Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/code/relocInfo.hpp
32285 views
1
/*
2
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#ifndef SHARE_VM_CODE_RELOCINFO_HPP
26
#define SHARE_VM_CODE_RELOCINFO_HPP
27
28
#include "memory/allocation.hpp"
29
#include "utilities/top.hpp"
30
31
class NativeMovConstReg;
32
33
// Types in this file:
34
// relocInfo
35
// One element of an array of halfwords encoding compressed relocations.
36
// Also, the source of relocation types (relocInfo::oop_type, ...).
37
// Relocation
38
// A flyweight object representing a single relocation.
39
// It is fully unpacked from the compressed relocation array.
40
// metadata_Relocation, ... (subclasses of Relocation)
41
// The location of some type-specific operations (metadata_addr, ...).
42
// Also, the source of relocation specs (metadata_Relocation::spec, ...).
43
// oop_Relocation, ... (subclasses of Relocation)
44
// oops in the code stream (strings, class loaders)
45
// Also, the source of relocation specs (oop_Relocation::spec, ...).
46
// RelocationHolder
47
// A ValueObj type which acts as a union holding a Relocation object.
48
// Represents a relocation spec passed into a CodeBuffer during assembly.
49
// RelocIterator
50
// A StackObj which iterates over the relocations associated with
51
// a range of code addresses. Can be used to operate a copy of code.
52
// BoundRelocation
53
// An _internal_ type shared by packers and unpackers of relocations.
54
// It pastes together a RelocationHolder with some pointers into
55
// code and relocInfo streams.
56
57
58
// Notes on relocType:
59
//
60
// These hold enough information to read or write a value embedded in
61
// the instructions of an CodeBlob. They're used to update:
62
//
63
// 1) embedded oops (isOop() == true)
64
// 2) inline caches (isIC() == true)
65
// 3) runtime calls (isRuntimeCall() == true)
66
// 4) internal word ref (isInternalWord() == true)
67
// 5) external word ref (isExternalWord() == true)
68
//
69
// when objects move (GC) or if code moves (compacting the code heap).
70
// They are also used to patch the code (if a call site must change)
71
//
72
// A relocInfo is represented in 16 bits:
73
// 4 bits indicating the relocation type
74
// 12 bits indicating the offset from the previous relocInfo address
75
//
76
// The offsets accumulate along the relocInfo stream to encode the
77
// address within the CodeBlob, which is named RelocIterator::addr().
78
// The address of a particular relocInfo always points to the first
79
// byte of the relevant instruction (and not to any of its subfields
80
// or embedded immediate constants).
81
//
82
// The offset value is scaled appropriately for the target machine.
83
// (See relocInfo_<arch>.hpp for the offset scaling.)
84
//
85
// On some machines, there may also be a "format" field which may provide
86
// additional information about the format of the instruction stream
87
// at the corresponding code address. The format value is usually zero.
88
// Any machine (such as Intel) whose instructions can sometimes contain
89
// more than one relocatable constant needs format codes to distinguish
90
// which operand goes with a given relocation.
91
//
92
// If the target machine needs N format bits, the offset has 12-N bits,
93
// the format is encoded between the offset and the type, and the
94
// relocInfo_<arch>.hpp file has manifest constants for the format codes.
95
//
96
// If the type is "data_prefix_tag" then the offset bits are further encoded,
97
// and in fact represent not a code-stream offset but some inline data.
98
// The data takes the form of a counted sequence of halfwords, which
99
// precedes the actual relocation record. (Clients never see it directly.)
100
// The interpetation of this extra data depends on the relocation type.
101
//
102
// On machines that have 32-bit immediate fields, there is usually
103
// little need for relocation "prefix" data, because the instruction stream
104
// is a perfectly reasonable place to store the value. On machines in
105
// which 32-bit values must be "split" across instructions, the relocation
106
// data is the "true" specification of the value, which is then applied
107
// to some field of the instruction (22 or 13 bits, on SPARC).
108
//
109
// Whenever the location of the CodeBlob changes, any PC-relative
110
// relocations, and any internal_word_type relocations, must be reapplied.
111
// After the GC runs, oop_type relocations must be reapplied.
112
//
113
//
114
// Here are meanings of the types:
115
//
116
// relocInfo::none -- a filler record
117
// Value: none
118
// Instruction: The corresponding code address is ignored
119
// Data: Any data prefix and format code are ignored
120
// (This means that any relocInfo can be disabled by setting
121
// its type to none. See relocInfo::remove.)
122
//
123
// relocInfo::oop_type, relocInfo::metadata_type -- a reference to an oop or meta data
124
// Value: an oop, or else the address (handle) of an oop
125
// Instruction types: memory (load), set (load address)
126
// Data: [] an oop stored in 4 bytes of instruction
127
// [n] n is the index of an oop in the CodeBlob's oop pool
128
// [[N]n l] and l is a byte offset to be applied to the oop
129
// [Nn Ll] both index and offset may be 32 bits if necessary
130
// Here is a special hack, used only by the old compiler:
131
// [[N]n 00] the value is the __address__ of the nth oop in the pool
132
// (Note that the offset allows optimal references to class variables.)
133
//
134
// relocInfo::internal_word_type -- an address within the same CodeBlob
135
// relocInfo::section_word_type -- same, but can refer to another section
136
// Value: an address in the CodeBlob's code or constants section
137
// Instruction types: memory (load), set (load address)
138
// Data: [] stored in 4 bytes of instruction
139
// [[L]l] a relative offset (see [About Offsets] below)
140
// In the case of section_word_type, the offset is relative to a section
141
// base address, and the section number (e.g., SECT_INSTS) is encoded
142
// into the low two bits of the offset L.
143
//
144
// relocInfo::external_word_type -- a fixed address in the runtime system
145
// Value: an address
146
// Instruction types: memory (load), set (load address)
147
// Data: [] stored in 4 bytes of instruction
148
// [n] the index of a "well-known" stub (usual case on RISC)
149
// [Ll] a 32-bit address
150
//
151
// relocInfo::runtime_call_type -- a fixed subroutine in the runtime system
152
// Value: an address
153
// Instruction types: PC-relative call (or a PC-relative branch)
154
// Data: [] stored in 4 bytes of instruction
155
//
156
// relocInfo::static_call_type -- a static call
157
// Value: an CodeBlob, a stub, or a fixup routine
158
// Instruction types: a call
159
// Data: []
160
// The identity of the callee is extracted from debugging information.
