Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp
38920 views
1
/*
2
* Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "classfile/metadataOnStackMark.hpp"
27
#include "code/codeCache.hpp"
28
#include "code/icBuffer.hpp"
29
#include "gc_implementation/g1/bufferingOopClosure.hpp"
30
#include "gc_implementation/g1/concurrentG1Refine.hpp"
31
#include "gc_implementation/g1/concurrentG1RefineThread.hpp"
32
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
33
#include "gc_implementation/g1/g1AllocRegion.inline.hpp"
34
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
35
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
36
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
37
#include "gc_implementation/g1/g1EvacFailure.hpp"
38
#include "gc_implementation/g1/g1GCPhaseTimes.hpp"
39
#include "gc_implementation/g1/g1Log.hpp"
40
#include "gc_implementation/g1/g1MarkSweep.hpp"
41
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
42
#include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
43
#include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
44
#include "gc_implementation/g1/g1RemSet.inline.hpp"
45
#include "gc_implementation/g1/g1RootProcessor.hpp"
46
#include "gc_implementation/g1/g1StringDedup.hpp"
47
#include "gc_implementation/g1/g1YCTypes.hpp"
48
#include "gc_implementation/g1/heapRegion.inline.hpp"
49
#include "gc_implementation/g1/heapRegionRemSet.hpp"
50
#include "gc_implementation/g1/heapRegionSet.inline.hpp"
51
#include "gc_implementation/g1/vm_operations_g1.hpp"
52
#include "gc_implementation/shared/gcHeapSummary.hpp"
53
#include "gc_implementation/shared/gcTimer.hpp"
54
#include "gc_implementation/shared/gcTrace.hpp"
55
#include "gc_implementation/shared/gcTraceTime.hpp"
56
#include "gc_implementation/shared/isGCActiveMark.hpp"
57
#include "memory/allocation.hpp"
58
#include "memory/gcLocker.inline.hpp"
59
#include "memory/generationSpec.hpp"
60
#include "memory/iterator.hpp"
61
#include "memory/referenceProcessor.hpp"
62
#include "oops/oop.inline.hpp"
63
#include "oops/oop.pcgc.inline.hpp"
64
#include "runtime/orderAccess.inline.hpp"
65
#include "runtime/vmThread.hpp"
66
67
size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
68
69
// turn it on so that the contents of the young list (scan-only /
70
// to-be-collected) are printed at "strategic" points before / during
71
// / after the collection --- this is useful for debugging
72
#define YOUNG_LIST_VERBOSE 0
73
// CURRENT STATUS
74
// This file is under construction. Search for "FIXME".
75
76
// INVARIANTS/NOTES
77
//
78
// All allocation activity covered by the G1CollectedHeap interface is
79
// serialized by acquiring the HeapLock. This happens in mem_allocate
80
// and allocate_new_tlab, which are the "entry" points to the
81
// allocation code from the rest of the JVM. (Note that this does not
82
// apply to TLAB allocation, which is not part of this interface: it
83
// is done by clients of this interface.)
84
85
// Local to this file.
86
87
class RefineCardTableEntryClosure: public CardTableEntryClosure {
88
bool _concurrent;
89
public:
90
RefineCardTableEntryClosure() : _concurrent(true) { }
91
92
bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
93
bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
94
// This path is executed by the concurrent refine or mutator threads,
95
// concurrently, and so we do not care if card_ptr contains references
96
// that point into the collection set.
97
assert(!oops_into_cset, "should be");
98
99
if (_concurrent && SuspendibleThreadSet::should_yield()) {
100
// Caller will actually yield.
101
return false;
102
}
103
// Otherwise, we finished successfully; return true.
104
return true;
105
}
106
107
void set_concurrent(bool b) { _concurrent = b; }
108
};
109
110
111
class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
112
size_t _num_processed;
113
CardTableModRefBS* _ctbs;
114
int _histo[256];
115
116
public:
117
ClearLoggedCardTableEntryClosure() :
118
_num_processed(0), _ctbs(G1CollectedHeap::heap()->g1_barrier_set())
119
{
120
for (int i = 0; i < 256; i++) _histo[i] = 0;
121
}
122
123
bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
124
unsigned char* ujb = (unsigned char*)card_ptr;
125
int ind = (int)(*ujb);
126
_histo[ind]++;
127
128
*card_ptr = (jbyte)CardTableModRefBS::clean_card_val();
129
_num_processed++;
130
131
return true;
132
}
133
134
size_t num_processed() { return _num_processed; }
135
136
void print_histo() {
137
gclog_or_tty->print_cr("Card table value histogram:");
138
for (int i = 0; i < 256; i++) {
139
if (_histo[i] != 0) {
140
gclog_or_tty->print_cr(" %d: %d", i, _histo[i]);
141
}
142
}
143
}
144
};
145
146
class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
147
private:
148
size_t _num_processed;
149
150
public:
151
RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
152
153
bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
154
*card_ptr = CardTableModRefBS::dirty_card_val();
155
_num_processed++;
156
return true;
157
}
158
159
size_t num_processed() const { return _num_processed; }
160
};
161
162
YoungList::YoungList(G1CollectedHeap* g1h) :
163
_g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
164
_survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
165
guarantee(check_list_empty(false), "just making sure...");
166
}
167
168
void YoungList::push_region(HeapRegion *hr) {
169
assert(!hr->is_young(), "should not already be young");
170
assert(hr->get_next_young_region() == NULL, "cause it should!");
171
172
hr->set_next_young_region(_head);
173
_head = hr;
174
175
_g1h->g1_policy()->set_region_eden(hr, (int) _length);
176
++_length;
177
}
178
179
void YoungList::add_survivor_region(HeapRegion* hr) {
180
assert(hr->is_survivor(), "should be flagged as survivor region");
181
assert(hr->get_next_young_region() == NULL, "cause it should!");
182
183
hr->set_next_young_region(_survivor_head);
184
if (_survivor_head == NULL) {
185
_survivor_tail = hr;
186
}
187
_survivor_head = hr;
188
++_survivor_length;
189
}
190
191
void YoungList::empty_list(HeapRegion* list) {
192
while (list != NULL) {
193
HeapRegion* next = list->get_next_young_region();
194
list->set_next_young_region(NULL);
195
list->uninstall_surv_rate_group();
196
// This is called before a Full GC and all the non-empty /
197
// non-humongous regions at the end of the Full GC will end up as
198
// old anyway.
199
list->set_old();
200
list = next;
201
}
202
}
203
204
void YoungList::empty_list() {
205
assert(check_list_well_formed(), "young list should be well formed");
206
207
empty_list(_head);
208
_head = NULL;
209
_length = 0;
210
211
empty_list(_survivor_head);
212
_survivor_head = NULL;
213
_survivor_tail = NULL;
214
_survivor_length = 0;
215
216
_last_sampled_rs_lengths = 0;
217
218
assert(check_list_empty(false), "just making sure...");
219
}
220
221
bool YoungList::check_list_well_formed() {
222
bool ret = true;
223
224
uint length = 0;
225
HeapRegion* curr = _head;
226
HeapRegion* last = NULL;
227
while (curr != NULL) {
228
if (!curr->is_young()) {
229
gclog_or_tty->print_cr("### YOUNG REGION " PTR_FORMAT "-" PTR_FORMAT " "
230
"incorrectly tagged (y: %d, surv: %d)",
231
p2i(curr->bottom()), p2i(curr->end()),
232
curr->is_young(), curr->is_survivor());
233
ret = false;
234
}
235
++length;
236
last = curr;
237
curr = curr->get_next_young_region();
238
}
239
ret = ret && (length == _length);
240
241
if (!ret) {
242
gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
243
gclog_or_tty->print_cr("### list has %u entries, _length is %u",
244
length, _length);
245
}
246
247
return ret;
248
}
249
250
bool YoungList::check_list_empty(bool check_sample) {
251
bool ret = true;
252
253
if (_length != 0) {
254
gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
255
_length);
256
ret = false;
257
}
258
if (check_sample && _last_sampled_rs_lengths != 0) {
259
gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
260
ret = false;
261
}
262
if (_head != NULL) {
263
gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
264
ret = false;
265
}
266
if (!ret) {
267
gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
268
}
269
270
return ret;
271
}
272
273
void
274
YoungList::rs_length_sampling_init() {
275
_sampled_rs_lengths = 0;
276
_curr = _head;
277
}
278
279
bool
280
YoungList::rs_length_sampling_more() {
281
return _curr != NULL;
282
}
283
284
void
285
YoungList::rs_length_sampling_next() {
286
assert( _curr != NULL, "invariant" );
287
size_t rs_length = _curr->rem_set()->occupied();
288
289
_sampled_rs_lengths += rs_length;
290
291
// The current region may not yet have been added to the
292
// incremental collection set (it gets added when it is
293
// retired as the current allocation region).
294
if (_curr->in_collection_set()) {
295
// Update the collection set policy information for this region
296
_g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
297
}
298
299
_curr = _curr->get_next_young_region();
300
if (_curr == NULL) {
301
_last_sampled_rs_lengths = _sampled_rs_lengths;
302
// gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
303
}
304
}
305
306
void
307
YoungList::reset_auxilary_lists() {
308
guarantee( is_empty(), "young list should be empty" );
309
assert(check_list_well_formed(), "young list should be well formed");
310
311
// Add survivor regions to SurvRateGroup.
312
_g1h->g1_policy()->note_start_adding_survivor_regions();
313
_g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
314
315
int young_index_in_cset = 0;
316
for (HeapRegion* curr = _survivor_head;
317
curr != NULL;
318
curr = curr->get_next_young_region()) {
319
_g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
320
321
// The region is a non-empty survivor so let's add it to
322
// the incremental collection set for the next evacuation
323
// pause.
324
_g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
325
young_index_in_cset += 1;
326
}
327
assert((uint) young_index_in_cset == _survivor_length, "post-condition");
328
_g1h->g1_policy()->note_stop_adding_survivor_regions();
329
330
_head = _survivor_head;
331
_length = _survivor_length;
332
if (_survivor_head != NULL) {
333
assert(_survivor_tail != NULL, "cause it shouldn't be");
334
assert(_survivor_length > 0, "invariant");
335
_survivor_tail->set_next_young_region(NULL);
336
}
337
338
// Don't clear the survivor list handles until the start of
339
// the next evacuation pause - we need it in order to re-tag
340
// the survivor regions from this evacuation pause as 'young'
341
// at the start of the next.
342
343
_g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
344
345
assert(check_list_well_formed(), "young list should be well formed");
346
}
347
348
void YoungList::print() {
349
HeapRegion* lists[] = {_head, _survivor_head};
350
const char* names[] = {"YOUNG", "SURVIVOR"};
351
352
for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
353
gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
354
HeapRegion *curr = lists[list];
355
if (curr == NULL)
356
gclog_or_tty->print_cr(" empty");
357
while (curr != NULL) {
358
gclog_or_tty->print_cr(" " HR_FORMAT ", P: " PTR_FORMAT ", N: " PTR_FORMAT ", age: %4d",
359
HR_FORMAT_PARAMS(curr),
360
p2i(curr->prev_top_at_mark_start()),
361
p2i(curr->next_top_at_mark_start()),
362
curr->age_in_surv_rate_group_cond());
363
curr = curr->get_next_young_region();
364
}
365
}
366
367
gclog_or_tty->cr();
368
}
369
370
void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
371
OtherRegionsTable::invalidate(start_idx, num_regions);
372
}
373
374
void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
375
// The from card cache is not the memory that is actually committed. So we cannot
376
// take advantage of the zero_filled parameter.
377
reset_from_card_cache(start_idx, num_regions);
378
}
379
380
void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
381
{
382
// Claim the right to put the region on the dirty cards region list
383
// by installing a self pointer.
384
HeapRegion* next = hr->get_next_dirty_cards_region();
385
if (next == NULL) {
386
HeapRegion* res = (HeapRegion*)
387
Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
388
NULL);
389
if (res == NULL) {
390
HeapRegion* head;
391
do {
392
// Put the region to the dirty cards region list.
393
head = _dirty_cards_region_list;
394
next = (HeapRegion*)
395
Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
396
if (next == head) {
397
assert(hr->get_next_dirty_cards_region() == hr,
398
"hr->get_next_dirty_cards_region() != hr");
399
if (next == NULL) {
400
// The last region in the list points to itself.
401
hr->set_next_dirty_cards_region(hr);
402
} else {
403
hr->set_next_dirty_cards_region(next);
404
}
405
}
406
} while (next != head);
407
}
408
}
409
}
410
411
HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
412
{
413
HeapRegion* head;
414
HeapRegion* hr;
415
do {
416
head = _dirty_cards_region_list;
417
if (head == NULL) {
418
return NULL;
419
}
420
HeapRegion* new_head = head->get_next_dirty_cards_region();
421
if (head == new_head) {
422
// The last region.
423
new_head = NULL;
424
}
425
hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
426
head);
427
} while (hr != head);
428
assert(hr != NULL, "invariant");
429
hr->set_next_dirty_cards_region(NULL);
430
return hr;
431
}
432
433
#ifdef ASSERT
434
// A region is added to the collection set as it is retired
435
// so an address p can point to a region which will be in the
436
// collection set but has not yet been retired. This method
437
// therefore is only accurate during a GC pause after all
438
// regions have been retired. It is used for debugging
439
// to check if an nmethod has references to objects that can
440
// be move during a partial collection. Though it can be
441
// inaccurate, it is sufficient for G1 because the conservative
442
// implementation of is_scavengable() for G1 will indicate that
443
// all nmethods must be scanned during a partial collection.
444
bool G1CollectedHeap::is_in_partial_collection(const void* p) {
445
if (p == NULL) {
446
return false;
447
}
448
return heap_region_containing(p)->in_collection_set();
449
}
450
#endif
451
452
// Returns true if the reference points to an object that
453
// can move in an incremental collection.
454
bool G1CollectedHeap::is_scavengable(const void* p) {
455
HeapRegion* hr = heap_region_containing(p);
456
return !hr->isHumongous();
457
}
458
459
void G1CollectedHeap::check_ct_logs_at_safepoint() {
460
DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
461
CardTableModRefBS* ct_bs = g1_barrier_set();
462
463
// Count the dirty cards at the start.
464
CountNonCleanMemRegionClosure count1(this);
465
ct_bs->mod_card_iterate(&count1);
466
int orig_count = count1.n();
467
468
// First clear the logged cards.
469
ClearLoggedCardTableEntryClosure clear;
470
dcqs.apply_closure_to_all_completed_buffers(&clear);
471
dcqs.iterate_closure_all_threads(&clear, false);
472
clear.print_histo();
473
474
// Now ensure that there's no dirty cards.
475
CountNonCleanMemRegionClosure count2(this);
476
ct_bs->mod_card_iterate(&count2);
477
if (count2.n() != 0) {
478
gclog_or_tty->print_cr("Card table has %d entries; %d originally",
479
count2.n(), orig_count);
480
}
481
guarantee(count2.n() == 0, "Card table should be clean.");
482
483
RedirtyLoggedCardTableEntryClosure redirty;
484
dcqs.apply_closure_to_all_completed_buffers(&redirty);
485
dcqs.iterate_closure_all_threads(&redirty, false);
486
gclog_or_tty->print_cr("Log entries = " SIZE_FORMAT ", dirty cards = %d.",
487
clear.num_processed(), orig_count);
488
guarantee(redirty.num_processed() == clear.num_processed(),
489
err_msg("Redirtied " SIZE_FORMAT " cards, bug cleared " SIZE_FORMAT,
490
redirty.num_processed(), clear.num_processed()));
491
492
CountNonCleanMemRegionClosure count3(this);
493
ct_bs->mod_card_iterate(&count3);
494
if (count3.n() != orig_count) {
495
gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
496
orig_count, count3.n());
497
guarantee(count3.n() >= orig_count, "Should have restored them all.");
498
}
499
}
500
501
// Private class members.
502
503
G1CollectedHeap* G1CollectedHeap::_g1h;
504
505
// Private methods.
506
507
HeapRegion*
508
G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
509
MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
510
while (!_secondary_free_list.is_empty() || free_regions_coming()) {
511
if (!_secondary_free_list.is_empty()) {
512
if (G1ConcRegionFreeingVerbose) {
513
gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
514
"secondary_free_list has %u entries",
515
_secondary_free_list.length());
516
}
517
// It looks as if there are free regions available on the
518
// secondary_free_list. Let's move them to the free_list and try
519
// again to allocate from it.
520
append_secondary_free_list();
521
522
assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
523
"empty we should have moved at least one entry to the free_list");
524
HeapRegion* res = _hrm.allocate_free_region(is_old);
525
if (G1ConcRegionFreeingVerbose) {
526
gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
527
"allocated " HR_FORMAT " from secondary_free_list",
528
HR_FORMAT_PARAMS(res));
529
}
530
return res;
531
}
532
533
// Wait here until we get notified either when (a) there are no
534
// more free regions coming or (b) some regions have been moved on
535
// the secondary_free_list.
536
SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
537
}
538
539
if (G1ConcRegionFreeingVerbose) {
540
gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
541
"could not allocate from secondary_free_list");
542
}
543
return NULL;
544
}
545
546
HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
547
assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
548
"the only time we use this to allocate a humongous region is "
549
"when we are allocating a single humongous region");
550
551
HeapRegion* res;
552
if (G1StressConcRegionFreeing) {
553
if (!_secondary_free_list.is_empty()) {
554
if (G1ConcRegionFreeingVerbose) {
555
gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
556
"forced to look at the secondary_free_list");
557
}
558
res = new_region_try_secondary_free_list(is_old);
559
if (res != NULL) {
560
return res;
561
}
562
}
563
}
564
565
res = _hrm.allocate_free_region(is_old);
566
567
if (res == NULL) {
568
if (G1ConcRegionFreeingVerbose) {
569
gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
570
"res == NULL, trying the secondary_free_list");
571
}
572
res = new_region_try_secondary_free_list(is_old);
573
}
574
if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
575
// Currently, only attempts to allocate GC alloc regions set
576
// do_expand to true. So, we should only reach here during a
577
// safepoint. If this assumption changes we might have to
578
// reconsider the use of _expand_heap_after_alloc_failure.
579
assert(SafepointSynchronize::is_at_safepoint(), "invariant");
580
581
ergo_verbose1(ErgoHeapSizing,
582
"attempt heap expansion",
583
ergo_format_reason("region allocation request failed")
584
ergo_format_byte("allocation request"),
585
word_size * HeapWordSize);
586
if (expand(word_size * HeapWordSize)) {
587
// Given that expand() succeeded in expanding the heap, and we
588
// always expand the heap by an amount aligned to the heap
589
// region size, the free list should in theory not be empty.
590
// In either case allocate_free_region() will check for NULL.
591
res = _hrm.allocate_free_region(is_old);
592
} else {
593
_expand_heap_after_alloc_failure = false;
594
}
595
}
596
return res;
597
}
598
599
HeapWord*
600
G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
601
uint num_regions,
602
size_t word_size,
603
AllocationContext_t context) {
604
assert(first != G1_NO_HRM_INDEX, "pre-condition");
605
assert(isHumongous(word_size), "word_size should be humongous");
606
assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
607
608
// Index of last region in the series + 1.
609
uint last = first + num_regions;
610
611
// We need to initialize the region(s) we just discovered. This is
612
// a bit tricky given that it can happen concurrently with
613
// refinement threads refining cards on these regions and
614
// potentially wanting to refine the BOT as they are scanning
615
// those cards (this can happen shortly after a cleanup; see CR
616
// 6991377). So we have to set up the region(s) carefully and in
617
// a specific order.
618
619
// The word size sum of all the regions we will allocate.
620
size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
621
assert(word_size <= word_size_sum, "sanity");
622
623
// This will be the "starts humongous" region.
624
HeapRegion* first_hr = region_at(first);
625
// The header of the new object will be placed at the bottom of
626
// the first region.
627
HeapWord* new_obj = first_hr->bottom();
628
// This will be the new end of the first region in the series that
629
// should also match the end of the last region in the series.
630
HeapWord* new_end = new_obj + word_size_sum;
631
// This will be the new top of the first region that will reflect
632
// this allocation.
633
HeapWord* new_top = new_obj + word_size;
634
635
// First, we need to zero the header of the space that we will be
636
// allocating. When we update top further down, some refinement
637
// threads might try to scan the region. By zeroing the header we
638
// ensure that any thread that will try to scan the region will
639
// come across the zero klass word and bail out.
640
//
641
// NOTE: It would not have been correct to have used
642
// CollectedHeap::fill_with_object() and make the space look like
643
// an int array. The thread that is doing the allocation will
644
// later update the object header to a potentially different array
645
// type and, for a very short period of time, the klass and length
646
// fields will be inconsistent. This could cause a refinement
647
// thread to calculate the object size incorrectly.
648
Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
649
650
// We will set up the first region as "starts humongous". This
651
// will also update the BOT covering all the regions to reflect
652
// that there is a single object that starts at the bottom of the
653
// first region.
654
first_hr->set_startsHumongous(new_top, new_end);
655
first_hr->set_allocation_context(context);
656
// Then, if there are any, we will set up the "continues
657
// humongous" regions.
658
HeapRegion* hr = NULL;
659
for (uint i = first + 1; i < last; ++i) {
660
hr = region_at(i);
661
hr->set_continuesHumongous(first_hr);
662
hr->set_allocation_context(context);
663
}
664
// If we have "continues humongous" regions (hr != NULL), then the
665
// end of the last one should match new_end.
666
assert(hr == NULL || hr->end() == new_end, "sanity");
667
668
// Up to this point no concurrent thread would have been able to
669
// do any scanning on any region in this series. All the top
670
// fields still point to bottom, so the intersection between
671
// [bottom,top] and [card_start,card_end] will be empty. Before we
672
// update the top fields, we'll do a storestore to make sure that
673
// no thread sees the update to top before the zeroing of the
674
// object header and the BOT initialization.
675
OrderAccess::storestore();
676
677
// Now that the BOT and the object header have been initialized,
678
// we can update top of the "starts humongous" region.
679
assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
680
"new_top should be in this region");
681
first_hr->set_top(new_top);
682
if (_hr_printer.is_active()) {
683
HeapWord* bottom = first_hr->bottom();
684
HeapWord* end = first_hr->orig_end();
685
if ((first + 1) == last) {
686
// the series has a single humongous region
687
_hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
688
} else {
689
// the series has more than one humongous regions
690
_hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
691
}
692
}
693
694
// Now, we will update the top fields of the "continues humongous"
695
// regions. The reason we need to do this is that, otherwise,
696
// these regions would look empty and this will confuse parts of
697
// G1. For example, the code that looks for a consecutive number
698
// of empty regions will consider them empty and try to
699
// re-allocate them. We can extend is_empty() to also include
700
// !continuesHumongous(), but it is easier to just update the top
701
// fields here. The way we set top for all regions (i.e., top ==
702
// end for all regions but the last one, top == new_top for the
703
// last one) is actually used when we will free up the humongous
704
// region in free_humongous_region().
705
hr = NULL;
706
for (uint i = first + 1; i < last; ++i) {
707
hr = region_at(i);
708
if ((i + 1) == last) {
709
// last continues humongous region
710
assert(hr->bottom() < new_top && new_top <= hr->end(),
711
"new_top should fall on this region");
712
hr->set_top(new_top);
713
_hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
714
} else {
715
// not last one
716
assert(new_top > hr->end(), "new_top should be above this region");
717
hr->set_top(hr->end());
718
_hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
719
}
720
}
721
// If we have continues humongous regions (hr != NULL), then the
722
// end of the last one should match new_end and its top should
723
// match new_top.
724
assert(hr == NULL ||
725
(hr->end() == new_end && hr->top() == new_top), "sanity");
726
check_bitmaps("Humongous Region Allocation", first_hr);
727
728
assert(first_hr->used() == word_size * HeapWordSize, "invariant");
729
_allocator->increase_used(first_hr->used());
730
_humongous_set.add(first_hr);
731
732
return new_obj;
733
}
734
735
// If could fit into free regions w/o expansion, try.
736
// Otherwise, if can expand, do so.
737
// Otherwise, if using ex regions might help, try with ex given back.
738
HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
739
assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
740
741
verify_region_sets_optional();
742
743
uint first = G1_NO_HRM_INDEX;
744
uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
745
746
if (obj_regions == 1) {
747
// Only one region to allocate, try to use a fast path by directly allocating
748
// from the free lists. Do not try to expand here, we will potentially do that
749
// later.
750
HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
751
if (hr != NULL) {
752
first = hr->hrm_index();
753
}
754
} else {
755
// We can't allocate humongous regions spanning more than one region while
756
// cleanupComplete() is running, since some of the regions we find to be
757
// empty might not yet be added to the free list. It is not straightforward
758
// to know in which list they are on so that we can remove them. We only
759
// need to do this if we need to allocate more than one region to satisfy the
760
// current humongous allocation request. If we are only allocating one region
761
// we use the one-region region allocation code (see above), that already
762
// potentially waits for regions from the secondary free list.
763
wait_while_free_regions_coming();
764
append_secondary_free_list_if_not_empty_with_lock();
765
766
// Policy: Try only empty regions (i.e. already committed first). Maybe we
767
// are lucky enough to find some.
768
first = _hrm.find_contiguous_only_empty(obj_regions);
769
if (first != G1_NO_HRM_INDEX) {
770
_hrm.allocate_free_regions_starting_at(first, obj_regions);
771
}
772
}
773
774
if (first == G1_NO_HRM_INDEX) {
775
// Policy: We could not find enough regions for the humongous object in the
776
// free list. Look through the heap to find a mix of free and uncommitted regions.
