Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/c1/c1_LinearScan.hpp
32285 views
1
/*
2
* Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#ifndef SHARE_VM_C1_C1_LINEARSCAN_HPP
26
#define SHARE_VM_C1_C1_LINEARSCAN_HPP
27
28
#include "c1/c1_FpuStackSim.hpp"
29
#include "c1/c1_FrameMap.hpp"
30
#include "c1/c1_IR.hpp"
31
#include "c1/c1_Instruction.hpp"
32
#include "c1/c1_LIR.hpp"
33
#include "c1/c1_LIRGenerator.hpp"
34
35
class DebugInfoCache;
36
class FpuStackAllocator;
37
class IRScopeDebugInfo;
38
class Interval;
39
class IntervalWalker;
40
class LIRGenerator;
41
class LinearScan;
42
class MoveResolver;
43
class Range;
44
45
define_array(IntervalArray, Interval*)
46
define_stack(IntervalList, IntervalArray)
47
48
define_array(IntervalsArray, IntervalList*)
49
define_stack(IntervalsList, IntervalsArray)
50
51
define_array(OopMapArray, OopMap*)
52
define_stack(OopMapList, OopMapArray)
53
54
define_array(ScopeValueArray, ScopeValue*)
55
56
define_array(LIR_OpListArray, LIR_OpList*);
57
define_stack(LIR_OpListStack, LIR_OpListArray);
58
59
60
enum IntervalUseKind {
61
// priority of use kinds must be ascending
62
noUse = 0,
63
loopEndMarker = 1,
64
shouldHaveRegister = 2,
65
mustHaveRegister = 3,
66
67
firstValidKind = 1,
68
lastValidKind = 3
69
};
70
define_array(UseKindArray, IntervalUseKind)
71
define_stack(UseKindStack, UseKindArray)
72
73
74
enum IntervalKind {
75
fixedKind = 0, // interval pre-colored by LIR_Generator
76
anyKind = 1, // no register/memory allocated by LIR_Generator
77
nofKinds,
78
firstKind = fixedKind
79
};
80
81
82
// during linear scan an interval is in one of four states in
83
enum IntervalState {
84
unhandledState = 0, // unhandled state (not processed yet)
85
activeState = 1, // life and is in a physical register
86
inactiveState = 2, // in a life time hole and is in a physical register
87
handledState = 3, // spilled or not life again
88
invalidState = -1
89
};
90
91
92
enum IntervalSpillState {
93
noDefinitionFound, // starting state of calculation: no definition found yet
94
oneDefinitionFound, // one definition has already been found.
95
// Note: two consecutive definitions are treated as one (e.g. consecutive move and add because of two-operand LIR form)
96
// the position of this definition is stored in _definition_pos
97
oneMoveInserted, // one spill move has already been inserted.
98
storeAtDefinition, // the interval should be stored immediately after its definition because otherwise
99
// there would be multiple redundant stores
100
startInMemory, // the interval starts in memory (e.g. method parameter), so a store is never necessary
101
noOptimization // the interval has more then one definition (e.g. resulting from phi moves), so stores to memory are not optimized
102
};
103
104
105
#define for_each_interval_kind(kind) \
106
for (IntervalKind kind = firstKind; kind < nofKinds; kind = (IntervalKind)(kind + 1))
107
108
#define for_each_visitor_mode(mode) \
109
for (LIR_OpVisitState::OprMode mode = LIR_OpVisitState::firstMode; mode < LIR_OpVisitState::numModes; mode = (LIR_OpVisitState::OprMode)(mode + 1))
110
111
112
class LinearScan : public CompilationResourceObj {
113
// declare classes used by LinearScan as friends because they
114
// need a wide variety of functions declared here
115
//
116
// Only the small interface to the rest of the compiler is public
117
friend class Interval;
118
friend class IntervalWalker;
119
friend class LinearScanWalker;
120
friend class FpuStackAllocator;
121
friend class MoveResolver;
122
friend class LinearScanStatistic;
123
friend class LinearScanTimers;
124
friend class RegisterVerifier;
125
126
public:
127
enum {
128
any_reg = -1,
129
nof_cpu_regs = pd_nof_cpu_regs_linearscan,
130
nof_fpu_regs = pd_nof_fpu_regs_linearscan,
131
nof_xmm_regs = pd_nof_xmm_regs_linearscan,
132
nof_regs = nof_cpu_regs + nof_fpu_regs + nof_xmm_regs
133
};
134
135
private:
136
Compilation* _compilation;
137
IR* _ir;
138
LIRGenerator* _gen;
139
FrameMap* _frame_map;
140
141
BlockList _cached_blocks; // cached list with all blocks in linear-scan order (only correct if original list keeps unchanged)
142
int _num_virtual_regs; // number of virtual registers (without new registers introduced because of splitting intervals)
143
bool _has_fpu_registers; // true if this method uses any floating point registers (and so fpu stack allocation is necessary)
144
int _num_calls; // total number of calls in this method
145
int _max_spills; // number of stack slots used for intervals allocated to memory
146
int _unused_spill_slot; // unused spill slot for a single-word value because of alignment of a double-word value
147
148
IntervalList _intervals; // mapping from register number to interval
149
IntervalList* _new_intervals_from_allocation; // list with all intervals created during allocation when an existing interval is split
150
IntervalArray* _sorted_intervals; // intervals sorted by Interval::from()
151
bool _needs_full_resort; // set to true if an Interval::from() is changed and _sorted_intervals must be resorted
152
153
