Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/gc_implementation/g1/g1AllocRegion.cpp
38920 views
1
/*
2
* Copyright (c) 2011, 2014, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "gc_implementation/g1/g1AllocRegion.inline.hpp"
27
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
28
#include "runtime/orderAccess.inline.hpp"
29
30
G1CollectedHeap* G1AllocRegion::_g1h = NULL;
31
HeapRegion* G1AllocRegion::_dummy_region = NULL;
32
33
void G1AllocRegion::setup(G1CollectedHeap* g1h, HeapRegion* dummy_region) {
34
assert(_dummy_region == NULL, "should be set once");
35
assert(dummy_region != NULL, "pre-condition");
36
assert(dummy_region->free() == 0, "pre-condition");
37
38
// Make sure that any allocation attempt on this region will fail
39
// and will not trigger any asserts.
40
assert(allocate(dummy_region, 1, false) == NULL, "should fail");
41
assert(par_allocate(dummy_region, 1, false) == NULL, "should fail");
42
assert(allocate(dummy_region, 1, true) == NULL, "should fail");
43
assert(par_allocate(dummy_region, 1, true) == NULL, "should fail");
44
45
_g1h = g1h;
46
_dummy_region = dummy_region;
47
}
48
49
void G1AllocRegion::fill_up_remaining_space(HeapRegion* alloc_region,
50
bool bot_updates) {
51
assert(alloc_region != NULL && alloc_region != _dummy_region,
52
"pre-condition");
53
54
// Other threads might still be trying to allocate using a CAS out
55
// of the region we are trying to retire, as they can do so without
56
// holding the lock. So, we first have to make sure that noone else
57
// can allocate out of it by doing a maximal allocation. Even if our
58
// CAS attempt fails a few times, we'll succeed sooner or later
59
// given that failed CAS attempts mean that the region is getting
60
// closed to being full.
61
size_t free_word_size = alloc_region->free() / HeapWordSize;
62
63
// This is the minimum free chunk we can turn into a dummy
64
// object. If the free space falls below this, then noone can
65
// allocate in this region anyway (all allocation requests will be
66
// of a size larger than this) so we won't have to perform the dummy
67
// allocation.
68
size_t min_word_size_to_fill = CollectedHeap::min_fill_size();
69
70
while (free_word_size >= min_word_size_to_fill) {
71
HeapWord* dummy = par_allocate(alloc_region, free_word_size, bot_updates);
72
if (dummy != NULL) {
73
// If the allocation was successful we should fill in the space.
74
CollectedHeap::fill_with_object(dummy, free_word_size);
75
alloc_region->set_pre_dummy_top(dummy);
76
break;
77
}
78
79
free_word_size = alloc_region->free() / HeapWordSize;
80
// It's also possible that someone else beats us to the
81
// allocation and they fill up the region. In that case, we can
82
// just get out of the loop.
83
}
84
assert(alloc_region->free() / HeapWordSize < min_word_size_to_fill,
85
"post-condition");
86
}
87
88
void G1AllocRegion::retire(bool fill_up) {
89
assert(_alloc_region != NULL, ar_ext_msg(this, "not initialized properly"));
90
91
trace("retiring");
92
HeapRegion* alloc_region = _alloc_region;
93
if (alloc_region != _dummy_region) {
94
// We never have to check whether the active region is empty or not,
95
// and potentially free it if it is, given that it's guaranteed that
96
// it will never be empty.
