Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/c1/c1_ValueStack.hpp
32285 views
1
/*
2
* Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#ifndef SHARE_VM_C1_C1_VALUESTACK_HPP
26
#define SHARE_VM_C1_C1_VALUESTACK_HPP
27
28
#include "c1/c1_Instruction.hpp"
29
30
class ValueStack: public CompilationResourceObj {
31
public:
32
enum Kind {
33
Parsing, // During abstract interpretation in GraphBuilder
34
CallerState, // Caller state when inlining
35
StateBefore, // Before before execution of instruction
36
StateAfter, // After execution of instruction
37
ExceptionState, // Exception handling of instruction
38
EmptyExceptionState, // Exception handling of instructions not covered by an xhandler
39
BlockBeginState // State of BlockBegin instruction with phi functions of this block
40
};
41
42
private:
43
IRScope* _scope; // the enclosing scope
44
ValueStack* _caller_state;
45
int _bci;
46
Kind _kind;
47
48
Values _locals; // the locals
49
Values _stack; // the expression stack
50
Values _locks; // the monitor stack (holding the locked values)
51
52
Value check(ValueTag tag, Value t) {
53
assert(tag == t->type()->tag() || tag == objectTag && t->type()->tag() == addressTag, "types must correspond");
54
return t;
55
}
56
57
Value check(ValueTag tag, Value t, Value h) {
58
assert(h == NULL, "hi-word of doubleword value must be NULL");
59
return check(tag, t);
60
}
61
62
// helper routine
63
static void apply(Values list, ValueVisitor* f);
64
65
// for simplified copying
66
ValueStack(ValueStack* copy_from, Kind kind, int bci);
67
68
public:
69
// creation
70
ValueStack(IRScope* scope, ValueStack* caller_state);
71
72
ValueStack* copy() { return new ValueStack(this, _kind, _bci); }
73
ValueStack* copy(Kind new_kind, int new_bci) { return new ValueStack(this, new_kind, new_bci); }
74
ValueStack* copy_for_parsing() { return new ValueStack(this, Parsing, -99); }
75
76
void set_caller_state(ValueStack* s) {
77
assert(kind() == EmptyExceptionState ||
78
(Compilation::current()->env()->should_retain_local_variables() && kind() == ExceptionState),
79
"only EmptyExceptionStates can be modified");
80
_caller_state = s;
81
}
82
83
bool is_same(ValueStack* s); // returns true if this & s's types match (w/o checking locals)
84
85
// accessors
86
IRScope* scope() const { return _scope; }
87
ValueStack* caller_state() const { return _caller_state; }
88
int bci() const { return _bci; }
89
Kind kind() const { return _kind; }
90
91
int locals_size() const { return _locals.length(); }
92
int stack_size() const { return _stack.length(); }
93
int locks_size() const { return _locks.length(); }
94
bool stack_is_empty() const { return _stack.is_empty(); }
95
bool no_active_locks() const { return _locks.is_empty(); }
96
int total_locks_size() const;
97
98
// locals access
99
void clear_locals(); // sets all locals to NULL;
100
101
void invalidate_local(int i) {
102
assert(_locals.at(i)->type()->is_single_word() ||
103
_locals.at(i + 1) == NULL, "hi-word of doubleword value must be NULL");
104
_locals.at_put(i, NULL);
105
}
106
107
Value local_at(int i) const {
108
Value x = _locals.at(i);
109
assert(x == NULL || x->type()->is_single_word() ||
110
_locals.at(i + 1) == NULL, "hi-word of doubleword value must be NULL");
111
return x;
112
}
113
114
void store_local(int i, Value x) {
115
// When overwriting local i, check if i - 1 was the start of a
116
// double word local and kill it.
117
if (i > 0) {
118
Value prev = _locals.at(i - 1);
119
if (prev != NULL && prev->type()->is_double_word()) {
120
_locals.at_put(i - 1, NULL);
121
}
122
}
123
124
_locals.at_put(i, x);
125
if (x->type()->is_double_word()) {
126
// hi-word of doubleword value is always NULL
127
_locals.at_put(i + 1, NULL);
128
}
129
}
130
131
// stack access
132
Value stack_at(int i) const {
133
Value x = _stack.at(i);
134
assert(x->type()->is_single_word() ||
135
_stack.at(i + 1) == NULL, "hi-word of doubleword value must be NULL");
136
return x;
137
}
138
139
Value stack_at_inc(int& i) const {
140
Value x = stack_at(i);
141
i += x->type()->size();
142
return x;
143
}
144
145
void stack_at_put(int i, Value x) {
146
_stack.at_put(i, x);
147
}
148
149
// pinning support
150
void pin_stack_for_linear_scan();
151
152
// iteration
153
void values_do(ValueVisitor* f);
154
155
// untyped manipulation (for dup_x1, etc.)