LIR_OpArray _lir_ops; // mapping from LIR_Op id to LIR_Op node
154
BlockBeginArray _block_of_op; // mapping from LIR_Op id to the BlockBegin containing this instruction
155
BitMap _has_info; // bit set for each LIR_Op id that has a CodeEmitInfo
156
BitMap _has_call; // bit set for each LIR_Op id that destroys all caller save registers
157
BitMap2D _interval_in_loop; // bit set for each virtual register that is contained in each loop
158
159
// cached debug info to prevent multiple creation of same object
160
// TODO: cached scope values for registers could be static
161
ScopeValueArray _scope_value_cache;
162
163
static ConstantOopWriteValue* _oop_null_scope_value;
164
static ConstantIntValue* _int_m1_scope_value;
165
static ConstantIntValue* _int_0_scope_value;
166
static ConstantIntValue* _int_1_scope_value;
167
static ConstantIntValue* _int_2_scope_value;
168
169
// accessors
170
IR* ir() const { return _ir; }
171
Compilation* compilation() const { return _compilation; }
172
LIRGenerator* gen() const { return _gen; }
173
FrameMap* frame_map() const { return _frame_map; }
174
175
// unified bailout support
176
void bailout(const char* msg) const { compilation()->bailout(msg); }
177
bool bailed_out() const { return compilation()->bailed_out(); }
178
179
// access to block list (sorted in linear scan order)
180
int block_count() const { assert(_cached_blocks.length() == ir()->linear_scan_order()->length(), "invalid cached block list"); return _cached_blocks.length(); }
181
BlockBegin* block_at(int idx) const { assert(_cached_blocks.at(idx) == ir()->linear_scan_order()->at(idx), "invalid cached block list"); return _cached_blocks.at(idx); }
182
183
int num_virtual_regs() const { return _num_virtual_regs; }
184
// size of live_in and live_out sets of BasicBlocks (BitMap needs rounded size for iteration)
185
int live_set_size() const { return round_to(_num_virtual_regs, BitsPerWord); }
186
bool has_fpu_registers() const { return _has_fpu_registers; }
187
int num_loops() const { return ir()->num_loops(); }
188
bool is_interval_in_loop(int interval, int loop) const { return _interval_in_loop.at(interval, loop); }
189
190
// handling of fpu stack allocation (platform dependent, needed for debug information generation)
191
#ifdef X86
192
FpuStackAllocator* _fpu_stack_allocator;
193
bool use_fpu_stack_allocation() const { return UseSSE < 2 && has_fpu_registers(); }
194
#else
195
bool use_fpu_stack_allocation() const { return false; }
196
#endif
197
198
199
// access to interval list
200
int interval_count() const { return _intervals.length(); }
201
Interval* interval_at(int reg_num) const { return _intervals.at(reg_num); }
202
203
IntervalList* new_intervals_from_allocation() const { return _new_intervals_from_allocation; }
204
205
// access to LIR_Ops and Blocks indexed by op_id
206
int max_lir_op_id() const { assert(_lir_ops.length() > 0, "no operations"); return (_lir_ops.length() - 1) << 1; }
207
LIR_Op* lir_op_with_id(int op_id) const { assert(op_id >= 0 && op_id <= max_lir_op_id() && op_id % 2 == 0, "op_id out of range or not even"); return _lir_ops.at(op_id >> 1); }
208
BlockBegin* block_of_op_with_id(int op_id) const { assert(_block_of_op.length() > 0 && op_id >= 0 && op_id <= max_lir_op_id() + 1, "op_id out of range"); return _block_of_op.at(op_id >> 1); }
209
210
bool is_block_begin(int op_id) { return op_id == 0 || block_of_op_with_id(op_id) != block_of_op_with_id(op_id - 1); }
211
bool covers_block_begin(int op_id_1, int op_id_2) { return block_of_op_with_id(op_id_1) != block_of_op_with_id(op_id_2); }
212
213
bool has_call(int op_id) { assert(op_id % 2 == 0, "must be even"); return _has_call.at(op_id >> 1); }
214
bool has_info(int op_id) { assert(op_id % 2 == 0, "must be even"); return _has_info.at(op_id >> 1); }
215
216
217
// functions for converting LIR-Operands to register numbers
218
static bool is_valid_reg_num(int reg_num) { return reg_num >= 0; }
219
static int reg_num(LIR_Opr opr);
220
static int reg_numHi(LIR_Opr opr);
221
222
// functions for classification of intervals
223
static bool is_precolored_interval(const Interval* i);
224
static bool is_virtual_interval(const Interval* i);
225
226
static bool is_precolored_cpu_interval(const Interval* i);
227
static bool is_virtual_cpu_interval(const Interval* i);
228
static bool is_precolored_fpu_interval(const Interval* i);
229
static bool is_virtual_fpu_interval(const Interval* i);
230
231
static bool is_in_fpu_register(const Interval* i);
232
static bool is_oop_interval(const Interval* i);
233
234
235
// General helper functions
236
int allocate_spill_slot(bool double_word);
237
void assign_spill_slot(Interval* it);
238
void propagate_spill_slots();
239
240
Interval* create_interval(int reg_num);
241
void append_interval(Interval* it);
242
void copy_register_flags(Interval* from, Interval* to);
243
244
// platform dependent functions
245
static bool is_processed_reg_num(int reg_num);
246
static int num_physical_regs(BasicType type);
247
static bool requires_adjacent_regs(BasicType type);
248
static bool is_caller_save(int assigned_reg);