161
// //%note reloc_3
162
//
163
// relocInfo::virtual_call_type -- a virtual call site (which includes an inline
164
// cache)
165
// Value: an CodeBlob, a stub, the interpreter, or a fixup routine
166
// Instruction types: a call, plus some associated set-oop instructions
167
// Data: [] the associated set-oops are adjacent to the call
168
// [n] n is a relative offset to the first set-oop
169
// [[N]n l] and l is a limit within which the set-oops occur
170
// [Nn Ll] both n and l may be 32 bits if necessary
171
// The identity of the callee is extracted from debugging information.
172
//
173
// relocInfo::opt_virtual_call_type -- a virtual call site that is statically bound
174
//
175
// Same info as a static_call_type. We use a special type, so the handling of
176
// virtuals and statics are separated.
177
//
178
//
179
// The offset n points to the first set-oop. (See [About Offsets] below.)
180
// In turn, the set-oop instruction specifies or contains an oop cell devoted
181
// exclusively to the IC call, which can be patched along with the call.
182
//
183
// The locations of any other set-oops are found by searching the relocation
184
// information starting at the first set-oop, and continuing until all
185
// relocations up through l have been inspected. The value l is another
186
// relative offset. (Both n and l are relative to the call's first byte.)
187
//
188
// The limit l of the search is exclusive. However, if it points within
189
// the call (e.g., offset zero), it is adjusted to point after the call and
190
// any associated machine-specific delay slot.
191
//
192
// Since the offsets could be as wide as 32-bits, these conventions
193
// put no restrictions whatever upon code reorganization.
194
//
195
// The compiler is responsible for ensuring that transition from a clean
196
// state to a monomorphic compiled state is MP-safe. This implies that
197
// the system must respond well to intermediate states where a random
198
// subset of the set-oops has been correctly from the clean state
199
// upon entry to the VEP of the compiled method. In the case of a
200
// machine (Intel) with a single set-oop instruction, the 32-bit
201
// immediate field must not straddle a unit of memory coherence.
202
// //%note reloc_3
203
//
204
// relocInfo::static_stub_type -- an extra stub for each static_call_type
205
// Value: none
206
// Instruction types: a virtual call: { set_oop; jump; }
207
// Data: [[N]n] the offset of the associated static_call reloc
208
// This stub becomes the target of a static call which must be upgraded
209
// to a virtual call (because the callee is interpreted).
210
// See [About Offsets] below.
211
// //%note reloc_2
212
//
213
// For example:
214
//
215
// INSTRUCTIONS RELOC: TYPE PREFIX DATA
216
// ------------ ---- -----------
217
// sethi %hi(myObject), R oop_type [n(myObject)]
218
// ld [R+%lo(myObject)+fldOffset], R2 oop_type [n(myObject) fldOffset]
219
// add R2, 1, R2
220
// st R2, [R+%lo(myObject)+fldOffset] oop_type [n(myObject) fldOffset]
221
//%note reloc_1
222
//
223
// This uses 4 instruction words, 8 relocation halfwords,
224
// and an entry (which is sharable) in the CodeBlob's oop pool,
225
// for a total of 36 bytes.
226
//
227
// Note that the compiler is responsible for ensuring the "fldOffset" when
228
// added to "%lo(myObject)" does not overflow the immediate fields of the
229
// memory instructions.
230
//
231
//
232
// [About Offsets] Relative offsets are supplied to this module as
233
// positive byte offsets, but they may be internally stored scaled
234
// and/or negated, depending on what is most compact for the target
235
// system. Since the object pointed to by the offset typically
236
// precedes the relocation address, it is profitable to store
237
// these negative offsets as positive numbers, but this decision
238
// is internal to the relocation information abstractions.
239
//
240
241
class Relocation;
242
class CodeBuffer;
243
class CodeSection;
244
class RelocIterator;
245
246
class relocInfo VALUE_OBJ_CLASS_SPEC {
247
friend class RelocIterator;
248
public:
249
enum relocType {
250
none = 0, // Used when no relocation should be generated
251
oop_type = 1, // embedded oop
252
virtual_call_type = 2, // a standard inline cache call for a virtual send
253
opt_virtual_call_type = 3, // a virtual call that has been statically bound (i.e., no IC cache)
254
static_call_type = 4, // a static send
255
static_stub_type = 5, // stub-entry for static send (takes care of interpreter case)
256
runtime_call_type = 6, // call to fixed external routine
257
external_word_type = 7, // reference to fixed external address
258
internal_word_type = 8, // reference within the current code blob
259
section_word_type = 9, // internal, but a cross-section reference
260
poll_type = 10, // polling instruction for safepoints
261
poll_return_type = 11, // polling instruction for safepoints at return
262
metadata_type = 12, // metadata that used to be oops
263
trampoline_stub_type = 13, // stub-entry for trampoline
264
yet_unused_type_1 = 14, // Still unused
265
data_prefix_tag = 15, // tag for a prefix (carries data arguments)
266
type_mask = 15 // A mask which selects only the above values
267
};
268
269
protected:
270
unsigned short _value;
271
272
enum RawBitsToken { RAW_BITS };
273
relocInfo(relocType type, RawBitsToken ignore, int bits)
274
: _value((type << nontype_width) + bits) { }
275
276
relocInfo(relocType type, RawBitsToken ignore, int off, int f)
277
: _value((type << nontype_width) + (off / (unsigned)offset_unit) + (f << offset_width)) { }
278
279
public:
280
// constructor
281
relocInfo(relocType type, int offset, int format = 0)
282
#ifndef ASSERT
283
{
284
(*this) = relocInfo(type, RAW_BITS, offset, format);
285
}
286
#else
287
// Put a bunch of assertions out-of-line.
