "must have profiling data");
2656
int offset;
2657
if (x->direction() == Goto::taken) {
2658
assert(data->is_BranchData(), "need BranchData for two-way branches");
2659
offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2660
} else if (x->direction() == Goto::not_taken) {
2661
assert(data->is_BranchData(), "need BranchData for two-way branches");
2662
offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2663
} else {
2664
assert(data->is_JumpData(), "need JumpData for branches");
2665
offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2666
}
2667
LIR_Opr md_reg = new_register(T_METADATA);
2668
__ metadata2reg(md->constant_encoding(), md_reg);
2669
2670
increment_counter(new LIR_Address(md_reg, offset,
2671
NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2672
}
2673
2674
// emit phi-instruction move after safepoint since this simplifies
2675
// describing the state as the safepoint.
2676
move_to_phi(x->state());
2677
2678
__ jump(x->default_sux());
2679
}
2680
2681
/**
2682
* Emit profiling code if needed for arguments, parameters, return value types
2683
*
2684
* @param md MDO the code will update at runtime
2685
* @param md_base_offset common offset in the MDO for this profile and subsequent ones
2686
* @param md_offset offset in the MDO (on top of md_base_offset) for this profile
2687
* @param profiled_k current profile
2688
* @param obj IR node for the object to be profiled
2689
* @param mdp register to hold the pointer inside the MDO (md + md_base_offset).
2690
* Set once we find an update to make and use for next ones.
2691
* @param not_null true if we know obj cannot be null
2692
* @param signature_at_call_k signature at call for obj
2693
* @param callee_signature_k signature of callee for obj
2694
* at call and callee signatures differ at method handle call
2695
* @return the only klass we know will ever be seen at this profile point
2696
*/
2697
ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2698
Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2699
ciKlass* callee_signature_k) {
2700
ciKlass* result = NULL;
2701
bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2702
bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2703
// known not to be null or null bit already set and already set to
2704
// unknown: nothing we can do to improve profiling
2705
if (!do_null && !do_update) {
2706
return result;
2707
}
2708
2709
ciKlass* exact_klass = NULL;
2710
Compilation* comp = Compilation::current();
2711
if (do_update) {
2712
// try to find exact type, using CHA if possible, so that loading
2713
// the klass from the object can be avoided
2714
ciType* type = obj->exact_type();
2715
if (type == NULL) {
2716
type = obj->declared_type();
2717
type = comp->cha_exact_type(type);
2718
}
2719
assert(type == NULL || type->is_klass(), "type should be class");
2720
exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2721
2722
do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2723
}
2724
2725
if (!do_null && !do_update) {
2726
return result;
2727
}
2728
2729
ciKlass* exact_signature_k = NULL;
2730
if (do_update) {
2731
// Is the type from the signature exact (the only one possible)?
2732
exact_signature_k = signature_at_call_k->exact_klass();
2733
if (exact_signature_k == NULL) {
2734
exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2735
} else {
2736
result = exact_signature_k;
2737
// Known statically. No need to emit any code: prevent
2738
// LIR_Assembler::emit_profile_type() from emitting useless code
2739
profiled_k = ciTypeEntries::with_status(result, profiled_k);
2740
}
2741
// exact_klass and exact_signature_k can be both non NULL but
2742
// different if exact_klass is loaded after the ciObject for
2743
// exact_signature_k is created.
2744
if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2745
// sometimes the type of the signature is better than the best type
2746
// the compiler has
2747
exact_klass = exact_signature_k;
2748
}
2749
if (callee_signature_k != NULL &&
2750
callee_signature_k != signature_at_call_k) {
2751
ciKlass* improved_klass = callee_signature_k->exact_klass();
2752
if (improved_klass == NULL) {
2753
improved_klass = comp->cha_exact_type(callee_signature_k);
2754
}
2755
if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2756
exact_klass = exact_signature_k;
2757
}
2758
}
2759
do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2760
}
2761
2762
if (!do_null && !do_update) {
2763
return result;
2764
}
2765
2766
if (mdp == LIR_OprFact::illegalOpr) {
2767
mdp = new_register(T_METADATA);
2768
__ metadata2reg(md->constant_encoding(), mdp);
2769
if (md_base_offset != 0) {
2770
LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2771
mdp = new_pointer_register();
2772
__ leal(LIR_OprFact::address(base_type_address), mdp);
2773
}
2774
}
2775
LIRItem value(obj, this);
2776
value.load_item();
2777
__ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2778
value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2779
return result;
2780
}
2781
2782
// profile parameters on entry to the root of the compilation
2783
void LIRGenerator::profile_parameters(Base* x) {
2784
if (compilation()->profile_parameters()) {
2785
CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2786
ciMethodData* md = scope()->method()->method_data_or_null();
2787
assert(md != NULL, "Sanity");
2788
2789
if (md->parameters_type_data() != NULL) {
2790
ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2791
ciTypeStackSlotEntries* parameters = parameters_type_data->parameters();
2792
LIR_Opr mdp = LIR_OprFact::illegalOpr;
2793
for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2794
LIR_Opr src = args->at(i);
2795
assert(!src->is_illegal(), "check");
2796
BasicType t = src->type();
2797
if (t == T_OBJECT || t == T_ARRAY) {
2798
intptr_t profiled_k = parameters->type(j);
2799
Local* local = x->state()->local_at(java_index)->as_Local();
2800
ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2801
in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2802
profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2803
// If the profile is known statically set it once for all and do not emit any code
2804
if (exact != NULL) {
2805
md->set_parameter_type(j, exact);
2806
}
2807
j++;
2808
}
2809
java_index += type2size[t];
2810
}
2811
}
2812
}
2813
}
2814
2815
void LIRGenerator::do_Base(Base* x) {
2816
__ std_entry(LIR_OprFact::illegalOpr);
2817
// Emit moves from physical registers / stack slots to virtual registers
2818
CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2819
IRScope* irScope = compilation()->hir()->top_scope();
2820
int java_index = 0;
2821
for (int i = 0; i < args->length(); i++) {
2822
LIR_Opr src = args->at(i);
2823
assert(!src->is_illegal(), "check");
2824
BasicType t = src->type();
2825
2826
// Types which are smaller than int are passed as int, so
2827
// correct the type which passed.