156
void truncate_stack(int size) { _stack.trunc_to(size); }
157
void raw_push(Value t) { _stack.push(t); }
158
Value raw_pop() { return _stack.pop(); }
159
160
// typed manipulation
161
void ipush(Value t) { _stack.push(check(intTag , t)); }
162
void fpush(Value t) { _stack.push(check(floatTag , t)); }
163
void apush(Value t) { _stack.push(check(objectTag , t)); }
164
void rpush(Value t) { _stack.push(check(addressTag, t)); }
165
void lpush(Value t) { _stack.push(check(longTag , t)); _stack.push(NULL); }
166
void dpush(Value t) { _stack.push(check(doubleTag , t)); _stack.push(NULL); }
167
168
void push(ValueType* type, Value t) {
169
switch (type->tag()) {
170
case intTag : ipush(t); return;
171
case longTag : lpush(t); return;
172
case floatTag : fpush(t); return;
173
case doubleTag : dpush(t); return;
174
case objectTag : apush(t); return;
175
case addressTag: rpush(t); return;
176
}
177
ShouldNotReachHere();
178
}
179
180
Value ipop() { return check(intTag , _stack.pop()); }
181
Value fpop() { return check(floatTag , _stack.pop()); }
182
Value apop() { return check(objectTag , _stack.pop()); }
183
Value rpop() { return check(addressTag, _stack.pop()); }
184
Value lpop() { Value h = _stack.pop(); return check(longTag , _stack.pop(), h); }
185
Value dpop() { Value h = _stack.pop(); return check(doubleTag, _stack.pop(), h); }
186
187
Value pop(ValueType* type) {
188
switch (type->tag()) {
189
case intTag : return ipop();
190
case longTag : return lpop();
191
case floatTag : return fpop();
192
case doubleTag : return dpop();
193
case objectTag : return apop();
194
case addressTag: return rpop();
195
}
196
ShouldNotReachHere();
197
return NULL;
198
}
199
200
Values* pop_arguments(int argument_size);
201
202
// locks access
203
int lock (Value obj);
204
int unlock();
205
Value lock_at(int i) const { return _locks.at(i); }
206
207
// SSA form IR support
208
void setup_phi_for_stack(BlockBegin* b, int index);
209
void setup_phi_for_local(BlockBegin* b, int index);
210
211
// debugging
212
void print() PRODUCT_RETURN;
213
void verify() PRODUCT_RETURN;
214
};
215
216
217
218
// Macro definitions for simple iteration of stack and local values of a ValueStack
219
// The macros can be used like a for-loop. All variables (state, index and value)
220
// must be defined before the loop.
221
// When states are nested because of inlining, the stack of the innermost state
222
// cumulates also the stack of the nested states. In contrast, the locals of all
223
// states must be iterated each.
224
// Use the following code pattern to iterate all stack values and all nested local values:
225
//
226
// ValueStack* state = ... // state that is iterated
227
// int index; // current loop index (overwritten in loop)
228
// Value value; // value at current loop index (overwritten in loop)
229
//
230
// for_each_stack_value(state, index, value {
231
// do something with value and index
232
// }
233
//
234
// for_each_state(state) {
235
// for_each_local_value(state, index, value) {
236
// do something with value and index
237
// }
238
// }
239
// as an invariant, state is NULL now
240
241
242
// construct a unique variable name with the line number where the macro is used
243
#define temp_var3(x) temp__ ## x
244
#define temp_var2(x) temp_var3(x)
245
#define temp_var temp_var2(__LINE__)
246
247
#define for_each_state(state) \
248
for (; state != NULL; state = state->caller_state())
249
250
#define for_each_local_value(state, index, value) \
251
int temp_var = state->locals_size(); \
252
for (index = 0; \
253
index < temp_var && (value = state->local_at(index), true); \
254
index += (value == NULL || value->type()->is_illegal() ? 1 : value->type()->size())) \
255
if (value != NULL)
256
257
258
#define for_each_stack_value(state, index, value) \
259
int temp_var = state->stack_size(); \
260
for (index = 0; \
261
index < temp_var && (value = state->stack_at(index), true); \
262
index += value->type()->size())
263
264
265
#define for_each_lock_value(state, index, value) \
266
int temp_var = state->locks_size(); \
267
for (index = 0; \
268
index < temp_var && (value = state->lock_at(index), true); \
269
index++) \
270
if (value != NULL)
271
272
273
// Macro definition for simple iteration of all state values of a ValueStack
274
// Because the code cannot be executed in a single loop, the code must be passed
275
// as a macro parameter.
276
// Use the following code pattern to iterate all stack values and all nested local values:
277
//
278
// ValueStack* state = ... // state that is iterated
279
// for_each_state_value(state, value,
280
// do something with value (note that this is a macro parameter)
281
// );
282
283
#define for_each_state_value(v_state, v_value, v_code) \
284
{ \
285
int cur_index; \
286
ValueStack* cur_state = v_state; \
287
Value v_value; \
288
for_each_state(cur_state) { \
289
{ \
290
for_each_local_value(cur_state, cur_index, v_value) { \
291
v_code; \
292
} \
293
} \
294
{ \
295
for_each_stack_value(cur_state, cur_index, v_value) { \
296
v_code; \
297
} \
298
} \
299
} \
300
}
301
302
303
// Macro definition for simple iteration of all phif functions of a block, i.e all
304
// phi functions of the ValueStack where the block matches.
305
// Use the following code pattern to iterate all phi functions of a block:
306
//
307
// BlockBegin* block = ... // block that is iterated
308
// for_each_phi_function(block, phi,
309
// do something with the phi function phi (note that this is a macro parameter)
310
// );
311
312
#define for_each_phi_fun(v_block, v_phi, v_code) \
313
{ \
314
int cur_index; \
315
ValueStack* cur_state = v_block->state(); \
316
Value value; \
317
{ \
318
for_each_stack_value(cur_state, cur_index, value) { \
319
Phi* v_phi = value->as_Phi(); \
320
if (v_phi != NULL && v_phi->block() == v_block) { \
321
v_code; \
322
} \
323
} \
324
} \
325
{ \
326
for_each_local_value(cur_state, cur_index, value) { \
327
Phi* v_phi = value->as_Phi(); \
328
if (v_phi != NULL && v_phi->block() == v_block) { \
329
v_code; \
330
} \
331
} \
332
} \
333
}
334
335
#endif // SHARE_VM_C1_C1_VALUESTACK_HPP
336
337