288
;
289
#endif
290
291
#define APPLY_TO_RELOCATIONS(visitor) \
292
visitor(oop) \
293
visitor(metadata) \
294
visitor(virtual_call) \
295
visitor(opt_virtual_call) \
296
visitor(static_call) \
297
visitor(static_stub) \
298
visitor(runtime_call) \
299
visitor(external_word) \
300
visitor(internal_word) \
301
visitor(poll) \
302
visitor(poll_return) \
303
visitor(section_word) \
304
visitor(trampoline_stub) \
305
306
307
public:
308
enum {
309
value_width = sizeof(unsigned short) * BitsPerByte,
310
type_width = 4, // == log2(type_mask+1)
311
nontype_width = value_width - type_width,
312
datalen_width = nontype_width-1,
313
datalen_tag = 1 << datalen_width, // or-ed into _value
314
datalen_limit = 1 << datalen_width,
315
datalen_mask = (1 << datalen_width)-1
316
};
317
318
// accessors
319
public:
320
relocType type() const { return (relocType)((unsigned)_value >> nontype_width); }
321
int format() const { return format_mask==0? 0: format_mask &
322
((unsigned)_value >> offset_width); }
323
int addr_offset() const { assert(!is_prefix(), "must have offset");
324
return (_value & offset_mask)*offset_unit; }
325
326
protected:
327
const short* data() const { assert(is_datalen(), "must have data");
328
return (const short*)(this + 1); }
329
int datalen() const { assert(is_datalen(), "must have data");
330
return (_value & datalen_mask); }
331
int immediate() const { assert(is_immediate(), "must have immed");
332
return (_value & datalen_mask); }
333
public:
334
static int addr_unit() { return offset_unit; }
335
static int offset_limit() { return (1 << offset_width) * offset_unit; }
336
337
void set_type(relocType type);
338
void set_format(int format);
339
340
void remove() { set_type(none); }
341
342
protected:
343
bool is_none() const { return type() == none; }
344
bool is_prefix() const { return type() == data_prefix_tag; }
345
bool is_datalen() const { assert(is_prefix(), "must be prefix");
346
return (_value & datalen_tag) != 0; }
347
bool is_immediate() const { assert(is_prefix(), "must be prefix");
348
return (_value & datalen_tag) == 0; }
349
350
public:
351
// Occasionally records of type relocInfo::none will appear in the stream.
352
// We do not bother to filter these out, but clients should ignore them.
353
// These records serve as "filler" in three ways:
354
// - to skip large spans of unrelocated code (this is rare)
355
// - to pad out the relocInfo array to the required oop alignment
356
// - to disable old relocation information which is no longer applicable
357
358
inline friend relocInfo filler_relocInfo();
359
360
// Every non-prefix relocation may be preceded by at most one prefix,
361
// which supplies 1 or more halfwords of associated data. Conventionally,
362
// an int is represented by 0, 1, or 2 halfwords, depending on how
363
// many bits are required to represent the value. (In addition,
364
// if the sole halfword is a 10-bit unsigned number, it is made
365
// "immediate" in the prefix header word itself. This optimization
366
// is invisible outside this module.)
367
368
inline friend relocInfo prefix_relocInfo(int datalen);
369
370
protected:
371
// an immediate relocInfo optimizes a prefix with one 10-bit unsigned value
372
static relocInfo immediate_relocInfo(int data0) {
373
assert(fits_into_immediate(data0), "data0 in limits");
374
return relocInfo(relocInfo::data_prefix_tag, RAW_BITS, data0);
375
}
376
static bool fits_into_immediate(int data0) {
377
return (data0 >= 0 && data0 < datalen_limit);
378
}
379
380
public:
381
// Support routines for compilers.
382
383
// This routine takes an infant relocInfo (unprefixed) and
384
// edits in its prefix, if any. It also updates dest.locs_end.
385
void initialize(CodeSection* dest, Relocation* reloc);
386
387
// This routine updates a prefix and returns the limit pointer.
388
// It tries to compress the prefix from 32 to 16 bits, and if
389
// successful returns a reduced "prefix_limit" pointer.
390
relocInfo* finish_prefix(short* prefix_limit);
391
392
// bit-packers for the data array:
393
394
// As it happens, the bytes within the shorts are ordered natively,
395
// but the shorts within the word are ordered big-endian.
396
// This is an arbitrary choice, made this way mainly to ease debugging.
397
static int data0_from_int(jint x) { return x >> value_width; }
398
static int data1_from_int(jint x) { return (short)x; }
399
static jint jint_from_data(short* data) {
400
return (data[0] << value_width) + (unsigned short)data[1];
401
}
402
403
static jint short_data_at(int n, short* data, int datalen) {
404
return datalen > n ? data[n] : 0;
405
}
406
407
static jint jint_data_at(int n, short* data, int datalen) {
408
return datalen > n+1 ? jint_from_data(&data[n]) : short_data_at(n, data, datalen);
409
}
410
411
// Update methods for relocation information
412
// (since code is dynamically patched, we also need to dynamically update the relocation info)
413
// Both methods takes old_type, so it is able to performe sanity checks on the information removed.
414
static void change_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type, relocType new_type);
415
static void remove_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type);
416
417
// Machine dependent stuff
418
#ifdef TARGET_ARCH_x86
419
# include "relocInfo_x86.hpp"
420
#endif
421
#ifdef TARGET_ARCH_aarch32
422
# include "relocInfo_aarch32.hpp"
423
#endif
424
#ifdef TARGET_ARCH_aarch64
425
# include "relocInfo_aarch64.hpp"
426
#endif
427
#ifdef TARGET_ARCH_sparc
428
# include "relocInfo_sparc.hpp"
429
#endif
430
#ifdef TARGET_ARCH_zero
431
# include "relocInfo_zero.hpp"
432
#endif
433
#ifdef TARGET_ARCH_arm
434
# include "relocInfo_arm.hpp"
435
#endif
436
#ifdef TARGET_ARCH_ppc
437
# include "relocInfo_ppc.hpp"
438
#endif
439
440
441
protected:
442
// Derived constant, based on format_width which is PD:
443
enum {
444
offset_width = nontype_width - format_width,
445
offset_mask = (1<<offset_width) - 1,
446
format_mask = (1<<format_width) - 1
447
};
448
public:
449
enum {
450
// Conservatively large estimate of maximum length (in shorts)
451
// of any relocation record.
452
// Extended format is length prefix, data words, and tag/offset suffix.