2828
switch (t) {
2829
case T_BYTE:
2830
case T_BOOLEAN:
2831
case T_SHORT:
2832
case T_CHAR:
2833
t = T_INT;
2834
break;
2835
}
2836
2837
LIR_Opr dest = new_register(t);
2838
__ move(src, dest);
2839
2840
// Assign new location to Local instruction for this local
2841
Local* local = x->state()->local_at(java_index)->as_Local();
2842
assert(local != NULL, "Locals for incoming arguments must have been created");
2843
#ifndef __SOFTFP__
2844
// The java calling convention passes double as long and float as int.
2845
assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2846
#endif // __SOFTFP__
2847
local->set_operand(dest);
2848
_instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2849
java_index += type2size[t];
2850
}
2851
2852
if (compilation()->env()->dtrace_method_probes()) {
2853
BasicTypeList signature;
2854
signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
2855
signature.append(T_METADATA); // Method*
2856
LIR_OprList* args = new LIR_OprList();
2857
args->append(getThreadPointer());
2858
LIR_Opr meth = new_register(T_METADATA);
2859
__ metadata2reg(method()->constant_encoding(), meth);
2860
args->append(meth);
2861
call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2862
}
2863
2864
if (method()->is_synchronized()) {
2865
LIR_Opr obj;
2866
if (method()->is_static()) {
2867
obj = new_register(T_OBJECT);
2868
__ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2869
} else {
2870
Local* receiver = x->state()->local_at(0)->as_Local();
2871
assert(receiver != NULL, "must already exist");
2872
obj = receiver->operand();
2873
}
2874
assert(obj->is_valid(), "must be valid");
2875
2876
if (method()->is_synchronized() && GenerateSynchronizationCode) {
2877
LIR_Opr lock = new_register(T_INT);
2878
__ load_stack_address_monitor(0, lock);
2879
2880
CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2881
CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2882
2883
// receiver is guaranteed non-NULL so don't need CodeEmitInfo
2884
__ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2885
}
2886
}
2887
2888
// increment invocation counters if needed
2889
if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2890
profile_parameters(x);
2891
CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2892
increment_invocation_counter(info);
2893
}
2894
2895
// all blocks with a successor must end with an unconditional jump
2896
// to the successor even if they are consecutive
2897
__ jump(x->default_sux());
2898
}
2899
2900
2901
void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2902
// construct our frame and model the production of incoming pointer
2903
// to the OSR buffer.
2904
__ osr_entry(LIR_Assembler::osrBufferPointer());
2905
LIR_Opr result = rlock_result(x);
2906
__ move(LIR_Assembler::osrBufferPointer(), result);
2907
}
2908
2909
2910
void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2911
assert(args->length() == arg_list->length(),
2912
err_msg_res("args=%d, arg_list=%d", args->length(), arg_list->length()));
2913
for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2914
LIRItem* param = args->at(i);
2915
LIR_Opr loc = arg_list->at(i);
2916
if (loc->is_register()) {
2917
param->load_item_force(loc);
2918
} else {
2919
LIR_Address* addr = loc->as_address_ptr();
2920
param->load_for_store(addr->type());
2921
if (addr->type() == T_OBJECT) {
2922
__ move_wide(param->result(), addr);
2923
} else
2924
if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2925
__ unaligned_move(param->result(), addr);
2926
} else {
2927
__ move(param->result(), addr);
2928
}
2929
}
2930
}
2931
2932
if (x->has_receiver()) {
2933
LIRItem* receiver = args->at(0);
2934
LIR_Opr loc = arg_list->at(0);
2935
if (loc->is_register()) {
2936
receiver->load_item_force(loc);
2937
} else {
2938
assert(loc->is_address(), "just checking");
2939
receiver->load_for_store(T_OBJECT);
2940
__ move_wide(receiver->result(), loc->as_address_ptr());
2941
}
2942
}
2943
}
2944
2945
2946
// Visits all arguments, returns appropriate items without loading them
2947
LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2948
LIRItemList* argument_items = new LIRItemList();
2949
if (x->has_receiver()) {
2950
LIRItem* receiver = new LIRItem(x->receiver(), this);
2951
argument_items->append(receiver);
2952
}
2953
for (int i = 0; i < x->number_of_arguments(); i++) {
2954
LIRItem* param = new LIRItem(x->argument_at(i), this);
2955
argument_items->append(param);
2956
}
2957
return argument_items;
2958
}
2959
2960
2961
// The invoke with receiver has following phases:
2962
// a) traverse and load/lock receiver;
2963
// b) traverse all arguments -> item-array (invoke_visit_argument)
2964
// c) push receiver on stack
2965
// d) load each of the items and push on stack
2966
// e) unlock receiver
2967
// f) move receiver into receiver-register %o0
2968
// g) lock result registers and emit call operation
2969
//
2970
// Before issuing a call, we must spill-save all values on stack
2971
// that are in caller-save register. "spill-save" moves those registers
2972
// either in a free callee-save register or spills them if no free
2973
// callee save register is available.