777
// If so, try expansion.
778
first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
779
if (first != G1_NO_HRM_INDEX) {
780
// We found something. Make sure these regions are committed, i.e. expand
781
// the heap. Alternatively we could do a defragmentation GC.
782
ergo_verbose1(ErgoHeapSizing,
783
"attempt heap expansion",
784
ergo_format_reason("humongous allocation request failed")
785
ergo_format_byte("allocation request"),
786
word_size * HeapWordSize);
787
788
_hrm.expand_at(first, obj_regions);
789
g1_policy()->record_new_heap_size(num_regions());
790
791
#ifdef ASSERT
792
for (uint i = first; i < first + obj_regions; ++i) {
793
HeapRegion* hr = region_at(i);
794
assert(hr->is_free(), "sanity");
795
assert(hr->is_empty(), "sanity");
796
assert(is_on_master_free_list(hr), "sanity");
797
}
798
#endif
799
_hrm.allocate_free_regions_starting_at(first, obj_regions);
800
} else {
801
// Policy: Potentially trigger a defragmentation GC.
802
}
803
}
804
805
HeapWord* result = NULL;
806
if (first != G1_NO_HRM_INDEX) {
807
result = humongous_obj_allocate_initialize_regions(first, obj_regions,
808
word_size, context);
809
assert(result != NULL, "it should always return a valid result");
810
811
// A successful humongous object allocation changes the used space
812
// information of the old generation so we need to recalculate the
813
// sizes and update the jstat counters here.
814
g1mm()->update_sizes();
815
}
816
817
verify_region_sets_optional();
818
819
return result;
820
}
821
822
HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
823
assert_heap_not_locked_and_not_at_safepoint();
824
assert(!isHumongous(word_size), "we do not allow humongous TLABs");
825
826
uint dummy_gc_count_before;
827
uint dummy_gclocker_retry_count = 0;
828
return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
829
}
830
831
HeapWord*
832
G1CollectedHeap::mem_allocate(size_t word_size,
833
bool* gc_overhead_limit_was_exceeded) {
834
assert_heap_not_locked_and_not_at_safepoint();
835
836
// Loop until the allocation is satisfied, or unsatisfied after GC.
837
for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
838
uint gc_count_before;
839
840
HeapWord* result = NULL;
841
if (!isHumongous(word_size)) {
842
result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
843
} else {
844
result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
845
}
846
if (result != NULL) {
847
return result;
848
}
849
850
// Create the garbage collection operation...
851
VM_G1CollectForAllocation op(gc_count_before, word_size);
852
op.set_allocation_context(AllocationContext::current());
853
854
// ...and get the VM thread to execute it.
855
VMThread::execute(&op);
856
857
if (op.prologue_succeeded() && op.pause_succeeded()) {
858
// If the operation was successful we'll return the result even
859
// if it is NULL. If the allocation attempt failed immediately
860
// after a Full GC, it's unlikely we'll be able to allocate now.
861
HeapWord* result = op.result();
862
if (result != NULL && !isHumongous(word_size)) {
863
// Allocations that take place on VM operations do not do any
864
// card dirtying and we have to do it here. We only have to do
865
// this for non-humongous allocations, though.
866
dirty_young_block(result, word_size);
867
}
868
return result;
869
} else {
870
if (gclocker_retry_count > GCLockerRetryAllocationCount) {
871
return NULL;
872
}
873
assert(op.result() == NULL,
874
"the result should be NULL if the VM op did not succeed");
875
}
876
877
// Give a warning if we seem to be looping forever.
878
if ((QueuedAllocationWarningCount > 0) &&
879
(try_count % QueuedAllocationWarningCount == 0)) {
880
warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
881
}
882
}
883
884
ShouldNotReachHere();
885
return NULL;
886
}
887
888
HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
889
AllocationContext_t context,
890
uint* gc_count_before_ret,
891
uint* gclocker_retry_count_ret) {
892
// Make sure you read the note in attempt_allocation_humongous().
893
894
assert_heap_not_locked_and_not_at_safepoint();
895
assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
896
"be called for humongous allocation requests");
897
898
// We should only get here after the first-level allocation attempt
899
// (attempt_allocation()) failed to allocate.
900
901
// We will loop until a) we manage to successfully perform the
902
// allocation or b) we successfully schedule a collection which
903
// fails to perform the allocation. b) is the only case when we'll
904
// return NULL.
905
HeapWord* result = NULL;
906
for (int try_count = 1; /* we'll return */; try_count += 1) {
907
bool should_try_gc;
908
uint gc_count_before;
909
910
{
911
MutexLockerEx x(Heap_lock);
912
result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
913
false /* bot_updates */);
914
if (result != NULL) {
915
return result;
916
}
917
918
// If we reach here, attempt_allocation_locked() above failed to
919
// allocate a new region. So the mutator alloc region should be NULL.
920
assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
921
922
if (GC_locker::is_active_and_needs_gc()) {
923
if (g1_policy()->can_expand_young_list()) {
924
// No need for an ergo verbose message here,
925
// can_expand_young_list() does this when it returns true.
926
result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
927
false /* bot_updates */);
928
if (result != NULL) {
929
return result;
930
}
931
}
932
should_try_gc = false;
933
} else {
934
// The GCLocker may not be active but the GCLocker initiated
935
// GC may not yet have been performed (GCLocker::needs_gc()
936
// returns true). In this case we do not try this GC and
937
// wait until the GCLocker initiated GC is performed, and
938
// then retry the allocation.
939
if (GC_locker::needs_gc()) {
940
should_try_gc = false;
941
} else {
942
// Read the GC count while still holding the Heap_lock.
943
gc_count_before = total_collections();
944
should_try_gc = true;
945
}
946
}
947
}
948
949
if (should_try_gc) {
950
bool succeeded;
951
result = do_collection_pause(word_size, gc_count_before, &succeeded,
952
GCCause::_g1_inc_collection_pause);
953
if (result != NULL) {
954
assert(succeeded, "only way to get back a non-NULL result");
955
return result;
956
}
957
958
if (succeeded) {
959
// If we get here we successfully scheduled a collection which
960
// failed to allocate. No point in trying to allocate
961
// further. We'll just return NULL.
962
MutexLockerEx x(Heap_lock);
963
*gc_count_before_ret = total_collections();
964
return NULL;
965
}
966
} else {
967
if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
968
MutexLockerEx x(Heap_lock);
969
*gc_count_before_ret = total_collections();
970
return NULL;
971
}
972
// The GCLocker is either active or the GCLocker initiated
973
// GC has not yet been performed. Stall until it is and
974
// then retry the allocation.
975
GC_locker::stall_until_clear();
976
(*gclocker_retry_count_ret) += 1;
977
}
978
979
// We can reach here if we were unsuccessful in scheduling a
980
// collection (because another thread beat us to it) or if we were
981
// stalled due to the GC locker. In either can we should retry the
982
// allocation attempt in case another thread successfully
983
// performed a collection and reclaimed enough space. We do the
984
// first attempt (without holding the Heap_lock) here and the
985
// follow-on attempt will be at the start of the next loop
986
// iteration (after taking the Heap_lock).
987
result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
988
false /* bot_updates */);
989
if (result != NULL) {
990
return result;
991
}
992
993
// Give a warning if we seem to be looping forever.
994
if ((QueuedAllocationWarningCount > 0) &&
995
(try_count % QueuedAllocationWarningCount == 0)) {
996
warning("G1CollectedHeap::attempt_allocation_slow() "
997
"retries %d times", try_count);
998
}
999
}
1000
1001
ShouldNotReachHere();
1002
return NULL;
1003
}
1004
1005
HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1006
uint* gc_count_before_ret,
1007
uint* gclocker_retry_count_ret) {
1008
// The structure of this method has a lot of similarities to
1009
// attempt_allocation_slow(). The reason these two were not merged
1010
// into a single one is that such a method would require several "if
1011
// allocation is not humongous do this, otherwise do that"
1012
// conditional paths which would obscure its flow. In fact, an early
1013
// version of this code did use a unified method which was harder to
1014
// follow and, as a result, it had subtle bugs that were hard to
1015
// track down. So keeping these two methods separate allows each to
1016
// be more readable. It will be good to keep these two in sync as
1017
// much as possible.
1018
1019
assert_heap_not_locked_and_not_at_safepoint();
1020
assert(isHumongous(word_size), "attempt_allocation_humongous() "
1021
"should only be called for humongous allocations");
1022
1023
// Humongous objects can exhaust the heap quickly, so we should check if we
1024
// need to start a marking cycle at each humongous object allocation. We do
1025
// the check before we do the actual allocation. The reason for doing it
1026
// before the allocation is that we avoid having to keep track of the newly
1027
// allocated memory while we do a GC.
1028
if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1029
word_size)) {
1030
collect(GCCause::_g1_humongous_allocation);
1031
}
1032
1033
// We will loop until a) we manage to successfully perform the
1034
// allocation or b) we successfully schedule a collection which
1035
// fails to perform the allocation. b) is the only case when we'll
1036
// return NULL.
1037
HeapWord* result = NULL;
1038
for (int try_count = 1; /* we'll return */; try_count += 1) {
1039
bool should_try_gc;
1040
uint gc_count_before;
1041
1042
{
1043
MutexLockerEx x(Heap_lock);
1044
1045
// Given that humongous objects are not allocated in young
1046
// regions, we'll first try to do the allocation without doing a
1047
// collection hoping that there's enough space in the heap.
1048
result = humongous_obj_allocate(word_size, AllocationContext::current());
1049
if (result != NULL) {
1050
return result;
1051
}
1052
1053
if (GC_locker::is_active_and_needs_gc()) {
1054
should_try_gc = false;
1055
} else {
1056
// The GCLocker may not be active but the GCLocker initiated
1057
// GC may not yet have been performed (GCLocker::needs_gc()
1058
// returns true). In this case we do not try this GC and
1059
// wait until the GCLocker initiated GC is performed, and
1060
// then retry the allocation.
1061
if (GC_locker::needs_gc()) {
1062
should_try_gc = false;
1063
} else {
1064
// Read the GC count while still holding the Heap_lock.
1065
gc_count_before = total_collections();
1066
should_try_gc = true;
1067
}
1068
}
1069
}
1070
1071
if (should_try_gc) {
1072
// If we failed to allocate the humongous object, we should try to
1073
// do a collection pause (if we're allowed) in case it reclaims
1074
// enough space for the allocation to succeed after the pause.
1075
1076
bool succeeded;
1077
result = do_collection_pause(word_size, gc_count_before, &succeeded,
1078
GCCause::_g1_humongous_allocation);
1079
if (result != NULL) {
1080
assert(succeeded, "only way to get back a non-NULL result");
1081
return result;
1082
}
1083
1084
if (succeeded) {
1085
// If we get here we successfully scheduled a collection which
1086
// failed to allocate. No point in trying to allocate
1087
// further. We'll just return NULL.
1088
MutexLockerEx x(Heap_lock);
1089
*gc_count_before_ret = total_collections();
1090
return NULL;
1091
}
1092
} else {
1093
if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1094
MutexLockerEx x(Heap_lock);
1095
*gc_count_before_ret = total_collections();
1096
return NULL;
1097
}
1098
// The GCLocker is either active or the GCLocker initiated
1099
// GC has not yet been performed. Stall until it is and
1100
// then retry the allocation.
1101
GC_locker::stall_until_clear();
1102
(*gclocker_retry_count_ret) += 1;
1103
}
1104
1105
// We can reach here if we were unsuccessful in scheduling a
1106
// collection (because another thread beat us to it) or if we were
1107
// stalled due to the GC locker. In either can we should retry the
1108
// allocation attempt in case another thread successfully
1109
// performed a collection and reclaimed enough space. Give a
1110
// warning if we seem to be looping forever.
1111
1112
if ((QueuedAllocationWarningCount > 0) &&
1113
(try_count % QueuedAllocationWarningCount == 0)) {
1114
warning("G1CollectedHeap::attempt_allocation_humongous() "
1115
"retries %d times", try_count);
1116
}
1117
}
1118
1119
ShouldNotReachHere();
1120
return NULL;
1121
}
1122
1123
HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1124
AllocationContext_t context,
1125
bool expect_null_mutator_alloc_region) {
1126
assert_at_safepoint(true /* should_be_vm_thread */);
1127
assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1128
!expect_null_mutator_alloc_region,
1129
"the current alloc region was unexpectedly found to be non-NULL");
1130
1131
if (!isHumongous(word_size)) {
1132
return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1133
false /* bot_updates */);
1134
} else {
1135
HeapWord* result = humongous_obj_allocate(word_size, context);
1136
if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1137
g1_policy()->set_initiate_conc_mark_if_possible();
1138
}
1139
return result;
1140
}
1141
1142
ShouldNotReachHere();
1143
}
1144
1145
class PostMCRemSetClearClosure: public HeapRegionClosure {
1146
G1CollectedHeap* _g1h;
1147
ModRefBarrierSet* _mr_bs;
1148
public:
1149
PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1150
_g1h(g1h), _mr_bs(mr_bs) {}
1151
1152
bool doHeapRegion(HeapRegion* r) {
1153
HeapRegionRemSet* hrrs = r->rem_set();
1154
1155
if (r->continuesHumongous()) {
1156
// We'll assert that the strong code root list and RSet is empty
1157
assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1158
assert(hrrs->occupied() == 0, "RSet should be empty");
1159
return false;
1160
}
1161
1162
_g1h->reset_gc_time_stamps(r);
1163
hrrs->clear();
1164
// You might think here that we could clear just the cards
1165
// corresponding to the used region. But no: if we leave a dirty card
1166
// in a region we might allocate into, then it would prevent that card
1167
// from being enqueued, and cause it to be missed.
1168
// Re: the performance cost: we shouldn't be doing full GC anyway!
1169
_mr_bs->clear(MemRegion(r->bottom(), r->end()));
1170
1171
return false;
1172
}
1173
};
1174
1175
void G1CollectedHeap::clear_rsets_post_compaction() {
1176
PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1177
heap_region_iterate(&rs_clear);
1178
}
1179
1180
class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1181
G1CollectedHeap* _g1h;
1182
UpdateRSOopClosure _cl;
1183
int _worker_i;
1184
public:
1185
RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1186
_cl(g1->g1_rem_set(), worker_i),
1187
_worker_i(worker_i),
1188
_g1h(g1)
1189
{ }
1190
1191
bool doHeapRegion(HeapRegion* r) {
1192
if (!r->continuesHumongous()) {
1193
_cl.set_from(r);
1194
r->oop_iterate(&_cl);
1195
}
1196
return false;
1197
}
1198
};
1199
1200
class ParRebuildRSTask: public AbstractGangTask {
1201
G1CollectedHeap* _g1;
1202
public:
1203
ParRebuildRSTask(G1CollectedHeap* g1)
1204
: AbstractGangTask("ParRebuildRSTask"),
1205
_g1(g1)
1206
{ }
1207
1208
void work(uint worker_id) {
1209
RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1210
_g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1211
_g1->workers()->active_workers(),
1212
HeapRegion::RebuildRSClaimValue);
1213
}
1214
};
1215
1216
class PostCompactionPrinterClosure: public HeapRegionClosure {
1217
private:
1218
G1HRPrinter* _hr_printer;
1219
public:
1220
bool doHeapRegion(HeapRegion* hr) {
1221
assert(!hr->is_young(), "not expecting to find young regions");
1222
if (hr->is_free()) {
1223
// We only generate output for non-empty regions.
1224
} else if (hr->startsHumongous()) {
1225
if (hr->region_num() == 1) {
1226
// single humongous region
1227
_hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1228
} else {
1229
_hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1230
}
1231
} else if (hr->continuesHumongous()) {
1232
_hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1233
} else if (hr->is_old()) {
1234
_hr_printer->post_compaction(hr, G1HRPrinter::Old);
1235
} else {
1236
ShouldNotReachHere();
1237
}
1238
return false;
1239
}
1240
1241
PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1242
: _hr_printer(hr_printer) { }
1243
};
1244
1245
void G1CollectedHeap::print_hrm_post_compaction() {
1246
PostCompactionPrinterClosure cl(hr_printer());
1247
heap_region_iterate(&cl);
1248
}
1249
1250
bool G1CollectedHeap::do_collection(bool explicit_gc,
1251
bool clear_all_soft_refs,
1252
size_t word_size) {
1253
assert_at_safepoint(true /* should_be_vm_thread */);
1254
1255
if (GC_locker::check_active_before_gc()) {
1256
return false;
1257
}
1258
1259
STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1260
gc_timer->register_gc_start();
1261
1262
SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1263
gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1264
1265
SvcGCMarker sgcm(SvcGCMarker::FULL);
1266
ResourceMark rm;
1267
1268
print_heap_before_gc();
1269
trace_heap_before_gc(gc_tracer);
1270
1271
size_t metadata_prev_used = MetaspaceAux::used_bytes();
1272
1273
verify_region_sets_optional();
1274
1275
const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1276
collector_policy()->should_clear_all_soft_refs();
1277
1278
ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1279
1280
{
1281
IsGCActiveMark x;
1282
1283
// Timing
1284
assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1285
TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1286
1287
{
1288
GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1289
TraceCollectorStats tcs(g1mm()->full_collection_counters());
1290
TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1291
1292
double start = os::elapsedTime();
1293
g1_policy()->record_full_collection_start();
1294
1295
// Note: When we have a more flexible GC logging framework that
1296
// allows us to add optional attributes to a GC log record we
1297
// could consider timing and reporting how long we wait in the
1298
// following two methods.
1299
wait_while_free_regions_coming();
1300
// If we start the compaction before the CM threads finish
1301
// scanning the root regions we might trip them over as we'll
1302
// be moving objects / updating references. So let's wait until
1303
// they are done. By telling them to abort, they should complete
1304
// early.
1305
_cm->root_regions()->abort();
1306
_cm->root_regions()->wait_until_scan_finished();
1307
append_secondary_free_list_if_not_empty_with_lock();
1308
1309
gc_prologue(true);
1310
increment_total_collections(true /* full gc */);
1311
increment_old_marking_cycles_started();
1312
1313
assert(used() == recalculate_used(), "Should be equal");
1314
1315
verify_before_gc();
1316
1317
check_bitmaps("Full GC Start");
1318
pre_full_gc_dump(gc_timer);
1319
1320
COMPILER2_PRESENT(DerivedPointerTable::clear());
1321
1322
// Disable discovery and empty the discovered lists
1323
// for the CM ref processor.
1324
ref_processor_cm()->disable_discovery();
1325
ref_processor_cm()->abandon_partial_discovery();
1326
ref_processor_cm()->verify_no_references_recorded();
1327
1328
// Abandon current iterations of concurrent marking and concurrent
1329
// refinement, if any are in progress. We have to do this before
1330
// wait_until_scan_finished() below.
1331
concurrent_mark()->abort();
1332
1333
// Make sure we'll choose a new allocation region afterwards.
1334
_allocator->release_mutator_alloc_region();
1335
_allocator->abandon_gc_alloc_regions();
1336
g1_rem_set()->cleanupHRRS();
1337
1338
// We should call this after we retire any currently active alloc
1339
// regions so that all the ALLOC / RETIRE events are generated
1340
// before the start GC event.
1341
_hr_printer.start_gc(true /* full */, (size_t) total_collections());
1342
1343
// We may have added regions to the current incremental collection
1344
// set between the last GC or pause and now. We need to clear the
1345
// incremental collection set and then start rebuilding it afresh
1346
// after this full GC.
1347
abandon_collection_set(g1_policy()->inc_cset_head());
1348
g1_policy()->clear_incremental_cset();
1349
g1_policy()->stop_incremental_cset_building();
1350
1351
tear_down_region_sets(false /* free_list_only */);
1352
g1_policy()->set_gcs_are_young(true);
1353
1354
// See the comments in g1CollectedHeap.hpp and
1355
// G1CollectedHeap::ref_processing_init() about
1356
// how reference processing currently works in G1.
1357
1358
// Temporarily make discovery by the STW ref processor single threaded (non-MT).
1359
ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1360
1361
// Temporarily clear the STW ref processor's _is_alive_non_header field.
1362
ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1363
1364
ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1365
ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1366
1367
// Do collection work
1368
{
1369
HandleMark hm; // Discard invalid handles created during gc
1370
G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1371
}
1372
1373
assert(num_free_regions() == 0, "we should not have added any free regions");
1374
rebuild_region_sets(false /* free_list_only */);
1375
1376
// Enqueue any discovered reference objects that have
1377
// not been removed from the discovered lists.
1378
ref_processor_stw()->enqueue_discovered_references();
1379
1380
COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1381
1382
MemoryService::track_memory_usage();
1383
1384
assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1385
ref_processor_stw()->verify_no_references_recorded();
1386
1387
// Delete metaspaces for unloaded class loaders and clean up loader_data graph
1388
ClassLoaderDataGraph::purge();
1389
MetaspaceAux::verify_metrics();
1390
1391
// Note: since we've just done a full GC, concurrent
1392
// marking is no longer active. Therefore we need not
1393
// re-enable reference discovery for the CM ref processor.
1394
// That will be done at the start of the next marking cycle.
1395
assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1396
ref_processor_cm()->verify_no_references_recorded();
1397
1398
reset_gc_time_stamp();
1399
// Since everything potentially moved, we will clear all remembered
1400
// sets, and clear all cards. Later we will rebuild remembered
1401
// sets. We will also reset the GC time stamps of the regions.
1402
clear_rsets_post_compaction();
1403
check_gc_time_stamps();
1404
1405
// Resize the heap if necessary.
1406
resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1407
1408
if (_hr_printer.is_active()) {
1409
// We should do this after we potentially resize the heap so
1410
// that all the COMMIT / UNCOMMIT events are generated before
1411
// the end GC event.
1412
1413
print_hrm_post_compaction();
1414
_hr_printer.end_gc(true /* full */, (size_t) total_collections());
1415
}
1416
1417
G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1418
if (hot_card_cache->use_cache()) {
1419
hot_card_cache->reset_card_counts();
1420
hot_card_cache->reset_hot_cache();
1421
}
1422
1423
// Rebuild remembered sets of all regions.
1424
if (G1CollectedHeap::use_parallel_gc_threads()) {
1425
uint n_workers =
1426
AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1427
workers()->active_workers(),
1428
Threads::number_of_non_daemon_threads());
1429
assert(UseDynamicNumberOfGCThreads ||
1430
n_workers == workers()->total_workers(),
1431
"If not dynamic should be using all the workers");
1432
workers()->set_active_workers(n_workers);
1433
// Set parallel threads in the heap (_n_par_threads) only
1434
// before a parallel phase and always reset it to 0 after
1435
// the phase so that the number of parallel threads does
1436
// no get carried forward to a serial phase where there
1437
// may be code that is "possibly_parallel".
1438
set_par_threads(n_workers);
1439
1440
ParRebuildRSTask rebuild_rs_task(this);
1441
assert(check_heap_region_claim_values(
1442
HeapRegion::InitialClaimValue), "sanity check");
1443
assert(UseDynamicNumberOfGCThreads ||
1444
workers()->active_workers() == workers()->total_workers(),
1445
"Unless dynamic should use total workers");
1446
// Use the most recent number of active workers
1447
assert(workers()->active_workers() > 0,
1448
"Active workers not properly set");
1449
set_par_threads(workers()->active_workers());
1450
workers()->run_task(&rebuild_rs_task);
1451
set_par_threads(0);
1452
assert(check_heap_region_claim_values(
1453
HeapRegion::RebuildRSClaimValue), "sanity check");
1454
reset_heap_region_claim_values();
1455
} else {
1456
RebuildRSOutOfRegionClosure rebuild_rs(this);
1457
heap_region_iterate(&rebuild_rs);
1458
}
1459
1460
// Rebuild the strong code root lists for each region
1461
rebuild_strong_code_roots();
1462
1463
// Purge code root memory
1464
purge_code_root_memory();
1465
1466
if (true) { // FIXME
1467
MetaspaceGC::compute_new_size();
1468
}
1469
1470
#ifdef TRACESPINNING
1471
ParallelTaskTerminator::print_termination_counts();
1472
#endif
1473
1474
// Discard all rset updates
1475
JavaThread::dirty_card_queue_set().abandon_logs();
1476
assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1477
1478
_young_list->reset_sampled_info();
1479
// At this point there should be no regions in the
1480
// entire heap tagged as young.
1481
assert(check_young_list_empty(true /* check_heap */),
1482
"young list should be empty at this point");
1483
1484
// Update the number of full collections that have been completed.
1485
increment_old_marking_cycles_completed(false /* concurrent */);
1486
1487
_hrm.verify_optional();
1488
verify_region_sets_optional();
1489
1490
verify_after_gc();
1491
1492
// Clear the previous marking bitmap, if needed for bitmap verification.
1493
// Note we cannot do this when we clear the next marking bitmap in
1494
// ConcurrentMark::abort() above since VerifyDuringGC verifies the
1495
// objects marked during a full GC against the previous bitmap.
1496
// But we need to clear it before calling check_bitmaps below since
1497
// the full GC has compacted objects and updated TAMS but not updated
1498
// the prev bitmap.