453
length_limit = 1 + 1 + (3*BytesPerWord/BytesPerShort) + 1,
454
have_format = format_width > 0
455
};
456
};
457
458
#define FORWARD_DECLARE_EACH_CLASS(name) \
459
class name##_Relocation;
460
APPLY_TO_RELOCATIONS(FORWARD_DECLARE_EACH_CLASS)
461
#undef FORWARD_DECLARE_EACH_CLASS
462
463
464
465
inline relocInfo filler_relocInfo() {
466
return relocInfo(relocInfo::none, relocInfo::offset_limit() - relocInfo::offset_unit);
467
}
468
469
inline relocInfo prefix_relocInfo(int datalen = 0) {
470
assert(relocInfo::fits_into_immediate(datalen), "datalen in limits");
471
return relocInfo(relocInfo::data_prefix_tag, relocInfo::RAW_BITS, relocInfo::datalen_tag | datalen);
472
}
473
474
475
// Holder for flyweight relocation objects.
476
// Although the flyweight subclasses are of varying sizes,
477
// the holder is "one size fits all".
478
class RelocationHolder VALUE_OBJ_CLASS_SPEC {
479
friend class Relocation;
480
friend class CodeSection;
481
482
private:
483
// this preallocated memory must accommodate all subclasses of Relocation
484
// (this number is assertion-checked in Relocation::operator new)
485
enum { _relocbuf_size = 5 };
486
void* _relocbuf[ _relocbuf_size ];
487
488
public:
489
Relocation* reloc() const { return (Relocation*) &_relocbuf[0]; }
490
inline relocInfo::relocType type() const;
491
492
// Add a constant offset to a relocation. Helper for class Address.
493
RelocationHolder plus(int offset) const;
494
495
inline RelocationHolder(); // initializes type to none
496
497
inline RelocationHolder(Relocation* r); // make a copy
498
499
static const RelocationHolder none;
500
};
501
502
// A RelocIterator iterates through the relocation information of a CodeBlob.
503
// It is a variable BoundRelocation which is able to take on successive
504
// values as it is advanced through a code stream.
505
// Usage:
506
// RelocIterator iter(nm);
507
// while (iter.next()) {
508
// iter.reloc()->some_operation();
509
// }
510
// or:
511
// RelocIterator iter(nm);
512
// while (iter.next()) {
513
// switch (iter.type()) {
514
// case relocInfo::oop_type :
515
// case relocInfo::ic_type :
516
// case relocInfo::prim_type :
517
// case relocInfo::uncommon_type :
518
// case relocInfo::runtime_call_type :
519
// case relocInfo::internal_word_type:
520
// case relocInfo::external_word_type:
521
// ...
522
// }
523
// }
524
525
class RelocIterator : public StackObj {
526
enum { SECT_LIMIT = 3 }; // must be equal to CodeBuffer::SECT_LIMIT, checked in ctor
527
friend class Relocation;
528
friend class relocInfo; // for change_reloc_info_for_address only
529
typedef relocInfo::relocType relocType;
530
531
private:
532
address _limit; // stop producing relocations after this _addr
533
relocInfo* _current; // the current relocation information
534
relocInfo* _end; // end marker; we're done iterating when _current == _end
535
nmethod* _code; // compiled method containing _addr
536
address _addr; // instruction to which the relocation applies
537
short _databuf; // spare buffer for compressed data
538
short* _data; // pointer to the relocation's data
539
short _datalen; // number of halfwords in _data
540
char _format; // position within the instruction
541
542
// Base addresses needed to compute targets of section_word_type relocs.
543
address _section_start[SECT_LIMIT];
544
address _section_end [SECT_LIMIT];
545
546
void set_has_current(bool b) {
547
_datalen = !b ? -1 : 0;
548
debug_only(_data = NULL);
549
}
550
void set_current(relocInfo& ri) {
551
_current = &ri;
552
set_has_current(true);
553
}
554
555
RelocationHolder _rh; // where the current relocation is allocated
556
557
relocInfo* current() const { assert(has_current(), "must have current");
558
return _current; }
559
560
void set_limits(address begin, address limit);
561
562
void advance_over_prefix(); // helper method
563
564
void initialize_misc();
565
566
void initialize(nmethod* nm, address begin, address limit);
567
568
RelocIterator() { initialize_misc(); }
569
570
public:
571
// constructor
572
RelocIterator(nmethod* nm, address begin = NULL, address limit = NULL);
573
RelocIterator(CodeSection* cb, address begin = NULL, address limit = NULL);
574
575
// get next reloc info, return !eos
576
bool next() {
577
_current++;
578
assert(_current <= _end, "must not overrun relocInfo");
579
if (_current == _end) {
580
set_has_current(false);
581
return false;
582
}
583
set_has_current(true);
584
585
if (_current->is_prefix()) {
586
advance_over_prefix();
587
assert(!current()->is_prefix(), "only one prefix at a time");
588
}
589
590
_addr += _current->addr_offset();
591
592
if (_limit != NULL && _addr >= _limit) {
593
set_has_current(false);
594
return false;
595
}
596
597
if (relocInfo::have_format) _format = current()->format();
598
return true;
599
}
600
601
// accessors
602
address limit() const { return _limit; }
603
void set_limit(address x);
604
relocType type() const { return current()->type(); }
605
int format() const { return (relocInfo::have_format) ? current()->format() : 0; }
606
address addr() const { return _addr; }
607
nmethod* code() const { return _code; }
608
short* data() const { return _data; }
609
int datalen() const { return _datalen; }
610
bool has_current() const { return _datalen >= 0; }
611
612
void set_addr(address addr) { _addr = addr; }
613
bool addr_in_const() const;
614
615
address section_start(int n) const {
616
assert(_section_start[n], "must be initialized");
617
return _section_start[n];
618
}
619
address section_end(int n) const {
620
assert(_section_end[n], "must be initialized");
621
return _section_end[n];
622
}
623
624
// The address points to the affected displacement part of the instruction.
625
// For RISC, this is just the whole instruction.
626
// For Intel, this is an unaligned 32-bit word.
627
628
// type-specific relocation accessors: oop_Relocation* oop_reloc(), etc.
629
#define EACH_TYPE(name) \
630
inline name##_Relocation* name##_reloc();
631
APPLY_TO_RELOCATIONS(EACH_TYPE)
632
#undef EACH_TYPE
633
// generic relocation accessor; switches on type to call the above
634
Relocation* reloc();
635
636
// CodeBlob's have relocation indexes for faster random access:
637
static int locs_and_index_size(int code_size, int locs_size);
638
// Store an index into [dest_start+dest_count..dest_end).
639
// At dest_start[0..dest_count] is the actual relocation information.
640
// Everything else up to dest_end is free space for the index.