2974
//
2975
// The problem is where to invoke spill-save.
2976
// - if invoked between e) and f), we may lock callee save
2977
// register in "spill-save" that destroys the receiver register
2978
// before f) is executed
2979
// - if we rearrange f) to be earlier (by loading %o0) it
2980
// may destroy a value on the stack that is currently in %o0
2981
// and is waiting to be spilled
2982
// - if we keep the receiver locked while doing spill-save,
2983
// we cannot spill it as it is spill-locked
2984
//
2985
void LIRGenerator::do_Invoke(Invoke* x) {
2986
CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2987
2988
LIR_OprList* arg_list = cc->args();
2989
LIRItemList* args = invoke_visit_arguments(x);
2990
LIR_Opr receiver = LIR_OprFact::illegalOpr;
2991
2992
// setup result register
2993
LIR_Opr result_register = LIR_OprFact::illegalOpr;
2994
if (x->type() != voidType) {
2995
#ifdef AARCH32
2996
result_register = java_result_register_for(x->type());
2997
#else
2998
result_register = result_register_for(x->type());
2999
#endif
3000
}
3001
3002
CodeEmitInfo* info = state_for(x, x->state());
3003
3004
invoke_load_arguments(x, args, arg_list);
3005
3006
if (x->has_receiver()) {
3007
args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
3008
receiver = args->at(0)->result();
3009
}
3010
3011
// emit invoke code
3012
bool optimized = x->target_is_loaded() && x->target_is_final();
3013
assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
3014
3015
// JSR 292
3016
// Preserve the SP over MethodHandle call sites, if needed.
3017
ciMethod* target = x->target();
3018
bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
3019
target->is_method_handle_intrinsic() ||
3020
target->is_compiled_lambda_form());
3021
if (is_method_handle_invoke) {
3022
info->set_is_method_handle_invoke(true);
3023
if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3024
__ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
3025
}
3026
}
3027
3028
switch (x->code()) {
3029
case Bytecodes::_invokestatic:
3030
__ call_static(target, result_register,
3031
SharedRuntime::get_resolve_static_call_stub(),
3032
arg_list, info);
3033
break;
3034
case Bytecodes::_invokespecial:
3035
case Bytecodes::_invokevirtual:
3036
case Bytecodes::_invokeinterface:
3037
// for final target we still produce an inline cache, in order
3038
// to be able to call mixed mode
3039
if (x->code() == Bytecodes::_invokespecial || optimized) {
3040
__ call_opt_virtual(target, receiver, result_register,
3041
SharedRuntime::get_resolve_opt_virtual_call_stub(),
3042
arg_list, info);
3043
} else if (x->vtable_index() < 0) {
3044
__ call_icvirtual(target, receiver, result_register,
3045
SharedRuntime::get_resolve_virtual_call_stub(),
3046
arg_list, info);
3047
} else {
3048
int entry_offset = InstanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
3049
int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
3050
__ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
3051
}
3052
break;
3053
case Bytecodes::_invokedynamic: {
3054
__ call_dynamic(target, receiver, result_register,
3055
SharedRuntime::get_resolve_static_call_stub(),
3056
arg_list, info);
3057
break;
3058
}
3059
default:
3060
fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(x->code())));
3061
break;
3062
}
3063
3064
// JSR 292
3065
// Restore the SP after MethodHandle call sites, if needed.
3066
if (is_method_handle_invoke
3067
&& FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3068
__ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
3069
}
3070
3071
if (x->type()->is_float() || x->type()->is_double()) {
3072
// Force rounding of results from non-strictfp when in strictfp
3073
// scope (or when we don't know the strictness of the callee, to
3074
// be safe.)
