Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/c1/c1_RangeCheckElimination.cpp
32285 views
1
/*
2
* Copyright (c) 2012, 2014, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "c1/c1_ValueStack.hpp"
27
#include "c1/c1_RangeCheckElimination.hpp"
28
#include "c1/c1_IR.hpp"
29
#include "c1/c1_Canonicalizer.hpp"
30
#include "c1/c1_ValueMap.hpp"
31
#include "ci/ciMethodData.hpp"
32
#include "runtime/deoptimization.hpp"
33
34
// Macros for the Trace and the Assertion flag
35
#ifdef ASSERT
36
#define TRACE_RANGE_CHECK_ELIMINATION(code) if (TraceRangeCheckElimination) { code; }
37
#define ASSERT_RANGE_CHECK_ELIMINATION(code) if (AssertRangeCheckElimination) { code; }
38
#define TRACE_OR_ASSERT_RANGE_CHECK_ELIMINATION(code) if (TraceRangeCheckElimination || AssertRangeCheckElimination) { code; }
39
#else
40
#define TRACE_RANGE_CHECK_ELIMINATION(code)
41
#define ASSERT_RANGE_CHECK_ELIMINATION(code)
42
#define TRACE_OR_ASSERT_RANGE_CHECK_ELIMINATION(code)
43
#endif
44
45
// Entry point for the optimization
46
void RangeCheckElimination::eliminate(IR *ir) {
47
bool do_elimination = ir->compilation()->has_access_indexed();
48
ASSERT_RANGE_CHECK_ELIMINATION(do_elimination = true);
49
if (do_elimination) {
50
RangeCheckEliminator rce(ir);
51
}
52
}
53
54
// Constructor
55
RangeCheckEliminator::RangeCheckEliminator(IR *ir) :
56
_bounds(Instruction::number_of_instructions(), NULL),
57
_access_indexed_info(Instruction::number_of_instructions(), NULL)
58
{
59
_visitor.set_range_check_eliminator(this);
60
_ir = ir;
61
_number_of_instructions = Instruction::number_of_instructions();
62
_optimistic = ir->compilation()->is_optimistic();
63
64
TRACE_RANGE_CHECK_ELIMINATION(
65
tty->cr();
66
tty->print_cr("Range check elimination");
67
ir->method()->print_name(tty);
68
tty->cr();
69
);
70
71
TRACE_RANGE_CHECK_ELIMINATION(
72
tty->print_cr("optimistic=%d", (int)_optimistic);
73
);
74
75
#ifdef ASSERT
76
// Verifies several conditions that must be true on the IR-input. Only used for debugging purposes.
77
TRACE_RANGE_CHECK_ELIMINATION(
78
tty->print_cr("Verification of IR . . .");
79
);
80
Verification verification(ir);
81
#endif
82
83
// Set process block flags
84
// Optimization so a blocks is only processed if it contains an access indexed instruction or if
85
// one of its children in the dominator tree contains an access indexed instruction.
86
set_process_block_flags(ir->start());
87
88
// Pass over instructions in the dominator tree
89
TRACE_RANGE_CHECK_ELIMINATION(
90
tty->print_cr("Starting pass over dominator tree . . .")
91
);
92
calc_bounds(ir->start(), NULL);
93
94
TRACE_RANGE_CHECK_ELIMINATION(
95
tty->print_cr("Finished!")
96
);
97
}
98
99
// Instruction specific work for some instructions
100
// Constant
101
void RangeCheckEliminator::Visitor::do_Constant(Constant *c) {
102
IntConstant *ic = c->type()->as_IntConstant();
103
if (ic != NULL) {
104
int value = ic->value();
105
_bound = new Bound(value, NULL, value, NULL);
106
}
107
}
108
109
// LogicOp
110
void RangeCheckEliminator::Visitor::do_LogicOp(LogicOp *lo) {
111
if (lo->type()->as_IntType() && lo->op() == Bytecodes::_iand && (lo->x()->as_Constant() || lo->y()->as_Constant())) {
112
int constant = 0;
113
Constant *c = lo->x()->as_Constant();
114
if (c != NULL) {
115
constant = c->type()->as_IntConstant()->value();
116
} else {
117
constant = lo->y()->as_Constant()->type()->as_IntConstant()->value();
118
}
119
if (constant >= 0) {
120
_bound = new Bound(0, NULL, constant, NULL);
121
}
122
}
123
}
124
125
// Phi
126
void RangeCheckEliminator::Visitor::do_Phi(Phi *phi) {
127
if (!phi->type()->as_IntType() && !phi->type()->as_ObjectType()) return;
128
129
BlockBegin *block = phi->block();
130
int op_count = phi->operand_count();
131
bool has_upper = true;
132
bool has_lower = true;
133
assert(phi, "Phi must not be null");
134
Bound *bound = NULL;
135
136
// TODO: support more difficult phis
137
for (int i=0; i<op_count; i++) {
138
Value v = phi->operand_at(i);
139
140
if (v == phi) continue;
141
142
// Check if instruction is connected with phi itself
143
Op2 *op2 = v->as_Op2();
144
if (op2 != NULL) {
145
Value x = op2->x();
146
Value y = op2->y();
147
if ((x == phi || y == phi)) {
148
Value other = x;
149
if (other == phi) {
150
other = y;
151
}
152
ArithmeticOp *ao = v->as_ArithmeticOp();
153
if (ao != NULL && ao->op() == Bytecodes::_iadd) {
154
assert(ao->op() == Bytecodes::_iadd, "Has to be add!");
155
if (ao->type()->as_IntType()) {
156
Constant *c = other->as_Constant();
157
if (c != NULL) {
158
assert(c->type()->as_IntConstant(), "Constant has to be of type integer");
159
int value = c->type()->as_IntConstant()->value();
160
if (value == 1) {
161
has_upper = false;
162
} else if (value > 1) {
163
// Overflow not guaranteed
164
has_upper = false;
165
has_lower = false;
166
} else if (value < 0) {
167
has_lower = false;
168
}
169
continue;
170
}
171
}
172
}
173
}
174
}
175
176
// No connection -> new bound
177
Bound *v_bound = _rce->get_bound(v);
178
Bound *cur_bound;
179
int cur_constant = 0;
180
Value cur_value = v;
181
182
if (v->type()->as_IntConstant()) {
183
cur_constant = v->type()->as_IntConstant()->value();
184
cur_value = NULL;
185
}
186
if (!v_bound->has_upper() || !v_bound->has_lower()) {
187
cur_bound = new Bound(cur_constant, cur_value, cur_constant, cur_value);
188
} else {
189
cur_bound = v_bound;
190
}
191
if (cur_bound) {
192
if (!bound) {
193
bound = cur_bound->copy();
194
} else {
195
bound->or_op(cur_bound);
196
}
197
} else {
198
// No bound!