641
static void create_index(relocInfo* dest_begin, int dest_count, relocInfo* dest_end);
642
643
#ifndef PRODUCT
644
public:
645
void print();
646
void print_current();
647
#endif
648
};
649
650
651
// A Relocation is a flyweight object allocated within a RelocationHolder.
652
// It represents the relocation data of relocation record.
653
// So, the RelocIterator unpacks relocInfos into Relocations.
654
655
class Relocation VALUE_OBJ_CLASS_SPEC {
656
friend class RelocationHolder;
657
friend class RelocIterator;
658
659
private:
660
static void guarantee_size();
661
662
// When a relocation has been created by a RelocIterator,
663
// this field is non-null. It allows the relocation to know
664
// its context, such as the address to which it applies.
665
RelocIterator* _binding;
666
667
protected:
668
RelocIterator* binding() const {
669
assert(_binding != NULL, "must be bound");
670
return _binding;
671
}
672
void set_binding(RelocIterator* b) {
673
assert(_binding == NULL, "must be unbound");
674
_binding = b;
675
assert(_binding != NULL, "must now be bound");
676
}
677
678
Relocation() {
679
_binding = NULL;
680
}
681
682
static RelocationHolder newHolder() {
683
return RelocationHolder();
684
}
685
686
public:
687
void* operator new(size_t size, const RelocationHolder& holder) throw() {
688
if (size > sizeof(holder._relocbuf)) guarantee_size();
689
assert((void* const *)holder.reloc() == &holder._relocbuf[0], "ptrs must agree");
690
return holder.reloc();
691
}
692
693
// make a generic relocation for a given type (if possible)
694
static RelocationHolder spec_simple(relocInfo::relocType rtype);
695
696
// here is the type-specific hook which writes relocation data:
697
virtual void pack_data_to(CodeSection* dest) { }
698
699
// here is the type-specific hook which reads (unpacks) relocation data:
700
virtual void unpack_data() {
701
assert(datalen()==0 || type()==relocInfo::none, "no data here");
702
}
703
704
static bool is_reloc_index(intptr_t index) {
705
return 0 < index && index < os::vm_page_size();
706
}
707
708
protected:
709
// Helper functions for pack_data_to() and unpack_data().
710
711
// Most of the compression logic is confined here.
712
// (The "immediate data" mechanism of relocInfo works independently
713
// of this stuff, and acts to further compress most 1-word data prefixes.)
714
715
// A variable-width int is encoded as a short if it will fit in 16 bits.
716
// The decoder looks at datalen to decide whether to unpack short or jint.
717
// Most relocation records are quite simple, containing at most two ints.
718
719
static bool is_short(jint x) { return x == (short)x; }
720
static short* add_short(short* p, int x) { *p++ = x; return p; }
721
static short* add_jint (short* p, jint x) {
722
*p++ = relocInfo::data0_from_int(x); *p++ = relocInfo::data1_from_int(x);
723
return p;
724
}
725
static short* add_var_int(short* p, jint x) { // add a variable-width int
726
if (is_short(x)) p = add_short(p, x);
727
else p = add_jint (p, x);
728
return p;
729
}
730
731
static short* pack_1_int_to(short* p, jint x0) {
732
// Format is one of: [] [x] [Xx]
733
if (x0 != 0) p = add_var_int(p, x0);
734
return p;
735
}
736
int unpack_1_int() {
737
assert(datalen() <= 2, "too much data");
738
return relocInfo::jint_data_at(0, data(), datalen());
739
}
740
741
// With two ints, the short form is used only if both ints are short.
742
short* pack_2_ints_to(short* p, jint x0, jint x1) {
743
// Format is one of: [] [x y?] [Xx Y?y]
744
if (x0 == 0 && x1 == 0) {
745
// no halfwords needed to store zeroes
746
} else if (is_short(x0) && is_short(x1)) {
747
// 1-2 halfwords needed to store shorts
748
p = add_short(p, x0); if (x1!=0) p = add_short(p, x1);
749
} else {
750
// 3-4 halfwords needed to store jints
751
p = add_jint(p, x0); p = add_var_int(p, x1);
752
}
753
return p;
754
}
755
void unpack_2_ints(jint& x0, jint& x1) {
756
int dlen = datalen();
757
short* dp = data();
758
if (dlen <= 2) {
759
x0 = relocInfo::short_data_at(0, dp, dlen);
760
x1 = relocInfo::short_data_at(1, dp, dlen);
761
} else {
762
assert(dlen <= 4, "too much data");
763
x0 = relocInfo::jint_data_at(0, dp, dlen);
764
x1 = relocInfo::jint_data_at(2, dp, dlen);
765
}
766
}
767
768
protected:
769
// platform-dependent utilities for decoding and patching instructions
770
void pd_set_data_value (address x, intptr_t off, bool verify_only = false); // a set or mem-ref
771
void pd_verify_data_value (address x, intptr_t off) { pd_set_data_value(x, off, true); }
772
address pd_call_destination (address orig_addr = NULL);
773
void pd_set_call_destination (address x);
774
775
// this extracts the address of an address in the code stream instead of the reloc data
776
address* pd_address_in_code ();
777
778
// this extracts an address from the code stream instead of the reloc data
779
address pd_get_address_from_code ();
780
781
// these convert from byte offsets, to scaled offsets, to addresses
782
static jint scaled_offset(address x, address base) {
783
int byte_offset = x - base;
784
int offset = -byte_offset / relocInfo::addr_unit();
785
assert(address_from_scaled_offset(offset, base) == x, "just checkin'");
786
return offset;
787
}
788
static jint scaled_offset_null_special(address x, address base) {
789
// Some relocations treat offset=0 as meaning NULL.
790
// Handle this extra convention carefully.