3075
if (method()->is_strict()) {
3076
if (!x->target_is_loaded() || !x->target_is_strictfp()) {
3077
result_register = round_item(result_register);
3078
}
3079
}
3080
}
3081
3082
if (result_register->is_valid()) {
3083
LIR_Opr result = rlock_result(x);
3084
__ move(result_register, result);
3085
}
3086
}
3087
3088
3089
void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3090
assert(x->number_of_arguments() == 1, "wrong type");
3091
LIRItem value (x->argument_at(0), this);
3092
LIR_Opr reg = rlock_result(x);
3093
value.load_item();
3094
LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3095
__ move(tmp, reg);
3096
}
3097
3098
3099
3100
// Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3101
void LIRGenerator::do_IfOp(IfOp* x) {
3102
#ifdef ASSERT
3103
{
3104
ValueTag xtag = x->x()->type()->tag();
3105
ValueTag ttag = x->tval()->type()->tag();
3106
assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3107
assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3108
assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3109
}
3110
#endif
3111
3112
LIRItem left(x->x(), this);
3113
LIRItem right(x->y(), this);
3114
left.load_item();
3115
if (can_inline_as_constant(right.value())) {
3116
right.dont_load_item();
3117
} else {
3118
right.load_item();
3119
}
3120
3121
LIRItem t_val(x->tval(), this);
3122
LIRItem f_val(x->fval(), this);
3123
t_val.dont_load_item();
3124
f_val.dont_load_item();
3125
LIR_Opr reg = rlock_result(x);
3126
3127
__ cmp(lir_cond(x->cond()), left.result(), right.result());
3128
__ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3129
}
3130
3131
#ifdef JFR_HAVE_INTRINSICS
3132
void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3133
CodeEmitInfo* info = state_for(x);
3134
CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3135
3136
assert(info != NULL, "must have info");
3137
LIRItem arg(x->argument_at(0), this);
3138
3139
arg.load_item();
3140
LIR_Opr klass = new_register(T_METADATA);
3141
__ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), klass, info);
3142
LIR_Opr id = new_register(T_LONG);
3143
ByteSize offset = KLASS_TRACE_ID_OFFSET;
3144
LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3145
3146
__ move(trace_id_addr, id);
3147
__ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3148
__ store(id, trace_id_addr);
3149
3150
#ifdef TRACE_ID_META_BITS
3151
__ logical_and(id, LIR_OprFact::longConst(~TRACE_ID_META_BITS), id);
3152
#endif
3153
#ifdef TRACE_ID_SHIFT
3154
__ unsigned_shift_right(id, TRACE_ID_SHIFT, id);
3155
#endif
3156
3157
__ move(id, rlock_result(x));
3158
}
3159
3160
void LIRGenerator::do_getEventWriter(Intrinsic* x) {
3161
LabelObj* L_end = new LabelObj();
3162
3163
LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
3164
in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR),
3165
T_OBJECT);
3166
LIR_Opr result = rlock_result(x);
3167
__ move_wide(jobj_addr, result);
3168
__ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL));
3169
__ branch(lir_cond_equal, T_OBJECT, L_end->label());
3170
__ move_wide(new LIR_Address(result, T_OBJECT), result);
3171
3172
__ branch_destination(L_end->label());
3173
}
3174
#endif
3175
3176
void LIRGenerator::do_RuntimeCall(address routine, int expected_arguments, Intrinsic* x) {
3177
assert(x->number_of_arguments() == expected_arguments, "wrong type");
3178
LIR_Opr reg = result_register_for(x->type());
3179
__ call_runtime_leaf(routine, getThreadTemp(),
3180
reg, new LIR_OprList());
3181
LIR_Opr result = rlock_result(x);
3182
__ move(reg, result);
3183
}
3184
3185
#ifdef TRACE_HAVE_INTRINSICS
3186
void LIRGenerator::do_ThreadIDIntrinsic(Intrinsic* x) {
3187
LIR_Opr thread = getThreadPointer();
3188
LIR_Opr osthread = new_pointer_register();
3189
__ move(new LIR_Address(thread, in_bytes(JavaThread::osthread_offset()), osthread->type()), osthread);
3190
size_t thread_id_size = OSThread::thread_id_size();
3191
if (thread_id_size == (size_t) BytesPerLong) {
3192
LIR_Opr id = new_register(T_LONG);
3193
__ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_LONG), id);
3194
__ convert(Bytecodes::_l2i, id, rlock_result(x));
3195
} else if (thread_id_size == (size_t) BytesPerInt) {
3196
__ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_INT), rlock_result(x));
3197
} else {
3198
ShouldNotReachHere();
3199
}
3200
}
3201
3202
void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3203
CodeEmitInfo* info = state_for(x);
3204
CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3205
BasicType klass_pointer_type = NOT_LP64(T_INT) LP64_ONLY(T_LONG);
3206
assert(info != NULL, "must have info");
3207
LIRItem arg(x->argument_at(1), this);
3208
arg.load_item();
3209
LIR_Opr klass = new_pointer_register();
3210
__ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), klass_pointer_type), klass, info);
3211
LIR_Opr id = new_register(T_LONG);
3212
ByteSize offset = TRACE_ID_OFFSET;
3213
LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3214
__ move(trace_id_addr, id);
3215
__ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3216
__ store(id, trace_id_addr);
3217
