Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.hpp
38920 views
1
/*
2
* Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_HPP
26
#define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_HPP
27
28
#include "gc_implementation/shared/gcHeapSummary.hpp"
29
#include "gc_implementation/shared/gSpaceCounters.hpp"
30
#include "gc_implementation/shared/gcStats.hpp"
31
#include "gc_implementation/shared/gcWhen.hpp"
32
#include "gc_implementation/shared/generationCounters.hpp"
33
#include "memory/freeBlockDictionary.hpp"
34
#include "memory/generation.hpp"
35
#include "memory/iterator.hpp"
36
#include "runtime/mutexLocker.hpp"
37
#include "runtime/virtualspace.hpp"
38
#include "services/memoryService.hpp"
39
#include "utilities/bitMap.inline.hpp"
40
#include "utilities/stack.inline.hpp"
41
#include "utilities/taskqueue.hpp"
42
#include "utilities/yieldingWorkgroup.hpp"
43
44
// ConcurrentMarkSweepGeneration is in support of a concurrent
45
// mark-sweep old generation in the Detlefs-Printezis--Boehm-Demers-Schenker
46
// style. We assume, for now, that this generation is always the
47
// seniormost generation and for simplicity
48
// in the first implementation, that this generation is a single compactible
49
// space. Neither of these restrictions appears essential, and will be
50
// relaxed in the future when more time is available to implement the
51
// greater generality (and there's a need for it).
52
//
53
// Concurrent mode failures are currently handled by
54
// means of a sliding mark-compact.
55
56
class CMSAdaptiveSizePolicy;
57
class CMSConcMarkingTask;
58
class CMSGCAdaptivePolicyCounters;
59
class CMSTracer;
60
class ConcurrentGCTimer;
61
class ConcurrentMarkSweepGeneration;
62
class ConcurrentMarkSweepPolicy;
63
class ConcurrentMarkSweepThread;
64
class CompactibleFreeListSpace;
65
class FreeChunk;
66
class PromotionInfo;
67
class ScanMarkedObjectsAgainCarefullyClosure;
68
class TenuredGeneration;
69
class SerialOldTracer;
70
71
// A generic CMS bit map. It's the basis for both the CMS marking bit map
72
// as well as for the mod union table (in each case only a subset of the
73
// methods are used). This is essentially a wrapper around the BitMap class,
74
// with one bit per (1<<_shifter) HeapWords. (i.e. for the marking bit map,
75
// we have _shifter == 0. and for the mod union table we have
76
// shifter == CardTableModRefBS::card_shift - LogHeapWordSize.)
77
// XXX 64-bit issues in BitMap?
78
class CMSBitMap VALUE_OBJ_CLASS_SPEC {
79
friend class VMStructs;
80
81
HeapWord* _bmStartWord; // base address of range covered by map
82
size_t _bmWordSize; // map size (in #HeapWords covered)
83
const int _shifter; // shifts to convert HeapWord to bit position
84
VirtualSpace _virtual_space; // underlying the bit map
85
BitMap _bm; // the bit map itself
86
public:
87
Mutex* const _lock; // mutex protecting _bm;
88
89
public:
90
// constructor
91
CMSBitMap(int shifter, int mutex_rank, const char* mutex_name);
92
93
// allocates the actual storage for the map
94
bool allocate(MemRegion mr);
95
// field getter
96
Mutex* lock() const { return _lock; }
97
// locking verifier convenience function
98
void assert_locked() const PRODUCT_RETURN;
99
100
// inquiries
101
HeapWord* startWord() const { return _bmStartWord; }
102
size_t sizeInWords() const { return _bmWordSize; }
103
size_t sizeInBits() const { return _bm.size(); }
104
// the following is one past the last word in space
105
HeapWord* endWord() const { return _bmStartWord + _bmWordSize; }
106
107
// reading marks
108
bool isMarked(HeapWord* addr) const;
109
bool par_isMarked(HeapWord* addr) const; // do not lock checks
110
bool isUnmarked(HeapWord* addr) const;
111
bool isAllClear() const;
112
113
// writing marks
114
void mark(HeapWord* addr);
115
// For marking by parallel GC threads;
116
// returns true if we did, false if another thread did
117
bool par_mark(HeapWord* addr);
118
119
void mark_range(MemRegion mr);
120
void par_mark_range(MemRegion mr);
121
void mark_large_range(MemRegion mr);
122
void par_mark_large_range(MemRegion mr);
123
void par_clear(HeapWord* addr); // For unmarking by parallel GC threads.
124
void clear_range(MemRegion mr);
125
void par_clear_range(MemRegion mr);
126
void clear_large_range(MemRegion mr);
127
void par_clear_large_range(MemRegion mr);
128
void clear_all();
129
void clear_all_incrementally(); // Not yet implemented!!
130
131
NOT_PRODUCT(
132
// checks the memory region for validity
133
void region_invariant(MemRegion mr);
134
)
135
136
// iteration
137
void iterate(BitMapClosure* cl) {
138
_bm.iterate(cl);
139
}
140
void iterate(BitMapClosure* cl, HeapWord* left, HeapWord* right);
141
void dirty_range_iterate_clear(MemRegionClosure* cl);
142
void dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl);
143
144
// auxiliary support for iteration
145
HeapWord* getNextMarkedWordAddress(HeapWord* addr) const;
146
HeapWord* getNextMarkedWordAddress(HeapWord* start_addr,
147
HeapWord* end_addr) const;
148
HeapWord* getNextUnmarkedWordAddress(HeapWord* addr) const;
149
HeapWord* getNextUnmarkedWordAddress(HeapWord* start_addr,
150
HeapWord* end_addr) const;
151
MemRegion getAndClearMarkedRegion(HeapWord* addr);
152
MemRegion getAndClearMarkedRegion(HeapWord* start_addr,
153
HeapWord* end_addr);
154
155
// conversion utilities
156
HeapWord* offsetToHeapWord(size_t offset) const;
157
size_t heapWordToOffset(HeapWord* addr) const;
158
size_t heapWordDiffToOffsetDiff(size_t diff) const;
159
160
void print_on_error(outputStream* st, const char* prefix) const;
161
162
// debugging
163
// is this address range covered by the bit-map?
164
NOT_PRODUCT(
165
bool covers(MemRegion mr) const;
166
bool covers(HeapWord* start, size_t size = 0) const;
167
)
168
void verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) PRODUCT_RETURN;
169
};
170
171
// Represents a marking stack used by the CMS collector.
172
// Ideally this should be GrowableArray<> just like MSC's marking stack(s).
173
class CMSMarkStack: public CHeapObj<mtGC> {
174
//
175
friend class CMSCollector; // to get at expasion stats further below
176
//
177
178
VirtualSpace _virtual_space; // space for the stack
179
oop* _base; // bottom of stack
180
size_t _index; // one more than last occupied index
181
size_t _capacity; // max #elements
182
Mutex _par_lock; // an advisory lock used in case of parallel access
183
NOT_PRODUCT(size_t _max_depth;) // max depth plumbed during run
184
185
protected:
186
size_t _hit_limit; // we hit max stack size limit
187
size_t _failed_double; // we failed expansion before hitting limit
188
189
public:
190
CMSMarkStack():
191
_par_lock(Mutex::event, "CMSMarkStack._par_lock", true),
192
_hit_limit(0),
193
_failed_double(0) {}
194
195
bool allocate(size_t size);
196
197
size_t capacity() const { return _capacity; }
198
199
oop pop() {
200
if (!isEmpty()) {
201
return _base[--_index] ;
202
}
203
return NULL;
204
}
205
206
bool push(oop ptr) {
207
if (isFull()) {
208
return false;
209
} else {
210
_base[_index++] = ptr;
211
NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
212
return true;
213
}
214
}
215
216
bool isEmpty() const { return _index == 0; }
217
bool isFull() const {
218
assert(_index <= _capacity, "buffer overflow");
219
return _index == _capacity;
220
}
221
222
size_t length() { return _index; }
223
224
// "Parallel versions" of some of the above
225
oop par_pop() {
226
// lock and pop
227
MutexLockerEx x(&_par_lock, Mutex::_no_safepoint_check_flag);
228
return pop();
229
}
230
231
bool par_push(oop ptr) {
232
// lock and push
233
MutexLockerEx x(&_par_lock, Mutex::_no_safepoint_check_flag);
234
return push(ptr);
235
}
236
237
// Forcibly reset the stack, losing all of its contents.
238
void reset() {
239
_index = 0;
240
}
241
242
// Expand the stack, typically in response to an overflow condition
243
void expand();
244
245
// Compute the least valued stack element.
246
oop least_value(HeapWord* low) {
247
oop least = (oop)low;
248
for (size_t i = 0; i < _index; i++) {
249
least = MIN2(least, _base[i]);
250
}
251
return least;
252
}
253
254
// Exposed here to allow stack expansion in || case
255
Mutex* par_lock() { return &_par_lock; }
256
};
257
258
class CardTableRS;
259
class CMSParGCThreadState;
260
261
class ModUnionClosure: public MemRegionClosure {
262
protected:
263
CMSBitMap* _t;
264
public:
265
ModUnionClosure(CMSBitMap* t): _t(t) { }
266
void do_MemRegion(MemRegion mr);
267
};
268
269
class ModUnionClosurePar: public ModUnionClosure {
270
public:
271
ModUnionClosurePar(CMSBitMap* t): ModUnionClosure(t) { }
272
void do_MemRegion(MemRegion mr);
273
};
274
275
// Survivor Chunk Array in support of parallelization of
276
// Survivor Space rescan.