1499
if (G1VerifyBitmaps) {
1500
((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1501
}
1502
check_bitmaps("Full GC End");
1503
1504
// Start a new incremental collection set for the next pause
1505
assert(g1_policy()->collection_set() == NULL, "must be");
1506
g1_policy()->start_incremental_cset_building();
1507
1508
clear_cset_fast_test();
1509
1510
_allocator->init_mutator_alloc_region();
1511
1512
double end = os::elapsedTime();
1513
g1_policy()->record_full_collection_end();
1514
1515
if (G1Log::fine()) {
1516
g1_policy()->print_heap_transition();
1517
}
1518
1519
// We must call G1MonitoringSupport::update_sizes() in the same scoping level
1520
// as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1521
// TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1522
// before any GC notifications are raised.
1523
g1mm()->update_sizes();
1524
1525
gc_epilogue(true);
1526
}
1527
1528
if (G1Log::finer()) {
1529
g1_policy()->print_detailed_heap_transition(true /* full */);
1530
}
1531
1532
print_heap_after_gc();
1533
trace_heap_after_gc(gc_tracer);
1534
1535
post_full_gc_dump(gc_timer);
1536
1537
gc_timer->register_gc_end();
1538
gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1539
}
1540
1541
return true;
1542
}
1543
1544
void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1545
// do_collection() will return whether it succeeded in performing
1546
// the GC. Currently, there is no facility on the
1547
// do_full_collection() API to notify the caller than the collection
1548
// did not succeed (e.g., because it was locked out by the GC
1549
// locker). So, right now, we'll ignore the return value.
1550
bool dummy = do_collection(true, /* explicit_gc */
1551
clear_all_soft_refs,
1552
0 /* word_size */);
1553
}
1554
1555
// This code is mostly copied from TenuredGeneration.
1556
void
1557
G1CollectedHeap::
1558
resize_if_necessary_after_full_collection(size_t word_size) {
1559
// Include the current allocation, if any, and bytes that will be
1560
// pre-allocated to support collections, as "used".
1561
const size_t used_after_gc = used();
1562
const size_t capacity_after_gc = capacity();
1563
const size_t free_after_gc = capacity_after_gc - used_after_gc;
1564
1565
// This is enforced in arguments.cpp.
1566
assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1567
"otherwise the code below doesn't make sense");
1568
1569
// We don't have floating point command-line arguments
1570
const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1571
const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1572
const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1573
const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1574
1575
const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1576
const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1577
1578
// We have to be careful here as these two calculations can overflow
1579
// 32-bit size_t's.
1580
double used_after_gc_d = (double) used_after_gc;
1581
double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1582
double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1583
1584
// Let's make sure that they are both under the max heap size, which
1585
// by default will make them fit into a size_t.
1586
double desired_capacity_upper_bound = (double) max_heap_size;
1587
minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1588
desired_capacity_upper_bound);
1589
maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1590
desired_capacity_upper_bound);
1591
1592
// We can now safely turn them into size_t's.
1593
size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1594
size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1595
1596
// This assert only makes sense here, before we adjust them
1597
// with respect to the min and max heap size.
1598
assert(minimum_desired_capacity <= maximum_desired_capacity,
1599
err_msg("minimum_desired_capacity = " SIZE_FORMAT ", "
1600
"maximum_desired_capacity = " SIZE_FORMAT,
1601
minimum_desired_capacity, maximum_desired_capacity));
1602
1603
// Should not be greater than the heap max size. No need to adjust
1604
// it with respect to the heap min size as it's a lower bound (i.e.,
1605
// we'll try to make the capacity larger than it, not smaller).
1606
minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1607
// Should not be less than the heap min size. No need to adjust it
1608
// with respect to the heap max size as it's an upper bound (i.e.,
1609
// we'll try to make the capacity smaller than it, not greater).
1610
maximum_desired_capacity = MAX2(maximum_desired_capacity, min_heap_size);
1611
1612
if (capacity_after_gc < minimum_desired_capacity) {
1613
// Don't expand unless it's significant
1614
size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1615
ergo_verbose4(ErgoHeapSizing,
1616
"attempt heap expansion",
1617
ergo_format_reason("capacity lower than "
1618
"min desired capacity after Full GC")
1619
ergo_format_byte("capacity")
1620
ergo_format_byte("occupancy")
1621
ergo_format_byte_perc("min desired capacity"),
1622
capacity_after_gc, used_after_gc,
1623
minimum_desired_capacity, (double) MinHeapFreeRatio);
1624
expand(expand_bytes);
1625
1626
// No expansion, now see if we want to shrink
1627
} else if (capacity_after_gc > maximum_desired_capacity) {
1628
// Capacity too large, compute shrinking size
1629
size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1630
ergo_verbose4(ErgoHeapSizing,
1631
"attempt heap shrinking",
1632
ergo_format_reason("capacity higher than "
1633
"max desired capacity after Full GC")
1634
ergo_format_byte("capacity")
1635
ergo_format_byte("occupancy")
1636
ergo_format_byte_perc("max desired capacity"),
1637
capacity_after_gc, used_after_gc,
1638
maximum_desired_capacity, (double) MaxHeapFreeRatio);
1639
shrink(shrink_bytes);
1640
}
1641
}
1642
1643
1644
HeapWord*
1645
G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1646
AllocationContext_t context,
1647
bool* succeeded) {
1648
assert_at_safepoint(true /* should_be_vm_thread */);
1649
1650
*succeeded = true;
1651
// Let's attempt the allocation first.
1652
HeapWord* result =
1653
attempt_allocation_at_safepoint(word_size,
1654
context,
1655
false /* expect_null_mutator_alloc_region */);
1656
if (result != NULL) {
1657
assert(*succeeded, "sanity");
1658
return result;
1659
}
1660
1661
// In a G1 heap, we're supposed to keep allocation from failing by
1662
// incremental pauses. Therefore, at least for now, we'll favor
1663
// expansion over collection. (This might change in the future if we can
1664
// do something smarter than full collection to satisfy a failed alloc.)
1665
result = expand_and_allocate(word_size, context);
1666
if (result != NULL) {
1667
assert(*succeeded, "sanity");
1668
return result;
1669
}
1670
1671
// Expansion didn't work, we'll try to do a Full GC.
1672
bool gc_succeeded = do_collection(false, /* explicit_gc */
1673
false, /* clear_all_soft_refs */
1674
word_size);
1675
if (!gc_succeeded) {
1676
*succeeded = false;
1677
return NULL;
1678
}
1679
1680
// Retry the allocation
1681
result = attempt_allocation_at_safepoint(word_size,
1682
context,
1683
true /* expect_null_mutator_alloc_region */);
1684
if (result != NULL) {
1685
assert(*succeeded, "sanity");
1686
return result;
1687
}
1688
1689
// Then, try a Full GC that will collect all soft references.
1690
gc_succeeded = do_collection(false, /* explicit_gc */
1691
true, /* clear_all_soft_refs */
1692
word_size);
1693
if (!gc_succeeded) {
1694
*succeeded = false;
1695
return NULL;
1696
}
1697
1698
// Retry the allocation once more
1699
result = attempt_allocation_at_safepoint(word_size,
1700
context,
1701
true /* expect_null_mutator_alloc_region */);
1702
if (result != NULL) {
1703
assert(*succeeded, "sanity");
1704
return result;
1705
}
1706
1707
assert(!collector_policy()->should_clear_all_soft_refs(),
1708
"Flag should have been handled and cleared prior to this point");
1709
1710
// What else? We might try synchronous finalization later. If the total
1711
// space available is large enough for the allocation, then a more
1712
// complete compaction phase than we've tried so far might be
1713
// appropriate.
1714
assert(*succeeded, "sanity");
1715
return NULL;
1716
}
1717
1718
// Attempting to expand the heap sufficiently
1719
// to support an allocation of the given "word_size". If
1720
// successful, perform the allocation and return the address of the
1721
// allocated block, or else "NULL".
1722
1723
HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1724
assert_at_safepoint(true /* should_be_vm_thread */);
1725
1726
verify_region_sets_optional();
1727
1728
size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1729
ergo_verbose1(ErgoHeapSizing,
1730
"attempt heap expansion",
1731
ergo_format_reason("allocation request failed")
1732
ergo_format_byte("allocation request"),
1733
word_size * HeapWordSize);
1734
if (expand(expand_bytes)) {
1735
_hrm.verify_optional();
1736
verify_region_sets_optional();
1737
return attempt_allocation_at_safepoint(word_size,
1738
context,
1739
false /* expect_null_mutator_alloc_region */);
1740
}
1741
return NULL;
1742
}
1743
1744
bool G1CollectedHeap::expand(size_t expand_bytes) {
1745
size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1746
aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1747
HeapRegion::GrainBytes);
1748
ergo_verbose2(ErgoHeapSizing,
1749
"expand the heap",
1750
ergo_format_byte("requested expansion amount")
1751
ergo_format_byte("attempted expansion amount"),
1752
expand_bytes, aligned_expand_bytes);
1753
1754
if (is_maximal_no_gc()) {
1755
ergo_verbose0(ErgoHeapSizing,
1756
"did not expand the heap",
1757
ergo_format_reason("heap already fully expanded"));
1758
return false;
1759
}
1760
1761
uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1762
assert(regions_to_expand > 0, "Must expand by at least one region");
1763
1764
uint expanded_by = _hrm.expand_by(regions_to_expand);
1765
1766
if (expanded_by > 0) {
1767
size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1768
assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1769
g1_policy()->record_new_heap_size(num_regions());
1770
} else {
1771
ergo_verbose0(ErgoHeapSizing,
1772
"did not expand the heap",
1773
ergo_format_reason("heap expansion operation failed"));
1774
// The expansion of the virtual storage space was unsuccessful.
1775
// Let's see if it was because we ran out of swap.
1776
if (G1ExitOnExpansionFailure &&
1777
_hrm.available() >= regions_to_expand) {
1778
// We had head room...
1779
vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1780
}
1781
}
1782
return regions_to_expand > 0;
1783
}
1784
1785
void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1786
size_t aligned_shrink_bytes =
1787
ReservedSpace::page_align_size_down(shrink_bytes);
1788
aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1789
HeapRegion::GrainBytes);
1790
uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1791
1792
uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1793
size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1794
1795
ergo_verbose3(ErgoHeapSizing,
1796
"shrink the heap",
1797
ergo_format_byte("requested shrinking amount")
1798
ergo_format_byte("aligned shrinking amount")
1799
ergo_format_byte("attempted shrinking amount"),
1800
shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1801
if (num_regions_removed > 0) {
1802
g1_policy()->record_new_heap_size(num_regions());
1803
} else {
1804
ergo_verbose0(ErgoHeapSizing,
1805
"did not shrink the heap",
1806
ergo_format_reason("heap shrinking operation failed"));
1807
}
1808
}
1809
1810
void G1CollectedHeap::shrink(size_t shrink_bytes) {
1811
verify_region_sets_optional();
1812
1813
// We should only reach here at the end of a Full GC which means we
1814
// should not not be holding to any GC alloc regions. The method
1815
// below will make sure of that and do any remaining clean up.
1816
_allocator->abandon_gc_alloc_regions();
1817
1818
// Instead of tearing down / rebuilding the free lists here, we
1819
// could instead use the remove_all_pending() method on free_list to
1820
// remove only the ones that we need to remove.
1821
tear_down_region_sets(true /* free_list_only */);
1822
shrink_helper(shrink_bytes);
1823
rebuild_region_sets(true /* free_list_only */);
1824
1825
_hrm.verify_optional();
1826
verify_region_sets_optional();
1827
}
1828
1829
// Public methods.
1830
1831
#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1832
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1833
#endif // _MSC_VER
1834
1835
1836
G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1837
SharedHeap(policy_),
1838
_g1_policy(policy_),
1839
_dirty_card_queue_set(false),
1840
_into_cset_dirty_card_queue_set(false),
1841
_is_alive_closure_cm(this),
1842
_is_alive_closure_stw(this),
1843
_ref_processor_cm(NULL),
1844
_ref_processor_stw(NULL),
1845
_bot_shared(NULL),
1846
_evac_failure_scan_stack(NULL),
1847
_mark_in_progress(false),
1848
_cg1r(NULL),
1849
_g1mm(NULL),
1850
_refine_cte_cl(NULL),
1851
_full_collection(false),
1852
_secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1853
_old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1854
_humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1855
_humongous_reclaim_candidates(),
1856
_has_humongous_reclaim_candidates(false),
1857
_free_regions_coming(false),
1858
_young_list(new YoungList(this)),
1859
_gc_time_stamp(0),
1860
_survivor_plab_stats(YoungPLABSize, PLABWeight),
1861
_old_plab_stats(OldPLABSize, PLABWeight),
1862
_expand_heap_after_alloc_failure(true),
1863
_surviving_young_words(NULL),
1864
_old_marking_cycles_started(0),
1865
_old_marking_cycles_completed(0),
1866
_concurrent_cycle_started(false),
1867
_heap_summary_sent(false),
1868
_in_cset_fast_test(),
1869
_dirty_cards_region_list(NULL),
1870
_worker_cset_start_region(NULL),
1871
_worker_cset_start_region_time_stamp(NULL),
1872
_gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1873
_gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1874
_gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1875
_gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1876
1877
_g1h = this;
1878
1879
_allocator = G1Allocator::create_allocator(_g1h);
1880
_humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1881
1882
int n_queues = MAX2((int)ParallelGCThreads, 1);
1883
_task_queues = new RefToScanQueueSet(n_queues);
1884
1885
uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1886
assert(n_rem_sets > 0, "Invariant.");
1887
1888
_worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1889
_worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1890
_evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1891
1892
for (int i = 0; i < n_queues; i++) {
1893
RefToScanQueue* q = new RefToScanQueue();
1894
q->initialize();
1895
_task_queues->register_queue(i, q);
1896
::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1897
}
1898
clear_cset_start_regions();
1899
1900
// Initialize the G1EvacuationFailureALot counters and flags.
1901
NOT_PRODUCT(reset_evacuation_should_fail();)
1902
1903
guarantee(_task_queues != NULL, "task_queues allocation failure.");
1904
}
1905
1906
G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1907
size_t size,
1908
size_t translation_factor) {
1909
size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1910
// Allocate a new reserved space, preferring to use large pages.
1911
ReservedSpace rs(size, preferred_page_size);
1912
G1RegionToSpaceMapper* result =
1913
G1RegionToSpaceMapper::create_mapper(rs,
1914
size,
1915
rs.alignment(),
1916
HeapRegion::GrainBytes,
1917
translation_factor,
1918
mtGC);
1919
if (TracePageSizes) {
1920
gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1921
description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1922
}
1923
return result;
1924
}
1925
1926
jint G1CollectedHeap::initialize() {
1927
CollectedHeap::pre_initialize();
1928
os::enable_vtime();
1929
1930
G1Log::init();
1931
1932
// Necessary to satisfy locking discipline assertions.
1933
1934
MutexLocker x(Heap_lock);
1935
1936
// We have to initialize the printer before committing the heap, as
1937
// it will be used then.
1938
_hr_printer.set_active(G1PrintHeapRegions);
1939
1940
// While there are no constraints in the GC code that HeapWordSize
1941
// be any particular value, there are multiple other areas in the
1942
// system which believe this to be true (e.g. oop->object_size in some
1943
// cases incorrectly returns the size in wordSize units rather than
1944
// HeapWordSize).
1945
guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1946
1947
size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1948
size_t max_byte_size = collector_policy()->max_heap_byte_size();
1949
size_t heap_alignment = collector_policy()->heap_alignment();
1950
1951
// Ensure that the sizes are properly aligned.
1952
Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1953
Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1954
Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1955
1956
_refine_cte_cl = new RefineCardTableEntryClosure();
1957
1958
_cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
1959
1960
// Reserve the maximum.
1961
1962
// When compressed oops are enabled, the preferred heap base
1963
// is calculated by subtracting the requested size from the
1964
// 32Gb boundary and using the result as the base address for
1965
// heap reservation. If the requested size is not aligned to
1966
// HeapRegion::GrainBytes (i.e. the alignment that is passed
1967
// into the ReservedHeapSpace constructor) then the actual
1968
// base of the reserved heap may end up differing from the
1969
// address that was requested (i.e. the preferred heap base).
1970
// If this happens then we could end up using a non-optimal
1971
// compressed oops mode.
1972
1973
ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1974
heap_alignment);
1975
1976
// It is important to do this in a way such that concurrent readers can't
1977
// temporarily think something is in the heap. (I've actually seen this
1978
// happen in asserts: DLD.)
1979
_reserved.set_word_size(0);
1980
_reserved.set_start((HeapWord*)heap_rs.base());
1981
_reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
1982
1983
// Create the gen rem set (and barrier set) for the entire reserved region.
1984
_rem_set = collector_policy()->create_rem_set(_reserved, 2);
1985
set_barrier_set(rem_set()->bs());
1986
if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
1987
vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
1988
return JNI_ENOMEM;
1989
}
1990
1991
// Also create a G1 rem set.
1992
_g1_rem_set = new G1RemSet(this, g1_barrier_set());
1993
1994
// Carve out the G1 part of the heap.
1995
1996
ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1997
G1RegionToSpaceMapper* heap_storage =
1998
G1RegionToSpaceMapper::create_mapper(g1_rs,
1999
g1_rs.size(),
2000
UseLargePages ? os::large_page_size() : os::vm_page_size(),
2001
HeapRegion::GrainBytes,
2002
1,
2003
mtJavaHeap);
2004
heap_storage->set_mapping_changed_listener(&_listener);
2005
2006
// Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
2007
G1RegionToSpaceMapper* bot_storage =
2008
create_aux_memory_mapper("Block offset table",
2009
G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
2010
G1BlockOffsetSharedArray::N_bytes);
2011
2012
ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
2013
G1RegionToSpaceMapper* cardtable_storage =
2014
create_aux_memory_mapper("Card table",
2015
G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
2016
G1BlockOffsetSharedArray::N_bytes);
2017
2018
G1RegionToSpaceMapper* card_counts_storage =
2019
create_aux_memory_mapper("Card counts table",
2020
G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
2021
G1BlockOffsetSharedArray::N_bytes);
2022
2023
size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
2024
G1RegionToSpaceMapper* prev_bitmap_storage =
2025
create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::mark_distance());
2026
G1RegionToSpaceMapper* next_bitmap_storage =
2027
create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::mark_distance());
2028
2029
_hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
2030
g1_barrier_set()->initialize(cardtable_storage);
2031
// Do later initialization work for concurrent refinement.
2032
_cg1r->init(card_counts_storage);
2033
2034
// 6843694 - ensure that the maximum region index can fit
2035
// in the remembered set structures.
2036
const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2037
guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2038
2039
size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2040
guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2041
guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2042
"too many cards per region");
2043
2044
FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2045
2046
_bot_shared = new G1BlockOffsetSharedArray(_reserved, bot_storage);
2047
2048
_g1h = this;
2049
2050
{
2051
HeapWord* start = _hrm.reserved().start();
2052
HeapWord* end = _hrm.reserved().end();
2053
size_t granularity = HeapRegion::GrainBytes;
2054
2055
_in_cset_fast_test.initialize(start, end, granularity);
2056
_humongous_reclaim_candidates.initialize(start, end, granularity);
2057
}
2058
2059
// Create the ConcurrentMark data structure and thread.
2060
// (Must do this late, so that "max_regions" is defined.)
2061
_cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2062
if (_cm == NULL || !_cm->completed_initialization()) {
2063
vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2064
return JNI_ENOMEM;
2065
}
2066
_cmThread = _cm->cmThread();
2067
2068
// Initialize the from_card cache structure of HeapRegionRemSet.
2069
HeapRegionRemSet::init_heap(max_regions());
2070
2071
// Now expand into the initial heap size.
2072
if (!expand(init_byte_size)) {
2073
vm_shutdown_during_initialization("Failed to allocate initial heap.");
2074
return JNI_ENOMEM;
2075
}
2076
2077
// Perform any initialization actions delegated to the policy.
2078
g1_policy()->init();
2079
2080
JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2081
SATB_Q_FL_lock,
2082
G1SATBProcessCompletedThreshold,
2083
Shared_SATB_Q_lock);
2084
2085
JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2086
DirtyCardQ_CBL_mon,
2087
DirtyCardQ_FL_lock,
2088
concurrent_g1_refine()->yellow_zone(),
2089
concurrent_g1_refine()->red_zone(),
2090
Shared_DirtyCardQ_lock);
2091
2092
dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2093
DirtyCardQ_CBL_mon,
2094
DirtyCardQ_FL_lock,
2095
-1, // never trigger processing
2096
-1, // no limit on length
2097
Shared_DirtyCardQ_lock,
2098
&JavaThread::dirty_card_queue_set());
2099
2100
// Initialize the card queue set used to hold cards containing
2101
// references into the collection set.
2102
_into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2103
DirtyCardQ_CBL_mon,
2104
DirtyCardQ_FL_lock,
2105
-1, // never trigger processing
2106
-1, // no limit on length
2107
Shared_DirtyCardQ_lock,
2108
&JavaThread::dirty_card_queue_set());
2109
2110
// In case we're keeping closure specialization stats, initialize those
2111
// counts and that mechanism.
2112
SpecializationStats::clear();
2113
2114
// Here we allocate the dummy HeapRegion that is required by the
2115
// G1AllocRegion class.
2116
HeapRegion* dummy_region = _hrm.get_dummy_region();
2117
2118
// We'll re-use the same region whether the alloc region will
2119
// require BOT updates or not and, if it doesn't, then a non-young
2120
// region will complain that it cannot support allocations without
2121
// BOT updates. So we'll tag the dummy region as eden to avoid that.
2122
dummy_region->set_eden();
2123
// Make sure it's full.
2124
dummy_region->set_top(dummy_region->end());
2125
G1AllocRegion::setup(this, dummy_region);
2126
2127
_allocator->init_mutator_alloc_region();
2128
2129
// Do create of the monitoring and management support so that
2130
// values in the heap have been properly initialized.
2131
_g1mm = new G1MonitoringSupport(this);
2132
2133
G1StringDedup::initialize();
2134
2135
return JNI_OK;
2136
}
2137
2138
void G1CollectedHeap::stop() {
2139
// Stop all concurrent threads. We do this to make sure these threads
2140
// do not continue to execute and access resources (e.g. gclog_or_tty)
2141
// that are destroyed during shutdown.
2142
_cg1r->stop();
2143
_cmThread->stop();
2144
if (G1StringDedup::is_enabled()) {
2145
G1StringDedup::stop();
2146
}
2147
}
2148
2149
size_t G1CollectedHeap::conservative_max_heap_alignment() {
2150
return HeapRegion::max_region_size();
2151
}
2152
2153
void G1CollectedHeap::ref_processing_init() {
2154
// Reference processing in G1 currently works as follows:
2155
//
2156
// * There are two reference processor instances. One is
2157
// used to record and process discovered references
2158
// during concurrent marking; the other is used to
2159
// record and process references during STW pauses
2160
// (both full and incremental).
2161
// * Both ref processors need to 'span' the entire heap as
2162
// the regions in the collection set may be dotted around.
2163
//
2164
// * For the concurrent marking ref processor:
2165
// * Reference discovery is enabled at initial marking.
2166
// * Reference discovery is disabled and the discovered
2167
// references processed etc during remarking.
2168
// * Reference discovery is MT (see below).
2169
// * Reference discovery requires a barrier (see below).
2170
// * Reference processing may or may not be MT
2171
// (depending on the value of ParallelRefProcEnabled
2172
// and ParallelGCThreads).
2173
// * A full GC disables reference discovery by the CM
2174
// ref processor and abandons any entries on it's
2175
// discovered lists.
2176
//
2177
// * For the STW processor:
2178
// * Non MT discovery is enabled at the start of a full GC.
2179
// * Processing and enqueueing during a full GC is non-MT.
2180
// * During a full GC, references are processed after marking.
2181
//
2182
// * Discovery (may or may not be MT) is enabled at the start
2183
// of an incremental evacuation pause.
2184
// * References are processed near the end of a STW evacuation pause.
2185
// * For both types of GC:
2186
// * Discovery is atomic - i.e. not concurrent.
2187
// * Reference discovery will not need a barrier.