249
250
// spill move optimization: eliminate moves from register to stack if
251
// stack slot is known to be correct
252
void change_spill_definition_pos(Interval* interval, int def_pos);
253
void change_spill_state(Interval* interval, int spill_pos);
254
static bool must_store_at_definition(const Interval* i);
255
void eliminate_spill_moves();
256
257
// Phase 1: number all instructions in all blocks
258
void number_instructions();
259
260
// Phase 2: compute local live sets separately for each block
261
// (sets live_gen and live_kill for each block)
262
//
263
// helper methods used by compute_local_live_sets()
264
void set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill);
265
266
void compute_local_live_sets();
267
268
// Phase 3: perform a backward dataflow analysis to compute global live sets
269
// (sets live_in and live_out for each block)
270
void compute_global_live_sets();
271
272
273
// Phase 4: build intervals
274
// (fills the list _intervals)
275
//
276
// helper methods used by build_intervals()
277
void add_use (Value value, int from, int to, IntervalUseKind use_kind);
278
279
void add_def (LIR_Opr opr, int def_pos, IntervalUseKind use_kind);
280
void add_use (LIR_Opr opr, int from, int to, IntervalUseKind use_kind);
281
void add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind);
282
283
void add_def (int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type);
284
void add_use (int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type);
285
void add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type);
286
287
// Add platform dependent kills for particular LIR ops. Can be used
288
// to add platform dependent behaviour for some operations.
289
void pd_add_temps(LIR_Op* op);
290
291
IntervalUseKind use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr);
292
IntervalUseKind use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr);
293
void handle_method_arguments(LIR_Op* op);
294
void handle_doubleword_moves(LIR_Op* op);
295
void add_register_hints(LIR_Op* op);
296
297
void build_intervals();
298
299
300
// Phase 5: actual register allocation
301
// (Uses LinearScanWalker)
302
//
303
// helper functions for building a sorted list of intervals
304
NOT_PRODUCT(bool is_sorted(IntervalArray* intervals);)
305
static int interval_cmp(Interval** a, Interval** b);
306
void add_to_list(Interval** first, Interval** prev, Interval* interval);
307
void create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i));
308
309
void sort_intervals_before_allocation();
310
void sort_intervals_after_allocation();
311
void allocate_registers();
312
313
314
// Phase 6: resolve data flow
315
// (insert moves at edges between blocks if intervals have been split)
316
//
317
// helper functions for resolve_data_flow()
318
Interval* split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode);
319
Interval* interval_at_block_begin(BlockBegin* block, int reg_num);
320
Interval* interval_at_block_end(BlockBegin* block, int reg_num);
321
Interval* interval_at_op_id(int reg_num, int op_id);
322
void resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver);
323
void resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver);
324
void resolve_data_flow();
325
326
void resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver);
327
void resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver);
328
void resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver);
329
void resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver);
330
void resolve_exception_handlers();
331
332
// Phase 7: assign register numbers back to LIR
333
// (includes computation of debug information and oop maps)
334
//
335
// helper functions for assign_reg_num()
336
VMReg vm_reg_for_interval(Interval* interval);
337
VMReg vm_reg_for_operand(LIR_Opr opr);
338
339
static LIR_Opr operand_for_interval(Interval* interval);
340
static LIR_Opr calc_operand_for_interval(const Interval* interval);
341
LIR_Opr canonical_spill_opr(Interval* interval);
342
343
LIR_Opr color_lir_opr(LIR_Opr opr, int id, LIR_OpVisitState::OprMode);
344
345
// methods used for oop map computation
346
IntervalWalker* init_compute_oop_maps();
347
OopMap* compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site);
348
void compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op);
349
350
// methods used for debug information computation
351
void init_compute_debug_info();
352
353
MonitorValue* location_for_monitor_index(int monitor_index);
354
LocationValue* location_for_name(int name, Location::Type loc_type);
355
void set_oop(OopMap* map, VMReg name) {
356
if (map->legal_vm_reg_name(name)) {
357
map->set_oop(name);
358
} else {
359
bailout("illegal oopMap register name");
360
}
361
}
362
363
int append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values);
364
int append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values);
365
int append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values);
366
367
IRScopeDebugInfo* compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state);