791
if (x == NULL) return 0;
792
assert(x != base, "offset must not be zero");
793
return scaled_offset(x, base);
794
}
795
static address address_from_scaled_offset(jint offset, address base) {
796
int byte_offset = -( offset * relocInfo::addr_unit() );
797
return base + byte_offset;
798
}
799
800
// these convert between indexes and addresses in the runtime system
801
static int32_t runtime_address_to_index(address runtime_address);
802
static address index_to_runtime_address(int32_t index);
803
804
// helpers for mapping between old and new addresses after a move or resize
805
address old_addr_for(address newa, const CodeBuffer* src, CodeBuffer* dest);
806
address new_addr_for(address olda, const CodeBuffer* src, CodeBuffer* dest);
807
void normalize_address(address& addr, const CodeSection* dest, bool allow_other_sections = false);
808
809
public:
810
// accessors which only make sense for a bound Relocation
811
address addr() const { return binding()->addr(); }
812
nmethod* code() const { return binding()->code(); }
813
bool addr_in_const() const { return binding()->addr_in_const(); }
814
protected:
815
short* data() const { return binding()->data(); }
816
int datalen() const { return binding()->datalen(); }
817
int format() const { return binding()->format(); }
818
819
public:
820
virtual relocInfo::relocType type() { return relocInfo::none; }
821
822
// is it a call instruction?
823
virtual bool is_call() { return false; }
824
825
// is it a data movement instruction?
826
virtual bool is_data() { return false; }
827
828
// some relocations can compute their own values
829
virtual address value();
830
831
// all relocations are able to reassert their values
832
virtual void set_value(address x);
833
834
virtual void clear_inline_cache() { }
835
836
// This method assumes that all virtual/static (inline) caches are cleared (since for static_call_type and
837
// ic_call_type is not always posisition dependent (depending on the state of the cache)). However, this is
838
// probably a reasonable assumption, since empty caches simplifies code reloacation.
839
virtual void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) { }
840
841
void print();
842
};
843
844
845
// certain inlines must be deferred until class Relocation is defined:
846
847
inline RelocationHolder::RelocationHolder() {
848
// initialize the vtbl, just to keep things type-safe
849
new(*this) Relocation();
850
}
851
852
853
inline RelocationHolder::RelocationHolder(Relocation* r) {
854
// wordwise copy from r (ok if it copies garbage after r)
855
for (int i = 0; i < _relocbuf_size; i++) {
856
_relocbuf[i] = ((void**)r)[i];
857
}
858
}
859
860
861
relocInfo::relocType RelocationHolder::type() const {
862
return reloc()->type();
863
}
864
865
// A DataRelocation always points at a memory or load-constant instruction..
866
// It is absolute on most machines, and the constant is split on RISCs.
867
// The specific subtypes are oop, external_word, and internal_word.
868
// By convention, the "value" does not include a separately reckoned "offset".
869
class DataRelocation : public Relocation {
870
public:
871
bool is_data() { return true; }
872
873
// both target and offset must be computed somehow from relocation data
874
virtual int offset() { return 0; }
875
address value() = 0;
876
void set_value(address x) { set_value(x, offset()); }
877
void set_value(address x, intptr_t o) {
878
if (addr_in_const())
879
*(address*)addr() = x;
880
else
881
pd_set_data_value(x, o);
882
}
883
void verify_value(address x) {
884
if (addr_in_const())
885
assert(*(address*)addr() == x, "must agree");
886
else
887
pd_verify_data_value(x, offset());
888
}
889
890
// The "o" (displacement) argument is relevant only to split relocations
891
// on RISC machines. In some CPUs (SPARC), the set-hi and set-lo ins'ns
892
// can encode more than 32 bits between them. This allows compilers to
893
// share set-hi instructions between addresses that differ by a small
894
// offset (e.g., different static variables in the same class).
895
// On such machines, the "x" argument to set_value on all set-lo
896
// instructions must be the same as the "x" argument for the
897
// corresponding set-hi instructions. The "o" arguments for the
898
// set-hi instructions are ignored, and must not affect the high-half
899
// immediate constant. The "o" arguments for the set-lo instructions are
900
// added into the low-half immediate constant, and must not overflow it.
901
};
902
903
// A CallRelocation always points at a call instruction.
904
// It is PC-relative on most machines.
905
class CallRelocation : public Relocation {
906
public:
907
bool is_call() { return true; }
908
909
address destination() { return pd_call_destination(); }
910
void set_destination(address x); // pd_set_call_destination
911
912
void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
913
address value() { return destination(); }
914
void set_value(address x) { set_destination(x); }
915
};
916
917
class oop_Relocation : public DataRelocation {
918
relocInfo::relocType type() { return relocInfo::oop_type; }
919
920
public:
921
// encode in one of these formats: [] [n] [n l] [Nn l] [Nn Ll]
922
// an oop in the CodeBlob's oop pool
923
static RelocationHolder spec(int oop_index, int offset = 0) {
924
assert(oop_index > 0, "must be a pool-resident oop");
925
RelocationHolder rh = newHolder();
926
new(rh) oop_Relocation(oop_index, offset);
927
return rh;
928
}
929
// an oop in the instruction stream
930
static RelocationHolder spec_for_immediate() {
931
const int oop_index = 0;
932
const int offset = 0; // if you want an offset, use the oop pool
933
RelocationHolder rh = newHolder();
934
new(rh) oop_Relocation(oop_index, offset);
935
return rh;
936
}
937
938
private:
939
jint _oop_index; // if > 0, index into CodeBlob::oop_at
940
jint _offset; // byte offset to apply to the oop itself
941
942
oop_Relocation(int oop_index, int offset) {
943
_oop_index = oop_index; _offset = offset;
944
}
945
946
friend class RelocIterator;
947
oop_Relocation() { }
948
949
public:
950
int oop_index() { return _oop_index; }
951
int offset() { return _offset; }
952
953
// data is packed in "2_ints" format: [i o] or [Ii Oo]
954
void pack_data_to(CodeSection* dest);
955
void unpack_data();
956
957
void fix_oop_relocation(); // reasserts oop value
958
959
void verify_oop_relocation();
960
961
address value() { return (address) *oop_addr(); }
962
963
bool oop_is_immediate() { return oop_index() == 0; }
964
965
oop* oop_addr(); // addr or &pool[jint_data]
966
oop oop_value(); // *oop_addr
967
// Note: oop_value transparently converts Universe::non_oop_word to NULL.