199
bound = NULL;
200
break;
201
}
202
}
203
204
if (bound) {
205
if (!has_upper) {
206
bound->remove_upper();
207
}
208
if (!has_lower) {
209
bound->remove_lower();
210
}
211
_bound = bound;
212
} else {
213
_bound = new Bound();
214
}
215
}
216
217
218
// ArithmeticOp
219
void RangeCheckEliminator::Visitor::do_ArithmeticOp(ArithmeticOp *ao) {
220
Value x = ao->x();
221
Value y = ao->y();
222
223
if (ao->op() == Bytecodes::_irem) {
224
Bound* x_bound = _rce->get_bound(x);
225
Bound* y_bound = _rce->get_bound(y);
226
if (x_bound->lower() >= 0 && x_bound->lower_instr() == NULL && y->as_ArrayLength() != NULL) {
227
_bound = new Bound(0, NULL, -1, y);
228
} else {
229
_bound = new Bound();
230
}
231
} else if (!x->as_Constant() || !y->as_Constant()) {
232
assert(!x->as_Constant() || !y->as_Constant(), "One of the operands must be non-constant!");
233
if (((x->as_Constant() || y->as_Constant()) && (ao->op() == Bytecodes::_iadd)) || (y->as_Constant() && ao->op() == Bytecodes::_isub)) {
234
assert(ao->op() == Bytecodes::_iadd || ao->op() == Bytecodes::_isub, "Operand must be iadd or isub");
235
236
if (y->as_Constant()) {
237
Value tmp = x;
238
x = y;
239
y = tmp;
240
}
241
assert(x->as_Constant()->type()->as_IntConstant(), "Constant must be int constant!");
242
243
// Constant now in x
244
int const_value = x->as_Constant()->type()->as_IntConstant()->value();
245
if (ao->op() == Bytecodes::_iadd || const_value != min_jint) {
246
if (ao->op() == Bytecodes::_isub) {
247
const_value = -const_value;
248
}
249
250
Bound * bound = _rce->get_bound(y);
251
if (bound->has_upper() && bound->has_lower()) {
252
int new_lower = bound->lower() + const_value;
253
jlong new_lowerl = ((jlong)bound->lower()) + const_value;
254
int new_upper = bound->upper() + const_value;
255
jlong new_upperl = ((jlong)bound->upper()) + const_value;
256
257
if (((jlong)new_lower) == new_lowerl && ((jlong)new_upper == new_upperl)) {
258
Bound *newBound = new Bound(new_lower, bound->lower_instr(), new_upper, bound->upper_instr());
259
_bound = newBound;
260
} else {
261
// overflow
262
_bound = new Bound();
263
}
264
} else {
265
_bound = new Bound();
266
}
267
} else {
268
_bound = new Bound();
269
}
270
} else {
271
Bound *bound = _rce->get_bound(x);
272
if (ao->op() == Bytecodes::_isub) {
273
if (bound->lower_instr() == y) {
274
_bound = new Bound(Instruction::geq, NULL, bound->lower());
275
} else {
276
_bound = new Bound();
277
}
278
} else {
279
_bound = new Bound();
280
}
281
}
282
}
283
}
284
285
// IfOp
286
void RangeCheckEliminator::Visitor::do_IfOp(IfOp *ifOp)
287
{
288
if (ifOp->tval()->type()->as_IntConstant() && ifOp->fval()->type()->as_IntConstant()) {
289
int min = ifOp->tval()->type()->as_IntConstant()->value();
290
int max = ifOp->fval()->type()->as_IntConstant()->value();
291
if (min > max) {
292
// min ^= max ^= min ^= max;
293
int tmp = min;
294
min = max;
295
max = tmp;
296
}
297
_bound = new Bound(min, NULL, max, NULL);
298
}
299
}
300
301
// Get bound. Returns the current bound on Value v. Normally this is the topmost element on the bound stack.
302
RangeCheckEliminator::Bound *RangeCheckEliminator::get_bound(Value v) {
303
// Wrong type or NULL -> No bound
304
if (!v || (!v->type()->as_IntType() && !v->type()->as_ObjectType())) return NULL;
305
306
if (!_bounds[v->id()]) {
307
// First (default) bound is calculated
308
// Create BoundStack
309
_bounds[v->id()] = new BoundStack();
310
_visitor.clear_bound();
311
Value visit_value = v;
312
visit_value->visit(&_visitor);
313
Bound *bound = _visitor.bound();
314
if (bound) {
315
_bounds[v->id()]->push(bound);
316
}
317
if (_bounds[v->id()]->length() == 0) {
318
assert(!(v->as_Constant() && v->type()->as_IntConstant()), "constants not handled here");
319
_bounds[v->id()]->push(new Bound());
320
}
321
} else if (_bounds[v->id()]->length() == 0) {
322
// To avoid endless loops, bound is currently in calculation -> nothing known about it
323
return new Bound();
324
}
325
326
// Return bound
327
return _bounds[v->id()]->top();
328
}
329
330
// Update bound
331
void RangeCheckEliminator::update_bound(IntegerStack &pushed, Value v, Instruction::Condition cond, Value value, int constant) {
332
if (cond == Instruction::gtr) {
333
cond = Instruction::geq;
334
constant++;
335
} else if (cond == Instruction::lss) {
336
cond = Instruction::leq;
337
constant--;
338
}
339
Bound *bound = new Bound(cond, value, constant);
340
update_bound(pushed, v, bound);
341
}
342
343
// Checks for loop invariance. Returns true if the instruction is outside of the loop which is identified by loop_header.
344
bool RangeCheckEliminator::loop_invariant(BlockBegin *loop_header, Instruction *instruction) {
345
assert(loop_header, "Loop header must not be null!");
346
if (!instruction) return true;
347
return instruction->dominator_depth() < loop_header->dominator_depth();
348
}
349
350
// Update bound. Pushes a new bound onto the stack. Tries to do a conjunction with the current bound.
351
void RangeCheckEliminator::update_bound(IntegerStack &pushed, Value v, Bound *bound) {
352
if (v->as_Constant()) {
353
// No bound update for constants
354
return;
355
}
356
if (!_bounds[v->id()]) {
357
get_bound(v);
358
assert(_bounds[v->id()], "Now Stack must exist");
359
}
360
Bound *top = NULL;
361
if (_bounds[v->id()]->length() > 0) {
362
top = _bounds[v->id()]->top();
363
}
364
if (top) {
365
bound->and_op(top);
366
}
367
_bounds[v->id()]->push(bound);
368
pushed.append(v->id());
369
}
370
371
// Add instruction + idx for in block motion
372
void RangeCheckEliminator::add_access_indexed_info(InstructionList &indices, int idx, Value instruction, AccessIndexed *ai) {
373
int id = instruction->id();
374
AccessIndexedInfo *aii = _access_indexed_info[id];
375
if (aii == NULL) {
376
aii = new AccessIndexedInfo();
377
_access_indexed_info[id] = aii;
378
indices.append(instruction);
379
aii->_min = idx;
380
aii->_max = idx;
381
aii->_list = new AccessIndexedList();
382
} else if (idx >= aii->_min && idx <= aii->_max) {
383
remove_range_check(ai);
384
return;
385
}
386
aii->_min = MIN2(aii->_min, idx);
387
aii->_max = MAX2(aii->_max, idx);
388
aii->_list->append(ai);
389
}
390
391
// In block motion. Tries to reorder checks in order to reduce some of them.
392
// Example:
393
// a[i] = 0;
394
// a[i+2] = 0;
395
// a[i+1] = 0;
396
// In this example the check for a[i+1] would be considered as unnecessary during the first iteration.
397
// After this i is only checked once for i >= 0 and i+2 < a.length before the first array access. If this
398
// check fails, deoptimization is called.
399
void RangeCheckEliminator::in_block_motion(BlockBegin *block, AccessIndexedList &accessIndexed, InstructionList &arrays) {
400
InstructionList indices;
401
402
// Now iterate over all arrays
403
for (int i=0; i<arrays.length(); i++) {
404
int max_constant = -1;
405
AccessIndexedList list_constant;
406
Value array = arrays.at(i);
407
408
// For all AccessIndexed-instructions in this block concerning the current array.