368
void compute_debug_info(CodeEmitInfo* info, int op_id);
369
370
void assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw);
371
void assign_reg_num();
372
373
374
// Phase 8: fpu stack allocation
375
// (Used only on x86 when fpu operands are present)
376
void allocate_fpu_stack();
377
378
379
// helper functions for printing state
380
#ifndef PRODUCT
381
static void print_bitmap(BitMap& bitmap);
382
void print_intervals(const char* label);
383
void print_lir(int level, const char* label, bool hir_valid = true);
384
#endif
385
386
#ifdef ASSERT
387
// verification functions for allocation
388
// (check that all intervals have a correct register and that no registers are overwritten)
389
void verify();
390
void verify_intervals();
391
void verify_no_oops_in_fixed_intervals();
392
void verify_constants();
393
void verify_registers();
394
#endif
395
396
public:
397
// creation
398
LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map);
399
400
// main entry function: perform linear scan register allocation
401
void do_linear_scan();
402
403
// accessors used by Compilation
404
int max_spills() const { return _max_spills; }
405
int num_calls() const { assert(_num_calls >= 0, "not set"); return _num_calls; }
406
407
// entry functions for printing
408
#ifndef PRODUCT
409
static void print_statistics();
410
static void print_timers(double total);
411
#endif
412
};
413
414
415
// Helper class for ordering moves that are inserted at the same position in the LIR
416
// When moves between registers are inserted, it is important that the moves are
417
// ordered such that no register is overwritten. So moves from register to stack
418
// are processed prior to moves from stack to register. When moves have circular
419
// dependencies, a temporary stack slot is used to break the circle.
420
// The same logic is used in the LinearScanWalker and in LinearScan during resolve_data_flow
421
// and therefore factored out in a separate class
422
class MoveResolver: public StackObj {
423
private:
424
LinearScan* _allocator;
425
426
LIR_List* _insert_list;
427
int _insert_idx;
428
LIR_InsertionBuffer _insertion_buffer; // buffer where moves are inserted
429
430
IntervalList _mapping_from;
431
LIR_OprList _mapping_from_opr;
432
IntervalList _mapping_to;
433
bool _multiple_reads_allowed;
434
int _register_blocked[LinearScan::nof_regs];
435
436
int register_blocked(int reg) { assert(reg >= 0 && reg < LinearScan::nof_regs, "out of bounds"); return _register_blocked[reg]; }
437
void set_register_blocked(int reg, int direction) { assert(reg >= 0 && reg < LinearScan::nof_regs, "out of bounds"); assert(direction == 1 || direction == -1, "out of bounds"); _register_blocked[reg] += direction; }
438
439
void block_registers(Interval* it);
440
void unblock_registers(Interval* it);
441
bool save_to_process_move(Interval* from, Interval* to);
442
443
void create_insertion_buffer(LIR_List* list);
444
void append_insertion_buffer();
445
void insert_move(Interval* from_interval, Interval* to_interval);
446
void insert_move(LIR_Opr from_opr, Interval* to_interval);
447
448
DEBUG_ONLY(void verify_before_resolve();)
449
void resolve_mappings();
450
public:
451
MoveResolver(LinearScan* allocator);
452
453
DEBUG_ONLY(void check_empty();)
454
void set_multiple_reads_allowed() { _multiple_reads_allowed = true; }
455
void set_insert_position(LIR_List* insert_list, int insert_idx);
456
void move_insert_position(LIR_List* insert_list, int insert_idx);
457
void add_mapping(Interval* from, Interval* to);
458
void add_mapping(LIR_Opr from, Interval* to);
459
void resolve_and_append_moves();
460
461
LinearScan* allocator() { return _allocator; }
462
bool has_mappings() { return _mapping_from.length() > 0; }
463
};
464
465
466
class Range : public CompilationResourceObj {
467
friend class Interval;
468
469
private:
470
static Range* _end; // sentinel (from == to == max_jint)
471
472
int _from; // from (inclusive)
473
int _to; // to (exclusive)
474
Range* _next; // linear list of Ranges
475
476
// used only by class Interval, so hide them
477
bool intersects(Range* r) const { return intersects_at(r) != -1; }
478
int intersects_at(Range* r) const;
479
480
public:
481
Range(int from, int to, Range* next);
482
483
static void initialize(Arena* arena);
484
static Range* end() { return _end; }
485
486
int from() const { return _from; }
487
int to() const { return _to; }
488
Range* next() const { return _next; }
489
void set_from(int from) { _from = from; }
490
void set_to(int to) { _to = to; }
491
void set_next(Range* next) { _next = next; }
492
493
// for testing
494
void print(outputStream* out = tty) const PRODUCT_RETURN;
495
};
496
497
498
// Interval is an ordered list of disjoint ranges.
499
500
// For pre-colored double word LIR_Oprs, one interval is created for
501
// the low word register and one is created for the hi word register.
502
// On Intel for FPU double registers only one interval is created. At
503
// all times assigned_reg contains the reg. number of the physical
504
// register.