277
class ChunkArray: public CHeapObj<mtGC> {
278
size_t _index;
279
size_t _capacity;
280
size_t _overflows;
281
HeapWord** _array; // storage for array
282
283
public:
284
ChunkArray() : _index(0), _capacity(0), _overflows(0), _array(NULL) {}
285
ChunkArray(HeapWord** a, size_t c):
286
_index(0), _capacity(c), _overflows(0), _array(a) {}
287
288
HeapWord** array() { return _array; }
289
void set_array(HeapWord** a) { _array = a; }
290
291
size_t capacity() { return _capacity; }
292
void set_capacity(size_t c) { _capacity = c; }
293
294
size_t end() {
295
assert(_index <= capacity(),
296
err_msg("_index (" SIZE_FORMAT ") > _capacity (" SIZE_FORMAT "): out of bounds",
297
_index, _capacity));
298
return _index;
299
} // exclusive
300
301
HeapWord* nth(size_t n) {
302
assert(n < end(), "Out of bounds access");
303
return _array[n];
304
}
305
306
void reset() {
307
_index = 0;
308
if (_overflows > 0 && PrintCMSStatistics > 1) {
309
warning("CMS: ChunkArray[" SIZE_FORMAT "] overflowed " SIZE_FORMAT " times",
310
_capacity, _overflows);
311
}
312
_overflows = 0;
313
}
314
315
void record_sample(HeapWord* p, size_t sz) {
316
// For now we do not do anything with the size
317
if (_index < _capacity) {
318
_array[_index++] = p;
319
} else {
320
++_overflows;
321
assert(_index == _capacity,
322
err_msg("_index (" SIZE_FORMAT ") > _capacity (" SIZE_FORMAT
323
"): out of bounds at overflow#" SIZE_FORMAT,
324
_index, _capacity, _overflows));
325
}
326
}
327
};
328
329
//
330
// Timing, allocation and promotion statistics for gc scheduling and incremental
331
// mode pacing. Most statistics are exponential averages.
332
//
333
class CMSStats VALUE_OBJ_CLASS_SPEC {
334
private:
335
ConcurrentMarkSweepGeneration* const _cms_gen; // The cms (old) gen.
336
337
// The following are exponential averages with factor alpha:
338
// avg = (100 - alpha) * avg + alpha * cur_sample
339
//
340
// The durations measure: end_time[n] - start_time[n]
341
// The periods measure: start_time[n] - start_time[n-1]
342
//
343
// The cms period and duration include only concurrent collections; time spent
344
// in foreground cms collections due to System.gc() or because of a failure to
345
// keep up are not included.
346
//
347
// There are 3 alphas to "bootstrap" the statistics. The _saved_alpha is the
348
// real value, but is used only after the first period. A value of 100 is
349
// used for the first sample so it gets the entire weight.
350
unsigned int _saved_alpha; // 0-100
351
unsigned int _gc0_alpha;
352
unsigned int _cms_alpha;
353
354
double _gc0_duration;
355
double _gc0_period;
356
size_t _gc0_promoted; // bytes promoted per gc0
357
double _cms_duration;
358
double _cms_duration_pre_sweep; // time from initiation to start of sweep
359
double _cms_duration_per_mb;
360
double _cms_period;
361
size_t _cms_allocated; // bytes of direct allocation per gc0 period
362
363
// Timers.
364
elapsedTimer _cms_timer;
365
TimeStamp _gc0_begin_time;
366
TimeStamp _cms_begin_time;
367
TimeStamp _cms_end_time;
368
369
// Snapshots of the amount used in the CMS generation.
370
size_t _cms_used_at_gc0_begin;
371
size_t _cms_used_at_gc0_end;
372
size_t _cms_used_at_cms_begin;
373
374
// Used to prevent the duty cycle from being reduced in the middle of a cms
375
// cycle.
376
bool _allow_duty_cycle_reduction;
377
378
enum {
379
_GC0_VALID = 0x1,
380
_CMS_VALID = 0x2,
381
_ALL_VALID = _GC0_VALID | _CMS_VALID
382
};
383
384
unsigned int _valid_bits;
385
386
unsigned int _icms_duty_cycle; // icms duty cycle (0-100).
387
388
protected:
389
390
// Return a duty cycle that avoids wild oscillations, by limiting the amount
391
// of change between old_duty_cycle and new_duty_cycle (the latter is treated
392
// as a recommended value).
393
static unsigned int icms_damped_duty_cycle(unsigned int old_duty_cycle,
394
unsigned int new_duty_cycle);
395
unsigned int icms_update_duty_cycle_impl();
396
397
// In support of adjusting of cms trigger ratios based on history
398
// of concurrent mode failure.
399
double cms_free_adjustment_factor(size_t free) const;
400
void adjust_cms_free_adjustment_factor(bool fail, size_t free);
401
402
public:
403
CMSStats(ConcurrentMarkSweepGeneration* cms_gen,
404
unsigned int alpha = CMSExpAvgFactor);
405
406
// Whether or not the statistics contain valid data; higher level statistics
407
// cannot be called until this returns true (they require at least one young
408
// gen and one cms cycle to have completed).
409
bool valid() const;
410
411
// Record statistics.
412
void record_gc0_begin();
413
void record_gc0_end(size_t cms_gen_bytes_used);
414
void record_cms_begin();
415
void record_cms_end();
416
417
// Allow management of the cms timer, which must be stopped/started around
418
// yield points.
419
elapsedTimer& cms_timer() { return _cms_timer; }
420
void start_cms_timer() { _cms_timer.start(); }
421
void stop_cms_timer() { _cms_timer.stop(); }
422
423
// Basic statistics; units are seconds or bytes.
424
double gc0_period() const { return _gc0_period; }
425
double gc0_duration() const { return _gc0_duration; }
426
size_t gc0_promoted() const { return _gc0_promoted; }
427
double cms_period() const { return _cms_period; }
428
double cms_duration() const { return _cms_duration; }
429
double cms_duration_per_mb() const { return _cms_duration_per_mb; }
430
size_t cms_allocated() const { return _cms_allocated; }
431
432
size_t cms_used_at_gc0_end() const { return _cms_used_at_gc0_end;}
433
434
// Seconds since the last background cms cycle began or ended.
435
double cms_time_since_begin() const;
436
double cms_time_since_end() const;
437
438
// Higher level statistics--caller must check that valid() returns true before
439
// calling.
440
441
// Returns bytes promoted per second of wall clock time.
442
double promotion_rate() const;
443
444
// Returns bytes directly allocated per second of wall clock time.
445
double cms_allocation_rate() const;
446
447
// Rate at which space in the cms generation is being consumed (sum of the
448
// above two).
449
double cms_consumption_rate() const;
450
451
// Returns an estimate of the number of seconds until the cms generation will
452
// fill up, assuming no collection work is done.
453
double time_until_cms_gen_full() const;
454
455
// Returns an estimate of the number of seconds remaining until
456
// the cms generation collection should start.
457
double time_until_cms_start() const;
458
459
// End of higher level statistics.
460
461
// Returns the cms incremental mode duty cycle, as a percentage (0-100).
462
unsigned int icms_duty_cycle() const { return _icms_duty_cycle; }
463
464
// Update the duty cycle and return the new value.
465
unsigned int icms_update_duty_cycle();
466
467
// Debugging.
468
void print_on(outputStream* st) const PRODUCT_RETURN;
469
void print() const { print_on(gclog_or_tty); }
470
};
471
472
// A closure related to weak references processing which
473
// we embed in the CMSCollector, since we need to pass
474
// it to the reference processor for secondary filtering
475
// of references based on reachability of referent;
476
// see role of _is_alive_non_header closure in the
477
// ReferenceProcessor class.
478
// For objects in the CMS generation, this closure checks
479
// if the object is "live" (reachable). Used in weak
480
// reference processing.
481
class CMSIsAliveClosure: public BoolObjectClosure {
482
const MemRegion _span;
483
const CMSBitMap* _bit_map;
484
485
friend class CMSCollector;
486
public:
487
CMSIsAliveClosure(MemRegion span,
488
CMSBitMap* bit_map):
489
_span(span),
490
_bit_map(bit_map) {
491
assert(!span.is_empty(), "Empty span could spell trouble");
492
}
493
494
bool do_object_b(oop obj);
495
};
496
497
498
// Implements AbstractRefProcTaskExecutor for CMS.
499
class CMSRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
500
public:
501
502
CMSRefProcTaskExecutor(CMSCollector& collector)
503
: _collector(collector)
504
{ }
505
506
// Executes a task using worker threads.
507
virtual void execute(ProcessTask& task);
508
virtual void execute(EnqueueTask& task);
509
private:
510
CMSCollector& _collector;
511
};
512
513
514
class CMSCollector: public CHeapObj<mtGC> {
515
friend class VMStructs;
516
friend class ConcurrentMarkSweepThread;
517
friend class ConcurrentMarkSweepGeneration;
518
friend class CompactibleFreeListSpace;
519
friend class CMSParMarkTask;
520
friend class CMSParInitialMarkTask;
521
friend class CMSParRemarkTask;
522
friend class CMSConcMarkingTask;
523
friend class CMSRefProcTaskProxy;
524
friend class CMSRefProcTaskExecutor;
525
friend class ScanMarkedObjectsAgainCarefullyClosure; // for sampling eden
526
friend class SurvivorSpacePrecleanClosure; // --- ditto -------
527
friend class PushOrMarkClosure; // to access _restart_addr
528
friend class Par_PushOrMarkClosure; // to access _restart_addr
529
friend class MarkFromRootsClosure; // -- ditto --
530
// ... and for clearing cards
531
friend class Par_MarkFromRootsClosure; // to access _restart_addr
532
// ... and for clearing cards
533
friend class Par_ConcMarkingClosure; // to access _restart_addr etc.