409
for(int j=0; j<accessIndexed.length(); j++) {
410
AccessIndexed *ai = accessIndexed.at(j);
411
if (ai->array() != array || !ai->check_flag(Instruction::NeedsRangeCheckFlag)) continue;
412
413
Value index = ai->index();
414
Constant *c = index->as_Constant();
415
if (c != NULL) {
416
int constant_value = c->type()->as_IntConstant()->value();
417
if (constant_value >= 0) {
418
if (constant_value <= max_constant) {
419
// No range check needed for this
420
remove_range_check(ai);
421
} else {
422
max_constant = constant_value;
423
list_constant.append(ai);
424
}
425
}
426
} else {
427
int last_integer = 0;
428
Instruction *last_instruction = index;
429
int base = 0;
430
ArithmeticOp *ao = index->as_ArithmeticOp();
431
432
while (ao != NULL && (ao->x()->as_Constant() || ao->y()->as_Constant()) && (ao->op() == Bytecodes::_iadd || ao->op() == Bytecodes::_isub)) {
433
c = ao->y()->as_Constant();
434
Instruction *other = ao->x();
435
if (!c && ao->op() == Bytecodes::_iadd) {
436
c = ao->x()->as_Constant();
437
other = ao->y();
438
}
439
440
if (c) {
441
int value = c->type()->as_IntConstant()->value();
442
if (value != min_jint) {
443
if (ao->op() == Bytecodes::_isub) {
444
value = -value;
445
}
446
base += value;
447
last_integer = base;
448
last_instruction = other;
449
}
450
index = other;
451
} else {
452
break;
453
}
454
ao = index->as_ArithmeticOp();
455
}
456
add_access_indexed_info(indices, last_integer, last_instruction, ai);
457
}
458
}
459
460
// Iterate over all different indices
461
if (_optimistic) {
462
for (int i = 0; i < indices.length(); i++) {
463
Instruction *index_instruction = indices.at(i);
464
AccessIndexedInfo *info = _access_indexed_info[index_instruction->id()];
465
assert(info != NULL, "Info must not be null");
466
467
// if idx < 0, max > 0, max + idx may fall between 0 and
468
// length-1 and if min < 0, min + idx may overflow and be >=
469
// 0. The predicate wouldn't trigger but some accesses could
470
// be with a negative index. This test guarantees that for the
471
// min and max value that are kept the predicate can't let
472
// some incorrect accesses happen.
473
bool range_cond = (info->_max < 0 || info->_max + min_jint <= info->_min);
474
475
// Generate code only if more than 2 range checks can be eliminated because of that.
476
// 2 because at least 2 comparisons are done
477
if (info->_list->length() > 2 && range_cond) {
478
AccessIndexed *first = info->_list->at(0);
479
Instruction *insert_position = first->prev();
480
assert(insert_position->next() == first, "prev was calculated");
481
ValueStack *state = first->state_before();
482
483
// Load min Constant
484
Constant *min_constant = NULL;
485
if (info->_min != 0) {
486
min_constant = new Constant(new IntConstant(info->_min));
487
NOT_PRODUCT(min_constant->set_printable_bci(first->printable_bci()));
488
insert_position = insert_position->insert_after(min_constant);
489
}
490
491
// Load max Constant
492
Constant *max_constant = NULL;
493
if (info->_max != 0) {
494
max_constant = new Constant(new IntConstant(info->_max));
495
NOT_PRODUCT(max_constant->set_printable_bci(first->printable_bci()));
496
insert_position = insert_position->insert_after(max_constant);
497
}
498
499
// Load array length
500
Value length_instr = first->length();
501
if (!length_instr) {
502
ArrayLength *length = new ArrayLength(array, first->state_before()->copy());
503
length->set_exception_state(length->state_before());
504
length->set_flag(Instruction::DeoptimizeOnException, true);
505
insert_position = insert_position->insert_after_same_bci(length);
506
length_instr = length;
507
}
508
509
// Calculate lower bound
510
Instruction *lower_compare = index_instruction;
511
if (min_constant) {
512
ArithmeticOp *ao = new ArithmeticOp(Bytecodes::_iadd, min_constant, lower_compare, false, NULL);
513
insert_position = insert_position->insert_after_same_bci(ao);
514
lower_compare = ao;
515
}
516
517
// Calculate upper bound
518
Instruction *upper_compare = index_instruction;
519
if (max_constant) {
520
ArithmeticOp *ao = new ArithmeticOp(Bytecodes::_iadd, max_constant, upper_compare, false, NULL);
521
insert_position = insert_position->insert_after_same_bci(ao);
522
upper_compare = ao;
523
}
524
525
// Trick with unsigned compare is done
526
int bci = NOT_PRODUCT(first->printable_bci()) PRODUCT_ONLY(-1);
527
insert_position = predicate(upper_compare, Instruction::aeq, length_instr, state, insert_position, bci);
528
insert_position = predicate_cmp_with_const(lower_compare, Instruction::leq, -1, state, insert_position);
529
for (int j = 0; j<info->_list->length(); j++) {
530
AccessIndexed *ai = info->_list->at(j);
531
remove_range_check(ai);
532
}
533
}
534
}
535
536
if (list_constant.length() > 1) {
537
AccessIndexed *first = list_constant.at(0);
538
Instruction *insert_position = first->prev();
539
ValueStack *state = first->state_before();
540
// Load max Constant
541
Constant *constant = new Constant(new IntConstant(max_constant));
542
NOT_PRODUCT(constant->set_printable_bci(first->printable_bci()));
543
insert_position = insert_position->insert_after(constant);
544
Instruction *compare_instr = constant;
545
Value length_instr = first->length();
546
if (!length_instr) {
547
ArrayLength *length = new ArrayLength(array, state->copy());
548
length->set_exception_state(length->state_before());
549
length->set_flag(Instruction::DeoptimizeOnException, true);
550
insert_position = insert_position->insert_after_same_bci(length);
551
length_instr = length;
552
}
553
// Compare for greater or equal to array length
554
insert_position = predicate(compare_instr, Instruction::geq, length_instr, state, insert_position);
555
for (int j = 0; j<list_constant.length(); j++) {
556
AccessIndexed *ai = list_constant.at(j);
557
remove_range_check(ai);
558
}
559
}
560
}
561
562
// Clear data structures for next array
563
for (int i = 0; i < indices.length(); i++) {
564
Instruction *index_instruction = indices.at(i);
565
_access_indexed_info[index_instruction->id()] = NULL;
566
}
567
indices.clear();
568
}
569
}
570
571
bool RangeCheckEliminator::set_process_block_flags(BlockBegin *block) {
572
Instruction *cur = block;
573
bool process = false;
574
575
while (cur) {
576
process |= (cur->as_AccessIndexed() != NULL);
577
cur = cur->next();
578
}
579
580
BlockList *dominates = block->dominates();
581
for (int i=0; i<dominates->length(); i++) {
582
BlockBegin *next = dominates->at(i);
583
process |= set_process_block_flags(next);
584
}
585
586
if (!process) {
587
block->set(BlockBegin::donot_eliminate_range_checks);
588
}
589
return process;
590
}
591
592
bool RangeCheckEliminator::is_ok_for_deoptimization(Instruction *insert_position, Instruction *array_instr, Instruction *length_instr, Instruction *lower_instr, int lower, Instruction *upper_instr, int upper) {
593
bool upper_check = true;
594
assert(lower_instr || lower >= 0, "If no lower_instr present, lower must be greater 0");
595
assert(!lower_instr || lower_instr->dominator_depth() <= insert_position->dominator_depth(), "Dominator depth must be smaller");
596
assert(!upper_instr || upper_instr->dominator_depth() <= insert_position->dominator_depth(), "Dominator depth must be smaller");
597
assert(array_instr, "Array instruction must exist");
598
assert(array_instr->dominator_depth() <= insert_position->dominator_depth(), "Dominator depth must be smaller");
599
assert(!length_instr || length_instr->dominator_depth() <= insert_position->dominator_depth(), "Dominator depth must be smaller");
600
601
if (upper_instr && upper_instr->as_ArrayLength() && upper_instr->as_ArrayLength()->array() == array_instr) {
602
// static check
603
if (upper >= 0) return false; // would always trigger a deopt:
604
// array_length + x >= array_length, x >= 0 is always true
605
upper_check = false;
606
}
607
if (lower_instr && lower_instr->as_ArrayLength() && lower_instr->as_ArrayLength()->array() == array_instr) {
608
if (lower > 0) return false;
609
}
610
// No upper check required -> skip
611
if (upper_check && upper_instr && upper_instr->type()->as_ObjectType() && upper_instr == array_instr) {
612
// upper_instr is object means that the upper bound is the length
613
// of the upper_instr.