505
506
// For LIR_Opr in virtual registers a single interval can represent
507
// single and double word values. When a physical register is
508
// assigned to the interval, assigned_reg contains the
509
// phys. reg. number and for double word values assigned_regHi the
510
// phys. reg. number of the hi word if there is any. For spilled
511
// intervals assigned_reg contains the stack index. assigned_regHi is
512
// always -1.
513
514
class Interval : public CompilationResourceObj {
515
private:
516
static Interval* _end; // sentinel (interval with only range Range::end())
517
518
int _reg_num;
519
BasicType _type; // valid only for virtual registers
520
Range* _first; // sorted list of Ranges
521
intStack _use_pos_and_kinds; // sorted list of use-positions and their according use-kinds
522
523
Range* _current; // interval iteration: the current Range
524
Interval* _next; // interval iteration: sorted list of Intervals (ends with sentinel)
525
IntervalState _state; // interval iteration: to which set belongs this interval
526
527
528
int _assigned_reg;
529
int _assigned_regHi;
530
531
int _cached_to; // cached value: to of last range (-1: not cached)
532
LIR_Opr _cached_opr;
533
VMReg _cached_vm_reg;
534
535
Interval* _split_parent; // the original interval where this interval is derived from
536
IntervalList _split_children; // list of all intervals that are split off from this interval (only available for split parents)
537
Interval* _current_split_child; // the current split child that has been active or inactive last (always stored in split parents)
538
539
int _canonical_spill_slot; // the stack slot where all split parts of this interval are spilled to (always stored in split parents)
540
bool _insert_move_when_activated; // true if move is inserted between _current_split_child and this interval when interval gets active the first time
541
IntervalSpillState _spill_state; // for spill move optimization
542
int _spill_definition_pos; // position where the interval is defined (if defined only once)
543
Interval* _register_hint; // this interval should be in the same register as the hint interval
544
545
int calc_to();
546
Interval* new_split_child();
547
public:
548
Interval(int reg_num);
549
550
static void initialize(Arena* arena);
551
static Interval* end() { return _end; }
552
553
// accessors
554
int reg_num() const { return _reg_num; }
555
void set_reg_num(int r) { assert(_reg_num == -1, "cannot change reg_num"); _reg_num = r; }
556
BasicType type() const { assert(_reg_num == -1 || _reg_num >= LIR_OprDesc::vreg_base, "cannot access type for fixed interval"); return _type; }
557
void set_type(BasicType type) { assert(_reg_num < LIR_OprDesc::vreg_base || _type == T_ILLEGAL || _type == type, "overwriting existing type"); _type = type; }
558
559
Range* first() const { return _first; }
560
int from() const { return _first->from(); }
561
int to() { if (_cached_to == -1) _cached_to = calc_to(); assert(_cached_to == calc_to(), "invalid cached value"); return _cached_to; }
562
int num_use_positions() const { return _use_pos_and_kinds.length() / 2; }
563
564
Interval* next() const { return _next; }
565
Interval** next_addr() { return &_next; }
566
void set_next(Interval* next) { _next = next; }
567
568
int assigned_reg() const { return _assigned_reg; }
569
int assigned_regHi() const { return _assigned_regHi; }
570
void assign_reg(int reg) { _assigned_reg = reg; _assigned_regHi = LinearScan::any_reg; }
571
void assign_reg(int reg,int regHi) { _assigned_reg = reg; _assigned_regHi = regHi; }
572
573
Interval* register_hint(bool search_split_child = true) const; // calculation needed
574
void set_register_hint(Interval* i) { _register_hint = i; }
575
576
int state() const { return _state; }
577
void set_state(IntervalState s) { _state = s; }
578
579
// access to split parent and split children
580
bool is_split_parent() const { return _split_parent == this; }
581
bool is_split_child() const { return _split_parent != this; }
582
Interval* split_parent() const { assert(_split_parent->is_split_parent(), "must be"); return _split_parent; }
583
Interval* split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode);
584
Interval* split_child_before_op_id(int op_id);
585
bool split_child_covers(int op_id, LIR_OpVisitState::OprMode mode);
586
DEBUG_ONLY(void check_split_children();)
587
588
// information stored in split parent, but available for all children
589
int canonical_spill_slot() const { return split_parent()->_canonical_spill_slot; }
590
void set_canonical_spill_slot(int slot) { assert(split_parent()->_canonical_spill_slot == -1, "overwriting existing value"); split_parent()->_canonical_spill_slot = slot; }
591
Interval* current_split_child() const { return split_parent()->_current_split_child; }
592
void make_current_split_child() { split_parent()->_current_split_child = this; }
593
594
bool insert_move_when_activated() const { return _insert_move_when_activated; }
595
void set_insert_move_when_activated(bool b) { _insert_move_when_activated = b; }
596
597
// for spill optimization
598
IntervalSpillState spill_state() const { return split_parent()->_spill_state; }