534
friend class MarkFromRootsVerifyClosure; // to access _restart_addr
535
friend class PushAndMarkVerifyClosure; // -- ditto --
536
friend class MarkRefsIntoAndScanClosure; // to access _overflow_list
537
friend class PushAndMarkClosure; // -- ditto --
538
friend class Par_PushAndMarkClosure; // -- ditto --
539
friend class CMSKeepAliveClosure; // -- ditto --
540
friend class CMSDrainMarkingStackClosure; // -- ditto --
541
friend class CMSInnerParMarkAndPushClosure; // -- ditto --
542
NOT_PRODUCT(friend class ScanMarkedObjectsAgainClosure;) // assertion on _overflow_list
543
friend class ReleaseForegroundGC; // to access _foregroundGCShouldWait
544
friend class VM_CMS_Operation;
545
friend class VM_CMS_Initial_Mark;
546
friend class VM_CMS_Final_Remark;
547
friend class TraceCMSMemoryManagerStats;
548
549
private:
550
jlong _time_of_last_gc;
551
void update_time_of_last_gc(jlong now) {
552
_time_of_last_gc = now;
553
}
554
555
OopTaskQueueSet* _task_queues;
556
557
// Overflow list of grey objects, threaded through mark-word
558
// Manipulated with CAS in the parallel/multi-threaded case.
559
oop _overflow_list;
560
// The following array-pair keeps track of mark words
561
// displaced for accomodating overflow list above.
562
// This code will likely be revisited under RFE#4922830.
563
Stack<oop, mtGC> _preserved_oop_stack;
564
Stack<markOop, mtGC> _preserved_mark_stack;
565
566
int* _hash_seed;
567
568
// In support of multi-threaded concurrent phases
569
YieldingFlexibleWorkGang* _conc_workers;
570
571
// Performance Counters
572
CollectorCounters* _gc_counters;
573
574
// Initialization Errors
575
bool _completed_initialization;
576
577
// In support of ExplicitGCInvokesConcurrent
578
static bool _full_gc_requested;
579
static GCCause::Cause _full_gc_cause;
580
unsigned int _collection_count_start;
581
582
// Should we unload classes this concurrent cycle?
583
bool _should_unload_classes;
584
unsigned int _concurrent_cycles_since_last_unload;
585
unsigned int concurrent_cycles_since_last_unload() const {
586
return _concurrent_cycles_since_last_unload;
587
}
588
// Did we (allow) unload classes in the previous concurrent cycle?
589
bool unloaded_classes_last_cycle() const {
590
return concurrent_cycles_since_last_unload() == 0;
591
}
592
// Root scanning options for perm gen
593
int _roots_scanning_options;
594
int roots_scanning_options() const { return _roots_scanning_options; }
595
void add_root_scanning_option(int o) { _roots_scanning_options |= o; }
596
void remove_root_scanning_option(int o) { _roots_scanning_options &= ~o; }
597
598
// Verification support
599
CMSBitMap _verification_mark_bm;
600
void verify_after_remark_work_1();
601
void verify_after_remark_work_2();
602
603
// true if any verification flag is on.
604
bool _verifying;
605
bool verifying() const { return _verifying; }
606
void set_verifying(bool v) { _verifying = v; }
607
608
// Collector policy
609
ConcurrentMarkSweepPolicy* _collector_policy;
610
ConcurrentMarkSweepPolicy* collector_policy() { return _collector_policy; }
611
612
void set_did_compact(bool v);
613
614
// XXX Move these to CMSStats ??? FIX ME !!!
615
elapsedTimer _inter_sweep_timer; // time between sweeps
616
elapsedTimer _intra_sweep_timer; // time _in_ sweeps
617
// padded decaying average estimates of the above
618
AdaptivePaddedAverage _inter_sweep_estimate;
619
AdaptivePaddedAverage _intra_sweep_estimate;
620
621
CMSTracer* _gc_tracer_cm;
622
ConcurrentGCTimer* _gc_timer_cm;
623
624
bool _cms_start_registered;
625
626
GCHeapSummary _last_heap_summary;
627
MetaspaceSummary _last_metaspace_summary;
628
629
void register_foreground_gc_start(GCCause::Cause cause);
630
void register_gc_start(GCCause::Cause cause);
631
void register_gc_end();
632
void save_heap_summary();
633
void report_heap_summary(GCWhen::Type when);
634
635
protected:
636
ConcurrentMarkSweepGeneration* _cmsGen; // old gen (CMS)
637
MemRegion _span; // span covering above two
638
CardTableRS* _ct; // card table
639
640
// CMS marking support structures
641
CMSBitMap _markBitMap;
642
CMSBitMap _modUnionTable;
643
CMSMarkStack _markStack;
644
645
HeapWord* _restart_addr; // in support of marking stack overflow
646
void lower_restart_addr(HeapWord* low);
647
648
// Counters in support of marking stack / work queue overflow handling:
649
// a non-zero value indicates certain types of overflow events during
650
// the current CMS cycle and could lead to stack resizing efforts at
651
// an opportune future time.
652
size_t _ser_pmc_preclean_ovflw;
653
size_t _ser_pmc_remark_ovflw;
654
size_t _par_pmc_remark_ovflw;
655
size_t _ser_kac_preclean_ovflw;
656
size_t _ser_kac_ovflw;
657
size_t _par_kac_ovflw;
658
NOT_PRODUCT(ssize_t _num_par_pushes;)
659
660
// ("Weak") Reference processing support
661
ReferenceProcessor* _ref_processor;
662
CMSIsAliveClosure _is_alive_closure;
663
// keep this textually after _markBitMap and _span; c'tor dependency
664
665
ConcurrentMarkSweepThread* _cmsThread; // the thread doing the work
666
ModUnionClosure _modUnionClosure;
667
ModUnionClosurePar _modUnionClosurePar;
668
669
// CMS abstract state machine
670
// initial_state: Idling
671
// next_state(Idling) = {Marking}
672
// next_state(Marking) = {Precleaning, Sweeping}
673
// next_state(Precleaning) = {AbortablePreclean, FinalMarking}
674
// next_state(AbortablePreclean) = {FinalMarking}
675
// next_state(FinalMarking) = {Sweeping}
676
// next_state(Sweeping) = {Resizing}
677
// next_state(Resizing) = {Resetting}
678
// next_state(Resetting) = {Idling}
679
// The numeric values below are chosen so that:
680
// . _collectorState <= Idling == post-sweep && pre-mark
681
// . _collectorState in (Idling, Sweeping) == {initial,final}marking ||
682
// precleaning || abortablePrecleanb
683
public:
684
enum CollectorState {
685
Resizing = 0,
686
Resetting = 1,
687
Idling = 2,
688
InitialMarking = 3,
689
Marking = 4,
690
Precleaning = 5,
691
AbortablePreclean = 6,
692
FinalMarking = 7,
693
Sweeping = 8
694
};
695
protected:
696
static CollectorState _collectorState;
697
698
// State related to prologue/epilogue invocation for my generations
699
bool _between_prologue_and_epilogue;
700
701
// Signalling/State related to coordination between fore- and backgroud GC
702
// Note: When the baton has been passed from background GC to foreground GC,
703
// _foregroundGCIsActive is true and _foregroundGCShouldWait is false.
704
static bool _foregroundGCIsActive; // true iff foreground collector is active or
705
// wants to go active
706
static bool _foregroundGCShouldWait; // true iff background GC is active and has not
707
// yet passed the baton to the foreground GC
708
709
// Support for CMSScheduleRemark (abortable preclean)
710
bool _abort_preclean;
711
bool _start_sampling;
712
713
int _numYields;
714
size_t _numDirtyCards;
715
size_t _sweep_count;
716
// number of full gc's since the last concurrent gc.
717
uint _full_gcs_since_conc_gc;
718
719
// occupancy used for bootstrapping stats
720
double _bootstrap_occupancy;
721
722
// timer
723
elapsedTimer _timer;
724
725
// Timing, allocation and promotion statistics, used for scheduling.
726
CMSStats _stats;
727
728
// Allocation limits installed in the young gen, used only in
729
// CMSIncrementalMode. When an allocation in the young gen would cross one of
730
// these limits, the cms generation is notified and the cms thread is started
731
// or stopped, respectively.