614
return false;
615
}
616
return true;
617
}
618
619
Instruction* RangeCheckEliminator::insert_after(Instruction* insert_position, Instruction* instr, int bci) {
620
if (bci != -1) {
621
NOT_PRODUCT(instr->set_printable_bci(bci));
622
return insert_position->insert_after(instr);
623
} else {
624
return insert_position->insert_after_same_bci(instr);
625
}
626
}
627
628
Instruction* RangeCheckEliminator::predicate(Instruction* left, Instruction::Condition cond, Instruction* right, ValueStack* state, Instruction *insert_position, int bci) {
629
RangeCheckPredicate *deoptimize = new RangeCheckPredicate(left, cond, true, right, state->copy());
630
return insert_after(insert_position, deoptimize, bci);
631
}
632
633
Instruction* RangeCheckEliminator::predicate_cmp_with_const(Instruction* instr, Instruction::Condition cond, int constant, ValueStack* state, Instruction *insert_position, int bci) {
634
Constant *const_instr = new Constant(new IntConstant(constant));
635
insert_position = insert_after(insert_position, const_instr, bci);
636
return predicate(instr, cond, const_instr, state, insert_position);
637
}
638
639
Instruction* RangeCheckEliminator::predicate_add(Instruction* left, int left_const, Instruction::Condition cond, Instruction* right, ValueStack* state, Instruction *insert_position, int bci) {
640
Constant *constant = new Constant(new IntConstant(left_const));
641
insert_position = insert_after(insert_position, constant, bci);
642
ArithmeticOp *ao = new ArithmeticOp(Bytecodes::_iadd, constant, left, false, NULL);
643
insert_position = insert_position->insert_after_same_bci(ao);
644
return predicate(ao, cond, right, state, insert_position);
645
}
646
647
Instruction* RangeCheckEliminator::predicate_add_cmp_with_const(Instruction* left, int left_const, Instruction::Condition cond, int constant, ValueStack* state, Instruction *insert_position, int bci) {
648
Constant *const_instr = new Constant(new IntConstant(constant));
649
insert_position = insert_after(insert_position, const_instr, bci);
650
return predicate_add(left, left_const, cond, const_instr, state, insert_position);
651
}
652
653
// Insert deoptimization
654
void RangeCheckEliminator::insert_deoptimization(ValueStack *state, Instruction *insert_position, Instruction *array_instr, Instruction *length_instr, Instruction *lower_instr, int lower, Instruction *upper_instr, int upper, AccessIndexed *ai) {
655
assert(is_ok_for_deoptimization(insert_position, array_instr, length_instr, lower_instr, lower, upper_instr, upper), "should have been tested before");
656
bool upper_check = !(upper_instr && upper_instr->as_ArrayLength() && upper_instr->as_ArrayLength()->array() == array_instr);
657
658
int bci = NOT_PRODUCT(ai->printable_bci()) PRODUCT_ONLY(-1);
659
if (lower_instr) {
660
assert(!lower_instr->type()->as_ObjectType(), "Must not be object type");
661
if (lower == 0) {
662
// Compare for less than 0
663
insert_position = predicate_cmp_with_const(lower_instr, Instruction::lss, 0, state, insert_position, bci);
664
} else if (lower > 0) {
665
// Compare for smaller 0
666
insert_position = predicate_add_cmp_with_const(lower_instr, lower, Instruction::lss, 0, state, insert_position, bci);
667
} else {
668
assert(lower < 0, "");
669
// Add 1
670
lower++;
671
lower = -lower;
672
// Compare for smaller or equal 0
673
insert_position = predicate_cmp_with_const(lower_instr, Instruction::leq, lower, state, insert_position, bci);
674
}
675
}
676
677
// No upper check required -> skip
678
if (!upper_check) return;
679
680
// We need to know length of array
681
if (!length_instr) {
682
// Load length if necessary
683
ArrayLength *length = new ArrayLength(array_instr, state->copy());
684
NOT_PRODUCT(length->set_printable_bci(ai->printable_bci()));
685
length->set_exception_state(length->state_before());
686
length->set_flag(Instruction::DeoptimizeOnException, true);
687
insert_position = insert_position->insert_after(length);
688
length_instr = length;
689
}
690
691
if (!upper_instr) {
692
// Compare for geq array.length
693
insert_position = predicate_cmp_with_const(length_instr, Instruction::leq, upper, state, insert_position, bci);
694
} else {
695
if (upper_instr->type()->as_ObjectType()) {
696
assert(state, "must not be null");
697
assert(upper_instr != array_instr, "should be");
698
ArrayLength *length = new ArrayLength(upper_instr, state->copy());
699
NOT_PRODUCT(length->set_printable_bci(ai->printable_bci()));
700
length->set_flag(Instruction::DeoptimizeOnException, true);
701
length->set_exception_state(length->state_before());
702
insert_position = insert_position->insert_after(length);
703
upper_instr = length;
704
}
705
assert(upper_instr->type()->as_IntType(), "Must not be object type!");
706
707
if (upper == 0) {
708
// Compare for geq array.length
709
insert_position = predicate(upper_instr, Instruction::geq, length_instr, state, insert_position, bci);
710
} else if (upper < 0) {
711
// Compare for geq array.length
712
insert_position = predicate_add(upper_instr, upper, Instruction::geq, length_instr, state, insert_position, bci);
713
} else {
714
assert(upper > 0, "");
715
upper = -upper;
716
// Compare for geq array.length
717
insert_position = predicate_add(length_instr, upper, Instruction::leq, upper_instr, state, insert_position, bci);
718
}
719
}
720
}
721
722
// Add if condition
723
void RangeCheckEliminator::add_if_condition(IntegerStack &pushed, Value x, Value y, Instruction::Condition condition) {
724
if (y->as_Constant()) return;
725
726
int const_value = 0;
727
Value instr_value = x;
728
Constant *c = x->as_Constant();
729
ArithmeticOp *ao = x->as_ArithmeticOp();
730
731
if (c != NULL) {
732
const_value = c->type()->as_IntConstant()->value();
733
instr_value = NULL;
734
} else if (ao != NULL && (!ao->x()->as_Constant() || !ao->y()->as_Constant()) && ((ao->op() == Bytecodes::_isub && ao->y()->as_Constant()) || ao->op() == Bytecodes::_iadd)) {
735