599
int spill_definition_pos() const { return split_parent()->_spill_definition_pos; }
600
void set_spill_state(IntervalSpillState state) { assert(state >= spill_state(), "state cannot decrease"); split_parent()->_spill_state = state; }
601
void set_spill_definition_pos(int pos) { assert(spill_definition_pos() == -1, "cannot set the position twice"); split_parent()->_spill_definition_pos = pos; }
602
// returns true if this interval has a shadow copy on the stack that is always correct
603
bool always_in_memory() const { return split_parent()->_spill_state == storeAtDefinition || split_parent()->_spill_state == startInMemory; }
604
605
// caching of values that take time to compute and are used multiple times
606
LIR_Opr cached_opr() const { return _cached_opr; }
607
VMReg cached_vm_reg() const { return _cached_vm_reg; }
608
void set_cached_opr(LIR_Opr opr) { _cached_opr = opr; }
609
void set_cached_vm_reg(VMReg reg) { _cached_vm_reg = reg; }
610
611
// access to use positions
612
int first_usage(IntervalUseKind min_use_kind) const; // id of the first operation requiring this interval in a register
613
int next_usage(IntervalUseKind min_use_kind, int from) const; // id of next usage seen from the given position
614
int next_usage_exact(IntervalUseKind exact_use_kind, int from) const;
615
int previous_usage(IntervalUseKind min_use_kind, int from) const;
616
617
// manipulating intervals
618
void add_use_pos(int pos, IntervalUseKind use_kind);
619
void add_range(int from, int to);
620
Interval* split(int split_pos);
621
Interval* split_from_start(int split_pos);
622
void remove_first_use_pos() { _use_pos_and_kinds.truncate(_use_pos_and_kinds.length() - 2); }
623
624
// test intersection
625
bool covers(int op_id, LIR_OpVisitState::OprMode mode) const;
626
bool has_hole_between(int from, int to);
627
bool intersects(Interval* i) const { return _first->intersects(i->_first); }
628
int intersects_at(Interval* i) const { return _first->intersects_at(i->_first); }
629
630
// range iteration
631
void rewind_range() { _current = _first; }
632
void next_range() { assert(this != _end, "not allowed on sentinel"); _current = _current->next(); }
633
int current_from() const { return _current->from(); }
634
int current_to() const { return _current->to(); }
635
bool current_at_end() const { return _current == Range::end(); }
636
bool current_intersects(Interval* it) { return _current->intersects(it->_current); };
637
int current_intersects_at(Interval* it) { return _current->intersects_at(it->_current); };
638
639
// printing
640
void print(outputStream* out = tty) const PRODUCT_RETURN;
641
};
642
643
644
class IntervalWalker : public CompilationResourceObj {
645
protected:
646
Compilation* _compilation;
647
LinearScan* _allocator;
648
649
Interval* _unhandled_first[nofKinds]; // sorted list of intervals, not life before the current position
650
Interval* _active_first [nofKinds]; // sorted list of intervals, life at the current position
651
Interval* _inactive_first [nofKinds]; // sorted list of intervals, intervals in a life time hole at the current position
652
653
Interval* _current; // the current interval coming from unhandled list
654
int _current_position; // the current position (intercept point through the intervals)
655
IntervalKind _current_kind; // and whether it is fixed_kind or any_kind.
656
657
658
Compilation* compilation() const { return _compilation; }
659
LinearScan* allocator() const { return _allocator; }
660
661
// unified bailout support
662
void bailout(const char* msg) const { compilation()->bailout(msg); }
663
bool bailed_out() const { return compilation()->bailed_out(); }
664
665
void check_bounds(IntervalKind kind) { assert(kind >= fixedKind && kind <= anyKind, "invalid interval_kind"); }
666
667
Interval** unhandled_first_addr(IntervalKind kind) { check_bounds(kind); return &_unhandled_first[kind]; }
668
Interval** active_first_addr(IntervalKind kind) { check_bounds(kind); return &_active_first[kind]; }
669
Interval** inactive_first_addr(IntervalKind kind) { check_bounds(kind); return &_inactive_first[kind]; }
670
671
void append_unsorted(Interval** first, Interval* interval);
672
void append_sorted(Interval** first, Interval* interval);
673
void append_to_unhandled(Interval** list, Interval* interval);
674
675
bool remove_from_list(Interval** list, Interval* i);
676
void remove_from_list(Interval* i);
677
678
void next_interval();
679
Interval* current() const { return _current; }
680
IntervalKind current_kind() const { return _current_kind; }
681
682
void walk_to(IntervalState state, int from);
683
684
// activate_current() is called when an unhandled interval becomes active (in current(), current_kind()).
685
// Return false if current() should not be moved the the active interval list.
686
// It is safe to append current to any interval list but the unhandled list.
687
virtual bool activate_current() { return true; }
688
689
// interval_moved() is called whenever an interval moves from one interval list to another.
690
// In the implementation of this method it is prohibited to move the interval to any list.