__ logical_and(id, LIR_OprFact::longConst(~0x3l), id);
3218
__ move(id, rlock_result(x));
3219
}
3220
#endif
3221
3222
void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3223
switch (x->id()) {
3224
case vmIntrinsics::_intBitsToFloat :
3225
case vmIntrinsics::_doubleToRawLongBits :
3226
case vmIntrinsics::_longBitsToDouble :
3227
case vmIntrinsics::_floatToRawIntBits : {
3228
do_FPIntrinsics(x);
3229
break;
3230
}
3231
3232
#ifdef JFR_HAVE_INTRINSICS
3233
case vmIntrinsics::_getClassId:
3234
do_ClassIDIntrinsic(x);
3235
break;
3236
case vmIntrinsics::_getEventWriter:
3237
do_getEventWriter(x);
3238
break;
3239
case vmIntrinsics::_counterTime:
3240
do_RuntimeCall(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), 0, x);
3241
break;
3242
#endif
3243
3244
case vmIntrinsics::_currentTimeMillis:
3245
do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), 0, x);
3246
break;
3247
3248
case vmIntrinsics::_nanoTime:
3249
do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), 0, x);
3250
break;
3251
3252
case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break;
3253
case vmIntrinsics::_isInstance: do_isInstance(x); break;
3254
case vmIntrinsics::_getClass: do_getClass(x); break;
3255
case vmIntrinsics::_currentThread: do_currentThread(x); break;
3256
3257
case vmIntrinsics::_dlog: // fall through
3258
case vmIntrinsics::_dlog10: // fall through
3259
case vmIntrinsics::_dabs: // fall through
3260
case vmIntrinsics::_dsqrt: // fall through
3261
case vmIntrinsics::_dtan: // fall through
3262
case vmIntrinsics::_dsin : // fall through
3263
case vmIntrinsics::_dcos : // fall through
3264
case vmIntrinsics::_dexp : // fall through
3265
case vmIntrinsics::_dpow : do_MathIntrinsic(x); break;
3266
case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break;
3267
3268
// java.nio.Buffer.checkIndex
3269
case vmIntrinsics::_checkIndex: do_NIOCheckIndex(x); break;
3270
3271
case vmIntrinsics::_compareAndSwapObject:
3272
do_CompareAndSwap(x, objectType);
3273
break;
3274
case vmIntrinsics::_compareAndSwapInt:
3275
do_CompareAndSwap(x, intType);
3276
break;
3277
case vmIntrinsics::_compareAndSwapLong:
3278
do_CompareAndSwap(x, longType);
3279
break;
3280
3281
case vmIntrinsics::_loadFence :
3282
if (os::is_MP()) __ membar_acquire();
3283
break;
3284
case vmIntrinsics::_storeFence:
3285
if (os::is_MP()) __ membar_release();
3286
break;
3287
case vmIntrinsics::_fullFence :
3288
if (os::is_MP()) __ membar();
3289
break;
3290
3291
case vmIntrinsics::_Reference_get:
3292
do_Reference_get(x);
3293
break;
3294
3295
case vmIntrinsics::_updateCRC32:
3296
case vmIntrinsics::_updateBytesCRC32:
3297
case vmIntrinsics::_updateByteBufferCRC32:
3298
do_update_CRC32(x);
3299
break;
3300
3301
default: ShouldNotReachHere(); break;
3302
}
3303
}
3304
3305
void LIRGenerator::profile_arguments(ProfileCall* x) {
3306
if (compilation()->profile_arguments()) {
3307
int bci = x->bci_of_invoke();
3308
ciMethodData* md = x->method()->method_data_or_null();
3309
ciProfileData* data = md->bci_to_data(bci);
3310
if (data != NULL) {
3311
if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3312
(data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3313
ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3314
int base_offset = md->byte_offset_of_slot(data, extra);
3315
LIR_Opr mdp = LIR_OprFact::illegalOpr;
3316
ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3317
3318
Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3319
int start = 0;
3320
int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3321
if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3322
// first argument is not profiled at call (method handle invoke)
3323
assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3324
start = 1;
3325
}
3326
ciSignature* callee_signature = x->callee()->signature();
3327
// method handle call to virtual method
3328
bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3329
ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3330
3331
bool ignored_will_link;
3332
ciSignature* signature_at_call = NULL;
3333
x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3334
ciSignatureStream signature_at_call_stream(signature_at_call);
3335
3336
// if called through method handle invoke, some arguments may have been popped
3337
for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3338
int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3339
ciKlass* exact = profile_type(md, base_offset, off,
3340
args->type(i), x->profiled_arg_at(i+start), mdp,
3341
!x->arg_needs_null_check(i+start),
3342
signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3343
if (exact != NULL) {
3344
md->set_argument_type(bci, i, exact);
3345
}
3346
}
3347
} else {
3348
#ifdef ASSERT
3349
Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3350
int n = x->nb_profiled_args();
3351
assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3352
(x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3353
"only at JSR292 bytecodes");
3354
#endif
3355
}
3356
}
3357
}
3358
}
3359
3360