assert(!ao->x()->as_Constant() || !ao->y()->as_Constant(), "At least one operator must be non-constant!");
736
assert(ao->op() == Bytecodes::_isub || ao->op() == Bytecodes::_iadd, "Operation has to be add or sub!");
737
c = ao->x()->as_Constant();
738
if (c != NULL) {
739
const_value = c->type()->as_IntConstant()->value();
740
instr_value = ao->y();
741
} else {
742
c = ao->y()->as_Constant();
743
if (c != NULL) {
744
const_value = c->type()->as_IntConstant()->value();
745
instr_value = ao->x();
746
}
747
}
748
if (ao->op() == Bytecodes::_isub) {
749
assert(ao->y()->as_Constant(), "1 - x not supported, only x - 1 is valid!");
750
if (const_value > min_jint) {
751
const_value = -const_value;
752
} else {
753
const_value = 0;
754
instr_value = x;
755
}
756
}
757
}
758
759
update_bound(pushed, y, condition, instr_value, const_value);
760
}
761
762
// Process If
763
void RangeCheckEliminator::process_if(IntegerStack &pushed, BlockBegin *block, If *cond) {
764
// Only if we are direct true / false successor and NOT both ! (even this may occur)
765
if ((cond->tsux() == block || cond->fsux() == block) && cond->tsux() != cond->fsux()) {
766
Instruction::Condition condition = cond->cond();
767
if (cond->fsux() == block) {
768
condition = Instruction::negate(condition);
769
}
770
Value x = cond->x();
771
Value y = cond->y();
772
if (x->type()->as_IntType() && y->type()->as_IntType()) {
773
add_if_condition(pushed, y, x, condition);
774
add_if_condition(pushed, x, y, Instruction::mirror(condition));
775
}
776
}
777
}
778
779
// Process access indexed
780
void RangeCheckEliminator::process_access_indexed(BlockBegin *loop_header, BlockBegin *block, AccessIndexed *ai) {
781
TRACE_RANGE_CHECK_ELIMINATION(
782
tty->fill_to(block->dominator_depth()*2)
783
);
784
TRACE_RANGE_CHECK_ELIMINATION(
785
tty->print_cr("Access indexed: index=%d length=%d", ai->index()->id(), (ai->length() != NULL ? ai->length()->id() :-1 ))
786
);
787
788
if (ai->check_flag(Instruction::NeedsRangeCheckFlag)) {
789
Bound *index_bound = get_bound(ai->index());
790
if (!index_bound->has_lower() || !index_bound->has_upper()) {
791
TRACE_RANGE_CHECK_ELIMINATION(
792
tty->fill_to(block->dominator_depth()*2);
793
tty->print_cr("Index instruction %d has no lower and/or no upper bound!", ai->index()->id())
794
);
795
return;
796
}
797
798
Bound *array_bound;
799
if (ai->length()) {
800
array_bound = get_bound(ai->length());
801
} else {
802
array_bound = get_bound(ai->array());
803
}
804
805
if (in_array_bound(index_bound, ai->array()) ||
806
(index_bound && array_bound && index_bound->is_smaller(array_bound) && !index_bound->lower_instr() && index_bound->lower() >= 0)) {
807
TRACE_RANGE_CHECK_ELIMINATION(
808
tty->fill_to(block->dominator_depth()*2);
809
tty->print_cr("Bounds check for instruction %d in block B%d can be fully eliminated!", ai->id(), ai->block()->block_id())
810
);
811
812
remove_range_check(ai);
813
} else if (_optimistic && loop_header) {
814
assert(ai->array(), "Array must not be null!");
815
assert(ai->index(), "Index must not be null!");
816
817
// Array instruction
818
Instruction *array_instr = ai->array();
819
if (!loop_invariant(loop_header, array_instr)) {
820
TRACE_RANGE_CHECK_ELIMINATION(
821
tty->fill_to(block->dominator_depth()*2);
822
tty->print_cr("Array %d is not loop invariant to header B%d", ai->array()->id(), loop_header->block_id())
823
);
824
return;
825
}
826
827
// Lower instruction
828
Value index_instr = ai->index();
829
Value lower_instr = index_bound->lower_instr();
830
if (!loop_invariant(loop_header, lower_instr)) {
831
TRACE_RANGE_CHECK_ELIMINATION(
832
tty->fill_to(block->dominator_depth()*2);
833
tty->print_cr("Lower instruction %d not loop invariant!", lower_instr->id())
834
);
835
return;
836
}
837
if (!lower_instr && index_bound->lower() < 0) {
838
TRACE_RANGE_CHECK_ELIMINATION(
839
tty->fill_to(block->dominator_depth()*2);
840
tty->print_cr("Lower bound smaller than 0 (%d)!", index_bound->lower())
841
);
842
return;
843
}
844
845
// Upper instruction
846
Value upper_instr = index_bound->upper_instr();
847
if (!loop_invariant(loop_header, upper_instr)) {
848
TRACE_RANGE_CHECK_ELIMINATION(
849
tty->fill_to(block->dominator_depth()*2);
850
tty->print_cr("Upper instruction %d not loop invariant!", upper_instr->id())
851
);
852
return;
853
}
854
855
// Length instruction
856
Value length_instr = ai->length();
857
if (!loop_invariant(loop_header, length_instr)) {
858
// Generate length instruction yourself!
859
length_instr = NULL;
860
}
861
862
TRACE_RANGE_CHECK_ELIMINATION(
863
tty->fill_to(block->dominator_depth()*2);
864
tty->print_cr("LOOP INVARIANT access indexed %d found in block B%d!", ai->id(), ai->block()->block_id())
865
);
866
867
BlockBegin *pred_block = loop_header->dominator();
868
assert(pred_block != NULL, "Every loop header has a dominator!");
869
BlockEnd *pred_block_end = pred_block->end();
870
Instruction *insert_position = pred_block_end->prev();
871
ValueStack *state = pred_block_end->state_before();
872
if (pred_block_end->as_Goto() && state == NULL) state = pred_block_end->state();
873
assert(state, "State must not be null");
874
875
// Add deoptimization to dominator of loop header
876
TRACE_RANGE_CHECK_ELIMINATION(
877
tty->fill_to(block->dominator_depth()*2);
878
tty->print_cr("Inserting deopt at bci %d in block B%d!", state->bci(), insert_position->block()->block_id())
879
);
880
881
if (!is_ok_for_deoptimization(insert_position, array_instr, length_instr, lower_instr, index_bound->lower(), upper_instr, index_bound->upper())) {
882
TRACE_RANGE_CHECK_ELIMINATION(
883
tty->fill_to(block->dominator_depth()*2);
884
tty->print_cr("Could not eliminate because of static analysis!")
885
);
886
return;
887
}
888
889
insert_deoptimization(state, insert_position, array_instr, length_instr, lower_instr, index_bound->lower(), upper_instr, index_bound->upper(), ai);
890
891
// Finally remove the range check!