732
HeapWord* _icms_start_limit;
733
HeapWord* _icms_stop_limit;
734
735
enum CMS_op_type {
736
CMS_op_checkpointRootsInitial,
737
CMS_op_checkpointRootsFinal
738
};
739
740
void do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause);
741
bool stop_world_and_do(CMS_op_type op);
742
743
OopTaskQueueSet* task_queues() { return _task_queues; }
744
int* hash_seed(int i) { return &_hash_seed[i]; }
745
YieldingFlexibleWorkGang* conc_workers() { return _conc_workers; }
746
747
// Support for parallelizing Eden rescan in CMS remark phase
748
void sample_eden(); // ... sample Eden space top
749
750
private:
751
// Support for parallelizing young gen rescan in CMS remark phase
752
Generation* _young_gen; // the younger gen
753
HeapWord** _top_addr; // ... Top of Eden
754
HeapWord** _end_addr; // ... End of Eden
755
Mutex* _eden_chunk_lock;
756
HeapWord** _eden_chunk_array; // ... Eden partitioning array
757
size_t _eden_chunk_index; // ... top (exclusive) of array
758
size_t _eden_chunk_capacity; // ... max entries in array
759
760
// Support for parallelizing survivor space rescan
761
HeapWord** _survivor_chunk_array;
762
size_t _survivor_chunk_index;
763
size_t _survivor_chunk_capacity;
764
size_t* _cursor;
765
ChunkArray* _survivor_plab_array;
766
767
// A bounded minimum size of PLABs, should not return too small values since
768
// this will affect the size of the data structures used for parallel young gen rescan
769
size_t plab_sample_minimum_size();
770
771
// Support for marking stack overflow handling
772
bool take_from_overflow_list(size_t num, CMSMarkStack* to_stack);
773
bool par_take_from_overflow_list(size_t num,
774
OopTaskQueue* to_work_q,
775
int no_of_gc_threads);
776
void push_on_overflow_list(oop p);
777
void par_push_on_overflow_list(oop p);
778
// the following is, obviously, not, in general, "MT-stable"
779
bool overflow_list_is_empty() const;
780
781
void preserve_mark_if_necessary(oop p);
782
void par_preserve_mark_if_necessary(oop p);
783
void preserve_mark_work(oop p, markOop m);
784
void restore_preserved_marks_if_any();
785
NOT_PRODUCT(bool no_preserved_marks() const;)
786
// in support of testing overflow code
787
NOT_PRODUCT(int _overflow_counter;)
788
NOT_PRODUCT(bool simulate_overflow();) // sequential
789
NOT_PRODUCT(bool par_simulate_overflow();) // MT version
790
791
// CMS work methods
792
void checkpointRootsInitialWork(bool asynch); // initial checkpoint work
793
794
// a return value of false indicates failure due to stack overflow
795
bool markFromRootsWork(bool asynch); // concurrent marking work
796
797
public: // FIX ME!!! only for testing
798
bool do_marking_st(bool asynch); // single-threaded marking
799
bool do_marking_mt(bool asynch); // multi-threaded marking
800
801
private:
802
803
// concurrent precleaning work
804
size_t preclean_mod_union_table(ConcurrentMarkSweepGeneration* gen,
805
ScanMarkedObjectsAgainCarefullyClosure* cl);
806
size_t preclean_card_table(ConcurrentMarkSweepGeneration* gen,
807
ScanMarkedObjectsAgainCarefullyClosure* cl);
808
// Does precleaning work, returning a quantity indicative of
809
// the amount of "useful work" done.
810
size_t preclean_work(bool clean_refs, bool clean_survivors);
811
void preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock);
812
void abortable_preclean(); // Preclean while looking for possible abort
813
void initialize_sequential_subtasks_for_young_gen_rescan(int i);
814
// Helper function for above; merge-sorts the per-thread plab samples
815
void merge_survivor_plab_arrays(ContiguousSpace* surv, int no_of_gc_threads);
816
// Resets (i.e. clears) the per-thread plab sample vectors
817
void reset_survivor_plab_arrays();
818
819
// final (second) checkpoint work
820
void checkpointRootsFinalWork(bool asynch, bool clear_all_soft_refs,
821
bool init_mark_was_synchronous);
822
// work routine for parallel version of remark
823
void do_remark_parallel();
824
// work routine for non-parallel version of remark
825
void do_remark_non_parallel();
826
// reference processing work routine (during second checkpoint)
827
void refProcessingWork(bool asynch, bool clear_all_soft_refs);
828
829
// concurrent sweeping work
830
void sweepWork(ConcurrentMarkSweepGeneration* gen, bool asynch);
831
832
// (concurrent) resetting of support data structures
833
void reset(bool asynch);
834
835
// Clear _expansion_cause fields of constituent generations
836
void clear_expansion_cause();
837
838
// An auxilliary method used to record the ends of
839
// used regions of each generation to limit the extent of sweep
840
void save_sweep_limits();
841
842
// A work method used by foreground collection to determine
843
// what type of collection (compacting or not, continuing or fresh)
844
// it should do.
845
void decide_foreground_collection_type(bool clear_all_soft_refs,
846
bool* should_compact, bool* should_start_over);
847
848
// A work method used by the foreground collector to do
849
// a mark-sweep-compact.
850
void do_compaction_work(bool clear_all_soft_refs);
851
852
// A work method used by the foreground collector to do
853
// a mark-sweep, after taking over from a possibly on-going
854
// concurrent mark-sweep collection.
855
void do_mark_sweep_work(bool clear_all_soft_refs,
856
CollectorState first_state, bool should_start_over);
857
858
// Work methods for reporting concurrent mode interruption or failure
859
bool is_external_interruption();
860
void report_concurrent_mode_interruption();
861
862
// If the backgrould GC is active, acquire control from the background
863
// GC and do the collection.
864
void acquire_control_and_collect(bool full, bool clear_all_soft_refs);
865
866
// For synchronizing passing of control from background to foreground
867
// GC. waitForForegroundGC() is called by the background
868
// collector. It if had to wait for a foreground collection,
869
// it returns true and the background collection should assume
870
// that the collection was finished by the foreground
871
// collector.
872
bool waitForForegroundGC();
873
874
// Incremental mode triggering: recompute the icms duty cycle and set the
875
// allocation limits in the young gen.
876
void icms_update_allocation_limits();
877
878
size_t block_size_using_printezis_bits(HeapWord* addr) const;
879
size_t block_size_if_printezis_bits(HeapWord* addr) const;
880
HeapWord* next_card_start_after_block(HeapWord* addr) const;
881
882
void setup_cms_unloading_and_verification_state();
883
public:
884
CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
885
CardTableRS* ct,
886
ConcurrentMarkSweepPolicy* cp);
887
ConcurrentMarkSweepThread* cmsThread() { return _cmsThread; }
888
889
ReferenceProcessor* ref_processor() { return _ref_processor; }
890
void ref_processor_init();
891
892
Mutex* bitMapLock() const { return _markBitMap.lock(); }
893
static CollectorState abstract_state() { return _collectorState; }
894
895
bool should_abort_preclean() const; // Whether preclean should be aborted.
896
size_t get_eden_used() const;
897
size_t get_eden_capacity() const;
898
899
ConcurrentMarkSweepGeneration* cmsGen() { return _cmsGen; }
900
901
// locking checks
902
NOT_PRODUCT(static bool have_cms_token();)
903
904
// XXXPERM bool should_collect(bool full, size_t size, bool tlab);
905
bool shouldConcurrentCollect();
906
907
void collect(bool full,
908
bool clear_all_soft_refs,
909
size_t size,
910
bool tlab);
911
void collect_in_background(bool clear_all_soft_refs, GCCause::Cause cause);
912
void collect_in_foreground(bool clear_all_soft_refs, GCCause::Cause cause);
913
914
// In support of ExplicitGCInvokesConcurrent
915
static void request_full_gc(unsigned int full_gc_count, GCCause::Cause cause);
916
// Should we unload classes in a particular concurrent cycle?
917
bool should_unload_classes() const {
918
return _should_unload_classes;
919
}
920
void update_should_unload_classes();
921
922
void direct_allocated(HeapWord* start, size_t size);
923
924
// Object is dead if not marked and current phase is sweeping.
925
bool is_dead_obj(oop obj) const;
926
927
// After a promotion (of "start"), do any necessary marking.
928
// If "par", then it's being done by a parallel GC thread.
929
// The last two args indicate if we need precise marking
930
// and if so the size of the object so it can be dirtied
931
// in its entirety.
932
void promoted(bool par, HeapWord* start,
933
bool is_obj_array, size_t obj_size);
934
935
HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
936
size_t word_size);
937
938
void getFreelistLocks() const;
939
void releaseFreelistLocks() const;
940
bool haveFreelistLocks() const;
941
942
// Adjust size of underlying generation
943
void compute_new_size();
944
945
// GC prologue and epilogue
946
void gc_prologue(bool full);
947
void gc_epilogue(bool full);
948
949
jlong time_of_last_gc(jlong now) {
950
if (_collectorState <= Idling) {
951
// gc not in progress
952
return _time_of_last_gc;
953
} else {
954
// collection in progress
955
return now;
956
}
957
}
958
959
// Support for parallel remark of survivor space
960
void* get_data_recorder(int thr_num);
961
void sample_eden_chunk();
962
963
CMSBitMap* markBitMap() { return &_markBitMap; }
964
void directAllocated(HeapWord* start, size_t size);
965
966
// main CMS steps and related support
967
void checkpointRootsInitial(bool asynch);
968
bool markFromRoots(bool asynch); // a return value of false indicates failure
969
// due to stack overflow
970
void preclean();
971
void checkpointRootsFinal(bool asynch, bool clear_all_soft_refs,
972
bool init_mark_was_synchronous);
973
void sweep(bool asynch);
974
975
// Check that the currently executing thread is the expected
976
// one (foreground collector or background collector).