// profile parameters on entry to an inlined method
3361
void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3362
if (compilation()->profile_parameters() && x->inlined()) {
3363
ciMethodData* md = x->callee()->method_data_or_null();
3364
if (md != NULL) {
3365
ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3366
if (parameters_type_data != NULL) {
3367
ciTypeStackSlotEntries* parameters = parameters_type_data->parameters();
3368
LIR_Opr mdp = LIR_OprFact::illegalOpr;
3369
bool has_receiver = !x->callee()->is_static();
3370
ciSignature* sig = x->callee()->signature();
3371
ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3372
int i = 0; // to iterate on the Instructions
3373
Value arg = x->recv();
3374
bool not_null = false;
3375
int bci = x->bci_of_invoke();
3376
Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3377
// The first parameter is the receiver so that's what we start
3378
// with if it exists. One exception is method handle call to
3379
// virtual method: the receiver is in the args list
3380
if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3381
i = 1;
3382
arg = x->profiled_arg_at(0);
3383
not_null = !x->arg_needs_null_check(0);
3384
}
3385
int k = 0; // to iterate on the profile data
3386
for (;;) {
3387
intptr_t profiled_k = parameters->type(k);
3388
ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3389
in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3390
profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3391
// If the profile is known statically set it once for all and do not emit any code
3392
if (exact != NULL) {
3393
md->set_parameter_type(k, exact);
3394
}
3395
k++;
3396
if (k >= parameters_type_data->number_of_parameters()) {
3397
#ifdef ASSERT
3398
int extra = 0;
3399
if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3400
x->nb_profiled_args() >= TypeProfileParmsLimit &&
3401
x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3402
extra += 1;
3403
}
3404
assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3405
#endif
3406
break;
3407
}
3408
arg = x->profiled_arg_at(i);
3409
not_null = !x->arg_needs_null_check(i);
3410
i++;
3411
}
3412
}
3413
}
3414
}
3415
}
3416
3417
void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3418
// Need recv in a temporary register so it interferes with the other temporaries
3419
LIR_Opr recv = LIR_OprFact::illegalOpr;
3420
LIR_Opr mdo = new_register(T_METADATA);
3421
// tmp is used to hold the counters on SPARC
3422
LIR_Opr tmp = new_pointer_register();
3423
3424
if (x->nb_profiled_args() > 0) {
3425
profile_arguments(x);
3426
}
3427
3428
// profile parameters on inlined method entry including receiver
3429
if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3430
profile_parameters_at_call(x);
3431
}
3432
3433
if (x->recv() != NULL) {
3434
LIRItem value(x->recv(), this);
3435
value.load_item();
3436
recv = new_register(T_OBJECT);
3437
__ move(value.result(), recv);
3438
}
3439
__ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3440
}
3441
3442
void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3443
int bci = x->bci_of_invoke();
3444
ciMethodData* md = x->method()->method_data_or_null();
3445
ciProfileData* data = md->bci_to_data(bci);
3446
if (data != NULL) {
3447
assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3448
ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3449
LIR_Opr mdp = LIR_OprFact::illegalOpr;
3450
3451
bool ignored_will_link;
3452
ciSignature* signature_at_call = NULL;
3453
x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3454
3455
// The offset within the MDO of the entry to update may be too large
3456
// to be used in load/store instructions on some platforms. So have
3457
// profile_type() compute the address of the profile in a register.
3458
ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3459
ret->type(), x->ret(), mdp,
3460
!x->needs_null_check(),
3461
signature_at_call->return_type()->as_klass(),
3462
x->callee()->signature()->return_type()->as_klass());
3463
if (exact != NULL) {
3464
md->set_return_type(bci, exact);
3465
}
3466
}
3467
}
3468
3469
void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3470
// We can safely ignore accessors here, since c2 will inline them anyway,
3471
// accessors are also always mature.
3472
if (!x->inlinee()->is_accessor()) {
3473
CodeEmitInfo* info = state_for(x, x->state(), true);
3474
// Notify the runtime very infrequently only to take care of counter overflows
3475
increment_event_counter_impl(info, x->inlinee(), (1 << Tier23InlineeNotifyFreqLog) - 1, InvocationEntryBci, false, true);
3476
}
3477
}
3478
3479
void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3480
int freq_log = 0;
3481
int level = compilation()->env()->comp_level();
3482
if (level == CompLevel_limited_profile) {
3483
freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3484
} else if (level == CompLevel_full_profile) {
3485
freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3486
} else {
3487
ShouldNotReachHere();
3488
}
3489
// Increment the appropriate invocation/backedge counter and notify the runtime.