2188
2189
SharedHeap::ref_processing_init();
2190
MemRegion mr = reserved_region();
2191
2192
// Concurrent Mark ref processor
2193
_ref_processor_cm =
2194
new ReferenceProcessor(mr, // span
2195
ParallelRefProcEnabled && (ParallelGCThreads > 1),
2196
// mt processing
2197
(int) ParallelGCThreads,
2198
// degree of mt processing
2199
(ParallelGCThreads > 1) || (ConcGCThreads > 1),
2200
// mt discovery
2201
(int) MAX2(ParallelGCThreads, ConcGCThreads),
2202
// degree of mt discovery
2203
false,
2204
// Reference discovery is not atomic
2205
&_is_alive_closure_cm);
2206
// is alive closure
2207
// (for efficiency/performance)
2208
2209
// STW ref processor
2210
_ref_processor_stw =
2211
new ReferenceProcessor(mr, // span
2212
ParallelRefProcEnabled && (ParallelGCThreads > 1),
2213
// mt processing
2214
MAX2((int)ParallelGCThreads, 1),
2215
// degree of mt processing
2216
(ParallelGCThreads > 1),
2217
// mt discovery
2218
MAX2((int)ParallelGCThreads, 1),
2219
// degree of mt discovery
2220
true,
2221
// Reference discovery is atomic
2222
&_is_alive_closure_stw);
2223
// is alive closure
2224
// (for efficiency/performance)
2225
}
2226
2227
size_t G1CollectedHeap::capacity() const {
2228
return _hrm.length() * HeapRegion::GrainBytes;
2229
}
2230
2231
void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2232
assert(!hr->continuesHumongous(), "pre-condition");
2233
hr->reset_gc_time_stamp();
2234
if (hr->startsHumongous()) {
2235
uint first_index = hr->hrm_index() + 1;
2236
uint last_index = hr->last_hc_index();
2237
for (uint i = first_index; i < last_index; i += 1) {
2238
HeapRegion* chr = region_at(i);
2239
assert(chr->continuesHumongous(), "sanity");
2240
chr->reset_gc_time_stamp();
2241
}
2242
}
2243
}
2244
2245
#ifndef PRODUCT
2246
class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2247
private:
2248
unsigned _gc_time_stamp;
2249
bool _failures;
2250
2251
public:
2252
CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2253
_gc_time_stamp(gc_time_stamp), _failures(false) { }
2254
2255
virtual bool doHeapRegion(HeapRegion* hr) {
2256
unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2257
if (_gc_time_stamp != region_gc_time_stamp) {
2258
gclog_or_tty->print_cr("Region " HR_FORMAT " has GC time stamp = %d, "
2259
"expected %d", HR_FORMAT_PARAMS(hr),
2260
region_gc_time_stamp, _gc_time_stamp);
2261
_failures = true;
2262
}
2263
return false;
2264
}
2265
2266
bool failures() { return _failures; }
2267
};
2268
2269
void G1CollectedHeap::check_gc_time_stamps() {
2270
CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2271
heap_region_iterate(&cl);
2272
guarantee(!cl.failures(), "all GC time stamps should have been reset");
2273
}
2274
#endif // PRODUCT
2275
2276
void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2277
DirtyCardQueue* into_cset_dcq,
2278
bool concurrent,
2279
uint worker_i) {
2280
// Clean cards in the hot card cache
2281
G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2282
hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2283
2284
DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2285
size_t n_completed_buffers = 0;
2286
while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2287
n_completed_buffers++;
2288
}
2289
g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2290
dcqs.clear_n_completed_buffers();
2291
assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2292
}
2293
2294
2295
// Computes the sum of the storage used by the various regions.
2296
size_t G1CollectedHeap::used() const {
2297
return _allocator->used();
2298
}
2299
2300
size_t G1CollectedHeap::used_unlocked() const {
2301
return _allocator->used_unlocked();
2302
}
2303
2304
class SumUsedClosure: public HeapRegionClosure {
2305
size_t _used;
2306
public:
2307
SumUsedClosure() : _used(0) {}
2308
bool doHeapRegion(HeapRegion* r) {
2309
if (!r->continuesHumongous()) {
2310
_used += r->used();
2311
}
2312
return false;
2313
}
2314
size_t result() { return _used; }
2315
};
2316
2317
size_t G1CollectedHeap::recalculate_used() const {
2318
double recalculate_used_start = os::elapsedTime();
2319
2320
SumUsedClosure blk;
2321
heap_region_iterate(&blk);
2322
2323
g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2324
return blk.result();
2325
}
2326
2327
bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2328
switch (cause) {
2329
case GCCause::_gc_locker: return GCLockerInvokesConcurrent;
2330
case GCCause::_java_lang_system_gc: return ExplicitGCInvokesConcurrent;
2331
case GCCause::_g1_humongous_allocation: return true;
2332
case GCCause::_update_allocation_context_stats_inc: return true;
2333
case GCCause::_wb_conc_mark: return true;
2334
default: return false;
2335
}
2336
}
2337
2338
#ifndef PRODUCT
2339
void G1CollectedHeap::allocate_dummy_regions() {
2340
// Let's fill up most of the region
2341
size_t word_size = HeapRegion::GrainWords - 1024;
2342
// And as a result the region we'll allocate will be humongous.
2343
guarantee(isHumongous(word_size), "sanity");
2344
2345
for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2346
// Let's use the existing mechanism for the allocation
2347
HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2348
AllocationContext::system());
2349
if (dummy_obj != NULL) {
2350
MemRegion mr(dummy_obj, word_size);
2351
CollectedHeap::fill_with_object(mr);
2352
} else {
2353
// If we can't allocate once, we probably cannot allocate
2354
// again. Let's get out of the loop.
2355
break;
2356
}
2357
}
2358
}
2359
#endif // !PRODUCT
2360
2361
void G1CollectedHeap::increment_old_marking_cycles_started() {
2362
assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2363
_old_marking_cycles_started == _old_marking_cycles_completed + 1,
2364
err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2365
_old_marking_cycles_started, _old_marking_cycles_completed));
2366
2367
_old_marking_cycles_started++;
2368
}
2369
2370
void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2371
MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2372
2373
// We assume that if concurrent == true, then the caller is a
2374
// concurrent thread that was joined the Suspendible Thread
2375
// Set. If there's ever a cheap way to check this, we should add an
2376
// assert here.
2377
2378
// Given that this method is called at the end of a Full GC or of a
2379
// concurrent cycle, and those can be nested (i.e., a Full GC can
2380
// interrupt a concurrent cycle), the number of full collections
2381
// completed should be either one (in the case where there was no
2382
// nesting) or two (when a Full GC interrupted a concurrent cycle)
2383
// behind the number of full collections started.
2384
2385
// This is the case for the inner caller, i.e. a Full GC.
2386
assert(concurrent ||
2387
(_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2388
(_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2389
err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2390
"is inconsistent with _old_marking_cycles_completed = %u",
2391
_old_marking_cycles_started, _old_marking_cycles_completed));
2392
2393
// This is the case for the outer caller, i.e. the concurrent cycle.
2394
assert(!concurrent ||
2395
(_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2396
err_msg("for outer caller (concurrent cycle): "
2397
"_old_marking_cycles_started = %u "
2398
"is inconsistent with _old_marking_cycles_completed = %u",
2399
_old_marking_cycles_started, _old_marking_cycles_completed));
2400
2401
_old_marking_cycles_completed += 1;
2402
2403
// We need to clear the "in_progress" flag in the CM thread before
2404
// we wake up any waiters (especially when ExplicitInvokesConcurrent
2405
// is set) so that if a waiter requests another System.gc() it doesn't
2406
// incorrectly see that a marking cycle is still in progress.
2407
if (concurrent) {
2408
_cmThread->set_idle();
2409
}
2410
2411
// This notify_all() will ensure that a thread that called
2412
// System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2413
// and it's waiting for a full GC to finish will be woken up. It is
2414
// waiting in VM_G1IncCollectionPause::doit_epilogue().
2415
FullGCCount_lock->notify_all();
2416
}
2417
2418
void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2419
_concurrent_cycle_started = true;
2420
_gc_timer_cm->register_gc_start(start_time);
2421
2422
_gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2423
trace_heap_before_gc(_gc_tracer_cm);
2424
}
2425
2426
void G1CollectedHeap::register_concurrent_cycle_end() {
2427
if (_concurrent_cycle_started) {
2428
if (_cm->has_aborted()) {
2429
_gc_tracer_cm->report_concurrent_mode_failure();
2430
}
2431
2432
_gc_timer_cm->register_gc_end();
2433
_gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2434
2435
// Clear state variables to prepare for the next concurrent cycle.
2436
_concurrent_cycle_started = false;
2437
_heap_summary_sent = false;
2438
}
2439
}
2440
2441
void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2442
if (_concurrent_cycle_started) {
2443
// This function can be called when:
2444
// the cleanup pause is run
2445
// the concurrent cycle is aborted before the cleanup pause.
2446
// the concurrent cycle is aborted after the cleanup pause,
2447
// but before the concurrent cycle end has been registered.
2448
// Make sure that we only send the heap information once.
2449
if (!_heap_summary_sent) {
2450
trace_heap_after_gc(_gc_tracer_cm);
2451
_heap_summary_sent = true;
2452
}
2453
}
2454
}
2455
2456
G1YCType G1CollectedHeap::yc_type() {
2457
bool is_young = g1_policy()->gcs_are_young();
2458
bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2459
bool is_during_mark = mark_in_progress();
2460
2461
if (is_initial_mark) {
2462
return InitialMark;
2463
} else if (is_during_mark) {
2464
return DuringMark;
2465
} else if (is_young) {
2466
return Normal;
2467
} else {
2468
return Mixed;
2469
}
2470
}
2471
2472
void G1CollectedHeap::collect(GCCause::Cause cause) {
2473
assert_heap_not_locked();
2474
2475
uint gc_count_before;
2476
uint old_marking_count_before;
2477
uint full_gc_count_before;
2478
bool retry_gc;
2479
2480
do {
2481
retry_gc = false;
2482
2483
{
2484
MutexLocker ml(Heap_lock);
2485
2486
// Read the GC count while holding the Heap_lock
2487
gc_count_before = total_collections();
2488
full_gc_count_before = total_full_collections();
2489
old_marking_count_before = _old_marking_cycles_started;
2490
}
2491
2492
if (should_do_concurrent_full_gc(cause)) {
2493
// Schedule an initial-mark evacuation pause that will start a
2494
// concurrent cycle. We're setting word_size to 0 which means that
2495
// we are not requesting a post-GC allocation.
2496
VM_G1IncCollectionPause op(gc_count_before,
2497
0, /* word_size */
2498
true, /* should_initiate_conc_mark */
2499
g1_policy()->max_pause_time_ms(),
2500
cause);
2501
op.set_allocation_context(AllocationContext::current());
2502
2503
VMThread::execute(&op);
2504
if (!op.pause_succeeded()) {
2505
if (old_marking_count_before == _old_marking_cycles_started) {
2506
retry_gc = op.should_retry_gc();
2507
} else {
2508
// A Full GC happened while we were trying to schedule the
2509
// initial-mark GC. No point in starting a new cycle given
2510
// that the whole heap was collected anyway.
2511
}
2512
2513
if (retry_gc) {
2514
if (GC_locker::is_active_and_needs_gc()) {
2515
GC_locker::stall_until_clear();
2516
}
2517
}
2518
}
2519
} else if (GC_locker::should_discard(cause, gc_count_before)) {
2520
// Return to be consistent with VMOp failure due to another
2521
// collection slipping in after our gc_count but before our
2522
// request is processed. _gc_locker collections upgraded by
2523
// GCLockerInvokesConcurrent are handled above and never discarded.
2524
return;
2525
} else {
2526
if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2527
DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2528
2529
// Schedule a standard evacuation pause. We're setting word_size
2530
// to 0 which means that we are not requesting a post-GC allocation.
2531
VM_G1IncCollectionPause op(gc_count_before,
2532
0, /* word_size */
2533
false, /* should_initiate_conc_mark */
2534
g1_policy()->max_pause_time_ms(),
2535
cause);
2536
VMThread::execute(&op);
2537
} else {
2538
// Schedule a Full GC.
2539
VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2540
VMThread::execute(&op);
2541
}
2542
}
2543
} while (retry_gc);
2544
}
2545
2546
bool G1CollectedHeap::is_in(const void* p) const {
2547
if (_hrm.reserved().contains(p)) {
2548
// Given that we know that p is in the reserved space,
2549
// heap_region_containing_raw() should successfully
2550
// return the containing region.
2551
HeapRegion* hr = heap_region_containing_raw(p);
2552
return hr->is_in(p);
2553
} else {
2554
return false;
2555
}
2556
}
2557
2558
#ifdef ASSERT
2559
bool G1CollectedHeap::is_in_exact(const void* p) const {
2560
bool contains = reserved_region().contains(p);
2561
bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2562
if (contains && available) {
2563
return true;
2564
} else {
2565
return false;
2566
}
2567
}
2568
#endif
2569
2570
// Iteration functions.
2571
2572
// Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2573
2574
class IterateOopClosureRegionClosure: public HeapRegionClosure {
2575
ExtendedOopClosure* _cl;
2576
public:
2577
IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2578
bool doHeapRegion(HeapRegion* r) {
2579
if (!r->continuesHumongous()) {
2580
r->oop_iterate(_cl);
2581
}
2582
return false;
2583
}
2584
};
2585
2586
void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2587
IterateOopClosureRegionClosure blk(cl);
2588
heap_region_iterate(&blk);
2589
}
2590
2591
// Iterates an ObjectClosure over all objects within a HeapRegion.
2592
2593
class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2594
ObjectClosure* _cl;
2595
public:
2596
IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2597
bool doHeapRegion(HeapRegion* r) {
2598
if (! r->continuesHumongous()) {
2599
r->object_iterate(_cl);
2600
}
2601
return false;
2602
}
2603
};
2604
2605
void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2606
IterateObjectClosureRegionClosure blk(cl);
2607
heap_region_iterate(&blk);
2608
}
2609
2610
// Calls a SpaceClosure on a HeapRegion.
2611
2612
class SpaceClosureRegionClosure: public HeapRegionClosure {
2613
SpaceClosure* _cl;
2614
public:
2615
SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2616
bool doHeapRegion(HeapRegion* r) {
2617
_cl->do_space(r);
2618
return false;
2619
}
2620
};
2621
2622
void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2623
SpaceClosureRegionClosure blk(cl);
2624
heap_region_iterate(&blk);
2625
}
2626
2627
void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2628
_hrm.iterate(cl);
2629
}
2630
2631
void
2632
G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2633
uint worker_id,
2634
uint num_workers,
2635
jint claim_value) const {
2636
_hrm.par_iterate(cl, worker_id, num_workers, claim_value);
2637
}
2638
2639
class ResetClaimValuesClosure: public HeapRegionClosure {
2640
public:
2641
bool doHeapRegion(HeapRegion* r) {
2642
r->set_claim_value(HeapRegion::InitialClaimValue);
2643
return false;
2644
}
2645
};
2646
2647
void G1CollectedHeap::reset_heap_region_claim_values() {
2648
ResetClaimValuesClosure blk;
2649
heap_region_iterate(&blk);
2650
}
2651
2652
void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2653
ResetClaimValuesClosure blk;
2654
collection_set_iterate(&blk);
2655
}
2656
2657
#ifdef ASSERT
2658
// This checks whether all regions in the heap have the correct claim
2659
// value. I also piggy-backed on this a check to ensure that the
2660
// humongous_start_region() information on "continues humongous"
2661
// regions is correct.
2662
2663
class CheckClaimValuesClosure : public HeapRegionClosure {
2664
private:
2665
jint _claim_value;
2666
uint _failures;
2667
HeapRegion* _sh_region;
2668
2669
public:
2670
CheckClaimValuesClosure(jint claim_value) :
2671
_claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2672
bool doHeapRegion(HeapRegion* r) {
2673
if (r->claim_value() != _claim_value) {
2674
gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2675
"claim value = %d, should be %d",
2676
HR_FORMAT_PARAMS(r),
2677
r->claim_value(), _claim_value);
2678
++_failures;
2679
}
2680
if (!r->isHumongous()) {
2681
_sh_region = NULL;
2682
} else if (r->startsHumongous()) {
2683
_sh_region = r;
2684
} else if (r->continuesHumongous()) {
2685
if (r->humongous_start_region() != _sh_region) {
2686
gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2687
"HS = " PTR_FORMAT ", should be " PTR_FORMAT,
2688
HR_FORMAT_PARAMS(r),
2689
p2i(r->humongous_start_region()),
2690
p2i(_sh_region));
2691
++_failures;
2692
}
2693
}
2694
return false;
2695
}
2696
uint failures() { return _failures; }
2697
};
2698
2699
bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2700
CheckClaimValuesClosure cl(claim_value);
2701
heap_region_iterate(&cl);
2702
return cl.failures() == 0;
2703
}
2704
2705
class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2706
private:
2707
jint _claim_value;
2708
uint _failures;
2709
2710
public:
2711
CheckClaimValuesInCSetHRClosure(jint claim_value) :
2712
_claim_value(claim_value), _failures(0) { }
2713
2714
uint failures() { return _failures; }
2715
2716
bool doHeapRegion(HeapRegion* hr) {
2717
assert(hr->in_collection_set(), "how?");
2718
assert(!hr->isHumongous(), "H-region in CSet");
2719
if (hr->claim_value() != _claim_value) {
2720
gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2721
"claim value = %d, should be %d",
2722
HR_FORMAT_PARAMS(hr),
2723
hr->claim_value(), _claim_value);
2724
_failures += 1;
2725
}
2726
return false;
2727
}
2728
};
2729
2730
bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2731
CheckClaimValuesInCSetHRClosure cl(claim_value);
2732
collection_set_iterate(&cl);
2733
return cl.failures() == 0;
2734
}
2735
#endif // ASSERT
2736
2737
// Clear the cached CSet starting regions and (more importantly)
2738
// the time stamps. Called when we reset the GC time stamp.
2739
void G1CollectedHeap::clear_cset_start_regions() {
2740
assert(_worker_cset_start_region != NULL, "sanity");
2741
assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2742
2743
int n_queues = MAX2((int)ParallelGCThreads, 1);
2744
for (int i = 0; i < n_queues; i++) {
2745
_worker_cset_start_region[i] = NULL;
2746
_worker_cset_start_region_time_stamp[i] = 0;
2747
}
2748
}
2749
2750
// Given the id of a worker, obtain or calculate a suitable
2751
// starting region for iterating over the current collection set.
2752
HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2753
assert(get_gc_time_stamp() > 0, "should have been updated by now");
2754
2755
HeapRegion* result = NULL;
2756
unsigned gc_time_stamp = get_gc_time_stamp();
2757
2758
if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2759
// Cached starting region for current worker was set
2760
// during the current pause - so it's valid.
2761
// Note: the cached starting heap region may be NULL
2762
// (when the collection set is empty).
2763
result = _worker_cset_start_region[worker_i];
2764
assert(result == NULL || result->in_collection_set(), "sanity");
2765
return result;
2766
}
2767
2768
// The cached entry was not valid so let's calculate
2769
// a suitable starting heap region for this worker.
2770
2771
// We want the parallel threads to start their collection
2772
// set iteration at different collection set regions to
2773
// avoid contention.
2774
// If we have:
2775
// n collection set regions
2776
// p threads
2777
// Then thread t will start at region floor ((t * n) / p)
2778
2779
result = g1_policy()->collection_set();
2780
if (G1CollectedHeap::use_parallel_gc_threads()) {
2781
uint cs_size = g1_policy()->cset_region_length();
2782
uint active_workers = workers()->active_workers();
2783
assert(UseDynamicNumberOfGCThreads ||
2784
active_workers == workers()->total_workers(),
2785
"Unless dynamic should use total workers");
2786
2787
uint end_ind = (cs_size * worker_i) / active_workers;
2788
uint start_ind = 0;
2789
2790
if (worker_i > 0 &&
2791
_worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2792
// Previous workers starting region is valid
2793
// so let's iterate from there
2794
start_ind = (cs_size * (worker_i - 1)) / active_workers;
2795
OrderAccess::loadload();
2796
result = _worker_cset_start_region[worker_i - 1];
2797
}
2798
2799
for (uint i = start_ind; i < end_ind; i++) {
2800
result = result->next_in_collection_set();
2801
}
2802
}
2803
2804
// Note: the calculated starting heap region may be NULL
2805
// (when the collection set is empty).
2806
assert(result == NULL || result->in_collection_set(), "sanity");
2807
assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2808
"should be updated only once per pause");
2809
_worker_cset_start_region[worker_i] = result;
2810
OrderAccess::storestore();
2811
_worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2812
return result;
2813
}
2814
2815
void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2816
HeapRegion* r = g1_policy()->collection_set();
2817
while (r != NULL) {
2818
HeapRegion* next = r->next_in_collection_set();
2819
if (cl->doHeapRegion(r)) {
2820
cl->incomplete();
2821
return;
2822
}
2823
r = next;
2824
}
2825
}
2826
2827
void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2828
HeapRegionClosure *cl) {
2829
if (r == NULL) {
2830
// The CSet is empty so there's nothing to do.
2831
return;
2832
}
2833
2834
assert(r->in_collection_set(),
2835
"Start region must be a member of the collection set.");
2836
HeapRegion* cur = r;
2837
while (cur != NULL) {
2838
HeapRegion* next = cur->next_in_collection_set();
2839
if (cl->doHeapRegion(cur) && false) {
2840
cl->incomplete();
2841
return;
2842
}
2843
cur = next;
2844
}
2845
cur = g1_policy()->collection_set();
2846
while (cur != r) {
2847
HeapRegion* next = cur->next_in_collection_set();
2848
if (cl->doHeapRegion(cur) && false) {
2849
cl->incomplete();
2850
return;
2851
}
2852
cur = next;
2853
}
2854
}
2855
2856
HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2857
HeapRegion* result = _hrm.next_region_in_heap(from);
2858
while (result != NULL && result->isHumongous()) {
2859
result = _hrm.next_region_in_heap(result);
2860
}
2861
return result;
2862
}
2863
2864
Space* G1CollectedHeap::space_containing(const void* addr) const {
2865
return heap_region_containing(addr);
2866
}
2867
2868
HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2869
Space* sp = space_containing(addr);
2870
return sp->block_start(addr);
2871
}
2872
2873
size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2874
Space* sp = space_containing(addr);
2875
return sp->block_size(addr);
2876
}
2877
2878
bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2879
Space* sp = space_containing(addr);
2880
return sp->block_is_obj(addr);
2881
}
2882
2883
bool G1CollectedHeap::supports_tlab_allocation() const {
2884
return true;
2885
}
2886
2887
size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2888
return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2889
}
2890
2891
size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2892
return young_list()->eden_used_bytes();
2893
}
2894
2895
// For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2896
// must be smaller than the humongous object limit.
2897
size_t G1CollectedHeap::max_tlab_size() const {
2898
return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2899
}
2900
2901
size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2902
// Return the remaining space in the cur alloc region, but not less than
2903
// the min TLAB size.
2904
2905
// Also, this value can be at most the humongous object threshold,
2906
// since we can't allow tlabs to grow big enough to accommodate
2907
// humongous objects.
2908
2909
HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
2910
size_t max_tlab = max_tlab_size() * wordSize;
2911
if (hr == NULL) {
2912
return max_tlab;
2913
} else {
2914
return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2915
}
2916
}
2917
2918
size_t G1CollectedHeap::max_capacity() const {
2919
return _hrm.reserved().byte_size();
2920
}
2921
2922
jlong G1CollectedHeap::millis_since_last_gc() {
2923
// assert(false, "NYI");
2924
return 0;
2925
}
2926
2927
void G1CollectedHeap::prepare_for_verify() {
2928
if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2929
ensure_parsability(false);
2930
}
2931
g1_rem_set()->prepare_for_verify();
2932
}
2933
2934
bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2935
VerifyOption vo) {
2936
switch (vo) {
2937
case VerifyOption_G1UsePrevMarking:
2938
return hr->obj_allocated_since_prev_marking(obj);
2939
case VerifyOption_G1UseNextMarking:
2940
return hr->obj_allocated_since_next_marking(obj);
2941
case VerifyOption_G1UseMarkWord:
2942
return false;
2943
default:
2944
ShouldNotReachHere();
2945
}
2946
return false; // keep some compilers happy
2947
}
2948
2949
HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2950
switch (vo) {
2951
case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2952
case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2953
case VerifyOption_G1UseMarkWord: return NULL;
2954
default: ShouldNotReachHere();
2955
}
2956
return NULL; // keep some compilers happy
2957
}
2958
2959
bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2960
switch (vo) {
2961
case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2962
case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2963
case VerifyOption_G1UseMarkWord: return obj->is_gc_marked();
2964
default: ShouldNotReachHere();
2965
}
2966
return false; // keep some compilers happy
2967
}
2968
2969
const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2970
switch (vo) {
2971
case VerifyOption_G1UsePrevMarking: return "PTAMS";
2972
case VerifyOption_G1UseNextMarking: return "NTAMS";
2973
case VerifyOption_G1UseMarkWord: return "NONE";
2974
default: ShouldNotReachHere();
2975
}
2976
return NULL; // keep some compilers happy
2977
}
2978
2979
class VerifyRootsClosure: public OopClosure {
2980
private:
2981
G1CollectedHeap* _g1h;
2982
VerifyOption _vo;
2983
bool _failures;
2984
public:
2985
// _vo == UsePrevMarking -> use "prev" marking information,
2986
// _vo == UseNextMarking -> use "next" marking information,
2987
// _vo == UseMarkWord -> use mark word from object header.
2988
VerifyRootsClosure(VerifyOption vo) :
2989
_g1h(G1CollectedHeap::heap()),
2990
_vo(vo),
2991
_failures(false) { }
2992
2993
bool failures() { return _failures; }
2994
2995
template <class T> void do_oop_nv(T* p) {
2996
T heap_oop = oopDesc::load_heap_oop(p);
2997
if (!oopDesc::is_null(heap_oop)) {
2998
oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2999
if (_g1h->is_obj_dead_cond(obj, _vo)) {
3000
gclog_or_tty->print_cr("Root location " PTR_FORMAT " "
3001
"points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
3002
if (_vo == VerifyOption_G1UseMarkWord) {
3003
gclog_or_tty->print_cr(" Mark word: " INTPTR_FORMAT, (intptr_t)obj->mark());
3004
}
3005
obj->print_on(gclog_or_tty);
3006
_failures = true;
3007
}
3008
}
3009
}
3010
3011
void do_oop(oop* p) { do_oop_nv(p); }
3012
void do_oop(narrowOop* p) { do_oop_nv(p); }
3013
};
3014
3015
class G1VerifyCodeRootOopClosure: public OopClosure {
3016
G1CollectedHeap* _g1h;
3017
OopClosure* _root_cl;
3018
nmethod* _nm;
3019
VerifyOption _vo;
3020
bool _failures;
3021
3022
template <class T> void do_oop_work(T* p) {
3023
// First verify that this root is live
3024
_root_cl->do_oop(p);
3025
3026
if (!G1VerifyHeapRegionCodeRoots) {
3027
// We're not verifying the code roots attached to heap region.