97
assert(!alloc_region->is_empty(),
98
ar_ext_msg(this, "the alloc region should never be empty"));
99
100
if (fill_up) {
101
fill_up_remaining_space(alloc_region, _bot_updates);
102
}
103
104
assert(alloc_region->used() >= _used_bytes_before,
105
ar_ext_msg(this, "invariant"));
106
size_t allocated_bytes = alloc_region->used() - _used_bytes_before;
107
retire_region(alloc_region, allocated_bytes);
108
_used_bytes_before = 0;
109
_alloc_region = _dummy_region;
110
}
111
trace("retired");
112
}
113
114
HeapWord* G1AllocRegion::new_alloc_region_and_allocate(size_t word_size,
115
bool force) {
116
assert(_alloc_region == _dummy_region, ar_ext_msg(this, "pre-condition"));
117
assert(_used_bytes_before == 0, ar_ext_msg(this, "pre-condition"));
118
119
trace("attempting region allocation");
120
HeapRegion* new_alloc_region = allocate_new_region(word_size, force);
121
if (new_alloc_region != NULL) {
122
new_alloc_region->reset_pre_dummy_top();
123
// Need to do this before the allocation
124
_used_bytes_before = new_alloc_region->used();
125
HeapWord* result = allocate(new_alloc_region, word_size, _bot_updates);
126
assert(result != NULL, ar_ext_msg(this, "the allocation should succeeded"));
127
128
OrderAccess::storestore();
129
// Note that we first perform the allocation and then we store the
130
// region in _alloc_region. This is the reason why an active region
131
// can never be empty.
132
update_alloc_region(new_alloc_region);
133
trace("region allocation successful");
134
return result;
135
} else {
136
trace("region allocation failed");
137
return NULL;
138
}
139
ShouldNotReachHere();
140
}
141
142
void G1AllocRegion::fill_in_ext_msg(ar_ext_msg* msg, const char* message) {
143
msg->append("[%s] %s c: %u b: %s r: " PTR_FORMAT " u: " SIZE_FORMAT,
144
_name, message, _count, BOOL_TO_STR(_bot_updates),
145
p2i(_alloc_region), _used_bytes_before);
146
}
147
148
void G1AllocRegion::init() {
149
trace("initializing");
150
assert(_alloc_region == NULL && _used_bytes_before == 0,
151
ar_ext_msg(this, "pre-condition"));
152
assert(_dummy_region != NULL, ar_ext_msg(this, "should have been set"));
153
_alloc_region = _dummy_region;
154
_count = 0;
155
trace("initialized");
156
}
157
158
void G1AllocRegion::set(HeapRegion* alloc_region) {
159
trace("setting");
160
// We explicitly check that the region is not empty to make sure we
161
// maintain the "the alloc region cannot be empty" invariant.
162
assert(alloc_region != NULL && !alloc_region->is_empty(),
163
ar_ext_msg(this, "pre-condition"));
164
assert(_alloc_region == _dummy_region &&
165
_used_bytes_before == 0 && _count == 0,
166
ar_ext_msg(this, "pre-condition"));
167
168
_used_bytes_before = alloc_region->used();
169
_alloc_region = alloc_region;
170
_count += 1;
171
trace("set");
172
}
173
174
void G1AllocRegion::update_alloc_region(HeapRegion* alloc_region) {
175
trace("update");
176
// We explicitly check that the region is not empty to make sure we
177
// maintain the "the alloc region cannot be empty" invariant.
178
assert(alloc_region != NULL && !alloc_region->is_empty(),
179
ar_ext_msg(this, "pre-condition"));
180
181
_alloc_region = alloc_region;
182
_alloc_region->set_allocation_context(allocation_context());
183
_count += 1;
184
trace("updated");
185
}
186
187
HeapRegion* G1AllocRegion::release() {
188
trace("releasing");
189
HeapRegion* alloc_region = _alloc_region;
190
retire(false /* fill_up */);
191
assert(_alloc_region == _dummy_region,
192
ar_ext_msg(this, "post-condition of retire()"));
193
_alloc_region = NULL;
194
trace("released");
195
return (alloc_region == _dummy_region) ? NULL : alloc_region;
196
}
197
198
#if G1_ALLOC_REGION_TRACING
199
void G1AllocRegion::trace(const char* str, size_t word_size, HeapWord* result) {
200
// All the calls to trace that set either just the size or the size
201
// and the result are considered part of level 2 tracing and are
202
// skipped during level 1 tracing.