3490
increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true);
3491
}
3492
3493
void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3494
ciMethod *method, int frequency,
3495
int bci, bool backedge, bool notify) {
3496
assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3497
int level = _compilation->env()->comp_level();
3498
assert(level > CompLevel_simple, "Shouldn't be here");
3499
3500
int offset = -1;
3501
LIR_Opr counter_holder = NULL;
3502
if (level == CompLevel_limited_profile) {
3503
MethodCounters* counters_adr = method->ensure_method_counters();
3504
if (counters_adr == NULL) {
3505
bailout("method counters allocation failed");
3506
return;
3507
}
3508
counter_holder = new_pointer_register();
3509
__ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3510
offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3511
MethodCounters::invocation_counter_offset());
3512
} else if (level == CompLevel_full_profile) {
3513
counter_holder = new_register(T_METADATA);
3514
offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3515
MethodData::invocation_counter_offset());
3516
ciMethodData* md = method->method_data_or_null();
3517
assert(md != NULL, "Sanity");
3518
__ metadata2reg(md->constant_encoding(), counter_holder);
3519
} else {
3520
ShouldNotReachHere();
3521
}
3522
LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3523
LIR_Opr result = new_register(T_INT);
3524
__ load(counter, result);
3525
__ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3526
__ store(result, counter);
3527
if (notify) {
3528
LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
3529
LIR_Opr meth = new_register(T_METADATA);
3530
__ metadata2reg(method->constant_encoding(), meth);
3531
__ logical_and(result, mask, result);
3532
__ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3533
// The bci for info can point to cmp for if's we want the if bci
3534
CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3535
__ branch(lir_cond_equal, T_INT, overflow);
3536
__ branch_destination(overflow->continuation());
3537
}
3538
}
3539
3540
void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3541
LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3542
BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3543
3544
if (x->pass_thread()) {
3545
signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
3546
args->append(getThreadPointer());
3547
}
3548
3549
for (int i = 0; i < x->number_of_arguments(); i++) {
3550
Value a = x->argument_at(i);
3551
LIRItem* item = new LIRItem(a, this);
3552
item->load_item();
3553
args->append(item->result());
3554
signature->append(as_BasicType(a->type()));
3555
}
3556
3557
LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3558
if (x->type() == voidType) {
3559
set_no_result(x);
3560
} else {
3561
__ move(result, rlock_result(x));
3562
}
3563
}
3564
3565
#ifdef ASSERT
3566
void LIRGenerator::do_Assert(Assert *x) {
3567
ValueTag tag = x->x()->type()->tag();
3568
If::Condition cond = x->cond();
3569
3570
LIRItem xitem(x->x(), this);
3571
LIRItem yitem(x->y(), this);
3572
LIRItem* xin = &xitem;
3573
LIRItem* yin = &yitem;
3574
3575
assert(tag == intTag, "Only integer assertions are valid!");
3576
3577
xin->load_item();
3578
yin->dont_load_item();
3579
3580
set_no_result(x);
3581
3582
LIR_Opr left = xin->result();
3583
LIR_Opr right = yin->result();
3584
3585
__ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3586
}
3587
#endif
3588
3589
void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3590
3591
3592
Instruction *a = x->x();
3593
Instruction *b = x->y();
3594
if (!a || StressRangeCheckElimination) {
3595
assert(!b || StressRangeCheckElimination, "B must also be null");
3596
3597
CodeEmitInfo *info = state_for(x, x->state());
3598
CodeStub* stub = new PredicateFailedStub(info);
3599
3600
__ jump(stub);
3601
} else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3602
int a_int = a->type()->as_IntConstant()->value();
3603
int b_int = b->type()->as_IntConstant()->value();
3604
3605
bool ok = false;
3606
3607
switch(x->cond()) {
3608
case Instruction::eql: ok = (a_int == b_int); break;
3609
case Instruction::neq: ok = (a_int != b_int); break;
3610
case Instruction::lss: ok = (a_int < b_int); break;
3611
case Instruction::leq: ok = (a_int <= b_int); break;
3612
case Instruction::gtr: ok = (a_int > b_int); break;
3613
case Instruction::geq: ok = (a_int >= b_int); break;
3614
case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3615
case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3616
default: ShouldNotReachHere();
3617
}
3618
3619
if (ok) {
3620
3621
CodeEmitInfo *info = state_for(x, x->state());
3622
CodeStub* stub = new PredicateFailedStub(info);
3623
3624
__ jump(stub);
3625
}
3626
} else {
3627
3628
ValueTag tag = x->x()->type()->tag();
3629
If::Condition cond = x->cond();
3630
LIRItem xitem(x->x(), this);
3631
LIRItem yitem(x->y(), this);
3632
LIRItem* xin = &xitem;
3633
LIRItem* yin = &yitem;
3634
3635
assert(tag == intTag, "Only integer deoptimizations are valid!");
3636
3637
xin->load_item();
3638
yin->dont_load_item();
3639
set_no_result(x);
3640
3641
LIR_Opr left = xin->result();
3642
LIR_Opr right = yin->result();
3643
3644