691
virtual void interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to);
692
693
public:
694
IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first);
695
696
Interval* unhandled_first(IntervalKind kind) { check_bounds(kind); return _unhandled_first[kind]; }
697
Interval* active_first(IntervalKind kind) { check_bounds(kind); return _active_first[kind]; }
698
Interval* inactive_first(IntervalKind kind) { check_bounds(kind); return _inactive_first[kind]; }
699
700
// active contains the intervals that are live after the lir_op
701
void walk_to(int lir_op_id);
702
// active contains the intervals that are live before the lir_op
703
void walk_before(int lir_op_id) { walk_to(lir_op_id-1); }
704
// walk through all intervals
705
void walk() { walk_to(max_jint); }
706
707
int current_position() { return _current_position; }
708
};
709
710
711
// The actual linear scan register allocator
712
class LinearScanWalker : public IntervalWalker {
713
enum {
714
any_reg = LinearScan::any_reg
715
};
716
717
private:
718
int _first_reg; // the reg. number of the first phys. register
719
int _last_reg; // the reg. nmber of the last phys. register
720
int _num_phys_regs; // required by current interval
721
bool _adjacent_regs; // have lo/hi words of phys. regs be adjacent
722
723
int _use_pos[LinearScan::nof_regs];
724
int _block_pos[LinearScan::nof_regs];
725
IntervalList* _spill_intervals[LinearScan::nof_regs];
726
727
MoveResolver _move_resolver; // for ordering spill moves
728
729
// accessors mapped to same functions in class LinearScan
730
int block_count() const { return allocator()->block_count(); }
731
BlockBegin* block_at(int idx) const { return allocator()->block_at(idx); }
732
BlockBegin* block_of_op_with_id(int op_id) const { return allocator()->block_of_op_with_id(op_id); }
733
734
void init_use_lists(bool only_process_use_pos);
735
void exclude_from_use(int reg);
736
void exclude_from_use(Interval* i);
737
void set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos);
738
void set_use_pos(Interval* i, int use_pos, bool only_process_use_pos);
739
void set_block_pos(int reg, Interval* i, int block_pos);
740
void set_block_pos(Interval* i, int block_pos);
741
742
void free_exclude_active_fixed();
743
void free_exclude_active_any();
744
void free_collect_inactive_fixed(Interval* cur);
745
void free_collect_inactive_any(Interval* cur);
746
void free_collect_unhandled(IntervalKind kind, Interval* cur);
747
void spill_exclude_active_fixed();
748
void spill_block_unhandled_fixed(Interval* cur);
749
void spill_block_inactive_fixed(Interval* cur);
750
void spill_collect_active_any();
751
void spill_collect_inactive_any(Interval* cur);
752
753
void insert_move(int op_id, Interval* src_it, Interval* dst_it);
754
int find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos);
755
int find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization);
756
void split_before_usage(Interval* it, int min_split_pos, int max_split_pos);
757
void split_for_spilling(Interval* it);
758
void split_stack_interval(Interval* it);
759
void split_when_partial_register_available(Interval* it, int register_available_until);
760
void split_and_spill_interval(Interval* it);
761
762
int find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split);
763
int find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split);
764
bool alloc_free_reg(Interval* cur);
765
766
int find_locked_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split);
767
int find_locked_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split);
768
void split_and_spill_intersecting_intervals(int reg, int regHi);
769
void alloc_locked_reg(Interval* cur);
770
771
bool no_allocation_possible(Interval* cur);
772
void update_phys_reg_range(bool requires_cpu_register);
773
void init_vars_for_alloc(Interval* cur);
774
bool pd_init_regs_for_alloc(Interval* cur);
775
776
void combine_spilled_intervals(Interval* cur);
777
bool is_move(LIR_Op* op, Interval* from, Interval* to);
778
779
bool activate_current();
780
781
public:
782
LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first);
783
784
// must be called when all intervals are allocated
785
void finish_allocation() { _move_resolver.resolve_and_append_moves(); }
786
};
787
788
789
790
/*
791
When a block has more than one predecessor, and all predecessors end with
792
the same sequence of move-instructions, than this moves can be placed once
793
at the beginning of the block instead of multiple times in the predecessors.
794
795
Similarly, when a block has more than one successor, then equal sequences of
796
moves at the beginning of the successors can be placed once at the end of
797
the block. But because the moves must be inserted before all branch
798
instructions, this works only when there is exactly one conditional branch
799
at the end of the block (because the moves must be inserted before all
800
branches, but after all compares).
801
802
This optimization affects all kind of moves (reg->reg, reg->stack and
803
stack->reg). Because this optimization works best when a block contains only
804
few moves, it has a huge impact on the number of blocks that are totally
805
empty.