3028
return;
3029
}
3030
3031
// Don't check the code roots during marking verification in a full GC
3032
if (_vo == VerifyOption_G1UseMarkWord) {
3033
return;
3034
}
3035
3036
// Now verify that the current nmethod (which contains p) is
3037
// in the code root list of the heap region containing the
3038
// object referenced by p.
3039
3040
T heap_oop = oopDesc::load_heap_oop(p);
3041
if (!oopDesc::is_null(heap_oop)) {
3042
oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3043
3044
// Now fetch the region containing the object
3045
HeapRegion* hr = _g1h->heap_region_containing(obj);
3046
HeapRegionRemSet* hrrs = hr->rem_set();
3047
// Verify that the strong code root list for this region
3048
// contains the nmethod
3049
if (!hrrs->strong_code_roots_list_contains(_nm)) {
3050
gclog_or_tty->print_cr("Code root location " PTR_FORMAT " "
3051
"from nmethod " PTR_FORMAT " not in strong "
3052
"code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
3053
p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
3054
_failures = true;
3055
}
3056
}
3057
}
3058
3059
public:
3060
G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
3061
_g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
3062
3063
void do_oop(oop* p) { do_oop_work(p); }
3064
void do_oop(narrowOop* p) { do_oop_work(p); }
3065
3066
void set_nmethod(nmethod* nm) { _nm = nm; }
3067
bool failures() { return _failures; }
3068
};
3069
3070
class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
3071
G1VerifyCodeRootOopClosure* _oop_cl;
3072
3073
public:
3074
G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
3075
_oop_cl(oop_cl) {}
3076
3077
void do_code_blob(CodeBlob* cb) {
3078
nmethod* nm = cb->as_nmethod_or_null();
3079
if (nm != NULL) {
3080
_oop_cl->set_nmethod(nm);
3081
nm->oops_do(_oop_cl);
3082
}
3083
}
3084
};
3085
3086
class YoungRefCounterClosure : public OopClosure {
3087
G1CollectedHeap* _g1h;
3088
int _count;
3089
public:
3090
YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3091
void do_oop(oop* p) { if (_g1h->is_in_young(*p)) { _count++; } }
3092
void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3093
3094
int count() { return _count; }
3095
void reset_count() { _count = 0; };
3096
};
3097
3098
class VerifyKlassClosure: public KlassClosure {
3099
YoungRefCounterClosure _young_ref_counter_closure;
3100
OopClosure *_oop_closure;
3101
public:
3102
VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3103
void do_klass(Klass* k) {
3104
k->oops_do(_oop_closure);
3105
3106
_young_ref_counter_closure.reset_count();
3107
k->oops_do(&_young_ref_counter_closure);
3108
if (_young_ref_counter_closure.count() > 0) {
3109
guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k)));
3110
}
3111
}
3112
};
3113
3114
class VerifyLivenessOopClosure: public OopClosure {
3115
G1CollectedHeap* _g1h;
3116
VerifyOption _vo;
3117
public:
3118
VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3119
_g1h(g1h), _vo(vo)
3120
{ }
3121
void do_oop(narrowOop *p) { do_oop_work(p); }
3122
void do_oop( oop *p) { do_oop_work(p); }
3123
3124
template <class T> void do_oop_work(T *p) {
3125
oop obj = oopDesc::load_decode_heap_oop(p);
3126
guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3127
"Dead object referenced by a not dead object");
3128
}
3129
};
3130
3131
class VerifyObjsInRegionClosure: public ObjectClosure {
3132
private:
3133
G1CollectedHeap* _g1h;
3134
size_t _live_bytes;
3135
HeapRegion *_hr;
3136
VerifyOption _vo;
3137
public:
3138
// _vo == UsePrevMarking -> use "prev" marking information,
3139
// _vo == UseNextMarking -> use "next" marking information,
3140
// _vo == UseMarkWord -> use mark word from object header.
3141
VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3142
: _live_bytes(0), _hr(hr), _vo(vo) {
3143
_g1h = G1CollectedHeap::heap();
3144
}
3145
void do_object(oop o) {
3146
VerifyLivenessOopClosure isLive(_g1h, _vo);
3147
assert(o != NULL, "Huh?");
3148
if (!_g1h->is_obj_dead_cond(o, _vo)) {
3149
// If the object is alive according to the mark word,
3150
// then verify that the marking information agrees.
3151
// Note we can't verify the contra-positive of the
3152
// above: if the object is dead (according to the mark
3153
// word), it may not be marked, or may have been marked
3154
// but has since became dead, or may have been allocated
3155
// since the last marking.
3156
if (_vo == VerifyOption_G1UseMarkWord) {
3157
guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3158
}
3159
3160
o->oop_iterate_no_header(&isLive);
3161
if (!_hr->obj_allocated_since_prev_marking(o)) {
3162
size_t obj_size = o->size(); // Make sure we don't overflow
3163
_live_bytes += (obj_size * HeapWordSize);
3164
}
3165
}
3166
}
3167
size_t live_bytes() { return _live_bytes; }
3168
};
3169
3170
class PrintObjsInRegionClosure : public ObjectClosure {
3171
HeapRegion *_hr;
3172
G1CollectedHeap *_g1;
3173
public:
3174
PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3175
_g1 = G1CollectedHeap::heap();
3176
};
3177
3178
void do_object(oop o) {
3179
if (o != NULL) {
3180
HeapWord *start = (HeapWord *) o;
3181
size_t word_sz = o->size();
3182
gclog_or_tty->print("\nPrinting obj " PTR_FORMAT " of size " SIZE_FORMAT
3183
" isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3184
p2i(o), word_sz,
3185
_g1->isMarkedPrev(o),
3186
_g1->isMarkedNext(o),
3187
_hr->obj_allocated_since_prev_marking(o));
3188
HeapWord *end = start + word_sz;
3189
HeapWord *cur;
3190
int *val;
3191
for (cur = start; cur < end; cur++) {
3192
val = (int *) cur;
3193
gclog_or_tty->print("\t " PTR_FORMAT ": %d\n", p2i(val), *val);
3194
}
3195
}
3196
}
3197
};
3198
3199
class VerifyRegionClosure: public HeapRegionClosure {
3200
private:
3201
bool _par;
3202
VerifyOption _vo;
3203
bool _failures;
3204
public:
3205
// _vo == UsePrevMarking -> use "prev" marking information,
3206
// _vo == UseNextMarking -> use "next" marking information,
3207
// _vo == UseMarkWord -> use mark word from object header.
3208
VerifyRegionClosure(bool par, VerifyOption vo)
3209
: _par(par),
3210
_vo(vo),
3211
_failures(false) {}
3212
3213
bool failures() {
3214
return _failures;
3215
}
3216
3217
bool doHeapRegion(HeapRegion* r) {
3218
if (!r->continuesHumongous()) {
3219
bool failures = false;
3220
r->verify(_vo, &failures);
3221
if (failures) {
3222
_failures = true;
3223
} else {
3224
VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3225
r->object_iterate(&not_dead_yet_cl);
3226
if (_vo != VerifyOption_G1UseNextMarking) {
3227
if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3228
gclog_or_tty->print_cr("[" PTR_FORMAT "," PTR_FORMAT "] "
3229
"max_live_bytes " SIZE_FORMAT " "
3230
"< calculated " SIZE_FORMAT,
3231
p2i(r->bottom()), p2i(r->end()),
3232
r->max_live_bytes(),
3233
not_dead_yet_cl.live_bytes());
3234
_failures = true;
3235
}
3236
} else {
3237
// When vo == UseNextMarking we cannot currently do a sanity
3238
// check on the live bytes as the calculation has not been
3239
// finalized yet.
3240
}
3241
}
3242
}
3243
return false; // stop the region iteration if we hit a failure
3244
}
3245
};
3246
3247
// This is the task used for parallel verification of the heap regions
3248
3249
class G1ParVerifyTask: public AbstractGangTask {
3250
private:
3251
G1CollectedHeap* _g1h;
3252
VerifyOption _vo;
3253
bool _failures;
3254
3255
public:
3256
// _vo == UsePrevMarking -> use "prev" marking information,
3257
// _vo == UseNextMarking -> use "next" marking information,
3258
// _vo == UseMarkWord -> use mark word from object header.
3259
G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3260
AbstractGangTask("Parallel verify task"),
3261
_g1h(g1h),
3262
_vo(vo),
3263
_failures(false) { }
3264
3265
bool failures() {
3266
return _failures;
3267
}
3268
3269
void work(uint worker_id) {
3270
HandleMark hm;
3271
VerifyRegionClosure blk(true, _vo);
3272
_g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3273
_g1h->workers()->active_workers(),
3274
HeapRegion::ParVerifyClaimValue);
3275
if (blk.failures()) {
3276
_failures = true;
3277
}
3278
}
3279
};
3280
3281
void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3282
if (SafepointSynchronize::is_at_safepoint()) {
3283
assert(Thread::current()->is_VM_thread(),
3284
"Expected to be executed serially by the VM thread at this point");
3285
3286
if (!silent) { gclog_or_tty->print("Roots "); }
3287
VerifyRootsClosure rootsCl(vo);
3288
VerifyKlassClosure klassCl(this, &rootsCl);
3289
CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3290
3291
// We apply the relevant closures to all the oops in the
3292
// system dictionary, class loader data graph, the string table
3293
// and the nmethods in the code cache.
3294
G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3295
G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3296
3297
{
3298
G1RootProcessor root_processor(this);
3299
root_processor.process_all_roots(&rootsCl,
3300
&cldCl,
3301
&blobsCl);
3302
}
3303
3304
bool failures = rootsCl.failures() || codeRootsCl.failures();
3305
3306
if (vo != VerifyOption_G1UseMarkWord) {
3307
// If we're verifying during a full GC then the region sets
3308
// will have been torn down at the start of the GC. Therefore
3309
// verifying the region sets will fail. So we only verify
3310
// the region sets when not in a full GC.
3311
if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3312
verify_region_sets();
3313
}
3314
3315
if (!silent) { gclog_or_tty->print("HeapRegions "); }
3316
if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3317
assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3318
"sanity check");
3319
3320
G1ParVerifyTask task(this, vo);
3321
assert(UseDynamicNumberOfGCThreads ||
3322
workers()->active_workers() == workers()->total_workers(),
3323
"If not dynamic should be using all the workers");
3324
int n_workers = workers()->active_workers();
3325
set_par_threads(n_workers);
3326
workers()->run_task(&task);
3327
set_par_threads(0);
3328
if (task.failures()) {
3329
failures = true;
3330
}
3331
3332
// Checks that the expected amount of parallel work was done.
3333
// The implication is that n_workers is > 0.
3334
assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3335
"sanity check");
3336
3337
reset_heap_region_claim_values();
3338
3339
assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3340
"sanity check");
3341
} else {
3342
VerifyRegionClosure blk(false, vo);
3343
heap_region_iterate(&blk);
3344
if (blk.failures()) {
3345
failures = true;
3346
}
3347
}
3348
if (!silent) gclog_or_tty->print("RemSet ");
3349
rem_set()->verify();
3350
3351
if (G1StringDedup::is_enabled()) {
3352
if (!silent) gclog_or_tty->print("StrDedup ");
3353
G1StringDedup::verify();
3354
}
3355
3356
if (failures) {
3357
gclog_or_tty->print_cr("Heap:");
3358
// It helps to have the per-region information in the output to
3359
// help us track down what went wrong. This is why we call
3360
// print_extended_on() instead of print_on().
3361
print_extended_on(gclog_or_tty);
3362
gclog_or_tty->cr();
3363
#ifndef PRODUCT
3364
if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3365
concurrent_mark()->print_reachable("at-verification-failure",
3366
vo, false /* all */);
3367
}
3368
#endif
3369
gclog_or_tty->flush();
3370
}
3371
guarantee(!failures, "there should not have been any failures");
3372
} else {
3373
if (!silent) {
3374
gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3375
if (G1StringDedup::is_enabled()) {
3376
gclog_or_tty->print(", StrDedup");
3377
}
3378
gclog_or_tty->print(") ");
3379
}
3380
}
3381
}
3382
3383
void G1CollectedHeap::verify(bool silent) {
3384
verify(silent, VerifyOption_G1UsePrevMarking);
3385
}
3386
3387
double G1CollectedHeap::verify(bool guard, const char* msg) {
3388
double verify_time_ms = 0.0;
3389
3390
if (guard && total_collections() >= VerifyGCStartAt) {
3391
double verify_start = os::elapsedTime();
3392
HandleMark hm; // Discard invalid handles created during verification
3393
prepare_for_verify();
3394
Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3395
verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3396
}
3397
3398
return verify_time_ms;
3399
}
3400
3401
void G1CollectedHeap::verify_before_gc() {
3402
double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3403
g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3404
}
3405
3406
void G1CollectedHeap::verify_after_gc() {
3407
double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3408
g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3409
}
3410
3411
class PrintRegionClosure: public HeapRegionClosure {
3412
outputStream* _st;
3413
public:
3414
PrintRegionClosure(outputStream* st) : _st(st) {}
3415
bool doHeapRegion(HeapRegion* r) {
3416
r->print_on(_st);
3417
return false;
3418
}
3419
};
3420
3421
bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3422
const HeapRegion* hr,
3423
const VerifyOption vo) const {
3424
switch (vo) {
3425
case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3426
case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3427
case VerifyOption_G1UseMarkWord: return !obj->is_gc_marked();
3428
default: ShouldNotReachHere();
3429
}
3430
return false; // keep some compilers happy
3431
}
3432
3433
bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3434
const VerifyOption vo) const {
3435
switch (vo) {
3436
case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3437
case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3438
case VerifyOption_G1UseMarkWord: return !obj->is_gc_marked();
3439
default: ShouldNotReachHere();
3440
}
3441
return false; // keep some compilers happy
3442
}
3443
3444
void G1CollectedHeap::print_on(outputStream* st) const {
3445
st->print(" %-20s", "garbage-first heap");
3446
st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3447
capacity()/K, used_unlocked()/K);
3448
st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3449
p2i(_hrm.reserved().start()),
3450
p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3451
p2i(_hrm.reserved().end()));
3452
st->cr();
3453
st->print(" region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3454
uint young_regions = _young_list->length();
3455
st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3456
(size_t) young_regions * HeapRegion::GrainBytes / K);
3457
uint survivor_regions = g1_policy()->recorded_survivor_regions();
3458
st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3459
(size_t) survivor_regions * HeapRegion::GrainBytes / K);
3460
st->cr();
3461
MetaspaceAux::print_on(st);
3462
}
3463
3464
void G1CollectedHeap::print_extended_on(outputStream* st) const {
3465
print_on(st);
3466
3467
// Print the per-region information.
3468
st->cr();
3469
st->print_cr("Heap Regions: (E=young(eden), S=young(survivor), O=old, "
3470
"HS=humongous(starts), HC=humongous(continues), "
3471
"CS=collection set, F=free, TS=gc time stamp, "
3472
"PTAMS=previous top-at-mark-start, "
3473
"NTAMS=next top-at-mark-start)");
3474
PrintRegionClosure blk(st);
3475
heap_region_iterate(&blk);
3476
}
3477
3478
void G1CollectedHeap::print_on_error(outputStream* st) const {
3479
this->CollectedHeap::print_on_error(st);
3480
3481
if (_cm != NULL) {
3482
st->cr();
3483
_cm->print_on_error(st);
3484
}
3485
}
3486
3487
void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3488
if (G1CollectedHeap::use_parallel_gc_threads()) {
3489
workers()->print_worker_threads_on(st);
3490
}
3491
_cmThread->print_on(st);
3492
st->cr();
3493
_cm->print_worker_threads_on(st);
3494
_cg1r->print_worker_threads_on(st);
3495
if (G1StringDedup::is_enabled()) {
3496
G1StringDedup::print_worker_threads_on(st);
3497
}
3498
}
3499
3500
void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3501
if (G1CollectedHeap::use_parallel_gc_threads()) {
3502
workers()->threads_do(tc);
3503
}
3504
tc->do_thread(_cmThread);
3505
_cg1r->threads_do(tc);
3506
if (G1StringDedup::is_enabled()) {
3507
G1StringDedup::threads_do(tc);
3508
}
3509
}
3510
3511
void G1CollectedHeap::print_tracing_info() const {
3512
// We'll overload this to mean "trace GC pause statistics."
3513
if (TraceGen0Time || TraceGen1Time) {
3514
// The "G1CollectorPolicy" is keeping track of these stats, so delegate
3515
// to that.
3516
g1_policy()->print_tracing_info();
3517
}
3518
if (G1SummarizeRSetStats) {
3519
g1_rem_set()->print_summary_info();
3520
}
3521
if (G1SummarizeConcMark) {
3522
concurrent_mark()->print_summary_info();
3523
}
3524
g1_policy()->print_yg_surv_rate_info();
3525
SpecializationStats::print();
3526
}
3527
3528
#ifndef PRODUCT
3529
// Helpful for debugging RSet issues.
3530
3531
class PrintRSetsClosure : public HeapRegionClosure {
3532
private:
3533
const char* _msg;
3534
size_t _occupied_sum;
3535
3536
public:
3537
bool doHeapRegion(HeapRegion* r) {
3538
HeapRegionRemSet* hrrs = r->rem_set();
3539
size_t occupied = hrrs->occupied();
3540
_occupied_sum += occupied;
3541
3542
gclog_or_tty->print_cr("Printing RSet for region " HR_FORMAT,
3543
HR_FORMAT_PARAMS(r));
3544
if (occupied == 0) {
3545
gclog_or_tty->print_cr(" RSet is empty");
3546
} else {
3547
hrrs->print();
3548
}
3549
gclog_or_tty->print_cr("----------");
3550
return false;
3551
}
3552
3553
PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3554
gclog_or_tty->cr();
3555
gclog_or_tty->print_cr("========================================");
3556
gclog_or_tty->print_cr("%s", msg);
3557
gclog_or_tty->cr();
3558
}
3559
3560
~PrintRSetsClosure() {
3561
gclog_or_tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
3562
gclog_or_tty->print_cr("========================================");
3563
gclog_or_tty->cr();
3564
}
3565
};
3566
3567
void G1CollectedHeap::print_cset_rsets() {
3568
PrintRSetsClosure cl("Printing CSet RSets");
3569
collection_set_iterate(&cl);
3570
}
3571
3572
void G1CollectedHeap::print_all_rsets() {
3573
PrintRSetsClosure cl("Printing All RSets");;
3574
heap_region_iterate(&cl);
3575
}
3576
#endif // PRODUCT
3577
3578
G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
3579
3580
size_t eden_used_bytes = _young_list->eden_used_bytes();
3581
size_t survivor_used_bytes = _young_list->survivor_used_bytes();
3582
size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
3583
3584
size_t eden_capacity_bytes =
3585
(g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
3586
3587
VirtualSpaceSummary heap_summary = create_heap_space_summary();
3588
return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
3589
eden_capacity_bytes, survivor_used_bytes, num_regions());
3590
}
3591
3592
void G1CollectedHeap::trace_heap(GCWhen::Type when, GCTracer* gc_tracer) {
3593
const G1HeapSummary& heap_summary = create_g1_heap_summary();
3594
gc_tracer->report_gc_heap_summary(when, heap_summary);
3595
3596
const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
3597
gc_tracer->report_metaspace_summary(when, metaspace_summary);
3598
}
3599
3600
G1CollectedHeap* G1CollectedHeap::heap() {
3601
assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3602
"not a garbage-first heap");
3603
return _g1h;
3604
}
3605
3606
void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3607
// always_do_update_barrier = false;
3608
assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3609
// Fill TLAB's and such
3610
accumulate_statistics_all_tlabs();
3611
ensure_parsability(true);
3612
3613
if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3614
(total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3615
g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3616
}
3617
}
3618
3619
void G1CollectedHeap::gc_epilogue(bool full) {
3620
3621
if (G1SummarizeRSetStats &&
3622
(G1SummarizeRSetStatsPeriod > 0) &&
3623
// we are at the end of the GC. Total collections has already been increased.
3624
((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3625
g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3626
}
3627
3628
// FIXME: what is this about?
3629
// I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3630
// is set.
3631
COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3632
"derived pointer present"));
3633
// always_do_update_barrier = true;
3634
3635
resize_all_tlabs();
3636
allocation_context_stats().update(full);
3637
3638
// We have just completed a GC. Update the soft reference
3639
// policy with the new heap occupancy
3640
Universe::update_heap_info_at_gc();
3641
}
3642
3643
HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3644
uint gc_count_before,
3645
bool* succeeded,
3646
GCCause::Cause gc_cause) {
3647
assert_heap_not_locked_and_not_at_safepoint();
3648
g1_policy()->record_stop_world_start();
3649
VM_G1IncCollectionPause op(gc_count_before,
3650
word_size,
3651
false, /* should_initiate_conc_mark */
3652
g1_policy()->max_pause_time_ms(),
3653
gc_cause);
3654
3655
op.set_allocation_context(AllocationContext::current());
3656
VMThread::execute(&op);
3657
3658
HeapWord* result = op.result();
3659
bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3660
assert(result == NULL || ret_succeeded,
3661
"the result should be NULL if the VM did not succeed");
3662
*succeeded = ret_succeeded;
3663
3664
assert_heap_not_locked();
3665
return result;
3666
}
3667
3668
void
3669
G1CollectedHeap::doConcurrentMark() {
3670
MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3671
if (!_cmThread->in_progress()) {
3672
_cmThread->set_started();
3673
CGC_lock->notify();
3674
}
3675
}
3676
3677
size_t G1CollectedHeap::pending_card_num() {
3678
size_t extra_cards = 0;
3679
JavaThread *curr = Threads::first();
3680
while (curr != NULL) {
3681
DirtyCardQueue& dcq = curr->dirty_card_queue();
3682
extra_cards += dcq.size();
3683
curr = curr->next();
3684
}
3685
DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3686
size_t buffer_size = dcqs.buffer_size();
3687
size_t buffer_num = dcqs.completed_buffers_num();
3688
3689
// PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3690
// in bytes - not the number of 'entries'. We need to convert
3691
// into a number of cards.
3692
return (buffer_size * buffer_num + extra_cards) / oopSize;
3693
}
3694
3695
size_t G1CollectedHeap::cards_scanned() {
3696
return g1_rem_set()->cardsScanned();
3697
}
3698
3699
class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3700
private:
3701
size_t _total_humongous;
3702
size_t _candidate_humongous;
3703
3704
DirtyCardQueue _dcq;
3705
3706
// We don't nominate objects with many remembered set entries, on
3707
// the assumption that such objects are likely still live.
3708
bool is_remset_small(HeapRegion* region) const {
3709
HeapRegionRemSet* const rset = region->rem_set();
3710
return G1EagerReclaimHumongousObjectsWithStaleRefs
3711
? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3712
: rset->is_empty();
3713
}
3714
3715
bool is_typeArray_region(HeapRegion* region) const {
3716
return oop(region->bottom())->is_typeArray();
3717
}
3718
3719
bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3720
assert(region->startsHumongous(), "Must start a humongous object");
3721
3722
// Candidate selection must satisfy the following constraints
3723
// while concurrent marking is in progress:
3724
//
3725
// * In order to maintain SATB invariants, an object must not be
3726
// reclaimed if it was allocated before the start of marking and
3727
// has not had its references scanned. Such an object must have
3728
// its references (including type metadata) scanned to ensure no
3729
// live objects are missed by the marking process. Objects
3730
// allocated after the start of concurrent marking don't need to
3731
// be scanned.
3732
//
3733
// * An object must not be reclaimed if it is on the concurrent
3734
// mark stack. Objects allocated after the start of concurrent
3735
// marking are never pushed on the mark stack.
3736
//
3737
// Nominating only objects allocated after the start of concurrent
3738
// marking is sufficient to meet both constraints. This may miss
3739
// some objects that satisfy the constraints, but the marking data
3740
// structures don't support efficiently performing the needed
3741
// additional tests or scrubbing of the mark stack.
3742
//
3743
// However, we presently only nominate is_typeArray() objects.
3744
// A humongous object containing references induces remembered
3745
// set entries on other regions. In order to reclaim such an
3746
// object, those remembered sets would need to be cleaned up.
3747
//
3748
// We also treat is_typeArray() objects specially, allowing them
3749
// to be reclaimed even if allocated before the start of
3750
// concurrent mark. For this we rely on mark stack insertion to
3751
// exclude is_typeArray() objects, preventing reclaiming an object
3752
// that is in the mark stack. We also rely on the metadata for
3753
// such objects to be built-in and so ensured to be kept live.
3754
// Frequent allocation and drop of large binary blobs is an
3755
// important use case for eager reclaim, and this special handling
3756
// may reduce needed headroom.
3757
3758
return is_typeArray_region(region) && is_remset_small(region);
3759
}
3760
3761
public:
3762
RegisterHumongousWithInCSetFastTestClosure()
3763
: _total_humongous(0),
3764
_candidate_humongous(0),
3765
_dcq(&JavaThread::dirty_card_queue_set()) {
3766
}
3767
3768
virtual bool doHeapRegion(HeapRegion* r) {
3769
if (!r->startsHumongous()) {
3770
return false;
3771
}
3772
G1CollectedHeap* g1h = G1CollectedHeap::heap();
3773
3774
bool is_candidate = humongous_region_is_candidate(g1h, r);
3775
uint rindex = r->hrm_index();
3776
g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3777
if (is_candidate) {
3778
_candidate_humongous++;
3779
g1h->register_humongous_region_with_in_cset_fast_test(rindex);
3780
// Is_candidate already filters out humongous object with large remembered sets.