968
};
969
970
971
// copy of oop_Relocation for now but may delete stuff in both/either
972
class metadata_Relocation : public DataRelocation {
973
relocInfo::relocType type() { return relocInfo::metadata_type; }
974
975
public:
976
// encode in one of these formats: [] [n] [n l] [Nn l] [Nn Ll]
977
// an metadata in the CodeBlob's metadata pool
978
static RelocationHolder spec(int metadata_index, int offset = 0) {
979
assert(metadata_index > 0, "must be a pool-resident metadata");
980
RelocationHolder rh = newHolder();
981
new(rh) metadata_Relocation(metadata_index, offset);
982
return rh;
983
}
984
// an metadata in the instruction stream
985
static RelocationHolder spec_for_immediate() {
986
const int metadata_index = 0;
987
const int offset = 0; // if you want an offset, use the metadata pool
988
RelocationHolder rh = newHolder();
989
new(rh) metadata_Relocation(metadata_index, offset);
990
return rh;
991
}
992
993
private:
994
jint _metadata_index; // if > 0, index into nmethod::metadata_at
995
jint _offset; // byte offset to apply to the metadata itself
996
997
metadata_Relocation(int metadata_index, int offset) {
998
_metadata_index = metadata_index; _offset = offset;
999
}
1000
1001
friend class RelocIterator;
1002
metadata_Relocation() { }
1003
1004
// Fixes a Metadata pointer in the code. Most platforms embeds the
1005
// Metadata pointer in the code at compile time so this is empty
1006
// for them.
1007
void pd_fix_value(address x);
1008
1009
public:
1010
int metadata_index() { return _metadata_index; }
1011
int offset() { return _offset; }
1012
1013
// data is packed in "2_ints" format: [i o] or [Ii Oo]
1014
void pack_data_to(CodeSection* dest);
1015
void unpack_data();
1016
1017
void fix_metadata_relocation(); // reasserts metadata value
1018
1019
void verify_metadata_relocation();
1020
1021
address value() { return (address) *metadata_addr(); }
1022
1023
bool metadata_is_immediate() { return metadata_index() == 0; }
1024
1025
Metadata** metadata_addr(); // addr or &pool[jint_data]
1026
Metadata* metadata_value(); // *metadata_addr
1027
// Note: metadata_value transparently converts Universe::non_metadata_word to NULL.
1028
};
1029
1030
1031
class virtual_call_Relocation : public CallRelocation {
1032
relocInfo::relocType type() { return relocInfo::virtual_call_type; }
1033
1034
public:
1035
// "cached_value" points to the first associated set-oop.
1036
// The oop_limit helps find the last associated set-oop.
1037
// (See comments at the top of this file.)
1038
static RelocationHolder spec(address cached_value) {
1039
RelocationHolder rh = newHolder();
1040
new(rh) virtual_call_Relocation(cached_value);
1041
return rh;
1042
}
1043
1044
virtual_call_Relocation(address cached_value) {
1045
_cached_value = cached_value;
1046
assert(cached_value != NULL, "first oop address must be specified");
1047
}
1048
1049
private:
1050
address _cached_value; // location of set-value instruction
1051
1052
friend class RelocIterator;
1053
virtual_call_Relocation() { }
1054
1055
1056
public:
1057
address cached_value();
1058
1059
// data is packed as scaled offsets in "2_ints" format: [f l] or [Ff Ll]
1060
// oop_limit is set to 0 if the limit falls somewhere within the call.
1061
// When unpacking, a zero oop_limit is taken to refer to the end of the call.
1062
// (This has the effect of bringing in the call's delay slot on SPARC.)
1063
void pack_data_to(CodeSection* dest);
1064
void unpack_data();
1065
1066
void clear_inline_cache();
1067
};
1068
1069
1070
class opt_virtual_call_Relocation : public CallRelocation {
1071
relocInfo::relocType type() { return relocInfo::opt_virtual_call_type; }
1072
1073
public:
1074
static RelocationHolder spec() {
1075
RelocationHolder rh = newHolder();
1076
new(rh) opt_virtual_call_Relocation();
1077
return rh;
1078
}
1079
1080
private:
1081
friend class RelocIterator;
1082
opt_virtual_call_Relocation() { }
1083
1084
public:
1085
void clear_inline_cache();
1086
1087
// find the matching static_stub
1088
address static_stub();
1089
};
1090
1091
1092
class static_call_Relocation : public CallRelocation {
1093
relocInfo::relocType type() { return relocInfo::static_call_type; }
1094
1095
public:
1096
static RelocationHolder spec() {
1097
RelocationHolder rh = newHolder();
1098
new(rh) static_call_Relocation();
1099
return rh;
1100
}
1101
1102
private:
1103
friend class RelocIterator;
1104
static_call_Relocation() { }
1105
1106
public:
1107
void clear_inline_cache();
1108
1109
// find the matching static_stub
1110
address static_stub();
1111
};
1112
1113
class static_stub_Relocation : public Relocation {
1114
relocInfo::relocType type() { return relocInfo::static_stub_type; }
1115
1116
public:
1117
static RelocationHolder spec(address static_call) {
1118
RelocationHolder rh = newHolder();
1119
new(rh) static_stub_Relocation(static_call);
1120
return rh;
1121
}
1122
1123
private:
1124
address _static_call; // location of corresponding static_call
1125
1126
static_stub_Relocation(address static_call) {
1127
_static_call = static_call;
1128
}
1129
1130
friend class RelocIterator;
1131
static_stub_Relocation() { }
1132
1133
public:
1134
void clear_inline_cache();
1135
1136
address static_call() { return _static_call; }
1137
1138
// data is packed as a scaled offset in "1_int" format: [c] or [Cc]
1139
void pack_data_to(CodeSection* dest);
1140
void unpack_data();
1141
};
1142
1143
class runtime_call_Relocation : public CallRelocation {
1144
relocInfo::relocType type() { return relocInfo::runtime_call_type; }
1145
1146
public:
1147
static RelocationHolder spec() {
1148
RelocationHolder rh = newHolder();
1149
new(rh) runtime_call_Relocation();
1150
return rh;
1151
}
1152
1153
private:
1154
friend class RelocIterator;
1155
runtime_call_Relocation() { }
1156
1157
public:
1158
};
1159
1160
// Trampoline Relocations.
1161
// A trampoline allows to encode a small branch in the code, even if there
1162
// is the chance that this branch can not reach all possible code locations.
1163
// If the relocation finds that a branch is too far for the instruction
1164
// in the code, it can patch it to jump to the trampoline where is
1165
// sufficient space for a far branch. Needed on PPC.