892
remove_range_check(ai);
893
}
894
}
895
}
896
897
void RangeCheckEliminator::remove_range_check(AccessIndexed *ai) {
898
ai->set_flag(Instruction::NeedsRangeCheckFlag, false);
899
// no range check, no need for the length instruction anymore
900
ai->clear_length();
901
902
TRACE_RANGE_CHECK_ELIMINATION(
903
tty->fill_to(ai->dominator_depth()*2);
904
tty->print_cr("Range check for instruction %d eliminated!", ai->id());
905
);
906
907
ASSERT_RANGE_CHECK_ELIMINATION(
908
Value array_length = ai->length();
909
if (!array_length) {
910
array_length = ai->array();
911
assert(array_length->type()->as_ObjectType(), "Has to be object type!");
912
}
913
int cur_constant = -1;
914
Value cur_value = array_length;
915
if (cur_value->type()->as_IntConstant()) {
916
cur_constant += cur_value->type()->as_IntConstant()->value();
917
cur_value = NULL;
918
}
919
Bound *new_index_bound = new Bound(0, NULL, cur_constant, cur_value);
920
add_assertions(new_index_bound, ai->index(), ai);
921
);
922
}
923
924
// Calculate bounds for instruction in this block and children blocks in the dominator tree
925
void RangeCheckEliminator::calc_bounds(BlockBegin *block, BlockBegin *loop_header) {
926
// Ensures a valid loop_header
927
assert(!loop_header || loop_header->is_set(BlockBegin::linear_scan_loop_header_flag), "Loop header has to be real !");
928
929
// Tracing output
930
TRACE_RANGE_CHECK_ELIMINATION(
931
tty->fill_to(block->dominator_depth()*2);
932
tty->print_cr("Block B%d", block->block_id());
933
);
934
935
// Pushed stack for conditions
936
IntegerStack pushed;
937
// Process If
938
BlockBegin *parent = block->dominator();
939
if (parent != NULL) {
940
If *cond = parent->end()->as_If();
941
if (cond != NULL) {
942
process_if(pushed, block, cond);
943
}
944
}
945
946
// Interate over current block
947
InstructionList arrays;
948
AccessIndexedList accessIndexed;
949
Instruction *cur = block;
950
951
while (cur) {
952
// Ensure cur wasn't inserted during the elimination
953
if (cur->id() < this->_bounds.length()) {
954
// Process only if it is an access indexed instruction
955
AccessIndexed *ai = cur->as_AccessIndexed();
956
if (ai != NULL) {
957
process_access_indexed(loop_header, block, ai);
958
accessIndexed.append(ai);
959
if (!arrays.contains(ai->array())) {
960
arrays.append(ai->array());
961
}
962
Bound *b = get_bound(ai->index());
963
if (!b->lower_instr()) {
964
// Lower bound is constant
965
update_bound(pushed, ai->index(), Instruction::geq, NULL, 0);
966
}
967
if (!b->has_upper()) {
968
if (ai->length() && ai->length()->type()->as_IntConstant()) {
969
int value = ai->length()->type()->as_IntConstant()->value();
970
update_bound(pushed, ai->index(), Instruction::lss, NULL, value);
971
} else {
972
// Has no upper bound
973
Instruction *instr = ai->length();
974
if (instr != NULL) instr = ai->array();
975
update_bound(pushed, ai->index(), Instruction::lss, instr, 0);
976
}
977
}
978
}
979
}
980
cur = cur->next();
981
}
982
983
// Output current condition stack
984
TRACE_RANGE_CHECK_ELIMINATION(dump_condition_stack(block));
985
986
// Do in block motion of range checks
987
in_block_motion(block, accessIndexed, arrays);
988
989
// Call all dominated blocks
990
for (int i=0; i<block->dominates()->length(); i++) {
991
BlockBegin *next = block->dominates()->at(i);
992
if (!next->is_set(BlockBegin::donot_eliminate_range_checks)) {
993
// if current block is a loop header and:
994
// - next block belongs to the same loop
995
// or
996
// - next block belongs to an inner loop
997
// then current block is the loop header for next block
998
if (block->is_set(BlockBegin::linear_scan_loop_header_flag) && (block->loop_index() == next->loop_index() || next->loop_depth() > block->loop_depth())) {
999
calc_bounds(next, block);
1000
} else {
1001
calc_bounds(next, loop_header);
1002
}
1003
}
1004
}
1005
1006
// Reset stack
1007
for (int i=0; i<pushed.length(); i++) {
1008
_bounds[pushed[i]]->pop();
1009
}
1010
}
1011
1012
#ifndef PRODUCT
1013
// Dump condition stack
1014
void RangeCheckEliminator::dump_condition_stack(BlockBegin *block) {
1015
for (int i=0; i<_ir->linear_scan_order()->length(); i++) {
1016
BlockBegin *cur_block = _ir->linear_scan_order()->at(i);
1017
Instruction *instr = cur_block;
1018
for_each_phi_fun(cur_block, phi,
1019
BoundStack *bound_stack = _bounds.at(phi->id());
1020
if (bound_stack && bound_stack->length() > 0) {
1021
Bound *bound = bound_stack->top();
1022
if ((bound->has_lower() || bound->has_upper()) && (bound->lower_instr() != phi || bound->upper_instr() != phi || bound->lower() != 0 || bound->upper() != 0)) {
1023
TRACE_RANGE_CHECK_ELIMINATION(tty->fill_to(2*block->dominator_depth());
1024
tty->print("i%d", phi->id());
1025
tty->print(": ");
1026
bound->print();
1027
tty->cr();
1028
);
1029
}
1030
});
1031
1032
while (!instr->as_BlockEnd()) {
1033
if (instr->id() < _bounds.length()) {
1034
BoundStack *bound_stack = _bounds.at(instr->id());
1035
if (bound_stack && bound_stack->length() > 0) {
1036
Bound *bound = bound_stack->top();
1037
if ((bound->has_lower() || bound->has_upper()) && (bound->lower_instr() != instr || bound->upper_instr() != instr || bound->lower() != 0 || bound->upper() != 0)) {
1038
TRACE_RANGE_CHECK_ELIMINATION(tty->fill_to(2*block->dominator_depth());
1039
tty->print("i%d", instr->id());
1040
tty->print(": ");
1041
bound->print();
1042
tty->cr();
1043
);
1044
}
1045
}
1046
}
1047
instr = instr->next();
1048
}
1049
}
1050
}
1051
#endif
1052
1053
// Verification or the IR
1054
RangeCheckEliminator::Verification::Verification(IR *ir) : _used(BlockBegin::number_of_blocks(), false) {
1055
this->_ir = ir;
1056
ir->iterate_linear_scan_order(this);
1057
}
1058
1059
// Verify this block
1060
void RangeCheckEliminator::Verification::block_do(BlockBegin *block) {
1061
If *cond = block->end()->as_If();
1062
// Watch out: tsux and fsux can be the same!
1063
if (block->number_of_sux() > 1) {
1064
for (int i=0; i<block->number_of_sux(); i++) {
1065
BlockBegin *sux = block->sux_at(i);
1066
BlockBegin *pred = NULL;
1067
for (int j=0; j<sux->number_of_preds(); j++) {
1068
BlockBegin *cur = sux->pred_at(j);
1069
assert(cur != NULL, "Predecessor must not be null");
1070
if (!pred) {
1071
pred = cur;
1072
}
1073
assert(cur == pred, "Block must not have more than one predecessor if its predecessor has more than one successor");
1074
}
1075
assert(sux->number_of_preds() >= 1, "Block must have at least one predecessor");
1076
assert(sux->pred_at(0) == block, "Wrong successor");
1077
}
1078
}
1079
1080
BlockBegin *dominator = block->dominator();
1081
if (dominator) {
1082
assert(block != _ir->start(), "Start block must not have a dominator!");
1083
assert(can_reach(dominator, block), "Dominator can't reach his block !");
1084
assert(can_reach(_ir->start(), dominator), "Dominator is unreachable !");
1085
assert(!can_reach(_ir->start(), block, dominator), "Wrong dominator ! Block can be reached anyway !");
1086
BlockList *all_blocks = _ir->linear_scan_order();
1087
for (int i=0; i<all_blocks->length(); i++) {
1088
BlockBegin *cur = all_blocks->at(i);
1089
if (cur != dominator && cur != block) {
1090
assert(can_reach(dominator, block, cur), "There has to be another dominator!");
1091
}
1092
}
1093
} else {
1094
assert(block == _ir->start(), "Only start block must not have a dominator");
1095
}
1096
1097
if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
1098
int loop_index = block->loop_index();
1099
BlockList *all_blocks = _ir->linear_scan_order();
1100
assert(block->number_of_preds() >= 1, "Block must have at least one predecessor");
1101
assert(!block->is_set(BlockBegin::exception_entry_flag), "Loop header must not be exception handler!");
1102
// Sometimes, the backbranch comes from an exception handler. In
1103
// this case, loop indexes/loop depths may not appear correct.