CodeEmitInfo *info = state_for(x, x->state());
3645
CodeStub* stub = new PredicateFailedStub(info);
3646
3647
__ cmp(lir_cond(cond), left, right);
3648
__ branch(lir_cond(cond), right->type(), stub);
3649
}
3650
}
3651
3652
3653
LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3654
LIRItemList args(1);
3655
LIRItem value(arg1, this);
3656
args.append(&value);
3657
BasicTypeList signature;
3658
signature.append(as_BasicType(arg1->type()));
3659
3660
return call_runtime(&signature, &args, entry, result_type, info);
3661
}
3662
3663
3664
LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3665
LIRItemList args(2);
3666
LIRItem value1(arg1, this);
3667
LIRItem value2(arg2, this);
3668
args.append(&value1);
3669
args.append(&value2);
3670
BasicTypeList signature;
3671
signature.append(as_BasicType(arg1->type()));
3672
signature.append(as_BasicType(arg2->type()));
3673
3674
return call_runtime(&signature, &args, entry, result_type, info);
3675
}
3676
3677
3678
LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3679
address entry, ValueType* result_type, CodeEmitInfo* info) {
3680
// get a result register
3681
LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3682
LIR_Opr result = LIR_OprFact::illegalOpr;
3683
if (result_type->tag() != voidTag) {
3684
result = new_register(result_type);
3685
phys_reg = result_register_for(result_type);
3686
}
3687
3688
// move the arguments into the correct location
3689
CallingConvention* cc = frame_map()->c_calling_convention(signature);
3690
assert(cc->length() == args->length(), "argument mismatch");
3691
for (int i = 0; i < args->length(); i++) {
3692
LIR_Opr arg = args->at(i);
3693
LIR_Opr loc = cc->at(i);
3694
if (loc->is_register()) {
3695
__ move(arg, loc);
3696
} else {
3697
LIR_Address* addr = loc->as_address_ptr();
3698
// if (!can_store_as_constant(arg)) {
3699
// LIR_Opr tmp = new_register(arg->type());
3700
// __ move(arg, tmp);
3701
// arg = tmp;
3702
// }
3703
if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3704
__ unaligned_move(arg, addr);
3705
} else {
3706
__ move(arg, addr);
3707
}
3708
}
3709
}
3710
3711
if (info) {
3712
__ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3713
} else {
3714
__ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3715
}
3716
if (result->is_valid()) {
3717
__ move(phys_reg, result);
3718
}
3719
return result;
3720
}
3721
3722
3723
LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3724
address entry, ValueType* result_type, CodeEmitInfo* info) {
3725
// get a result register
3726
LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3727
LIR_Opr result = LIR_OprFact::illegalOpr;
3728
if (result_type->tag() != voidTag) {
3729
result = new_register(result_type);
3730
phys_reg = result_register_for(result_type);
3731
}
3732
3733
// move the arguments into the correct location
3734
CallingConvention* cc = frame_map()->c_calling_convention(signature);
3735
3736
assert(cc->length() == args->length(), "argument mismatch");
3737
for (int i = 0; i < args->length(); i++) {
3738
LIRItem* arg = args->at(i);
3739
LIR_Opr loc = cc->at(i);
3740
if (loc->is_register()) {
3741
arg->load_item_force(loc);
3742
} else {
3743
LIR_Address* addr = loc->as_address_ptr();
3744
arg->load_for_store(addr->type());
3745
if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3746
__ unaligned_move(arg->result(), addr);
3747
} else {
3748
__ move(arg->result(), addr);
3749
}
3750
}
3751
}
3752
3753
if (info) {
3754
__ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3755
} else {
3756
__ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3757
}
3758
if (result->is_valid()) {
3759
__ move(phys_reg, result);
3760
}
3761
return result;
3762
}
3763
3764
void LIRGenerator::do_MemBar(MemBar* x) {
3765
if (os::is_MP()) {
3766
LIR_Code code = x->code();
3767
switch(code) {
3768
case lir_membar_acquire : __ membar_acquire(); break;
3769
case lir_membar_release : __ membar_release(); break;
3770
case lir_membar : __ membar(); break;
3771
case lir_membar_loadload : __ membar_loadload(); break;
3772
case lir_membar_storestore: __ membar_storestore(); break;
3773
case lir_membar_loadstore : __ membar_loadstore(); break;
3774
case lir_membar_storeload : __ membar_storeload(); break;
3775
default : ShouldNotReachHere(); break;
3776
}
3777
}
3778
}
3779
3780
LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3781
if (x->check_boolean()) {
3782
LIR_Opr value_fixed = rlock_byte(T_BYTE);
3783
if (TwoOperandLIRForm) {
3784
__ move(value, value_fixed);
3785
__ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3786
} else {
3787
__ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3788
}
3789
LIR_Opr klass = new_register(T_METADATA);
3790
__ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
3791
null_check_info = NULL;
3792
LIR_Opr layout = new_register(T_INT);
3793
__ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3794
int diffbit = Klass::layout_helper_boolean_diffbit();
3795
__ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3796
__ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3797
__ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3798
value = value_fixed;
3799
}
3800
return value;
3801
}
3802
3803