3781
// If we have a humongous object with a few remembered sets, we simply flush these
3782
// remembered set entries into the DCQS. That will result in automatic
3783
// re-evaluation of their remembered set entries during the following evacuation
3784
// phase.
3785
if (!r->rem_set()->is_empty()) {
3786
guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3787
"Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3788
G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3789
HeapRegionRemSetIterator hrrs(r->rem_set());
3790
size_t card_index;
3791
while (hrrs.has_next(card_index)) {
3792
jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3793
if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3794
*card_ptr = CardTableModRefBS::dirty_card_val();
3795
_dcq.enqueue(card_ptr);
3796
}
3797
}
3798
assert(hrrs.n_yielded() == r->rem_set()->occupied(),
3799
err_msg("Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
3800
hrrs.n_yielded(), r->rem_set()->occupied()));
3801
r->rem_set()->clear_locked();
3802
}
3803
assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3804
}
3805
_total_humongous++;
3806
3807
return false;
3808
}
3809
3810
size_t total_humongous() const { return _total_humongous; }
3811
size_t candidate_humongous() const { return _candidate_humongous; }
3812
3813
void flush_rem_set_entries() { _dcq.flush(); }
3814
};
3815
3816
void G1CollectedHeap::register_humongous_regions_with_in_cset_fast_test() {
3817
if (!G1EagerReclaimHumongousObjects) {
3818
g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3819
return;
3820
}
3821
double time = os::elapsed_counter();
3822
3823
// Collect reclaim candidate information and register candidates with cset.
3824
RegisterHumongousWithInCSetFastTestClosure cl;
3825
heap_region_iterate(&cl);
3826
3827
time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3828
g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3829
cl.total_humongous(),
3830
cl.candidate_humongous());
3831
_has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3832
3833
// Finally flush all remembered set entries to re-check into the global DCQS.
3834
cl.flush_rem_set_entries();
3835
}
3836
3837
void
3838
G1CollectedHeap::setup_surviving_young_words() {
3839
assert(_surviving_young_words == NULL, "pre-condition");
3840
uint array_length = g1_policy()->young_cset_region_length();
3841
_surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3842
if (_surviving_young_words == NULL) {
3843
vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3844
"Not enough space for young surv words summary.");
3845
}
3846
memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3847
#ifdef ASSERT
3848
for (uint i = 0; i < array_length; ++i) {
3849
assert( _surviving_young_words[i] == 0, "memset above" );
3850
}
3851
#endif // !ASSERT
3852
}
3853
3854
void
3855
G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3856
MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3857
uint array_length = g1_policy()->young_cset_region_length();
3858
for (uint i = 0; i < array_length; ++i) {
3859
_surviving_young_words[i] += surv_young_words[i];
3860
}
3861
}
3862
3863
void
3864
G1CollectedHeap::cleanup_surviving_young_words() {
3865
guarantee( _surviving_young_words != NULL, "pre-condition" );
3866
FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3867
_surviving_young_words = NULL;
3868
}
3869
3870
class VerifyRegionRemSetClosure : public HeapRegionClosure {
3871
public:
3872
bool doHeapRegion(HeapRegion* hr) {
3873
if (!hr->continuesHumongous()) {
3874
hr->verify_rem_set();
3875
}
3876
return false;
3877
}
3878
};
3879
3880
#ifdef ASSERT
3881
class VerifyCSetClosure: public HeapRegionClosure {
3882
public:
3883
bool doHeapRegion(HeapRegion* hr) {
3884
// Here we check that the CSet region's RSet is ready for parallel
3885
// iteration. The fields that we'll verify are only manipulated
3886
// when the region is part of a CSet and is collected. Afterwards,
3887
// we reset these fields when we clear the region's RSet (when the
3888
// region is freed) so they are ready when the region is
3889
// re-allocated. The only exception to this is if there's an
3890
// evacuation failure and instead of freeing the region we leave
3891
// it in the heap. In that case, we reset these fields during
3892
// evacuation failure handling.
3893
guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3894
3895
// Here's a good place to add any other checks we'd like to
3896
// perform on CSet regions.
3897
return false;
3898
}
3899
};
3900
#endif // ASSERT
3901
3902
#if TASKQUEUE_STATS
3903
void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3904
st->print_raw_cr("GC Task Stats");
3905
st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3906
st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3907
}
3908
3909
void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3910
print_taskqueue_stats_hdr(st);
3911
3912
TaskQueueStats totals;
3913
const int n = workers() != NULL ? workers()->total_workers() : 1;
3914
for (int i = 0; i < n; ++i) {
3915
st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3916
totals += task_queue(i)->stats;
3917
}
3918
st->print_raw("tot "); totals.print(st); st->cr();
3919
3920
DEBUG_ONLY(totals.verify());
3921
}
3922
3923
void G1CollectedHeap::reset_taskqueue_stats() {
3924
const int n = workers() != NULL ? workers()->total_workers() : 1;
3925
for (int i = 0; i < n; ++i) {
3926
task_queue(i)->stats.reset();
3927
}
3928
}
3929
#endif // TASKQUEUE_STATS
3930
3931
void G1CollectedHeap::log_gc_header() {
3932
if (!G1Log::fine()) {
3933
return;
3934
}
3935
3936
gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3937
3938
GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3939
.append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3940
.append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3941
3942
gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3943
}
3944
3945
void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3946
if (!G1Log::fine()) {
3947
return;
3948
}
3949
3950
if (G1Log::finer()) {
3951
if (evacuation_failed()) {
3952
gclog_or_tty->print(" (to-space exhausted)");
3953
}
3954
gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3955
g1_policy()->phase_times()->note_gc_end();
3956
g1_policy()->phase_times()->print(pause_time_sec);
3957
g1_policy()->print_detailed_heap_transition();
3958
} else {
3959
if (evacuation_failed()) {
3960
gclog_or_tty->print("--");
3961
}
3962
g1_policy()->print_heap_transition();
3963
gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3964
}
3965
gclog_or_tty->flush();
3966
}
3967
3968
bool
3969
G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3970
assert_at_safepoint(true /* should_be_vm_thread */);
3971
guarantee(!is_gc_active(), "collection is not reentrant");
3972
3973
if (GC_locker::check_active_before_gc()) {
3974
return false;
3975
}
3976
3977
_gc_timer_stw->register_gc_start();
3978
3979
_gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3980
3981
SvcGCMarker sgcm(SvcGCMarker::MINOR);
3982
ResourceMark rm;
3983
3984
print_heap_before_gc();
3985
trace_heap_before_gc(_gc_tracer_stw);
3986
3987
verify_region_sets_optional();
3988
verify_dirty_young_regions();
3989
3990
// This call will decide whether this pause is an initial-mark
3991
// pause. If it is, during_initial_mark_pause() will return true
3992
// for the duration of this pause.
3993
g1_policy()->decide_on_conc_mark_initiation();
3994
3995
// We do not allow initial-mark to be piggy-backed on a mixed GC.
3996
assert(!g1_policy()->during_initial_mark_pause() ||
3997
g1_policy()->gcs_are_young(), "sanity");
3998
3999
// We also do not allow mixed GCs during marking.
4000
assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
4001
4002
// Record whether this pause is an initial mark. When the current
4003
// thread has completed its logging output and it's safe to signal
4004
// the CM thread, the flag's value in the policy has been reset.
4005
bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
4006
4007
// Inner scope for scope based logging, timers, and stats collection
4008
{
4009
EvacuationInfo evacuation_info;
4010
4011
if (g1_policy()->during_initial_mark_pause()) {
4012
// We are about to start a marking cycle, so we increment the
4013
// full collection counter.
4014
increment_old_marking_cycles_started();
4015
register_concurrent_cycle_start(_gc_timer_stw->gc_start());
4016
}
4017
4018
_gc_tracer_stw->report_yc_type(yc_type());
4019
4020
TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
4021
4022
uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
4023
workers()->active_workers(),
4024
Threads::number_of_non_daemon_threads());
4025
assert(UseDynamicNumberOfGCThreads ||
4026
active_workers == workers()->total_workers(),
4027
"If not dynamic should be using all the workers");
4028
workers()->set_active_workers(active_workers);
4029
4030
4031
double pause_start_sec = os::elapsedTime();
4032
g1_policy()->phase_times()->note_gc_start(active_workers, mark_in_progress());
4033
log_gc_header();
4034
4035
TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
4036
TraceMemoryManagerStats tms(false /* fullGC */, gc_cause(),
4037
yc_type() == Mixed /* allMemoryPoolsAffected */);
4038
4039
// If the secondary_free_list is not empty, append it to the
4040
// free_list. No need to wait for the cleanup operation to finish;
4041
// the region allocation code will check the secondary_free_list
4042
// and wait if necessary. If the G1StressConcRegionFreeing flag is
4043
// set, skip this step so that the region allocation code has to
4044
// get entries from the secondary_free_list.
4045
if (!G1StressConcRegionFreeing) {
4046
append_secondary_free_list_if_not_empty_with_lock();
4047
}
4048
4049
assert(check_young_list_well_formed(), "young list should be well formed");
4050
assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
4051
"sanity check");
4052
4053
// Don't dynamically change the number of GC threads this early. A value of
4054
// 0 is used to indicate serial work. When parallel work is done,
4055
// it will be set.
4056
4057
{ // Call to jvmpi::post_class_unload_events must occur outside of active GC
4058
IsGCActiveMark x;
4059
4060
gc_prologue(false);
4061
increment_total_collections(false /* full gc */);
4062
increment_gc_time_stamp();
4063
4064
if (VerifyRememberedSets) {
4065
if (!VerifySilently) {
4066
gclog_or_tty->print_cr("[Verifying RemSets before GC]");
4067
}
4068
VerifyRegionRemSetClosure v_cl;
4069
heap_region_iterate(&v_cl);
4070
}
4071
4072
verify_before_gc();
4073
check_bitmaps("GC Start");
4074
4075
COMPILER2_PRESENT(DerivedPointerTable::clear());
4076
4077
// Please see comment in g1CollectedHeap.hpp and
4078
// G1CollectedHeap::ref_processing_init() to see how
4079
// reference processing currently works in G1.
4080
4081
// Enable discovery in the STW reference processor
4082
ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
4083
true /*verify_no_refs*/);
4084
4085
{
4086
// We want to temporarily turn off discovery by the
4087
// CM ref processor, if necessary, and turn it back on
4088
// on again later if we do. Using a scoped
4089
// NoRefDiscovery object will do this.
4090
NoRefDiscovery no_cm_discovery(ref_processor_cm());
4091
4092
// Forget the current alloc region (we might even choose it to be part
4093
// of the collection set!).
4094
_allocator->release_mutator_alloc_region();
4095
4096
// We should call this after we retire the mutator alloc
4097
// region(s) so that all the ALLOC / RETIRE events are generated
4098
// before the start GC event.
4099
_hr_printer.start_gc(false /* full */, (size_t) total_collections());
4100
4101
// This timing is only used by the ergonomics to handle our pause target.
4102
// It is unclear why this should not include the full pause. We will
4103
// investigate this in CR 7178365.
4104
//
4105
// Preserving the old comment here if that helps the investigation:
4106
//
4107
// The elapsed time induced by the start time below deliberately elides
4108
// the possible verification above.
4109
double sample_start_time_sec = os::elapsedTime();
4110
4111
#if YOUNG_LIST_VERBOSE
4112
gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
4113
_young_list->print();
4114
g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4115
#endif // YOUNG_LIST_VERBOSE
4116
4117
g1_policy()->record_collection_pause_start(sample_start_time_sec, *_gc_tracer_stw);
4118
4119
double scan_wait_start = os::elapsedTime();
4120
// We have to wait until the CM threads finish scanning the
4121
// root regions as it's the only way to ensure that all the
4122
// objects on them have been correctly scanned before we start
4123
// moving them during the GC.
4124
bool waited = _cm->root_regions()->wait_until_scan_finished();
4125
double wait_time_ms = 0.0;
4126
if (waited) {
4127
double scan_wait_end = os::elapsedTime();
4128
wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
4129
}
4130
g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
4131
4132
#if YOUNG_LIST_VERBOSE
4133
gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
4134
_young_list->print();
4135
#endif // YOUNG_LIST_VERBOSE
4136
4137
if (g1_policy()->during_initial_mark_pause()) {
4138
concurrent_mark()->checkpointRootsInitialPre();
4139
}
4140
4141
#if YOUNG_LIST_VERBOSE
4142
gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
4143
_young_list->print();
4144
g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4145
#endif // YOUNG_LIST_VERBOSE
4146
4147
g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4148
4149
// Make sure the remembered sets are up to date. This needs to be
4150
// done before register_humongous_regions_with_cset(), because the
4151
// remembered sets are used there to choose eager reclaim candidates.
4152
// If the remembered sets are not up to date we might miss some
4153
// entries that need to be handled.
4154
g1_rem_set()->cleanupHRRS();
4155
4156
register_humongous_regions_with_in_cset_fast_test();
4157
4158
assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
4159
4160
_cm->note_start_of_gc();
4161
// We call this after finalize_cset() to
4162
// ensure that the CSet has been finalized.
4163
_cm->verify_no_cset_oops();
4164
4165
if (_hr_printer.is_active()) {
4166
HeapRegion* hr = g1_policy()->collection_set();
4167
while (hr != NULL) {
4168
_hr_printer.cset(hr);
4169
hr = hr->next_in_collection_set();
4170
}
4171
}
4172
4173
#ifdef ASSERT
4174
VerifyCSetClosure cl;
4175
collection_set_iterate(&cl);
4176
#endif // ASSERT
4177
4178
setup_surviving_young_words();
4179
4180
// Initialize the GC alloc regions.
4181
_allocator->init_gc_alloc_regions(evacuation_info);
4182
4183
// Actually do the work...
4184
evacuate_collection_set(evacuation_info);
4185
4186
free_collection_set(g1_policy()->collection_set(), evacuation_info);
4187
4188
eagerly_reclaim_humongous_regions();
4189
4190
g1_policy()->clear_collection_set();
4191
4192
cleanup_surviving_young_words();
4193
4194
// Start a new incremental collection set for the next pause.
4195
g1_policy()->start_incremental_cset_building();
4196
4197
clear_cset_fast_test();
4198
4199
_young_list->reset_sampled_info();
4200
4201
// Don't check the whole heap at this point as the
4202
// GC alloc regions from this pause have been tagged
4203
// as survivors and moved on to the survivor list.
4204
// Survivor regions will fail the !is_young() check.
4205
assert(check_young_list_empty(false /* check_heap */),
4206
"young list should be empty");
4207
4208
#if YOUNG_LIST_VERBOSE
4209
gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4210
_young_list->print();
4211
#endif // YOUNG_LIST_VERBOSE
4212
4213
g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4214
_young_list->first_survivor_region(),
4215
_young_list->last_survivor_region());
4216
4217
_young_list->reset_auxilary_lists();
4218
4219
if (evacuation_failed()) {
4220
_allocator->set_used(recalculate_used());
4221
uint n_queues = MAX2((int)ParallelGCThreads, 1);
4222
for (uint i = 0; i < n_queues; i++) {
4223
if (_evacuation_failed_info_array[i].has_failed()) {
4224
_gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4225
}
4226
}
4227
} else {
4228
// The "used" of the the collection set have already been subtracted
4229
// when they were freed. Add in the bytes evacuated.
4230
_allocator->increase_used(g1_policy()->bytes_copied_during_gc());
4231
}
4232
4233
if (g1_policy()->during_initial_mark_pause()) {
4234
// We have to do this before we notify the CM threads that
4235
// they can start working to make sure that all the
4236
// appropriate initialization is done on the CM object.
4237
concurrent_mark()->checkpointRootsInitialPost();
4238
set_marking_started();
4239
// Note that we don't actually trigger the CM thread at
4240
// this point. We do that later when we're sure that
4241
// the current thread has completed its logging output.
4242
}
4243
4244
allocate_dummy_regions();
4245
4246
#if YOUNG_LIST_VERBOSE
4247
gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4248
_young_list->print();
4249
g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4250
#endif // YOUNG_LIST_VERBOSE
4251
4252
_allocator->init_mutator_alloc_region();
4253
4254
{
4255
size_t expand_bytes = g1_policy()->expansion_amount();
4256
if (expand_bytes > 0) {
4257
size_t bytes_before = capacity();
4258
// No need for an ergo verbose message here,
4259
// expansion_amount() does this when it returns a value > 0.
4260
if (!expand(expand_bytes)) {
4261
// We failed to expand the heap. Cannot do anything about it.
4262
}
4263
}
4264
}
4265
4266
// We redo the verification but now wrt to the new CSet which
4267
// has just got initialized after the previous CSet was freed.
4268
_cm->verify_no_cset_oops();
4269
_cm->note_end_of_gc();
4270
4271
// This timing is only used by the ergonomics to handle our pause target.
4272
// It is unclear why this should not include the full pause. We will
4273
// investigate this in CR 7178365.
4274
double sample_end_time_sec = os::elapsedTime();
4275
double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4276
g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4277
4278
MemoryService::track_memory_usage();
4279
4280
// In prepare_for_verify() below we'll need to scan the deferred
4281
// update buffers to bring the RSets up-to-date if
4282
// G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4283
// the update buffers we'll probably need to scan cards on the
4284
// regions we just allocated to (i.e., the GC alloc
4285
// regions). However, during the last GC we called
4286
// set_saved_mark() on all the GC alloc regions, so card
4287
// scanning might skip the [saved_mark_word()...top()] area of
4288
// those regions (i.e., the area we allocated objects into
4289
// during the last GC). But it shouldn't. Given that
4290
// saved_mark_word() is conditional on whether the GC time stamp
4291
// on the region is current or not, by incrementing the GC time
4292
// stamp here we invalidate all the GC time stamps on all the
4293
// regions and saved_mark_word() will simply return top() for
4294
// all the regions. This is a nicer way of ensuring this rather
4295
// than iterating over the regions and fixing them. In fact, the
4296
// GC time stamp increment here also ensures that
4297
// saved_mark_word() will return top() between pauses, i.e.,
4298
// during concurrent refinement. So we don't need the
4299
// is_gc_active() check to decided which top to use when
4300
// scanning cards (see CR 7039627).
4301
increment_gc_time_stamp();
4302
4303
if (VerifyRememberedSets) {
4304
if (!VerifySilently) {
4305
gclog_or_tty->print_cr("[Verifying RemSets after GC]");
4306
}
4307
VerifyRegionRemSetClosure v_cl;
4308
heap_region_iterate(&v_cl);
4309
}
4310
4311
verify_after_gc();
4312
check_bitmaps("GC End");
4313
4314
assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4315
ref_processor_stw()->verify_no_references_recorded();
4316
4317
// CM reference discovery will be re-enabled if necessary.
4318
}
4319
4320
// We should do this after we potentially expand the heap so
4321
// that all the COMMIT events are generated before the end GC
4322
// event, and after we retire the GC alloc regions so that all
4323
// RETIRE events are generated before the end GC event.
4324
_hr_printer.end_gc(false /* full */, (size_t) total_collections());
4325
4326
#ifdef TRACESPINNING
4327
ParallelTaskTerminator::print_termination_counts();
4328
#endif
4329
4330
gc_epilogue(false);
4331
}
4332
4333
// Print the remainder of the GC log output.
4334
log_gc_footer(os::elapsedTime() - pause_start_sec);
4335
4336
// It is not yet to safe to tell the concurrent mark to
4337
// start as we have some optional output below. We don't want the
4338
// output from the concurrent mark thread interfering with this
4339
// logging output either.
4340
4341
_hrm.verify_optional();
4342
verify_region_sets_optional();
4343
4344
TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4345
TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4346
4347
print_heap_after_gc();
4348
trace_heap_after_gc(_gc_tracer_stw);
4349
4350
// We must call G1MonitoringSupport::update_sizes() in the same scoping level
4351
// as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4352
// TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4353
// before any GC notifications are raised.
4354
g1mm()->update_sizes();
4355
4356
_gc_tracer_stw->report_evacuation_info(&evacuation_info);
4357
_gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4358
_gc_timer_stw->register_gc_end();
4359
_gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4360
}
4361
// It should now be safe to tell the concurrent mark thread to start
4362
// without its logging output interfering with the logging output
4363
// that came from the pause.
4364
4365
if (should_start_conc_mark) {
4366
// CAUTION: after the doConcurrentMark() call below,
4367
// the concurrent marking thread(s) could be running
4368
// concurrently with us. Make sure that anything after
4369
// this point does not assume that we are the only GC thread
4370
// running. Note: of course, the actual marking work will
4371
// not start until the safepoint itself is released in
4372
// SuspendibleThreadSet::desynchronize().
4373
doConcurrentMark();
4374
}
4375
4376
return true;
4377
}
4378
4379
void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4380
_drain_in_progress = false;
4381
set_evac_failure_closure(cl);
4382
_evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4383
}
4384
4385
void G1CollectedHeap::finalize_for_evac_failure() {
4386
assert(_evac_failure_scan_stack != NULL &&
4387
_evac_failure_scan_stack->length() == 0,
4388
"Postcondition");
4389
assert(!_drain_in_progress, "Postcondition");
4390
delete _evac_failure_scan_stack;
4391
_evac_failure_scan_stack = NULL;
4392
}
4393
4394
void G1CollectedHeap::remove_self_forwarding_pointers() {
4395
assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4396
4397
double remove_self_forwards_start = os::elapsedTime();
4398
4399
G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4400
4401
if (G1CollectedHeap::use_parallel_gc_threads()) {
4402
set_par_threads();
4403
workers()->run_task(&rsfp_task);
4404
set_par_threads(0);
4405
} else {
4406
rsfp_task.work(0);
4407
}
4408
4409
assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4410
4411
// Reset the claim values in the regions in the collection set.
4412
reset_cset_heap_region_claim_values();
4413
4414
assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4415
4416
// Now restore saved marks, if any.
4417
assert(_objs_with_preserved_marks.size() ==
4418
_preserved_marks_of_objs.size(), "Both or none.");
4419
while (!_objs_with_preserved_marks.is_empty()) {
4420
oop obj = _objs_with_preserved_marks.pop();
4421
markOop m = _preserved_marks_of_objs.pop();
4422
obj->set_mark(m);
4423
}
4424
_objs_with_preserved_marks.clear(true);
4425
_preserved_marks_of_objs.clear(true);
4426
4427
g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4428
}
4429
4430
void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4431
_evac_failure_scan_stack->push(obj);
4432
}
4433
4434
void G1CollectedHeap::drain_evac_failure_scan_stack() {
4435
assert(_evac_failure_scan_stack != NULL, "precondition");
4436
4437
while (_evac_failure_scan_stack->length() > 0) {
4438
oop obj = _evac_failure_scan_stack->pop();
4439
_evac_failure_closure->set_region(heap_region_containing(obj));
4440
obj->oop_iterate_backwards(_evac_failure_closure);
4441
}
4442
}
4443
4444
oop
4445
G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4446
oop old) {
4447
assert(obj_in_cs(old),
4448
err_msg("obj: " PTR_FORMAT " should still be in the CSet",
4449
p2i(old)));
4450
markOop m = old->mark();
4451
oop forward_ptr = old->forward_to_atomic(old);
4452
if (forward_ptr == NULL) {
4453
// Forward-to-self succeeded.
4454
assert(_par_scan_state != NULL, "par scan state");
4455
OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4456
uint queue_num = _par_scan_state->queue_num();
4457
4458
_evacuation_failed = true;
4459
_evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4460
if (_evac_failure_closure != cl) {
4461
MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4462
assert(!_drain_in_progress,
4463
"Should only be true while someone holds the lock.");
4464
// Set the global evac-failure closure to the current thread's.
4465
assert(_evac_failure_closure == NULL, "Or locking has failed.");
4466
set_evac_failure_closure(cl);
4467
// Now do the common part.
4468
handle_evacuation_failure_common(old, m);
4469
// Reset to NULL.
4470
set_evac_failure_closure(NULL);
4471
} else {
4472
// The lock is already held, and this is recursive.
4473
assert(_drain_in_progress, "This should only be the recursive case.");
4474
handle_evacuation_failure_common(old, m);
4475
}
4476
return old;
4477
} else {
4478
// Forward-to-self failed. Either someone else managed to allocate
4479
// space for this object (old != forward_ptr) or they beat us in
4480
// self-forwarding it (old == forward_ptr).
4481
assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4482
err_msg("obj: " PTR_FORMAT " forwarded to: " PTR_FORMAT " "
4483
"should not be in the CSet",
4484
p2i(old), p2i(forward_ptr)));
4485
return forward_ptr;
4486
}
4487
}
4488
4489
void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4490
preserve_mark_if_necessary(old, m);
4491
4492
HeapRegion* r = heap_region_containing(old);
4493
if (!r->evacuation_failed()) {
4494
r->set_evacuation_failed(true);
4495
_hr_printer.evac_failure(r);
4496
}
4497
4498
push_on_evac_failure_scan_stack(old);
4499
4500
if (!_drain_in_progress) {
4501
// prevent recursion in copy_to_survivor_space()
4502
_drain_in_progress = true;
4503
drain_evac_failure_scan_stack();
4504
_drain_in_progress = false;
4505
}
4506
}
4507
4508
void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4509
assert(evacuation_failed(), "Oversaving!");
4510
// We want to call the "for_promotion_failure" version only in the
4511
// case of a promotion failure.