203
if ((word_size == 0 && result == NULL) || (G1_ALLOC_REGION_TRACING > 1)) {
204
const size_t buffer_length = 128;
205
char hr_buffer[buffer_length];
206
char rest_buffer[buffer_length];
207
208
HeapRegion* alloc_region = _alloc_region;
209
if (alloc_region == NULL) {
210
jio_snprintf(hr_buffer, buffer_length, "NULL");
211
} else if (alloc_region == _dummy_region) {
212
jio_snprintf(hr_buffer, buffer_length, "DUMMY");
213
} else {
214
jio_snprintf(hr_buffer, buffer_length,
215
HR_FORMAT, HR_FORMAT_PARAMS(alloc_region));
216
}
217
218
if (G1_ALLOC_REGION_TRACING > 1) {
219
if (result != NULL) {
220
jio_snprintf(rest_buffer, buffer_length, SIZE_FORMAT " " PTR_FORMAT,
221
word_size, result);
222
} else if (word_size != 0) {
223
jio_snprintf(rest_buffer, buffer_length, SIZE_FORMAT, word_size);
224
} else {
225
jio_snprintf(rest_buffer, buffer_length, "");
226
}
227
} else {
228
jio_snprintf(rest_buffer, buffer_length, "");
229
}
230
231
tty->print_cr("[%s] %u %s : %s %s",
232
_name, _count, hr_buffer, str, rest_buffer);
233
}
234
}
235
#endif // G1_ALLOC_REGION_TRACING
236
237
G1AllocRegion::G1AllocRegion(const char* name,
238
bool bot_updates)
239
: _name(name), _bot_updates(bot_updates),
240
_alloc_region(NULL), _count(0), _used_bytes_before(0),
241
_allocation_context(AllocationContext::system()) { }
242
243
244
HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
245
bool force) {
246
return _g1h->new_mutator_alloc_region(word_size, force);
247
}
248
249
void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
250
size_t allocated_bytes) {
251
_g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
252
}
253
254
HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
255
bool force) {
256
assert(!force, "not supported for GC alloc regions");
257
return _g1h->new_gc_alloc_region(word_size, count(), InCSetState::Young);
258
}
259
260
void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
261
size_t allocated_bytes) {
262
_g1h->retire_gc_alloc_region(alloc_region, allocated_bytes, InCSetState::Young);
263
}
264
265
HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
266
bool force) {
267
assert(!force, "not supported for GC alloc regions");
268
return _g1h->new_gc_alloc_region(word_size, count(), InCSetState::Old);
269
}
270
271
void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
272
size_t allocated_bytes) {
273
_g1h->retire_gc_alloc_region(alloc_region, allocated_bytes, InCSetState::Old);
274
}
275
276
HeapRegion* OldGCAllocRegion::release() {
277
HeapRegion* cur = get();
278
if (cur != NULL) {
279
// Determine how far we are from the next card boundary. If it is smaller than
280
// the minimum object size we can allocate into, expand into the next card.
281
HeapWord* top = cur->top();
282
HeapWord* aligned_top = (HeapWord*)align_ptr_up(top, G1BlockOffsetSharedArray::N_bytes);
283
284
size_t to_allocate_words = pointer_delta(aligned_top, top, HeapWordSize);
285
286
if (to_allocate_words != 0) {
287
// We are not at a card boundary. Fill up, possibly into the next, taking the
288
// end of the region and the minimum object size into account.
289
to_allocate_words = MIN2(pointer_delta(cur->end(), cur->top(), HeapWordSize),
290
MAX2(to_allocate_words, G1CollectedHeap::min_fill_size()));
291
292
// Skip allocation if there is not enough space to allocate even the smallest
293
// possible object. In this case this region will not be retained, so the
294
// original problem cannot occur.
295
if (to_allocate_words >= G1CollectedHeap::min_fill_size()) {
296
HeapWord* dummy = attempt_allocation(to_allocate_words, true /* bot_updates */);
297
CollectedHeap::fill_with_object(dummy, to_allocate_words);
298
}
299
}
300
}
301
return G1AllocRegion::release();
302
}
303
304
305
306