1104
bool loop_through_xhandler = false;
1105
for (int i = 0; i < block->number_of_exception_handlers(); i++) {
1106
BlockBegin *xhandler = block->exception_handler_at(i);
1107
for (int j = 0; j < block->number_of_preds(); j++) {
1108
if (dominates(xhandler, block->pred_at(j)) || xhandler == block->pred_at(j)) {
1109
loop_through_xhandler = true;
1110
}
1111
}
1112
}
1113
1114
for (int i=0; i<block->number_of_sux(); i++) {
1115
BlockBegin *sux = block->sux_at(i);
1116
assert(sux->loop_depth() != block->loop_depth() || sux->loop_index() == block->loop_index() || loop_through_xhandler, "Loop index has to be same");
1117
assert(sux->loop_depth() == block->loop_depth() || sux->loop_index() != block->loop_index(), "Loop index has to be different");
1118
}
1119
1120
for (int i=0; i<all_blocks->length(); i++) {
1121
BlockBegin *cur = all_blocks->at(i);
1122
if (cur->loop_index() == loop_index && cur != block) {
1123
assert(dominates(block->dominator(), cur), "Dominator of loop header must dominate all loop blocks");
1124
}
1125
}
1126
}
1127
1128
Instruction *cur = block;
1129
while (cur) {
1130
assert(cur->block() == block, "Block begin has to be set correctly!");
1131
cur = cur->next();
1132
}
1133
}
1134
1135
// Loop header must dominate all loop blocks
1136
bool RangeCheckEliminator::Verification::dominates(BlockBegin *dominator, BlockBegin *block) {
1137
BlockBegin *cur = block->dominator();
1138
while (cur && cur != dominator) {
1139
cur = cur->dominator();
1140
}
1141
return cur == dominator;
1142
}
1143
1144
// Try to reach Block end beginning in Block start and not using Block dont_use
1145
bool RangeCheckEliminator::Verification::can_reach(BlockBegin *start, BlockBegin *end, BlockBegin *dont_use /* = NULL */) {
1146
if (start == end) return start != dont_use;
1147
// Simple BSF from start to end
1148
// BlockBeginList _current;
1149
for (int i=0; i<_used.length(); i++) {
1150
_used[i] = false;
1151
}
1152
_current.truncate(0);
1153
_successors.truncate(0);
1154
if (start != dont_use) {
1155
_current.push(start);
1156
_used[start->block_id()] = true;
1157
}
1158
1159
// BlockBeginList _successors;
1160
while (_current.length() > 0) {
1161
BlockBegin *cur = _current.pop();
1162
// Add exception handlers to list
1163
for (int i=0; i<cur->number_of_exception_handlers(); i++) {
1164
BlockBegin *xhandler = cur->exception_handler_at(i);
1165
_successors.push(xhandler);
1166
// Add exception handlers of _successors to list
1167
for (int j=0; j<xhandler->number_of_exception_handlers(); j++) {
1168
BlockBegin *sux_xhandler = xhandler->exception_handler_at(j);
1169
_successors.push(sux_xhandler);
1170
}
1171
}
1172
// Add normal _successors to list
1173
for (int i=0; i<cur->number_of_sux(); i++) {
1174
BlockBegin *sux = cur->sux_at(i);
1175
_successors.push(sux);
1176
// Add exception handlers of _successors to list
1177
for (int j=0; j<sux->number_of_exception_handlers(); j++) {
1178
BlockBegin *xhandler = sux->exception_handler_at(j);
1179
_successors.push(xhandler);
1180
}
1181
}
1182
for (int i=0; i<_successors.length(); i++) {
1183
BlockBegin *sux = _successors[i];
1184
assert(sux != NULL, "Successor must not be NULL!");
1185
if (sux == end) {
1186
return true;
1187
}
1188
if (sux != dont_use && !_used[sux->block_id()]) {
1189
_used[sux->block_id()] = true;
1190
_current.push(sux);
1191
}
1192
}
1193
_successors.truncate(0);
1194
}
1195
1196
return false;
1197
}
1198
1199
// Bound
1200
RangeCheckEliminator::Bound::~Bound() {
1201
}
1202
1203
// Bound constructor
1204
RangeCheckEliminator::Bound::Bound() {
1205
init();
1206
this->_lower = min_jint;
1207
this->_upper = max_jint;
1208
this->_lower_instr = NULL;
1209
this->_upper_instr = NULL;
1210
}
1211
1212
// Bound constructor
1213
RangeCheckEliminator::Bound::Bound(int lower, Value lower_instr, int upper, Value upper_instr) {
1214
init();
1215
assert(!lower_instr || !lower_instr->as_Constant() || !lower_instr->type()->as_IntConstant(), "Must not be constant!");
1216
assert(!upper_instr || !upper_instr->as_Constant() || !upper_instr->type()->as_IntConstant(), "Must not be constant!");
1217
this->_lower = lower;
1218
this->_upper = upper;
1219
this->_lower_instr = lower_instr;
1220
this->_upper_instr = upper_instr;
1221
}
1222
1223
// Bound constructor
1224
RangeCheckEliminator::Bound::Bound(Instruction::Condition cond, Value v, int constant) {
1225
assert(!v || (v->type() && (v->type()->as_IntType() || v->type()->as_ObjectType())), "Type must be array or integer!");
1226
assert(!v || !v->as_Constant() || !v->type()->as_IntConstant(), "Must not be constant!");
1227
1228
init();
1229
if (cond == Instruction::eql) {
1230
_lower = constant;
1231
_lower_instr = v;
1232
_upper = constant;
1233
_upper_instr = v;
1234
} else if (cond == Instruction::neq) {
1235
_lower = min_jint;
1236
_upper = max_jint;
1237
_lower_instr = NULL;
1238
_upper_instr = NULL;
1239
if (v == NULL) {
1240
if (constant == min_jint) {
1241
_lower++;
1242
}
1243
if (constant == max_jint) {
1244
_upper--;
1245
}
1246
}
1247
} else if (cond == Instruction::geq) {
1248
_lower = constant;
1249
_lower_instr = v;
1250
_upper = max_jint;
1251
_upper_instr = NULL;
1252
} else if (cond == Instruction::leq) {
1253
_lower = min_jint;
1254
_lower_instr = NULL;
1255
_upper = constant;
1256
_upper_instr = v;
1257
} else {
1258
ShouldNotReachHere();
1259
}
1260
}
1261
1262
// Set lower
1263
void RangeCheckEliminator::Bound::set_lower(int value, Value v) {
1264
assert(!v || !v->as_Constant() || !v->type()->as_IntConstant(), "Must not be constant!");
1265
this->_lower = value;
1266
this->_lower_instr = v;
1267
}
1268
1269
// Set upper
1270
void RangeCheckEliminator::Bound::set_upper(int value, Value v) {
1271
assert(!v || !v->as_Constant() || !v->type()->as_IntConstant(), "Must not be constant!");
1272
this->_upper = value;
1273
this->_upper_instr = v;
1274
}
1275
1276
// Add constant -> no overflow may occur
1277
void RangeCheckEliminator::Bound::add_constant(int value) {
1278
this->_lower += value;
1279
this->_upper += value;
1280
}
1281
1282
// Init
1283
void RangeCheckEliminator::Bound::init() {
1284
}
1285
1286
// or
1287
void RangeCheckEliminator::Bound::or_op(Bound *b) {
1288
// Watch out, bound is not guaranteed not to overflow!