806
*/
807
class EdgeMoveOptimizer : public StackObj {
808
private:
809
// the class maintains a list with all lir-instruction-list of the
810
// successors (predecessors) and the current index into the lir-lists
811
LIR_OpListStack _edge_instructions;
812
intStack _edge_instructions_idx;
813
814
void init_instructions();
815
void append_instructions(LIR_OpList* instructions, int instructions_idx);
816
LIR_Op* instruction_at(int edge);
817
void remove_cur_instruction(int edge, bool decrement_index);
818
819
bool operations_different(LIR_Op* op1, LIR_Op* op2);
820
821
void optimize_moves_at_block_end(BlockBegin* cur);
822
void optimize_moves_at_block_begin(BlockBegin* cur);
823
824
EdgeMoveOptimizer();
825
826
public:
827
static void optimize(BlockList* code);
828
};
829
830
831
832
class ControlFlowOptimizer : public StackObj {
833
private:
834
BlockList _original_preds;
835
836
enum {
837
ShortLoopSize = 5
838
};
839
void reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx);
840
void reorder_short_loops(BlockList* code);
841
842
bool can_delete_block(BlockBegin* cur);
843
void substitute_branch_target(BlockBegin* cur, BlockBegin* target_from, BlockBegin* target_to);
844
void delete_empty_blocks(BlockList* code);
845
846
void delete_unnecessary_jumps(BlockList* code);
847
void delete_jumps_to_return(BlockList* code);
848
849
DEBUG_ONLY(void verify(BlockList* code);)
850
851
ControlFlowOptimizer();
852
public:
853
static void optimize(BlockList* code);
854
};
855
856
857
#ifndef PRODUCT
858
859
// Helper class for collecting statistics of LinearScan
860
class LinearScanStatistic : public StackObj {
861
public:
862
enum Counter {
863
// general counters
864
counter_method,
865
counter_fpu_method,
866
counter_loop_method,
867
counter_exception_method,
868
counter_loop,
869
counter_block,
870
counter_loop_block,
871
counter_exception_block,
872
counter_interval,
873
counter_fixed_interval,
874
counter_range,
875
counter_fixed_range,
876
counter_use_pos,
877
counter_fixed_use_pos,
878
counter_spill_slots,
879
blank_line_1,
880
881
// counter for classes of lir instructions
882
counter_instruction,
883
counter_label,
884
counter_entry,
885
counter_return,
886
counter_call,
887
counter_move,
888
counter_cmp,
889
counter_cond_branch,
890
counter_uncond_branch,
891
counter_stub_branch,
892
counter_alu,
893
counter_alloc,
894
counter_sync,
895
counter_throw,
896
counter_unwind,
897
counter_typecheck,
898
counter_fpu_stack,
899
counter_misc_inst,
900
counter_other_inst,
901
blank_line_2,
902
903
// counter for different types of moves
904
counter_move_total,
905
counter_move_reg_reg,
906
counter_move_reg_stack,
907
counter_move_stack_reg,
908
counter_move_stack_stack,
909
counter_move_reg_mem,
910
counter_move_mem_reg,
911
counter_move_const_any,
912
913
number_of_counters,
914
invalid_counter = -1
915
};
916
917
private:
918
int _counters_sum[number_of_counters];
919
int _counters_max[number_of_counters];
920
921
void inc_counter(Counter idx, int value = 1) { _counters_sum[idx] += value; }
922
923
const char* counter_name(int counter_idx);
924
Counter base_counter(int counter_idx);
925
926
void sum_up(LinearScanStatistic &method_statistic);
927
void collect(LinearScan* allocator);
928
929
public:
930
LinearScanStatistic();
931
void print(const char* title);
932
static void compute(LinearScan* allocator, LinearScanStatistic &global_statistic);
933
};
934
935
936
// Helper class for collecting compilation time of LinearScan
937
class LinearScanTimers : public StackObj {
938
public:
939
enum Timer {
940
timer_do_nothing,
941
timer_number_instructions,
942
timer_compute_local_live_sets,
943
timer_compute_global_live_sets,
944
timer_build_intervals,
945
timer_sort_intervals_before,
946
timer_allocate_registers,
947
timer_resolve_data_flow,
948
timer_sort_intervals_after,
949
timer_eliminate_spill_moves,
950
timer_assign_reg_num,
951
timer_allocate_fpu_stack,
952
timer_optimize_lir,
953
954
number_of_timers
955
};
956
957
private:
958
elapsedTimer _timers[number_of_timers];
959
const char* timer_name(int idx);
960
961
public:
962
LinearScanTimers();
963
964
void begin_method(); // called for each method when register allocation starts
965
void end_method(LinearScan* allocator); // called for each method when register allocation completed
966
void print(double total_time); // called before termination of VM to print global summary
967
968
elapsedTimer* timer(int idx) { return &(_timers[idx]); }
969
};
970
971
972
#endif // ifndef PRODUCT
973
974
975
// Pick up platform-dependent implementation details
976
#ifdef TARGET_ARCH_x86
977
# include "c1_LinearScan_x86.hpp"
978
#endif
979
#ifdef TARGET_ARCH_aarch32
980
# include "c1_LinearScan_aarch32.hpp"
981
#endif
982
#ifdef TARGET_ARCH_aarch64
983
# include "c1_LinearScan_aarch64.hpp"
984
#endif
985
#ifdef TARGET_ARCH_sparc
986
# include "c1_LinearScan_sparc.hpp"
987
#endif
988
#ifdef TARGET_ARCH_arm
989
# include "c1_LinearScan_arm.hpp"
990
#endif
991
#ifdef TARGET_ARCH_ppc
992
# include "c1_LinearScan_ppc.hpp"
993
#endif
994
995
996
#endif // SHARE_VM_C1_C1_LINEARSCAN_HPP
997
998