977
static void check_correct_thread_executing() PRODUCT_RETURN;
978
// XXXPERM void print_statistics() PRODUCT_RETURN;
979
980
bool is_cms_reachable(HeapWord* addr);
981
982
// Performance Counter Support
983
CollectorCounters* counters() { return _gc_counters; }
984
985
// timer stuff
986
void startTimer() { assert(!_timer.is_active(), "Error"); _timer.start(); }
987
void stopTimer() { assert( _timer.is_active(), "Error"); _timer.stop(); }
988
void resetTimer() { assert(!_timer.is_active(), "Error"); _timer.reset(); }
989
double timerValue() { assert(!_timer.is_active(), "Error"); return _timer.seconds(); }
990
991
int yields() { return _numYields; }
992
void resetYields() { _numYields = 0; }
993
void incrementYields() { _numYields++; }
994
void resetNumDirtyCards() { _numDirtyCards = 0; }
995
void incrementNumDirtyCards(size_t num) { _numDirtyCards += num; }
996
size_t numDirtyCards() { return _numDirtyCards; }
997
998
static bool foregroundGCShouldWait() { return _foregroundGCShouldWait; }
999
static void set_foregroundGCShouldWait(bool v) { _foregroundGCShouldWait = v; }
1000
static bool foregroundGCIsActive() { return _foregroundGCIsActive; }
1001
static void set_foregroundGCIsActive(bool v) { _foregroundGCIsActive = v; }
1002
size_t sweep_count() const { return _sweep_count; }
1003
void increment_sweep_count() { _sweep_count++; }
1004
1005
// Timers/stats for gc scheduling and incremental mode pacing.
1006
CMSStats& stats() { return _stats; }
1007
1008
// Convenience methods that check whether CMSIncrementalMode is enabled and
1009
// forward to the corresponding methods in ConcurrentMarkSweepThread.
1010
static void start_icms();
1011
static void stop_icms(); // Called at the end of the cms cycle.
1012
static void disable_icms(); // Called before a foreground collection.
1013
static void enable_icms(); // Called after a foreground collection.
1014
void icms_wait(); // Called at yield points.
1015
1016
// Adaptive size policy
1017
CMSAdaptiveSizePolicy* size_policy();
1018
CMSGCAdaptivePolicyCounters* gc_adaptive_policy_counters();
1019
1020
static void print_on_error(outputStream* st);
1021
1022
// debugging
1023
void verify();
1024
bool verify_after_remark(bool silent = VerifySilently);
1025
void verify_ok_to_terminate() const PRODUCT_RETURN;
1026
void verify_work_stacks_empty() const PRODUCT_RETURN;
1027
void verify_overflow_empty() const PRODUCT_RETURN;
1028
1029
// convenience methods in support of debugging
1030
static const size_t skip_header_HeapWords() PRODUCT_RETURN0;
1031
HeapWord* block_start(const void* p) const PRODUCT_RETURN0;
1032
1033
// accessors
1034
CMSMarkStack* verification_mark_stack() { return &_markStack; }
1035
CMSBitMap* verification_mark_bm() { return &_verification_mark_bm; }
1036
1037
// Initialization errors
1038
bool completed_initialization() { return _completed_initialization; }
1039
1040
void print_eden_and_survivor_chunk_arrays();
1041
};
1042
1043
class CMSExpansionCause : public AllStatic {
1044
public:
1045
enum Cause {
1046
_no_expansion,
1047
_satisfy_free_ratio,
1048
_satisfy_promotion,
1049
_satisfy_allocation,
1050
_allocate_par_lab,
1051
_allocate_par_spooling_space,
1052
_adaptive_size_policy
1053
};
1054
// Return a string describing the cause of the expansion.
1055
static const char* to_string(CMSExpansionCause::Cause cause);
1056
};
1057
1058
class ConcurrentMarkSweepGeneration: public CardGeneration {
1059
friend class VMStructs;
1060
friend class ConcurrentMarkSweepThread;
1061
friend class ConcurrentMarkSweep;
1062
friend class CMSCollector;
1063
protected:
1064
static CMSCollector* _collector; // the collector that collects us
1065
CompactibleFreeListSpace* _cmsSpace; // underlying space (only one for now)
1066
1067
// Performance Counters
1068
GenerationCounters* _gen_counters;
1069
GSpaceCounters* _space_counters;
1070
1071
// Words directly allocated, used by CMSStats.
1072
size_t _direct_allocated_words;
1073
1074
// Non-product stat counters
1075
NOT_PRODUCT(
1076
size_t _numObjectsPromoted;
1077
size_t _numWordsPromoted;
1078
size_t _numObjectsAllocated;
1079
size_t _numWordsAllocated;
1080
)
1081
1082
// Used for sizing decisions
1083
bool _incremental_collection_failed;
1084
bool incremental_collection_failed() {
1085
return _incremental_collection_failed;
1086
}
1087
void set_incremental_collection_failed() {
1088
_incremental_collection_failed = true;
1089
}
1090
void clear_incremental_collection_failed() {
1091
_incremental_collection_failed = false;
1092
}
1093
1094
// accessors
1095
void set_expansion_cause(CMSExpansionCause::Cause v) { _expansion_cause = v;}
1096
CMSExpansionCause::Cause expansion_cause() const { return _expansion_cause; }
1097
1098
private:
1099
// For parallel young-gen GC support.
1100
CMSParGCThreadState** _par_gc_thread_states;
1101
1102
// Reason generation was expanded
1103
CMSExpansionCause::Cause _expansion_cause;
1104
1105
// In support of MinChunkSize being larger than min object size
1106
const double _dilatation_factor;
1107
1108
enum CollectionTypes {
1109
Concurrent_collection_type = 0,
1110
MS_foreground_collection_type = 1,
1111
MSC_foreground_collection_type = 2,
1112
Unknown_collection_type = 3
1113
};
1114
1115
CollectionTypes _debug_collection_type;
1116
1117
// True if a compactiing collection was done.
1118
bool _did_compact;
1119
bool did_compact() { return _did_compact; }
1120
1121
// Fraction of current occupancy at which to start a CMS collection which
1122
// will collect this generation (at least).
1123
double _initiating_occupancy;
1124
1125
protected:
1126
// Shrink generation by specified size (returns false if unable to shrink)
1127
void shrink_free_list_by(size_t bytes);
1128
1129
// Update statistics for GC
1130
virtual void update_gc_stats(int level, bool full);
1131
1132
// Maximum available space in the generation (including uncommitted)
1133
// space.
1134
size_t max_available() const;
1135
1136
// getter and initializer for _initiating_occupancy field.
1137
double initiating_occupancy() const { return _initiating_occupancy; }
1138
void init_initiating_occupancy(intx io, uintx tr);
1139
1140
public:
1141
ConcurrentMarkSweepGeneration(ReservedSpace rs, size_t initial_byte_size,
1142
int level, CardTableRS* ct,
1143
bool use_adaptive_freelists,
1144
FreeBlockDictionary<FreeChunk>::DictionaryChoice);
1145
1146
// Accessors
1147
CMSCollector* collector() const { return _collector; }
1148
static void set_collector(CMSCollector* collector) {
1149
assert(_collector == NULL, "already set");
1150
_collector = collector;
1151
}
1152
CompactibleFreeListSpace* cmsSpace() const { return _cmsSpace; }
1153
1154
Mutex* freelistLock() const;
1155
1156
virtual Generation::Name kind() { return Generation::ConcurrentMarkSweep; }
1157
1158
// Adaptive size policy
1159
CMSAdaptiveSizePolicy* size_policy();
1160
1161
void set_did_compact(bool v) { _did_compact = v; }
1162
1163
bool refs_discovery_is_atomic() const { return false; }
1164
bool refs_discovery_is_mt() const {
1165
// Note: CMS does MT-discovery during the parallel-remark
1166
// phases. Use ReferenceProcessorMTMutator to make refs
1167
// discovery MT-safe during such phases or other parallel
1168
// discovery phases in the future. This may all go away
1169
// if/when we decide that refs discovery is sufficiently
1170
// rare that the cost of the CAS's involved is in the
1171
// noise. That's a measurement that should be done, and
1172
// the code simplified if that turns out to be the case.
1173
return ConcGCThreads > 1;
1174
}
1175
1176
// Override
1177
virtual void ref_processor_init();
1178
1179
// Grow generation by specified size (returns false if unable to grow)
1180
bool grow_by(size_t bytes);
1181
// Grow generation to reserved size.
1182
bool grow_to_reserved();
1183
1184
void clear_expansion_cause() { _expansion_cause = CMSExpansionCause::_no_expansion; }
1185
1186
// Space enquiries
1187
size_t capacity() const;
1188
size_t used() const;
1189
size_t free() const;
1190
double occupancy() const { return ((double)used())/((double)capacity()); }
1191
size_t contiguous_available() const;
1192
size_t unsafe_max_alloc_nogc() const;
1193
size_t used_stable() const;
1194
1195
// over-rides
1196
MemRegion used_region() const;
1197
MemRegion used_region_at_save_marks() const;
1198
1199
// Does a "full" (forced) collection invoked on this generation collect
1200
// all younger generations as well? Note that the second conjunct is a
1201
// hack to allow the collection of the younger gen first if the flag is
1202
// set. This is better than using th policy's should_collect_gen0_first()
1203
// since that causes us to do an extra unnecessary pair of restart-&-stop-world.
1204
virtual bool full_collects_younger_generations() const {
1205
return UseCMSCompactAtFullCollection && !CollectGen0First;
1206
}
1207
1208
void space_iterate(SpaceClosure* blk, bool usedOnly = false);
1209
1210
// Support for compaction
1211
CompactibleSpace* first_compaction_space() const;
1212
// Adjust quantites in the generation affected by
1213
// the compaction.
1214
void reset_after_compaction();
1215
1216
// Allocation support
1217
HeapWord* allocate(size_t size, bool tlab);
1218
HeapWord* have_lock_and_allocate(size_t size, bool tlab);
1219
oop promote(oop obj, size_t obj_size);
1220
HeapWord* par_allocate(size_t size, bool tlab) {
1221
return allocate(size, tlab);
1222
}
1223
1224
// Incremental mode triggering.