1289
// Update lower bound
1290
if (_lower_instr != b->_lower_instr || (_lower_instr && _lower != b->_lower)) {
1291
_lower_instr = NULL;
1292
_lower = min_jint;
1293
} else {
1294
_lower = MIN2(_lower, b->_lower);
1295
}
1296
// Update upper bound
1297
if (_upper_instr != b->_upper_instr || (_upper_instr && _upper != b->_upper)) {
1298
_upper_instr = NULL;
1299
_upper = max_jint;
1300
} else {
1301
_upper = MAX2(_upper, b->_upper);
1302
}
1303
}
1304
1305
// and
1306
void RangeCheckEliminator::Bound::and_op(Bound *b) {
1307
// Update lower bound
1308
if (_lower_instr == b->_lower_instr) {
1309
_lower = MAX2(_lower, b->_lower);
1310
}
1311
if (b->has_lower()) {
1312
bool set = true;
1313
if (_lower_instr != NULL && b->_lower_instr != NULL) {
1314
set = (_lower_instr->dominator_depth() > b->_lower_instr->dominator_depth());
1315
}
1316
if (set) {
1317
_lower = b->_lower;
1318
_lower_instr = b->_lower_instr;
1319
}
1320
}
1321
// Update upper bound
1322
if (_upper_instr == b->_upper_instr) {
1323
_upper = MIN2(_upper, b->_upper);
1324
}
1325
if (b->has_upper()) {
1326
bool set = true;
1327
if (_upper_instr != NULL && b->_upper_instr != NULL) {
1328
set = (_upper_instr->dominator_depth() > b->_upper_instr->dominator_depth());
1329
}
1330
if (set) {
1331
_upper = b->_upper;
1332
_upper_instr = b->_upper_instr;
1333
}
1334
}
1335
}
1336
1337
// has_upper
1338
bool RangeCheckEliminator::Bound::has_upper() {
1339
return _upper_instr != NULL || _upper < max_jint;
1340
}
1341
1342
// is_smaller
1343
bool RangeCheckEliminator::Bound::is_smaller(Bound *b) {
1344
if (b->_lower_instr != _upper_instr) {
1345
return false;
1346
}
1347
return _upper < b->_lower;
1348
}
1349
1350
// has_lower
1351
bool RangeCheckEliminator::Bound::has_lower() {
1352
return _lower_instr != NULL || _lower > min_jint;
1353
}
1354
1355
// in_array_bound
1356
bool RangeCheckEliminator::in_array_bound(Bound *bound, Value array){
1357
if (!bound) return false;
1358
assert(array != NULL, "Must not be null!");
1359
assert(bound != NULL, "Must not be null!");
1360
if (bound->lower() >=0 && bound->lower_instr() == NULL && bound->upper() < 0 && bound->upper_instr() != NULL) {
1361
ArrayLength *len = bound->upper_instr()->as_ArrayLength();
1362
if (bound->upper_instr() == array || (len != NULL && len->array() == array)) {
1363
return true;
1364
}
1365
}
1366
return false;
1367
}
1368
1369
// remove_lower
1370
void RangeCheckEliminator::Bound::remove_lower() {
1371
_lower = min_jint;
1372
_lower_instr = NULL;
1373
}
1374
1375
// remove_upper
1376
void RangeCheckEliminator::Bound::remove_upper() {
1377
_upper = max_jint;
1378
_upper_instr = NULL;
1379
}
1380
1381
// upper
1382
int RangeCheckEliminator::Bound::upper() {
1383
return _upper;
1384
}
1385
1386
// lower
1387
int RangeCheckEliminator::Bound::lower() {
1388
return _lower;
1389
}
1390
1391
// upper_instr
1392
Value RangeCheckEliminator::Bound::upper_instr() {
1393
return _upper_instr;
1394
}
1395
1396
// lower_instr
1397
Value RangeCheckEliminator::Bound::lower_instr() {
1398
return _lower_instr;
1399
}
1400
1401
// print
1402
void RangeCheckEliminator::Bound::print() {
1403
tty->print("%s", "");
1404
if (this->_lower_instr || this->_lower != min_jint) {
1405
if (this->_lower_instr) {
1406
tty->print("i%d", this->_lower_instr->id());
1407
if (this->_lower > 0) {
1408
tty->print("+%d", _lower);
1409
}
1410
if (this->_lower < 0) {
1411
tty->print("%d", _lower);
1412
}
1413
} else {
1414
tty->print("%d", _lower);
1415
}
1416
tty->print(" <= ");
1417
}
1418
tty->print("x");
1419
if (this->_upper_instr || this->_upper != max_jint) {
1420
tty->print(" <= ");
1421
if (this->_upper_instr) {
1422
tty->print("i%d", this->_upper_instr->id());
1423
if (this->_upper > 0) {
1424
tty->print("+%d", _upper);
1425
}
1426
if (this->_upper < 0) {
1427
tty->print("%d", _upper);
1428
}
1429
} else {
1430
tty->print("%d", _upper);
1431
}
1432
}
1433
}
1434
1435
// Copy
1436
RangeCheckEliminator::Bound *RangeCheckEliminator::Bound::copy() {
1437
Bound *b = new Bound();
1438
b->_lower = _lower;
1439
b->_lower_instr = _lower_instr;
1440
b->_upper = _upper;
1441
b->_upper_instr = _upper_instr;
1442
return b;
1443
}
1444
1445
#ifdef ASSERT
1446
// Add assertion
1447
void RangeCheckEliminator::Bound::add_assertion(Instruction *instruction, Instruction *position, int i, Value instr, Instruction::Condition cond) {
1448
Instruction *result = position;
1449
Instruction *compare_with = NULL;
1450
ValueStack *state = position->state_before();
1451
if (position->as_BlockEnd() && !position->as_Goto()) {
1452
state = position->as_BlockEnd()->state_before();
1453
}
1454
Instruction *instruction_before = position->prev();
1455
if (position->as_Return() && Compilation::current()->method()->is_synchronized() && instruction_before->as_MonitorExit()) {
1456
instruction_before = instruction_before->prev();
1457
}
1458
result = instruction_before;
1459
// Load constant only if needed
1460
Constant *constant = NULL;
1461
if (i != 0 || !instr) {
1462
constant = new Constant(new IntConstant(i));
1463
NOT_PRODUCT(constant->set_printable_bci(position->printable_bci()));
1464
result = result->insert_after(constant);
1465
compare_with = constant;
1466
}
1467
1468
if (instr) {
1469
assert(instr->type()->as_ObjectType() || instr->type()->as_IntType(), "Type must be array or integer!");
1470
compare_with = instr;
1471
// Load array length if necessary
1472
Instruction *op = instr;
1473
if (instr->type()->as_ObjectType()) {
1474
assert(state, "must not be null");
1475
ArrayLength *length = new ArrayLength(instr, state->copy());
1476
NOT_PRODUCT(length->set_printable_bci(position->printable_bci()));
1477
length->set_exception_state(length->state_before());
1478
result = result->insert_after(length);
1479
op = length;
1480
compare_with = length;
1481
}
1482
// Add operation only if necessary
1483
if (constant) {
1484
ArithmeticOp *ao = new ArithmeticOp(Bytecodes::_iadd, constant, op, false, NULL);
1485
NOT_PRODUCT(ao->set_printable_bci(position->printable_bci()));
1486
result = result->insert_after(ao);
1487
compare_with = ao;
1488
// TODO: Check that add operation does not overflow!
1489
}
1490
}
1491
assert(compare_with != NULL, "You have to compare with something!");
1492
assert(instruction != NULL, "Instruction must not be null!");
1493
1494
if (instruction->type()->as_ObjectType()) {
1495
// Load array length if necessary
1496
Instruction *op = instruction;
1497
assert(state, "must not be null");
1498
ArrayLength *length = new ArrayLength(instruction, state->copy());
1499
length->set_exception_state(length->state_before());
1500
NOT_PRODUCT(length->set_printable_bci(position->printable_bci()));
1501
result = result->insert_after(length);
1502
instruction = length;
1503
}
1504
1505
Assert *assert = new Assert(instruction, cond, false, compare_with);
1506
NOT_PRODUCT(assert->set_printable_bci(position->printable_bci()));
1507
result->insert_after(assert);
1508
}
1509
1510
// Add assertions
1511
void RangeCheckEliminator::add_assertions(Bound *bound, Instruction *instruction, Instruction *position) {
1512
// Add lower bound assertion
1513
if (bound->has_lower()) {
1514
bound->add_assertion(instruction, position, bound->lower(), bound->lower_instr(), Instruction::geq);
1515
}
1516
// Add upper bound assertion
1517
if (bound->has_upper()) {
1518
bound->add_assertion(instruction, position, bound->upper(), bound->upper_instr(), Instruction::leq);
1519
}
1520
}
1521
#endif
1522
1523
1524