1166
class trampoline_stub_Relocation : public Relocation {
1167
relocInfo::relocType type() { return relocInfo::trampoline_stub_type; }
1168
1169
public:
1170
static RelocationHolder spec(address static_call) {
1171
RelocationHolder rh = newHolder();
1172
return (new (rh) trampoline_stub_Relocation(static_call));
1173
}
1174
1175
private:
1176
address _owner; // Address of the NativeCall that owns the trampoline.
1177
1178
trampoline_stub_Relocation(address owner) {
1179
_owner = owner;
1180
}
1181
1182
friend class RelocIterator;
1183
trampoline_stub_Relocation() { }
1184
1185
public:
1186
1187
// Return the address of the NativeCall that owns the trampoline.
1188
address owner() { return _owner; }
1189
1190
void pack_data_to(CodeSection * dest);
1191
void unpack_data();
1192
1193
// Find the trampoline stub for a call.
1194
static address get_trampoline_for(address call, nmethod* code);
1195
};
1196
1197
class external_word_Relocation : public DataRelocation {
1198
relocInfo::relocType type() { return relocInfo::external_word_type; }
1199
1200
public:
1201
static RelocationHolder spec(address target) {
1202
assert(target != NULL, "must not be null");
1203
RelocationHolder rh = newHolder();
1204
new(rh) external_word_Relocation(target);
1205
return rh;
1206
}
1207
1208
// Use this one where all 32/64 bits of the target live in the code stream.
1209
// The target must be an intptr_t, and must be absolute (not relative).
1210
static RelocationHolder spec_for_immediate() {
1211
RelocationHolder rh = newHolder();
1212
new(rh) external_word_Relocation(NULL);
1213
return rh;
1214
}
1215
1216
// Some address looking values aren't safe to treat as relocations
1217
// and should just be treated as constants.
1218
static bool can_be_relocated(address target) {
1219
return target != NULL && !is_reloc_index((intptr_t)target);
1220
}
1221
1222
private:
1223
address _target; // address in runtime
1224
1225
external_word_Relocation(address target) {
1226
_target = target;
1227
}
1228
1229
friend class RelocIterator;
1230
external_word_Relocation() { }
1231
1232
public:
1233
// data is packed as a well-known address in "1_int" format: [a] or [Aa]
1234
// The function runtime_address_to_index is used to turn full addresses
1235
// to short indexes, if they are pre-registered by the stub mechanism.
1236
// If the "a" value is 0 (i.e., _target is NULL), the address is stored
1237
// in the code stream. See external_word_Relocation::target().
1238
void pack_data_to(CodeSection* dest);
1239
void unpack_data();
1240
1241
void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
1242
address target(); // if _target==NULL, fetch addr from code stream
1243
address value() { return target(); }
1244
};
1245
1246
class internal_word_Relocation : public DataRelocation {
1247
relocInfo::relocType type() { return relocInfo::internal_word_type; }
1248
1249
public:
1250
static RelocationHolder spec(address target) {
1251
assert(target != NULL, "must not be null");
1252
RelocationHolder rh = newHolder();
1253
new(rh) internal_word_Relocation(target);
1254
return rh;
1255
}
1256
1257
// use this one where all the bits of the target can fit in the code stream:
1258
static RelocationHolder spec_for_immediate() {
1259
RelocationHolder rh = newHolder();
1260
new(rh) internal_word_Relocation(NULL);
1261
return rh;
1262
}
1263
1264
internal_word_Relocation(address target) {
1265
_target = target;
1266
_section = -1; // self-relative
1267
}
1268
1269
protected:
1270
address _target; // address in CodeBlob
1271
int _section; // section providing base address, if any
1272
1273
friend class RelocIterator;
1274
internal_word_Relocation() { }
1275
1276
// bit-width of LSB field in packed offset, if section >= 0
1277
enum { section_width = 2 }; // must equal CodeBuffer::sect_bits
1278
1279
public:
1280
// data is packed as a scaled offset in "1_int" format: [o] or [Oo]
1281
// If the "o" value is 0 (i.e., _target is NULL), the offset is stored
1282
// in the code stream. See internal_word_Relocation::target().
1283
// If _section is not -1, it is appended to the low bits of the offset.
1284
void pack_data_to(CodeSection* dest);
1285
void unpack_data();
1286
1287
void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
1288
address target(); // if _target==NULL, fetch addr from code stream
1289
int section() { return _section; }
1290
address value() { return target(); }
1291
};
1292
1293
class section_word_Relocation : public internal_word_Relocation {
1294
relocInfo::relocType type() { return relocInfo::section_word_type; }
1295
1296
public:
1297
static RelocationHolder spec(address target, int section) {
1298
RelocationHolder rh = newHolder();
1299
new(rh) section_word_Relocation(target, section);
1300
return rh;
1301
}
1302
1303
section_word_Relocation(address target, int section) {
1304
assert(target != NULL, "must not be null");
1305
assert(section >= 0, "must be a valid section");
1306
_target = target;
1307
_section = section;
1308
}
1309
1310
//void pack_data_to -- inherited
1311
void unpack_data();
1312
1313
private:
1314
friend class RelocIterator;
1315
section_word_Relocation() { }
1316
};
1317
1318
1319
class poll_Relocation : public Relocation {
1320
bool is_data() { return true; }
1321
relocInfo::relocType type() { return relocInfo::poll_type; }
1322
void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
1323
};
1324
1325
class poll_return_Relocation : public Relocation {
1326
bool is_data() { return true; }
1327
relocInfo::relocType type() { return relocInfo::poll_return_type; }
1328
void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
1329
};
1330
1331
// We know all the xxx_Relocation classes, so now we can define these:
1332
#define EACH_CASE(name) \
1333
inline name##_Relocation* RelocIterator::name##_reloc() { \
1334
assert(type() == relocInfo::name##_type, "type must agree"); \
1335
/* The purpose of the placed "new" is to re-use the same */ \
1336
/* stack storage for each new iteration. */ \
1337
name##_Relocation* r = new(_rh) name##_Relocation(); \
1338
r->set_binding(this); \
1339
r->name##_Relocation::unpack_data(); \
1340
return r; \
1341
}
1342
APPLY_TO_RELOCATIONS(EACH_CASE);
1343
#undef EACH_CASE
1344
1345
inline RelocIterator::RelocIterator(nmethod* nm, address begin, address limit) {
1346
initialize(nm, begin, limit);
1347
}
1348
1349
#endif // SHARE_VM_CODE_RELOCINFO_HPP
1350
1351