1225
HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
1226
size_t word_size);
1227
1228
// Used by CMSStats to track direct allocation. The value is sampled and
1229
// reset after each young gen collection.
1230
size_t direct_allocated_words() const { return _direct_allocated_words; }
1231
void reset_direct_allocated_words() { _direct_allocated_words = 0; }
1232
1233
// Overrides for parallel promotion.
1234
virtual oop par_promote(int thread_num,
1235
oop obj, markOop m, size_t word_sz);
1236
// This one should not be called for CMS.
1237
virtual void par_promote_alloc_undo(int thread_num,
1238
HeapWord* obj, size_t word_sz);
1239
virtual void par_promote_alloc_done(int thread_num);
1240
virtual void par_oop_since_save_marks_iterate_done(int thread_num);
1241
1242
virtual bool promotion_attempt_is_safe(size_t promotion_in_bytes) const;
1243
1244
// Inform this (non-young) generation that a promotion failure was
1245
// encountered during a collection of a younger generation that
1246
// promotes into this generation.
1247
virtual void promotion_failure_occurred();
1248
1249
bool should_collect(bool full, size_t size, bool tlab);
1250
virtual bool should_concurrent_collect() const;
1251
virtual bool is_too_full() const;
1252
void collect(bool full,
1253
bool clear_all_soft_refs,
1254
size_t size,
1255
bool tlab);
1256
1257
HeapWord* expand_and_allocate(size_t word_size,
1258
bool tlab,
1259
bool parallel = false);
1260
1261
// GC prologue and epilogue
1262
void gc_prologue(bool full);
1263
void gc_prologue_work(bool full, bool registerClosure,
1264
ModUnionClosure* modUnionClosure);
1265
void gc_epilogue(bool full);
1266
void gc_epilogue_work(bool full);
1267
1268
// Time since last GC of this generation
1269
jlong time_of_last_gc(jlong now) {
1270
return collector()->time_of_last_gc(now);
1271
}
1272
void update_time_of_last_gc(jlong now) {
1273
collector()-> update_time_of_last_gc(now);
1274
}
1275
1276
// Allocation failure
1277
void expand(size_t bytes, size_t expand_bytes,
1278
CMSExpansionCause::Cause cause);
1279
virtual bool expand(size_t bytes, size_t expand_bytes);
1280
void shrink(size_t bytes);
1281
void shrink_by(size_t bytes);
1282
HeapWord* expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz);
1283
bool expand_and_ensure_spooling_space(PromotionInfo* promo);
1284
1285
// Iteration support and related enquiries
1286
void save_marks();
1287
bool no_allocs_since_save_marks();
1288
void younger_refs_iterate(OopsInGenClosure* cl);
1289
1290
// Iteration support specific to CMS generations
1291
void save_sweep_limit();
1292
1293
// More iteration support
1294
virtual void oop_iterate(ExtendedOopClosure* cl);
1295
virtual void safe_object_iterate(ObjectClosure* cl);
1296
virtual void object_iterate(ObjectClosure* cl);
1297
1298
// Need to declare the full complement of closures, whether we'll
1299
// override them or not, or get message from the compiler:
1300
// oop_since_save_marks_iterate_nv hides virtual function...
1301
#define CMS_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
1302
void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
1303
ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DECL)
1304
1305
// Smart allocation XXX -- move to CFLSpace?
1306
void setNearLargestChunk();
1307
bool isNearLargestChunk(HeapWord* addr);
1308
1309
// Get the chunk at the end of the space. Delagates to
1310
// the space.
1311
FreeChunk* find_chunk_at_end();
1312
1313
void post_compact();
1314
1315
// Debugging
1316
void prepare_for_verify();
1317
void verify();
1318
void print_statistics() PRODUCT_RETURN;
1319
1320
// Performance Counters support
1321
virtual void update_counters();
1322
virtual void update_counters(size_t used);
1323
void initialize_performance_counters();
1324
CollectorCounters* counters() { return collector()->counters(); }
1325
1326
// Support for parallel remark of survivor space
1327
void* get_data_recorder(int thr_num) {
1328
//Delegate to collector
1329
return collector()->get_data_recorder(thr_num);
1330
}
1331
void sample_eden_chunk() {
1332
//Delegate to collector
1333
return collector()->sample_eden_chunk();
1334
}
1335
1336
// Printing
1337
const char* name() const;
1338
virtual const char* short_name() const { return "CMS"; }
1339
void print() const;
1340
void printOccupancy(const char* s);
1341
bool must_be_youngest() const { return false; }
1342
bool must_be_oldest() const { return true; }
1343
1344
// Resize the generation after a compacting GC. The
1345
// generation can be treated as a contiguous space
1346
// after the compaction.
1347
virtual void compute_new_size();
1348
// Resize the generation after a non-compacting
1349
// collection.
1350
void compute_new_size_free_list();
1351
1352
CollectionTypes debug_collection_type() { return _debug_collection_type; }
1353
void rotate_debug_collection_type();
1354
};
1355
1356
class ASConcurrentMarkSweepGeneration : public ConcurrentMarkSweepGeneration {
1357
1358
// Return the size policy from the heap's collector
1359
// policy casted to CMSAdaptiveSizePolicy*.
1360
CMSAdaptiveSizePolicy* cms_size_policy() const;
1361
1362
// Resize the generation based on the adaptive size
1363
// policy.
1364
void resize(size_t cur_promo, size_t desired_promo);
1365
1366
// Return the GC counters from the collector policy
1367
CMSGCAdaptivePolicyCounters* gc_adaptive_policy_counters();
1368
1369
virtual void shrink_by(size_t bytes);
1370
1371
public:
1372
ASConcurrentMarkSweepGeneration(ReservedSpace rs, size_t initial_byte_size,
1373
int level, CardTableRS* ct,
1374
bool use_adaptive_freelists,
1375
FreeBlockDictionary<FreeChunk>::DictionaryChoice
1376
dictionaryChoice) :
1377
ConcurrentMarkSweepGeneration(rs, initial_byte_size, level, ct,
1378
use_adaptive_freelists, dictionaryChoice) {}
1379
1380
virtual const char* short_name() const { return "ASCMS"; }
1381
virtual Generation::Name kind() { return Generation::ASConcurrentMarkSweep; }
1382
1383
virtual void update_counters();
1384
virtual void update_counters(size_t used);
1385
};
1386
1387
//
1388
// Closures of various sorts used by CMS to accomplish its work
1389
//
1390
1391
// This closure is used to do concurrent marking from the roots
1392
// following the first checkpoint.
1393
class MarkFromRootsClosure: public BitMapClosure {
1394
CMSCollector* _collector;
1395
MemRegion _span;
1396
CMSBitMap* _bitMap;
1397
CMSBitMap* _mut;
1398
CMSMarkStack* _markStack;
1399
bool _yield;
1400
int _skipBits;
1401
HeapWord* _finger;
1402
HeapWord* _threshold;
1403
DEBUG_ONLY(bool _verifying;)
1404
1405
public:
1406
MarkFromRootsClosure(CMSCollector* collector, MemRegion span,
1407
CMSBitMap* bitMap,
1408
CMSMarkStack* markStack,
1409
bool should_yield, bool verifying = false);
1410
bool do_bit(size_t offset);
1411
void reset(HeapWord* addr);
1412
inline void do_yield_check();
1413
1414
private:
1415
void scanOopsInOop(HeapWord* ptr);
1416
void do_yield_work();
1417
};
1418
1419
// This closure is used to do concurrent multi-threaded
1420
// marking from the roots following the first checkpoint.
1421
// XXX This should really be a subclass of The serial version
1422
// above, but i have not had the time to refactor things cleanly.
1423
// That willbe done for Dolphin.
1424
class Par_MarkFromRootsClosure: public BitMapClosure {
1425
CMSCollector* _collector;
1426
MemRegion _whole_span;
1427
MemRegion _span;
1428
CMSBitMap* _bit_map;
1429
CMSBitMap* _mut;
1430
OopTaskQueue* _work_queue;
1431
CMSMarkStack* _overflow_stack;
1432
bool _yield;
1433
int _skip_bits;
1434
HeapWord* _finger;
1435
HeapWord* _threshold;
1436
CMSConcMarkingTask* _task;
1437
public:
1438
Par_MarkFromRootsClosure(CMSConcMarkingTask* task, CMSCollector* collector,
1439
MemRegion span,
1440
CMSBitMap* bit_map,
1441
OopTaskQueue* work_queue,
1442
CMSMarkStack* overflow_stack,
1443
bool should_yield);
1444
bool do_bit(size_t offset);
1445
inline void do_yield_check();
1446
1447
private:
1448
void scan_oops_in_oop(HeapWord* ptr);
1449
void do_yield_work();
1450
bool get_work_from_overflow_stack();
1451
};
1452
1453
// The following closures are used to do certain kinds of verification of
1454
// CMS marking.