4512
if (m->must_be_preserved_for_promotion_failure(obj)) {
4513
_objs_with_preserved_marks.push(obj);
4514
_preserved_marks_of_objs.push(m);
4515
}
4516
}
4517
4518
void G1ParCopyHelper::mark_object(oop obj) {
4519
assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4520
4521
// We know that the object is not moving so it's safe to read its size.
4522
_cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4523
}
4524
4525
void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4526
assert(from_obj->is_forwarded(), "from obj should be forwarded");
4527
assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4528
assert(from_obj != to_obj, "should not be self-forwarded");
4529
4530
assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4531
assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4532
4533
// The object might be in the process of being copied by another
4534
// worker so we cannot trust that its to-space image is
4535
// well-formed. So we have to read its size from its from-space
4536
// image which we know should not be changing.
4537
_cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4538
}
4539
4540
template <class T>
4541
void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4542
if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4543
_scanned_klass->record_modified_oops();
4544
}
4545
}
4546
4547
template <G1Barrier barrier, G1Mark do_mark_object>
4548
template <class T>
4549
void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4550
T heap_oop = oopDesc::load_heap_oop(p);
4551
4552
if (oopDesc::is_null(heap_oop)) {
4553
return;
4554
}
4555
4556
oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4557
4558
assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4559
4560
const InCSetState state = _g1->in_cset_state(obj);
4561
if (state.is_in_cset()) {
4562
oop forwardee;
4563
markOop m = obj->mark();
4564
if (m->is_marked()) {
4565
forwardee = (oop) m->decode_pointer();
4566
} else {
4567
forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4568
}
4569
assert(forwardee != NULL, "forwardee should not be NULL");
4570
oopDesc::encode_store_heap_oop(p, forwardee);
4571
if (do_mark_object != G1MarkNone && forwardee != obj) {
4572
// If the object is self-forwarded we don't need to explicitly
4573
// mark it, the evacuation failure protocol will do so.
4574
mark_forwarded_object(obj, forwardee);
4575
}
4576
4577
if (barrier == G1BarrierKlass) {
4578
do_klass_barrier(p, forwardee);
4579
}
4580
} else {
4581
if (state.is_humongous()) {
4582
_g1->set_humongous_is_live(obj);
4583
}
4584
// The object is not in collection set. If we're a root scanning
4585
// closure during an initial mark pause then attempt to mark the object.
4586
if (do_mark_object == G1MarkFromRoot) {
4587
mark_object(obj);
4588
}
4589
}
4590
4591
if (barrier == G1BarrierEvac) {
4592
_par_scan_state->update_rs(_from, p, _worker_id);
4593
}
4594
}
4595
4596
template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
4597
template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4598
4599
class G1ParEvacuateFollowersClosure : public VoidClosure {
4600
protected:
4601
G1CollectedHeap* _g1h;
4602
G1ParScanThreadState* _par_scan_state;
4603
RefToScanQueueSet* _queues;
4604
ParallelTaskTerminator* _terminator;
4605
4606
G1ParScanThreadState* par_scan_state() { return _par_scan_state; }
4607
RefToScanQueueSet* queues() { return _queues; }
4608
ParallelTaskTerminator* terminator() { return _terminator; }
4609
4610
public:
4611
G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4612
G1ParScanThreadState* par_scan_state,
4613
RefToScanQueueSet* queues,
4614
ParallelTaskTerminator* terminator)
4615
: _g1h(g1h), _par_scan_state(par_scan_state),
4616
_queues(queues), _terminator(terminator) {}
4617
4618
void do_void();
4619
4620
private:
4621
inline bool offer_termination();
4622
};
4623
4624
bool G1ParEvacuateFollowersClosure::offer_termination() {
4625
G1ParScanThreadState* const pss = par_scan_state();
4626
pss->start_term_time();
4627
const bool res = terminator()->offer_termination();
4628
pss->end_term_time();
4629
return res;
4630
}
4631
4632
void G1ParEvacuateFollowersClosure::do_void() {
4633
G1ParScanThreadState* const pss = par_scan_state();
4634
pss->trim_queue();
4635
do {
4636
pss->steal_and_trim_queue(queues());
4637
} while (!offer_termination());
4638
}
4639
4640
class G1KlassScanClosure : public KlassClosure {
4641
G1ParCopyHelper* _closure;
4642
bool _process_only_dirty;
4643
int _count;
4644
public:
4645
G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4646
: _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4647
void do_klass(Klass* klass) {
4648
// If the klass has not been dirtied we know that there's
4649
// no references into the young gen and we can skip it.
4650
if (!_process_only_dirty || klass->has_modified_oops()) {
4651
// Clean the klass since we're going to scavenge all the metadata.
4652
klass->clear_modified_oops();
4653
4654
// Tell the closure that this klass is the Klass to scavenge
4655
// and is the one to dirty if oops are left pointing into the young gen.
4656
_closure->set_scanned_klass(klass);
4657
4658
klass->oops_do(_closure);
4659
4660
_closure->set_scanned_klass(NULL);
4661
}
4662
_count++;
4663
}
4664
};
4665
4666
class G1ParTask : public AbstractGangTask {
4667
protected:
4668
G1CollectedHeap* _g1h;
4669
RefToScanQueueSet *_queues;
4670
G1RootProcessor* _root_processor;
4671
ParallelTaskTerminator _terminator;
4672
uint _n_workers;
4673
4674
Mutex _stats_lock;
4675
Mutex* stats_lock() { return &_stats_lock; }
4676
4677
public:
4678
G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor)
4679
: AbstractGangTask("G1 collection"),
4680
_g1h(g1h),
4681
_queues(task_queues),
4682
_root_processor(root_processor),
4683
_terminator(0, _queues),
4684
_stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4685
{}
4686
4687
RefToScanQueueSet* queues() { return _queues; }
4688
4689
RefToScanQueue *work_queue(int i) {
4690
return queues()->queue(i);
4691
}
4692
4693
ParallelTaskTerminator* terminator() { return &_terminator; }
4694
4695
virtual void set_for_termination(int active_workers) {
4696
_root_processor->set_num_workers(active_workers);
4697
terminator()->reset_for_reuse(active_workers);
4698
_n_workers = active_workers;
4699
}
4700
4701
// Helps out with CLD processing.
4702
//
4703
// During InitialMark we need to:
4704
// 1) Scavenge all CLDs for the young GC.
4705
// 2) Mark all objects directly reachable from strong CLDs.
4706
template <G1Mark do_mark_object>
4707
class G1CLDClosure : public CLDClosure {
4708
G1ParCopyClosure<G1BarrierNone, do_mark_object>* _oop_closure;
4709
G1ParCopyClosure<G1BarrierKlass, do_mark_object> _oop_in_klass_closure;
4710
G1KlassScanClosure _klass_in_cld_closure;
4711
bool _claim;
4712
4713
public:
4714
G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4715
bool only_young, bool claim)
4716
: _oop_closure(oop_closure),
4717
_oop_in_klass_closure(oop_closure->g1(),
4718
oop_closure->pss(),
4719
oop_closure->rp()),
4720
_klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4721
_claim(claim) {
4722
4723
}
4724
4725
void do_cld(ClassLoaderData* cld) {
4726
cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4727
}
4728
};
4729
4730
void work(uint worker_id) {
4731
if (worker_id >= _n_workers) return; // no work needed this round
4732
4733
_g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, os::elapsedTime());
4734
4735
{
4736
ResourceMark rm;
4737
HandleMark hm;
4738
4739
ReferenceProcessor* rp = _g1h->ref_processor_stw();
4740
4741
G1ParScanThreadState pss(_g1h, worker_id, rp);
4742
G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4743
4744
pss.set_evac_failure_closure(&evac_failure_cl);
4745
4746
bool only_young = _g1h->g1_policy()->gcs_are_young();
4747
4748
// Non-IM young GC.
4749
G1ParCopyClosure<G1BarrierNone, G1MarkNone> scan_only_root_cl(_g1h, &pss, rp);
4750
G1CLDClosure<G1MarkNone> scan_only_cld_cl(&scan_only_root_cl,
4751
only_young, // Only process dirty klasses.
4752
false); // No need to claim CLDs.
4753
// IM young GC.
4754
// Strong roots closures.
4755
G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot> scan_mark_root_cl(_g1h, &pss, rp);
4756
G1CLDClosure<G1MarkFromRoot> scan_mark_cld_cl(&scan_mark_root_cl,
4757
false, // Process all klasses.
4758
true); // Need to claim CLDs.
4759
// Weak roots closures.
4760
G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4761
G1CLDClosure<G1MarkPromotedFromRoot> scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4762
false, // Process all klasses.
4763
true); // Need to claim CLDs.
4764
4765
OopClosure* strong_root_cl;
4766
OopClosure* weak_root_cl;
4767
CLDClosure* strong_cld_cl;
4768
CLDClosure* weak_cld_cl;
4769
4770
bool trace_metadata = false;
4771
4772
if (_g1h->g1_policy()->during_initial_mark_pause()) {
4773
// We also need to mark copied objects.
4774
strong_root_cl = &scan_mark_root_cl;
4775
strong_cld_cl = &scan_mark_cld_cl;
4776
if (ClassUnloadingWithConcurrentMark) {
4777
weak_root_cl = &scan_mark_weak_root_cl;
4778
weak_cld_cl = &scan_mark_weak_cld_cl;
4779
trace_metadata = true;
4780
} else {
4781
weak_root_cl = &scan_mark_root_cl;
4782
weak_cld_cl = &scan_mark_cld_cl;
4783
}
4784
} else {
4785
strong_root_cl = &scan_only_root_cl;
4786
weak_root_cl = &scan_only_root_cl;
4787
strong_cld_cl = &scan_only_cld_cl;
4788
weak_cld_cl = &scan_only_cld_cl;
4789
}
4790
4791
pss.start_strong_roots();
4792
4793
_root_processor->evacuate_roots(strong_root_cl,
4794
weak_root_cl,
4795
strong_cld_cl,
4796
weak_cld_cl,
4797
trace_metadata,
4798
worker_id);
4799
4800
G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss);
4801
_root_processor->scan_remembered_sets(&push_heap_rs_cl,
4802
weak_root_cl,
4803
worker_id);
4804
pss.end_strong_roots();
4805
4806
{
4807
double start = os::elapsedTime();
4808
G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4809
evac.do_void();
4810
double elapsed_sec = os::elapsedTime() - start;
4811
double term_sec = pss.term_time();
4812
_g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4813
_g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4814
_g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, pss.term_attempts());
4815
}
4816
_g1h->g1_policy()->record_thread_age_table(pss.age_table());
4817
_g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4818
4819
if (ParallelGCVerbose) {
4820
MutexLocker x(stats_lock());
4821
pss.print_termination_stats(worker_id);
4822
}
4823
4824
assert(pss.queue_is_empty(), "should be empty");
4825
4826
// Close the inner scope so that the ResourceMark and HandleMark
4827
// destructors are executed here and are included as part of the
4828
// "GC Worker Time".
4829
}
4830
_g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4831
}
4832
};
4833
4834
class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4835
private:
4836
BoolObjectClosure* _is_alive;
4837
int _initial_string_table_size;
4838
int _initial_symbol_table_size;
4839
4840
bool _process_strings;
4841
int _strings_processed;
4842
int _strings_removed;
4843
4844
bool _process_symbols;
4845
int _symbols_processed;
4846
int _symbols_removed;
4847
4848
bool _do_in_parallel;
4849
public:
4850
G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4851
AbstractGangTask("String/Symbol Unlinking"),
4852
_is_alive(is_alive),
4853
_do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
4854
_process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4855
_process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4856
4857
_initial_string_table_size = StringTable::the_table()->table_size();
4858
_initial_symbol_table_size = SymbolTable::the_table()->table_size();
4859
if (process_strings) {
4860
StringTable::clear_parallel_claimed_index();
4861
}
4862
if (process_symbols) {
4863
SymbolTable::clear_parallel_claimed_index();
4864
}
4865
}
4866
4867
~G1StringSymbolTableUnlinkTask() {
4868
guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4869
err_msg("claim value " INT32_FORMAT " after unlink less than initial string table size " INT32_FORMAT,
4870
StringTable::parallel_claimed_index(), _initial_string_table_size));
4871
guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4872
err_msg("claim value " INT32_FORMAT " after unlink less than initial symbol table size " INT32_FORMAT,
4873
SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4874
4875
if (G1TraceStringSymbolTableScrubbing) {
4876
gclog_or_tty->print_cr("Cleaned string and symbol table, "
4877
"strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4878
"symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4879
strings_processed(), strings_removed(),
4880
symbols_processed(), symbols_removed());
4881
}
4882
}
4883
4884
void work(uint worker_id) {
4885
if (_do_in_parallel) {
4886
int strings_processed = 0;
4887
int strings_removed = 0;
4888
int symbols_processed = 0;
4889
int symbols_removed = 0;
4890
if (_process_strings) {
4891
StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4892
Atomic::add(strings_processed, &_strings_processed);
4893
Atomic::add(strings_removed, &_strings_removed);
4894
}
4895
if (_process_symbols) {
4896
SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4897
Atomic::add(symbols_processed, &_symbols_processed);
4898
Atomic::add(symbols_removed, &_symbols_removed);
4899
}
4900
} else {
4901
if (_process_strings) {
4902
StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
4903
}
4904
if (_process_symbols) {
4905
SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
4906
}
4907
}
4908
}
4909
4910
size_t strings_processed() const { return (size_t)_strings_processed; }
4911
size_t strings_removed() const { return (size_t)_strings_removed; }
4912
4913
size_t symbols_processed() const { return (size_t)_symbols_processed; }
4914
size_t symbols_removed() const { return (size_t)_symbols_removed; }
4915
};
4916
4917
class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4918
private:
4919
static Monitor* _lock;
4920
4921
BoolObjectClosure* const _is_alive;
4922
const bool _unloading_occurred;
4923
const uint _num_workers;
4924
4925
// Variables used to claim nmethods.
4926
nmethod* _first_nmethod;
4927
volatile nmethod* _claimed_nmethod;
4928
4929
// The list of nmethods that need to be processed by the second pass.
4930
volatile nmethod* _postponed_list;
4931
volatile uint _num_entered_barrier;
4932
4933
public:
4934
G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4935
_is_alive(is_alive),
4936
_unloading_occurred(unloading_occurred),
4937
_num_workers(num_workers),
4938
_first_nmethod(NULL),
4939
_claimed_nmethod(NULL),
4940
_postponed_list(NULL),
4941
_num_entered_barrier(0)
4942
{
4943
nmethod::increase_unloading_clock();
4944
_first_nmethod = CodeCache::alive_nmethod(CodeCache::first());
4945
_claimed_nmethod = (volatile nmethod*)_first_nmethod;
4946
}
4947
4948
~G1CodeCacheUnloadingTask() {
4949
CodeCache::verify_clean_inline_caches();
4950
4951
CodeCache::set_needs_cache_clean(false);
4952
guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4953
4954
CodeCache::verify_icholder_relocations();
4955
}
4956
4957
private:
4958
void add_to_postponed_list(nmethod* nm) {
4959
nmethod* old;
4960
do {
4961
old = (nmethod*)_postponed_list;
4962
nm->set_unloading_next(old);
4963
} while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4964
}
4965
4966
void clean_nmethod(nmethod* nm) {
4967
bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4968
4969
if (postponed) {
4970
// This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4971
add_to_postponed_list(nm);
4972
}
4973
4974
// Mark that this thread has been cleaned/unloaded.
4975
// After this call, it will be safe to ask if this nmethod was unloaded or not.
4976
nm->set_unloading_clock(nmethod::global_unloading_clock());
4977
}
4978
4979
void clean_nmethod_postponed(nmethod* nm) {
4980
nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4981
}
4982
4983
static const int MaxClaimNmethods = 16;
4984
4985
void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4986
nmethod* first;
4987
nmethod* last;
4988
4989
do {
4990
*num_claimed_nmethods = 0;
4991
4992
first = last = (nmethod*)_claimed_nmethod;
4993
4994
if (first != NULL) {
4995
for (int i = 0; i < MaxClaimNmethods; i++) {
4996
last = CodeCache::alive_nmethod(CodeCache::next(last));
4997
4998
if (last == NULL) {
4999
break;
5000
}
5001
5002
claimed_nmethods[i] = last;
5003
(*num_claimed_nmethods)++;
5004
}
5005
}
5006
5007
} while ((nmethod*)Atomic::cmpxchg_ptr(last, &_claimed_nmethod, first) != first);
5008
}
5009
5010
nmethod* claim_postponed_nmethod() {
5011
nmethod* claim;
5012
nmethod* next;
5013
5014
do {
5015
claim = (nmethod*)_postponed_list;
5016
if (claim == NULL) {
5017
return NULL;
5018
}
5019
5020
next = claim->unloading_next();
5021
5022
} while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
5023
5024
return claim;
5025
}
5026
5027
public:
5028
// Mark that we're done with the first pass of nmethod cleaning.
5029
void barrier_mark(uint worker_id) {
5030
MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
5031
_num_entered_barrier++;
5032
if (_num_entered_barrier == _num_workers) {
5033
ml.notify_all();
5034
}
5035
}
5036
5037
// See if we have to wait for the other workers to
5038
// finish their first-pass nmethod cleaning work.
5039
void barrier_wait(uint worker_id) {
5040
if (_num_entered_barrier < _num_workers) {
5041
MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
5042
while (_num_entered_barrier < _num_workers) {
5043
ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
5044
}
5045
}
5046
}
5047
5048
// Cleaning and unloading of nmethods. Some work has to be postponed
5049
// to the second pass, when we know which nmethods survive.
5050
void work_first_pass(uint worker_id) {
5051
// The first nmethods is claimed by the first worker.
5052
if (worker_id == 0 && _first_nmethod != NULL) {
5053
clean_nmethod(_first_nmethod);
5054
_first_nmethod = NULL;
5055
}
5056
5057
int num_claimed_nmethods;
5058
nmethod* claimed_nmethods[MaxClaimNmethods];
5059
5060
while (true) {
5061
claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
5062
5063
if (num_claimed_nmethods == 0) {
5064
break;
5065
}
5066
5067
for (int i = 0; i < num_claimed_nmethods; i++) {
5068
clean_nmethod(claimed_nmethods[i]);
5069
}
5070
}
5071
5072
// The nmethod cleaning helps out and does the CodeCache part of MetadataOnStackMark.
5073
// Need to retire the buffers now that this thread has stopped cleaning nmethods.
5074
MetadataOnStackMark::retire_buffer_for_thread(Thread::current());
5075
}
5076
5077
void work_second_pass(uint worker_id) {
5078
nmethod* nm;
5079
// Take care of postponed nmethods.
5080
while ((nm = claim_postponed_nmethod()) != NULL) {
5081
clean_nmethod_postponed(nm);
5082
}
5083
}
5084
};
5085
5086
Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock");
5087
5088
class G1KlassCleaningTask : public StackObj {
5089
BoolObjectClosure* _is_alive;
5090
volatile jint _clean_klass_tree_claimed;
5091
ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
5092
5093
public:
5094
G1KlassCleaningTask(BoolObjectClosure* is_alive) :
5095
_is_alive(is_alive),
5096
_clean_klass_tree_claimed(0),
5097
_klass_iterator() {
5098
}
5099
5100
private:
5101
bool claim_clean_klass_tree_task() {
5102
if (_clean_klass_tree_claimed) {
5103
return false;
5104
}
5105
5106
return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
5107
}
5108
5109
InstanceKlass* claim_next_klass() {
5110
Klass* klass;
5111
do {
5112
klass =_klass_iterator.next_klass();
5113
} while (klass != NULL && !klass->oop_is_instance());
5114
5115
return (InstanceKlass*)klass;
5116
}
5117
5118
public:
5119
5120
void clean_klass(InstanceKlass* ik) {
5121
ik->clean_weak_instanceklass_links(_is_alive);
5122
5123
if (JvmtiExport::has_redefined_a_class()) {
5124
InstanceKlass::purge_previous_versions(ik);
5125
}
5126
}
5127
5128
void work() {
5129
ResourceMark rm;
5130
5131
// One worker will clean the subklass/sibling klass tree.
5132
if (claim_clean_klass_tree_task()) {
5133
Klass::clean_subklass_tree(_is_alive);
5134
}
5135
5136
// All workers will help cleaning the classes,
5137
InstanceKlass* klass;
5138
while ((klass = claim_next_klass()) != NULL) {
5139
clean_klass(klass);
5140
}
5141
}
5142
};
5143
5144
// To minimize the remark pause times, the tasks below are done in parallel.
5145
class G1ParallelCleaningTask : public AbstractGangTask {
5146
private:
5147
G1StringSymbolTableUnlinkTask _string_symbol_task;
5148
G1CodeCacheUnloadingTask _code_cache_task;
5149
G1KlassCleaningTask _klass_cleaning_task;
5150
5151
public:
5152
// The constructor is run in the VMThread.
5153
G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
5154
AbstractGangTask("Parallel Cleaning"),
5155
_string_symbol_task(is_alive, process_strings, process_symbols),
5156
_code_cache_task(num_workers, is_alive, unloading_occurred),
5157
_klass_cleaning_task(is_alive) {
5158
}
5159
5160
void pre_work_verification() {
5161
// The VM Thread will have registered Metadata during the single-threaded phase of MetadataStackOnMark.
5162
assert(Thread::current()->is_VM_thread()
5163
|| !MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
5164
}
5165
5166
void post_work_verification() {
5167
assert(!MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
5168
}
5169
5170
// The parallel work done by all worker threads.
5171
void work(uint worker_id) {
5172
pre_work_verification();
5173
5174
// Do first pass of code cache cleaning.
5175
_code_cache_task.work_first_pass(worker_id);
5176
5177
// Let the threads mark that the first pass is done.
5178
_code_cache_task.barrier_mark(worker_id);
5179
5180
// Clean the Strings and Symbols.
5181
_string_symbol_task.work(worker_id);
5182
5183
// Wait for all workers to finish the first code cache cleaning pass.
5184
_code_cache_task.barrier_wait(worker_id);
5185
5186
// Do the second code cache cleaning work, which realize on
5187
// the liveness information gathered during the first pass.
5188
_code_cache_task.work_second_pass(worker_id);
5189
5190
// Clean all klasses that were not unloaded.
5191
_klass_cleaning_task.work();
5192
5193
post_work_verification();
5194
}
5195
};
5196
5197
5198
void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
5199
bool process_strings,
5200
bool process_symbols,
5201
bool class_unloading_occurred) {
5202
uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5203
workers()->active_workers() : 1);
5204
5205
G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
5206
n_workers, class_unloading_occurred);
5207
if (G1CollectedHeap::use_parallel_gc_threads()) {
5208
set_par_threads(n_workers);
5209
workers()->run_task(&g1_unlink_task);
5210
set_par_threads(0);
5211
} else {
5212
g1_unlink_task.work(0);
5213
}
5214
}
5215
5216
void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
5217
bool process_strings, bool process_symbols) {
5218
{
5219
uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5220
_g1h->workers()->active_workers() : 1);
5221
G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
5222
if (G1CollectedHeap::use_parallel_gc_threads()) {
5223
set_par_threads(n_workers);
5224
workers()->run_task(&g1_unlink_task);
5225
set_par_threads(0);
5226
} else {
5227
g1_unlink_task.work(0);
5228
}
5229
}
5230
5231
if (G1StringDedup::is_enabled()) {
5232
G1StringDedup::unlink(is_alive);
5233
}
5234
}
5235
5236
class G1RedirtyLoggedCardsTask : public AbstractGangTask {
5237
private:
5238
DirtyCardQueueSet* _queue;
5239
public:
5240
G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
5241
5242
virtual void work(uint worker_id) {
5243
G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
5244
G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
5245
5246
RedirtyLoggedCardTableEntryClosure cl;
5247
if (G1CollectedHeap::heap()->use_parallel_gc_threads()) {
5248
_queue->par_apply_closure_to_all_completed_buffers(&cl);
5249
} else {
5250
_queue->apply_closure_to_all_completed_buffers(&cl);
5251
}
5252
5253
phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
5254
}
5255
};
5256
5257
void G1CollectedHeap::redirty_logged_cards() {
5258
double redirty_logged_cards_start = os::elapsedTime();
5259
5260
uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5261
_g1h->workers()->active_workers() : 1);
5262
5263
G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
5264
dirty_card_queue_set().reset_for_par_iteration();
5265
if (use_parallel_gc_threads()) {
5266
set_par_threads(n_workers);
5267
workers()->run_task(&redirty_task);
5268
set_par_threads(0);
5269
} else {
5270
redirty_task.work(0);
5271
}
5272
5273
DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5274
dcq.merge_bufferlists(&dirty_card_queue_set());
5275
assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5276
5277
g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
5278
}
5279
5280
// Weak Reference Processing support
5281
5282
// An always "is_alive" closure that is used to preserve referents.
5283
// If the object is non-null then it's alive. Used in the preservation
5284
// of referent objects that are pointed to by reference objects
5285
// discovered by the CM ref processor.