1455
class PushAndMarkVerifyClosure: public MetadataAwareOopClosure {
1456
CMSCollector* _collector;
1457
MemRegion _span;
1458
CMSBitMap* _verification_bm;
1459
CMSBitMap* _cms_bm;
1460
CMSMarkStack* _mark_stack;
1461
protected:
1462
void do_oop(oop p);
1463
template <class T> inline void do_oop_work(T *p) {
1464
oop obj = oopDesc::load_decode_heap_oop(p);
1465
do_oop(obj);
1466
}
1467
public:
1468
PushAndMarkVerifyClosure(CMSCollector* cms_collector,
1469
MemRegion span,
1470
CMSBitMap* verification_bm,
1471
CMSBitMap* cms_bm,
1472
CMSMarkStack* mark_stack);
1473
void do_oop(oop* p);
1474
void do_oop(narrowOop* p);
1475
1476
// Deal with a stack overflow condition
1477
void handle_stack_overflow(HeapWord* lost);
1478
};
1479
1480
class MarkFromRootsVerifyClosure: public BitMapClosure {
1481
CMSCollector* _collector;
1482
MemRegion _span;
1483
CMSBitMap* _verification_bm;
1484
CMSBitMap* _cms_bm;
1485
CMSMarkStack* _mark_stack;
1486
HeapWord* _finger;
1487
PushAndMarkVerifyClosure _pam_verify_closure;
1488
public:
1489
MarkFromRootsVerifyClosure(CMSCollector* collector, MemRegion span,
1490
CMSBitMap* verification_bm,
1491
CMSBitMap* cms_bm,
1492
CMSMarkStack* mark_stack);
1493
bool do_bit(size_t offset);
1494
void reset(HeapWord* addr);
1495
};
1496
1497
1498
// This closure is used to check that a certain set of bits is
1499
// "empty" (i.e. the bit vector doesn't have any 1-bits).
1500
class FalseBitMapClosure: public BitMapClosure {
1501
public:
1502
bool do_bit(size_t offset) {
1503
guarantee(false, "Should not have a 1 bit");
1504
return true;
1505
}
1506
};
1507
1508
// A version of ObjectClosure with "memory" (see _previous_address below)
1509
class UpwardsObjectClosure: public BoolObjectClosure {
1510
HeapWord* _previous_address;
1511
public:
1512
UpwardsObjectClosure() : _previous_address(NULL) { }
1513
void set_previous(HeapWord* addr) { _previous_address = addr; }
1514
HeapWord* previous() { return _previous_address; }
1515
// A return value of "true" can be used by the caller to decide
1516
// if this object's end should *NOT* be recorded in
1517
// _previous_address above.
1518
virtual bool do_object_bm(oop obj, MemRegion mr) = 0;
1519
};
1520
1521
// This closure is used during the second checkpointing phase
1522
// to rescan the marked objects on the dirty cards in the mod
1523
// union table and the card table proper. It's invoked via
1524
// MarkFromDirtyCardsClosure below. It uses either
1525
// [Par_]MarkRefsIntoAndScanClosure (Par_ in the parallel case)
1526
// declared in genOopClosures.hpp to accomplish some of its work.
1527
// In the parallel case the bitMap is shared, so access to
1528
// it needs to be suitably synchronized for updates by embedded
1529
// closures that update it; however, this closure itself only
1530
// reads the bit_map and because it is idempotent, is immune to
1531
// reading stale values.
1532
class ScanMarkedObjectsAgainClosure: public UpwardsObjectClosure {
1533
#ifdef ASSERT
1534
CMSCollector* _collector;
1535
MemRegion _span;
1536
union {
1537
CMSMarkStack* _mark_stack;
1538
OopTaskQueue* _work_queue;
1539
};
1540
#endif // ASSERT
1541
bool _parallel;
1542
CMSBitMap* _bit_map;
1543
union {
1544
MarkRefsIntoAndScanClosure* _scan_closure;
1545
Par_MarkRefsIntoAndScanClosure* _par_scan_closure;
1546
};
1547
1548
public:
1549
ScanMarkedObjectsAgainClosure(CMSCollector* collector,
1550
MemRegion span,
1551
ReferenceProcessor* rp,
1552
CMSBitMap* bit_map,
1553
CMSMarkStack* mark_stack,
1554
MarkRefsIntoAndScanClosure* cl):
1555
#ifdef ASSERT
1556
_collector(collector),
1557
_span(span),
1558
_mark_stack(mark_stack),
1559
#endif // ASSERT
1560
_parallel(false),
1561
_bit_map(bit_map),
1562
_scan_closure(cl) { }
1563
1564
ScanMarkedObjectsAgainClosure(CMSCollector* collector,
1565
MemRegion span,
1566
ReferenceProcessor* rp,
1567
CMSBitMap* bit_map,
1568
OopTaskQueue* work_queue,
1569
Par_MarkRefsIntoAndScanClosure* cl):
1570
#ifdef ASSERT
1571
_collector(collector),
1572
_span(span),
1573
_work_queue(work_queue),
1574
#endif // ASSERT
1575
_parallel(true),
1576
_bit_map(bit_map),
1577
_par_scan_closure(cl) { }
1578
1579
bool do_object_b(oop obj) {
1580
guarantee(false, "Call do_object_b(oop, MemRegion) form instead");
1581
return false;
1582
}
1583
bool do_object_bm(oop p, MemRegion mr);
1584
};
1585
1586
// This closure is used during the second checkpointing phase
1587
// to rescan the marked objects on the dirty cards in the mod
1588
// union table and the card table proper. It invokes
1589
// ScanMarkedObjectsAgainClosure above to accomplish much of its work.
1590
// In the parallel case, the bit map is shared and requires
1591
// synchronized access.
1592
class MarkFromDirtyCardsClosure: public MemRegionClosure {
1593
CompactibleFreeListSpace* _space;
1594
ScanMarkedObjectsAgainClosure _scan_cl;
1595
size_t _num_dirty_cards;
1596
1597
public:
1598
MarkFromDirtyCardsClosure(CMSCollector* collector,
1599
MemRegion span,
1600
CompactibleFreeListSpace* space,
1601
CMSBitMap* bit_map,
1602
CMSMarkStack* mark_stack,
1603
MarkRefsIntoAndScanClosure* cl):
1604
_space(space),
1605
_num_dirty_cards(0),
1606
_scan_cl(collector, span, collector->ref_processor(), bit_map,
1607
mark_stack, cl) { }
1608
1609
MarkFromDirtyCardsClosure(CMSCollector* collector,
1610
MemRegion span,
1611
CompactibleFreeListSpace* space,
1612
CMSBitMap* bit_map,
1613
OopTaskQueue* work_queue,
1614
Par_MarkRefsIntoAndScanClosure* cl):
1615
_space(space),
1616
_num_dirty_cards(0),
1617
_scan_cl(collector, span, collector->ref_processor(), bit_map,
1618
work_queue, cl) { }
1619
1620
void do_MemRegion(MemRegion mr);
1621
void set_space(CompactibleFreeListSpace* space) { _space = space; }
1622
size_t num_dirty_cards() { return _num_dirty_cards; }
1623
};
1624
1625
// This closure is used in the non-product build to check
1626
// that there are no MemRegions with a certain property.
1627
class FalseMemRegionClosure: public MemRegionClosure {
1628
void do_MemRegion(MemRegion mr) {
1629
guarantee(!mr.is_empty(), "Shouldn't be empty");
1630
guarantee(false, "Should never be here");
1631
}
1632
};
1633
1634
// This closure is used during the precleaning phase
1635
// to "carefully" rescan marked objects on dirty cards.
1636
// It uses MarkRefsIntoAndScanClosure declared in genOopClosures.hpp
1637
// to accomplish some of its work.
1638
class ScanMarkedObjectsAgainCarefullyClosure: public ObjectClosureCareful {
1639
CMSCollector* _collector;
1640
MemRegion _span;
1641
bool _yield;
1642
Mutex* _freelistLock;
1643
CMSBitMap* _bitMap;
1644
CMSMarkStack* _markStack;
1645
MarkRefsIntoAndScanClosure* _scanningClosure;
1646
1647
public:
1648
ScanMarkedObjectsAgainCarefullyClosure(CMSCollector* collector,
1649
MemRegion span,
1650
CMSBitMap* bitMap,
1651
CMSMarkStack* markStack,
1652
MarkRefsIntoAndScanClosure* cl,
1653
bool should_yield):
1654
_collector(collector),
1655
_span(span),
1656
_yield(should_yield),
1657
_bitMap(bitMap),
1658
_markStack(markStack),
1659
_scanningClosure(cl) {
1660
}
1661
1662
void do_object(oop p) {
1663
guarantee(false, "call do_object_careful instead");
1664
}
1665
1666
size_t do_object_careful(oop p) {
1667
guarantee(false, "Unexpected caller");
1668
return 0;
1669
}
1670
1671
size_t do_object_careful_m(oop p, MemRegion mr);
1672
1673
void setFreelistLock(Mutex* m) {
1674
_freelistLock = m;
1675
_scanningClosure->set_freelistLock(m);
1676
}
1677
1678
private:
1679
inline bool do_yield_check();
1680
1681
void do_yield_work();
1682
};
1683
1684
class SurvivorSpacePrecleanClosure: public ObjectClosureCareful {
1685
CMSCollector* _collector;
1686
MemRegion _span;
1687
bool _yield;
1688
CMSBitMap* _bit_map;
1689
CMSMarkStack* _mark_stack;
1690
PushAndMarkClosure* _scanning_closure;
1691
unsigned int _before_count;
1692
1693
public:
1694
SurvivorSpacePrecleanClosure(CMSCollector* collector,
1695
MemRegion span,
1696
CMSBitMap* bit_map,
1697
CMSMarkStack* mark_stack,
1698
PushAndMarkClosure* cl,
1699
unsigned int before_count,
1700
bool should_yield):
1701
_collector(collector),
1702
_span(span),
1703
_yield(should_yield),
1704
_bit_map(bit_map),
1705
_mark_stack(mark_stack),
1706
_scanning_closure(cl),
1707
_before_count(before_count)
1708
{ }
1709
1710
void do_object(oop p) {
1711
guarantee(false, "call do_object_careful instead");
1712
}
1713
1714
size_t do_object_careful(oop p);
1715
1716
size_t do_object_careful_m(oop p, MemRegion mr) {
1717
guarantee(false, "Unexpected caller");
1718
return 0;
1719
}
1720
1721
private:
1722
inline void do_yield_check();
1723
void do_yield_work();
1724
};
1725
1726
// This closure is used to accomplish the sweeping work
1727
// after the second checkpoint but before the concurrent reset
1728
// phase.
1729
//
1730
// Terminology
1731
// left hand chunk (LHC) - block of one or more chunks currently being
1732
// coalesced. The LHC is available for coalescing with a new chunk.
1733
// right hand chunk (RHC) - block that is currently being swept that is
1734
// free or garbage that can be coalesced with the LHC.
1735
// _inFreeRange is true if there is currently a LHC
1736
// _lastFreeRangeCoalesced is true if the LHC consists of more than one chunk.
1737
// _freeRangeInFreeLists is true if the LHC is in the free lists.
1738
// _freeFinger is the address of the current LHC
1739
class SweepClosure: public BlkClosureCareful {
1740
CMSCollector* _collector; // collector doing the work
1741
ConcurrentMarkSweepGeneration* _g; // Generation being swept
1742
CompactibleFreeListSpace* _sp; // Space being swept
1743
HeapWord* _limit;// the address at or above which the sweep should stop
1744
// because we do not expect newly garbage blocks
1745
// eligible for sweeping past that address.
1746
Mutex* _freelistLock; // Free list lock (in space)
1747
CMSBitMap* _bitMap; // Marking bit map (in
1748
// generation)
1749
bool _inFreeRange; // Indicates if we are in the
1750
// midst of a free run
1751
bool _freeRangeInFreeLists;
1752
// Often, we have just found
1753
// a free chunk and started
1754
// a new free range; we do not
1755
// eagerly remove this chunk from
1756
// the free lists unless there is
1757
// a possibility of coalescing.
1758
// When true, this flag indicates
1759
// that the _freeFinger below
1760
// points to a potentially free chunk
1761
// that may still be in the free lists
1762
bool _lastFreeRangeCoalesced;
1763
// free range contains chunks
1764
// coalesced
1765
bool _yield;
1766
// Whether sweeping should be
1767
// done with yields. For instance
1768
// when done by the foreground
1769
// collector we shouldn't yield.
1770
HeapWord* _freeFinger; // When _inFreeRange is set, the
1771
// pointer to the "left hand
1772
// chunk"
1773
size_t _freeRangeSize;
1774
// When _inFreeRange is set, this
1775
// indicates the accumulated size
1776
// of the "left hand chunk"
1777
NOT_PRODUCT(
1778
size_t _numObjectsFreed;
1779
size_t _numWordsFreed;
1780
size_t _numObjectsLive;
1781
size_t _numWordsLive;
1782
size_t _numObjectsAlreadyFree;
1783
size_t _numWordsAlreadyFree;
1784
FreeChunk* _last_fc;
1785
)
1786
private:
1787
// Code that is common to a free chunk or garbage when
1788
// encountered during sweeping.
1789
void do_post_free_or_garbage_chunk(FreeChunk *fc, size_t chunkSize);
1790
// Process a free chunk during sweeping.
1791
void do_already_free_chunk(FreeChunk *fc);
1792
// Work method called when processing an already free or a
1793
// freshly garbage chunk to do a lookahead and possibly a
1794
// premptive flush if crossing over _limit.
1795
void lookahead_and_flush(FreeChunk* fc, size_t chunkSize);
1796
// Process a garbage chunk during sweeping.
1797
size_t do_garbage_chunk(FreeChunk *fc);
1798
// Process a live chunk during sweeping.
1799
size_t do_live_chunk(FreeChunk* fc);
1800
1801
// Accessors.
1802
HeapWord* freeFinger() const { return _freeFinger; }
1803
void set_freeFinger(HeapWord* v) { _freeFinger = v; }
1804
bool inFreeRange() const { return _inFreeRange; }
1805
void set_inFreeRange(bool v) { _inFreeRange = v; }
1806
bool lastFreeRangeCoalesced() const { return _lastFreeRangeCoalesced; }
1807
void set_lastFreeRangeCoalesced(bool v) { _lastFreeRangeCoalesced = v; }
1808
bool freeRangeInFreeLists() const { return _freeRangeInFreeLists; }
1809
void set_freeRangeInFreeLists(bool v) { _freeRangeInFreeLists = v; }
1810
1811
// Initialize a free range.
1812
void initialize_free_range(HeapWord* freeFinger, bool freeRangeInFreeLists);
1813
// Return this chunk to the free lists.
1814
void flush_cur_free_chunk(HeapWord* chunk, size_t size);
1815
1816
// Check if we should yield and do so when necessary.
1817
inline void do_yield_check(HeapWord* addr);
1818
1819
// Yield
1820
void do_yield_work(HeapWord* addr);
1821
1822
// Debugging/Printing
1823
void print_free_block_coalesced(FreeChunk* fc) const;
1824
1825
public:
1826
SweepClosure(CMSCollector* collector, ConcurrentMarkSweepGeneration* g,
1827
CMSBitMap* bitMap, bool should_yield);
1828
~SweepClosure() PRODUCT_RETURN;
1829
1830
size_t do_blk_careful(HeapWord* addr);
1831
void print() const { print_on(tty); }
1832
void print_on(outputStream *st) const;
1833
};
1834
1835
// Closures related to weak references processing
1836
1837
// During CMS' weak reference processing, this is a
1838
// work-routine/closure used to complete transitive
1839
// marking of objects as live after a certain point
1840
// in which an initial set has been completely accumulated.
1841
// This closure is currently used both during the final
1842
// remark stop-world phase, as well as during the concurrent
1843
// precleaning of the discovered reference lists.
1844
class CMSDrainMarkingStackClosure: public VoidClosure {
1845
CMSCollector* _collector;
1846
MemRegion _span;
1847
CMSMarkStack* _mark_stack;
1848
CMSBitMap* _bit_map;
1849
CMSKeepAliveClosure* _keep_alive;
1850
bool _concurrent_precleaning;
1851
public:
1852
CMSDrainMarkingStackClosure(CMSCollector* collector, MemRegion span,
1853
CMSBitMap* bit_map, CMSMarkStack* mark_stack,
1854
CMSKeepAliveClosure* keep_alive,
1855
bool cpc):
1856
_collector(collector),
1857
_span(span),
1858
_bit_map(bit_map),
1859
_mark_stack(mark_stack),
1860
_keep_alive(keep_alive),
1861
_concurrent_precleaning(cpc) {
1862
assert(_concurrent_precleaning == _keep_alive->concurrent_precleaning(),
1863
"Mismatch");
1864
}
1865
1866
void do_void();
1867
};
1868
1869
// A parallel version of CMSDrainMarkingStackClosure above.
1870
class CMSParDrainMarkingStackClosure: public VoidClosure {
1871
CMSCollector* _collector;
1872
MemRegion _span;
1873
OopTaskQueue* _work_queue;
1874
CMSBitMap* _bit_map;
1875
CMSInnerParMarkAndPushClosure _mark_and_push;
1876
1877
public:
1878
CMSParDrainMarkingStackClosure(CMSCollector* collector,
1879
MemRegion span, CMSBitMap* bit_map,
1880
OopTaskQueue* work_queue):
1881
_collector(collector),
1882
_span(span),
1883
_bit_map(bit_map),
1884
_work_queue(work_queue),
1885
_mark_and_push(collector, span, bit_map, work_queue) { }
1886
1887
public:
1888
void trim_queue(uint max);
1889
void do_void();
1890
};
1891
1892
// Allow yielding or short-circuiting of reference list
1893
// prelceaning work.
1894
class CMSPrecleanRefsYieldClosure: public YieldClosure {
1895
CMSCollector* _collector;
1896
void do_yield_work();
1897
public:
1898
CMSPrecleanRefsYieldClosure(CMSCollector* collector):
1899
_collector(collector) {}
1900
virtual bool should_return();
1901
};
1902
1903
1904
// Convenience class that locks free list locks for given CMS collector
1905
class FreelistLocker: public StackObj {
1906
private:
1907
CMSCollector* _collector;
1908
public:
1909
FreelistLocker(CMSCollector* collector):
1910
_collector(collector) {
1911
_collector->getFreelistLocks();
1912
}
1913
1914
~FreelistLocker() {
1915
_collector->releaseFreelistLocks();
1916
}
1917
};
1918
1919
// Mark all dead objects in a given space.
1920
class MarkDeadObjectsClosure: public BlkClosure {
1921
const CMSCollector* _collector;
1922
const CompactibleFreeListSpace* _sp;
1923
CMSBitMap* _live_bit_map;
1924
CMSBitMap* _dead_bit_map;
1925
public:
1926
MarkDeadObjectsClosure(const CMSCollector* collector,
1927
const CompactibleFreeListSpace* sp,
1928
CMSBitMap *live_bit_map,
1929
CMSBitMap *dead_bit_map) :
1930
_collector(collector),
1931
_sp(sp),
1932
_live_bit_map(live_bit_map),
1933
_dead_bit_map(dead_bit_map) {}
1934
size_t do_blk(HeapWord* addr);
1935
};
1936
1937
class TraceCMSMemoryManagerStats : public TraceMemoryManagerStats {
1938
1939
public:
1940
TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause);
1941
};
1942
1943
1944
#endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_HPP
1945
1946