5286
class G1AlwaysAliveClosure: public BoolObjectClosure {
5287
G1CollectedHeap* _g1;
5288
public:
5289
G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5290
bool do_object_b(oop p) {
5291
if (p != NULL) {
5292
return true;
5293
}
5294
return false;
5295
}
5296
};
5297
5298
bool G1STWIsAliveClosure::do_object_b(oop p) {
5299
// An object is reachable if it is outside the collection set,
5300
// or is inside and copied.
5301
return !_g1->obj_in_cs(p) || p->is_forwarded();
5302
}
5303
5304
// Non Copying Keep Alive closure
5305
class G1KeepAliveClosure: public OopClosure {
5306
G1CollectedHeap* _g1;
5307
public:
5308
G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5309
void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5310
void do_oop(oop* p) {
5311
oop obj = *p;
5312
assert(obj != NULL, "the caller should have filtered out NULL values");
5313
5314
const InCSetState cset_state = _g1->in_cset_state(obj);
5315
if (!cset_state.is_in_cset_or_humongous()) {
5316
return;
5317
}
5318
if (cset_state.is_in_cset()) {
5319
assert( obj->is_forwarded(), "invariant" );
5320
*p = obj->forwardee();
5321
} else {
5322
assert(!obj->is_forwarded(), "invariant" );
5323
assert(cset_state.is_humongous(),
5324
err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
5325
_g1->set_humongous_is_live(obj);
5326
}
5327
}
5328
};
5329
5330
// Copying Keep Alive closure - can be called from both
5331
// serial and parallel code as long as different worker
5332
// threads utilize different G1ParScanThreadState instances
5333
// and different queues.
5334
5335
class G1CopyingKeepAliveClosure: public OopClosure {
5336
G1CollectedHeap* _g1h;
5337
OopClosure* _copy_non_heap_obj_cl;
5338
G1ParScanThreadState* _par_scan_state;
5339
5340
public:
5341
G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5342
OopClosure* non_heap_obj_cl,
5343
G1ParScanThreadState* pss):
5344
_g1h(g1h),
5345
_copy_non_heap_obj_cl(non_heap_obj_cl),
5346
_par_scan_state(pss)
5347
{}
5348
5349
virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5350
virtual void do_oop( oop* p) { do_oop_work(p); }
5351
5352
template <class T> void do_oop_work(T* p) {
5353
oop obj = oopDesc::load_decode_heap_oop(p);
5354
5355
if (_g1h->is_in_cset_or_humongous(obj)) {
5356
// If the referent object has been forwarded (either copied
5357
// to a new location or to itself in the event of an
5358
// evacuation failure) then we need to update the reference
5359
// field and, if both reference and referent are in the G1
5360
// heap, update the RSet for the referent.
5361
//
5362
// If the referent has not been forwarded then we have to keep
5363
// it alive by policy. Therefore we have copy the referent.
5364
//
5365
// If the reference field is in the G1 heap then we can push
5366
// on the PSS queue. When the queue is drained (after each
5367
// phase of reference processing) the object and it's followers
5368
// will be copied, the reference field set to point to the
5369
// new location, and the RSet updated. Otherwise we need to
5370
// use the the non-heap or metadata closures directly to copy
5371
// the referent object and update the pointer, while avoiding
5372
// updating the RSet.
5373
5374
if (_g1h->is_in_g1_reserved(p)) {
5375
_par_scan_state->push_on_queue(p);
5376
} else {
5377
assert(!Metaspace::contains((const void*)p),
5378
err_msg("Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p)));
5379
_copy_non_heap_obj_cl->do_oop(p);
5380
}
5381
}
5382
}
5383
};
5384
5385
// Serial drain queue closure. Called as the 'complete_gc'
5386
// closure for each discovered list in some of the
5387
// reference processing phases.
5388
5389
class G1STWDrainQueueClosure: public VoidClosure {
5390
protected:
5391
G1CollectedHeap* _g1h;
5392
G1ParScanThreadState* _par_scan_state;
5393
5394
G1ParScanThreadState* par_scan_state() { return _par_scan_state; }
5395
5396
public:
5397
G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5398
_g1h(g1h),
5399
_par_scan_state(pss)
5400
{ }
5401
5402
void do_void() {
5403
G1ParScanThreadState* const pss = par_scan_state();
5404
pss->trim_queue();
5405
}
5406
};
5407
5408
// Parallel Reference Processing closures
5409
5410
// Implementation of AbstractRefProcTaskExecutor for parallel reference
5411
// processing during G1 evacuation pauses.
5412
5413
class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5414
private:
5415
G1CollectedHeap* _g1h;
5416
RefToScanQueueSet* _queues;
5417
FlexibleWorkGang* _workers;
5418
int _active_workers;
5419
5420
public:
5421
G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5422
FlexibleWorkGang* workers,
5423
RefToScanQueueSet *task_queues,
5424
int n_workers) :
5425
_g1h(g1h),
5426
_queues(task_queues),
5427
_workers(workers),
5428
_active_workers(n_workers)
5429
{
5430
assert(n_workers > 0, "shouldn't call this otherwise");
5431
}
5432
5433
// Executes the given task using concurrent marking worker threads.
5434
virtual void execute(ProcessTask& task);
5435
virtual void execute(EnqueueTask& task);
5436
};
5437
5438
// Gang task for possibly parallel reference processing
5439
5440
class G1STWRefProcTaskProxy: public AbstractGangTask {
5441
typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5442
ProcessTask& _proc_task;
5443
G1CollectedHeap* _g1h;
5444
RefToScanQueueSet *_task_queues;
5445
ParallelTaskTerminator* _terminator;
5446
5447
public:
5448
G1STWRefProcTaskProxy(ProcessTask& proc_task,
5449
G1CollectedHeap* g1h,
5450
RefToScanQueueSet *task_queues,
5451
ParallelTaskTerminator* terminator) :
5452
AbstractGangTask("Process reference objects in parallel"),
5453
_proc_task(proc_task),
5454
_g1h(g1h),
5455
_task_queues(task_queues),
5456
_terminator(terminator)
5457
{}
5458
5459
virtual void work(uint worker_id) {
5460
// The reference processing task executed by a single worker.
5461
ResourceMark rm;
5462
HandleMark hm;
5463
5464
G1STWIsAliveClosure is_alive(_g1h);
5465
5466
G1ParScanThreadState pss(_g1h, worker_id, NULL);
5467
G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5468
5469
pss.set_evac_failure_closure(&evac_failure_cl);
5470
5471
G1ParScanExtRootClosure only_copy_non_heap_cl(_g1h, &pss, NULL);
5472
5473
G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5474
5475
OopClosure* copy_non_heap_cl = &only_copy_non_heap_cl;
5476
5477
if (_g1h->g1_policy()->during_initial_mark_pause()) {
5478
// We also need to mark copied objects.
5479
copy_non_heap_cl = &copy_mark_non_heap_cl;
5480
}
5481
5482
// Keep alive closure.
5483
G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5484
5485
// Complete GC closure
5486
G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5487
5488
// Call the reference processing task's work routine.
5489
_proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5490
5491
// Note we cannot assert that the refs array is empty here as not all
5492
// of the processing tasks (specifically phase2 - pp2_work) execute
5493
// the complete_gc closure (which ordinarily would drain the queue) so
5494
// the queue may not be empty.
5495
}
5496
};
5497
5498
// Driver routine for parallel reference processing.
5499
// Creates an instance of the ref processing gang
5500
// task and has the worker threads execute it.
5501
void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5502
assert(_workers != NULL, "Need parallel worker threads.");
5503
5504
ParallelTaskTerminator terminator(_active_workers, _queues);
5505
G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5506
5507
_g1h->set_par_threads(_active_workers);
5508
_workers->run_task(&proc_task_proxy);
5509
_g1h->set_par_threads(0);
5510
}
5511
5512
// Gang task for parallel reference enqueueing.
5513
5514
class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5515
typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5516
EnqueueTask& _enq_task;
5517
5518
public:
5519
G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5520
AbstractGangTask("Enqueue reference objects in parallel"),
5521
_enq_task(enq_task)
5522
{ }
5523
5524
virtual void work(uint worker_id) {
5525
_enq_task.work(worker_id);
5526
}
5527
};
5528
5529
// Driver routine for parallel reference enqueueing.
5530
// Creates an instance of the ref enqueueing gang
5531
// task and has the worker threads execute it.
5532
5533
void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5534
assert(_workers != NULL, "Need parallel worker threads.");
5535
5536
G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5537
5538
_g1h->set_par_threads(_active_workers);
5539
_workers->run_task(&enq_task_proxy);
5540
_g1h->set_par_threads(0);
5541
}
5542
5543
// End of weak reference support closures
5544
5545
// Abstract task used to preserve (i.e. copy) any referent objects
5546
// that are in the collection set and are pointed to by reference
5547
// objects discovered by the CM ref processor.
5548
5549
class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5550
protected:
5551
G1CollectedHeap* _g1h;
5552
RefToScanQueueSet *_queues;
5553
ParallelTaskTerminator _terminator;
5554
uint _n_workers;
5555
5556
public:
5557
G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5558
AbstractGangTask("ParPreserveCMReferents"),
5559
_g1h(g1h),
5560
_queues(task_queues),
5561
_terminator(workers, _queues),
5562
_n_workers(workers)
5563
{ }
5564
5565
void work(uint worker_id) {
5566
ResourceMark rm;
5567
HandleMark hm;
5568
5569
G1ParScanThreadState pss(_g1h, worker_id, NULL);
5570
G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5571
5572
pss.set_evac_failure_closure(&evac_failure_cl);
5573
5574
assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5575
5576
G1ParScanExtRootClosure only_copy_non_heap_cl(_g1h, &pss, NULL);
5577
5578
G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5579
5580
OopClosure* copy_non_heap_cl = &only_copy_non_heap_cl;
5581
5582
if (_g1h->g1_policy()->during_initial_mark_pause()) {
5583
// We also need to mark copied objects.
5584
copy_non_heap_cl = &copy_mark_non_heap_cl;
5585
}
5586
5587
// Is alive closure
5588
G1AlwaysAliveClosure always_alive(_g1h);
5589
5590
// Copying keep alive closure. Applied to referent objects that need
5591
// to be copied.
5592
G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5593
5594
ReferenceProcessor* rp = _g1h->ref_processor_cm();
5595
5596
uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5597
uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5598
5599
// limit is set using max_num_q() - which was set using ParallelGCThreads.
5600
// So this must be true - but assert just in case someone decides to
5601
// change the worker ids.
5602
assert(0 <= worker_id && worker_id < limit, "sanity");
5603
assert(!rp->discovery_is_atomic(), "check this code");
5604
5605
// Select discovered lists [i, i+stride, i+2*stride,...,limit)
5606
for (uint idx = worker_id; idx < limit; idx += stride) {
5607
DiscoveredList& ref_list = rp->discovered_refs()[idx];
5608
5609
DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5610
while (iter.has_next()) {
5611
// Since discovery is not atomic for the CM ref processor, we
5612
// can see some null referent objects.
5613
iter.load_ptrs(DEBUG_ONLY(true));
5614
oop ref = iter.obj();
5615
5616
// This will filter nulls.
5617
if (iter.is_referent_alive()) {
5618
iter.make_referent_alive();
5619
}
5620
iter.move_to_next();
5621
}
5622
}
5623
5624
// Drain the queue - which may cause stealing
5625
G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5626
drain_queue.do_void();
5627
// Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5628
assert(pss.queue_is_empty(), "should be");
5629
}
5630
};
5631
5632
// Weak Reference processing during an evacuation pause (part 1).
5633
void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5634
double ref_proc_start = os::elapsedTime();
5635
5636
ReferenceProcessor* rp = _ref_processor_stw;
5637
assert(rp->discovery_enabled(), "should have been enabled");
5638
5639
// Any reference objects, in the collection set, that were 'discovered'
5640
// by the CM ref processor should have already been copied (either by
5641
// applying the external root copy closure to the discovered lists, or
5642
// by following an RSet entry).
5643
//
5644
// But some of the referents, that are in the collection set, that these
5645
// reference objects point to may not have been copied: the STW ref
5646
// processor would have seen that the reference object had already
5647
// been 'discovered' and would have skipped discovering the reference,
5648
// but would not have treated the reference object as a regular oop.
5649
// As a result the copy closure would not have been applied to the
5650
// referent object.
5651
//
5652
// We need to explicitly copy these referent objects - the references
5653
// will be processed at the end of remarking.
5654
//
5655
// We also need to do this copying before we process the reference
5656
// objects discovered by the STW ref processor in case one of these
5657
// referents points to another object which is also referenced by an
5658
// object discovered by the STW ref processor.
5659
5660
assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5661
no_of_gc_workers == workers()->active_workers(),
5662
"Need to reset active GC workers");
5663
5664
set_par_threads(no_of_gc_workers);
5665
G1ParPreserveCMReferentsTask keep_cm_referents(this,
5666
no_of_gc_workers,
5667
_task_queues);
5668
5669
if (G1CollectedHeap::use_parallel_gc_threads()) {
5670
workers()->run_task(&keep_cm_referents);
5671
} else {
5672
keep_cm_referents.work(0);
5673
}
5674
5675
set_par_threads(0);
5676
5677
// Closure to test whether a referent is alive.
5678
G1STWIsAliveClosure is_alive(this);
5679
5680
// Even when parallel reference processing is enabled, the processing
5681
// of JNI refs is serial and performed serially by the current thread
5682
// rather than by a worker. The following PSS will be used for processing
5683
// JNI refs.
5684
5685
// Use only a single queue for this PSS.
5686
G1ParScanThreadState pss(this, 0, NULL);
5687
5688
// We do not embed a reference processor in the copying/scanning
5689
// closures while we're actually processing the discovered
5690
// reference objects.
5691
G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5692
5693
pss.set_evac_failure_closure(&evac_failure_cl);
5694
5695
assert(pss.queue_is_empty(), "pre-condition");
5696
5697
G1ParScanExtRootClosure only_copy_non_heap_cl(this, &pss, NULL);
5698
5699
G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5700
5701
OopClosure* copy_non_heap_cl = &only_copy_non_heap_cl;
5702
5703
if (_g1h->g1_policy()->during_initial_mark_pause()) {
5704
// We also need to mark copied objects.
5705
copy_non_heap_cl = &copy_mark_non_heap_cl;
5706
}
5707
5708
// Keep alive closure.
5709
G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5710
5711
// Serial Complete GC closure
5712
G1STWDrainQueueClosure drain_queue(this, &pss);
5713
5714
// Setup the soft refs policy...
5715
rp->setup_policy(false);
5716
5717
ReferenceProcessorStats stats;
5718
if (!rp->processing_is_mt()) {
5719
// Serial reference processing...
5720
stats = rp->process_discovered_references(&is_alive,
5721
&keep_alive,
5722
&drain_queue,
5723
NULL,
5724
_gc_timer_stw,
5725
_gc_tracer_stw->gc_id());
5726
} else {
5727
// Parallel reference processing
5728
assert(rp->num_q() == no_of_gc_workers, "sanity");
5729
assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5730
5731
G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5732
stats = rp->process_discovered_references(&is_alive,
5733
&keep_alive,
5734
&drain_queue,
5735
&par_task_executor,
5736
_gc_timer_stw,
5737
_gc_tracer_stw->gc_id());
5738
}
5739
5740
_gc_tracer_stw->report_gc_reference_stats(stats);
5741
5742
// We have completed copying any necessary live referent objects.
5743
assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5744
5745
double ref_proc_time = os::elapsedTime() - ref_proc_start;
5746
g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5747
}
5748
5749
// Weak Reference processing during an evacuation pause (part 2).
5750
void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5751
double ref_enq_start = os::elapsedTime();
5752
5753
ReferenceProcessor* rp = _ref_processor_stw;
5754
assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5755
5756
// Now enqueue any remaining on the discovered lists on to
5757
// the pending list.
5758
if (!rp->processing_is_mt()) {
5759
// Serial reference processing...
5760
rp->enqueue_discovered_references();
5761
} else {
5762
// Parallel reference enqueueing
5763
5764
assert(no_of_gc_workers == workers()->active_workers(),
5765
"Need to reset active workers");
5766
assert(rp->num_q() == no_of_gc_workers, "sanity");
5767
assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5768
5769
G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5770
rp->enqueue_discovered_references(&par_task_executor);
5771
}
5772
5773
rp->verify_no_references_recorded();
5774
assert(!rp->discovery_enabled(), "should have been disabled");
5775
5776
// FIXME
5777
// CM's reference processing also cleans up the string and symbol tables.
5778
// Should we do that here also? We could, but it is a serial operation
5779
// and could significantly increase the pause time.
5780
5781
double ref_enq_time = os::elapsedTime() - ref_enq_start;
5782
g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5783
}
5784
5785
void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5786
_expand_heap_after_alloc_failure = true;
5787
_evacuation_failed = false;
5788
5789
// Should G1EvacuationFailureALot be in effect for this GC?
5790
NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5791
5792
g1_rem_set()->prepare_for_oops_into_collection_set_do();
5793
5794
// Disable the hot card cache.
5795
G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5796
hot_card_cache->reset_hot_cache_claimed_index();
5797
hot_card_cache->set_use_cache(false);
5798
5799
const uint n_workers = workers()->active_workers();
5800
assert(UseDynamicNumberOfGCThreads ||
5801
n_workers == workers()->total_workers(),
5802
"If not dynamic should be using all the workers");
5803
set_par_threads(n_workers);
5804
5805
init_for_evac_failure(NULL);
5806
5807
rem_set()->prepare_for_younger_refs_iterate(true);
5808
5809
assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5810
double start_par_time_sec = os::elapsedTime();
5811
double end_par_time_sec;
5812
5813
{
5814
G1RootProcessor root_processor(this);
5815
G1ParTask g1_par_task(this, _task_queues, &root_processor);
5816
// InitialMark needs claim bits to keep track of the marked-through CLDs.
5817
if (g1_policy()->during_initial_mark_pause()) {
5818
ClassLoaderDataGraph::clear_claimed_marks();
5819
}
5820
5821
if (G1CollectedHeap::use_parallel_gc_threads()) {
5822
// The individual threads will set their evac-failure closures.
5823
if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5824
// These tasks use ShareHeap::_process_strong_tasks
5825
assert(UseDynamicNumberOfGCThreads ||
5826
workers()->active_workers() == workers()->total_workers(),
5827
"If not dynamic should be using all the workers");
5828
workers()->run_task(&g1_par_task);
5829
} else {
5830
g1_par_task.set_for_termination(n_workers);
5831
g1_par_task.work(0);
5832
}
5833
end_par_time_sec = os::elapsedTime();
5834
5835
// Closing the inner scope will execute the destructor
5836
// for the G1RootProcessor object. We record the current
5837
// elapsed time before closing the scope so that time
5838
// taken for the destructor is NOT included in the
5839
// reported parallel time.
5840
}
5841
5842
G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5843
5844
double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5845
phase_times->record_par_time(par_time_ms);
5846
5847
double code_root_fixup_time_ms =
5848
(os::elapsedTime() - end_par_time_sec) * 1000.0;
5849
phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5850
5851
set_par_threads(0);
5852
5853
// Process any discovered reference objects - we have
5854
// to do this _before_ we retire the GC alloc regions
5855
// as we may have to copy some 'reachable' referent
5856
// objects (and their reachable sub-graphs) that were
5857
// not copied during the pause.
5858
process_discovered_references(n_workers);
5859
5860
if (G1StringDedup::is_enabled()) {
5861
double fixup_start = os::elapsedTime();
5862
5863
G1STWIsAliveClosure is_alive(this);
5864
G1KeepAliveClosure keep_alive(this);
5865
G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5866
5867
double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5868
phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5869
}
5870
5871
_allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5872
g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5873
5874
// Reset and re-enable the hot card cache.
5875
// Note the counts for the cards in the regions in the
5876
// collection set are reset when the collection set is freed.
5877
hot_card_cache->reset_hot_cache();
5878
hot_card_cache->set_use_cache(true);
5879
5880
purge_code_root_memory();
5881
5882
if (g1_policy()->during_initial_mark_pause()) {
5883
// Reset the claim values set during marking the strong code roots
5884
reset_heap_region_claim_values();
5885
}
5886
5887
finalize_for_evac_failure();
5888
5889
if (evacuation_failed()) {
5890
remove_self_forwarding_pointers();
5891
5892
// Reset the G1EvacuationFailureALot counters and flags
5893
// Note: the values are reset only when an actual
5894
// evacuation failure occurs.
5895
NOT_PRODUCT(reset_evacuation_should_fail();)
5896
}
5897
5898
// Enqueue any remaining references remaining on the STW
5899
// reference processor's discovered lists. We need to do
5900
// this after the card table is cleaned (and verified) as
5901
// the act of enqueueing entries on to the pending list
5902
// will log these updates (and dirty their associated
5903
// cards). We need these updates logged to update any
5904
// RSets.
5905
enqueue_discovered_references(n_workers);
5906
5907
redirty_logged_cards();
5908
COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5909
}
5910
5911
void G1CollectedHeap::free_region(HeapRegion* hr,
5912
FreeRegionList* free_list,
5913
bool par,
5914
bool locked) {
5915
assert(!hr->is_free(), "the region should not be free");
5916
assert(!hr->is_empty(), "the region should not be empty");
5917
assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5918
assert(free_list != NULL, "pre-condition");
5919
5920
if (G1VerifyBitmaps) {
5921
MemRegion mr(hr->bottom(), hr->end());
5922
concurrent_mark()->clearRangePrevBitmap(mr);
5923
}
5924
5925
// Clear the card counts for this region.
5926
// Note: we only need to do this if the region is not young
5927
// (since we don't refine cards in young regions).
5928
if (!hr->is_young()) {
5929
_cg1r->hot_card_cache()->reset_card_counts(hr);
5930
}
5931
hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5932
free_list->add_ordered(hr);
5933
}
5934
5935
void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5936
FreeRegionList* free_list,
5937
bool par) {
5938
assert(hr->startsHumongous(), "this is only for starts humongous regions");
5939
assert(free_list != NULL, "pre-condition");
5940
5941
size_t hr_capacity = hr->capacity();
5942
// We need to read this before we make the region non-humongous,
5943
// otherwise the information will be gone.
5944
uint last_index = hr->last_hc_index();
5945
hr->clear_humongous();
5946
free_region(hr, free_list, par);
5947
5948
uint i = hr->hrm_index() + 1;
5949
while (i < last_index) {
5950
HeapRegion* curr_hr = region_at(i);
5951
assert(curr_hr->continuesHumongous(), "invariant");
5952
curr_hr->clear_humongous();
5953
free_region(curr_hr, free_list, par);
5954
i += 1;
5955
}
5956
}
5957
5958
void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5959
const HeapRegionSetCount& humongous_regions_removed) {
5960
if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5961
MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5962
_old_set.bulk_remove(old_regions_removed);
5963
_humongous_set.bulk_remove(humongous_regions_removed);
5964
}
5965
5966
}
5967
5968
void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5969
assert(list != NULL, "list can't be null");
5970
if (!list->is_empty()) {
5971
MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5972
_hrm.insert_list_into_free_list(list);
5973
}
5974
}
5975
5976
void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5977
_allocator->decrease_used(bytes);
5978
}
5979
5980
class G1ParCleanupCTTask : public AbstractGangTask {
5981
G1SATBCardTableModRefBS* _ct_bs;
5982
G1CollectedHeap* _g1h;
5983
HeapRegion* volatile _su_head;
5984
public:
5985
G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5986
G1CollectedHeap* g1h) :
5987
AbstractGangTask("G1 Par Cleanup CT Task"),
5988
_ct_bs(ct_bs), _g1h(g1h) { }
5989
5990
void work(uint worker_id) {
5991
HeapRegion* r;
5992
while (r = _g1h->pop_dirty_cards_region()) {
5993
clear_cards(r);
5994
}
5995
}
5996
5997
void clear_cards(HeapRegion* r) {
5998
// Cards of the survivors should have already been dirtied.
5999
if (!r->is_survivor()) {
6000
_ct_bs->clear(MemRegion(r->bottom(), r->end()));
6001
}
6002
}
6003
};
6004
6005
#ifndef PRODUCT
6006
class G1VerifyCardTableCleanup: public HeapRegionClosure {
6007
G1CollectedHeap* _g1h;
6008
G1SATBCardTableModRefBS* _ct_bs;
6009
public:
6010
G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
6011
: _g1h(g1h), _ct_bs(ct_bs) { }
6012
virtual bool doHeapRegion(HeapRegion* r) {
6013
if (r->is_survivor()) {
6014
_g1h->verify_dirty_region(r);
6015
} else {
6016
_g1h->verify_not_dirty_region(r);
6017
}
6018
return false;
6019
}
6020
};
6021
6022
void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
6023
// All of the region should be clean.
6024
G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6025
MemRegion mr(hr->bottom(), hr->end());
6026
ct_bs->verify_not_dirty_region(mr);
6027
}
6028
6029
void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
6030
// We cannot guarantee that [bottom(),end()] is dirty. Threads
6031
// dirty allocated blocks as they allocate them. The thread that
6032
// retires each region and replaces it with a new one will do a
6033
// maximal allocation to fill in [pre_dummy_top(),end()] but will
6034
// not dirty that area (one less thing to have to do while holding
6035
// a lock). So we can only verify that [bottom(),pre_dummy_top()]
6036
// is dirty.
6037
G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6038
MemRegion mr(hr->bottom(), hr->pre_dummy_top());
6039
if (hr->is_young()) {
6040
ct_bs->verify_g1_young_region(mr);
6041
} else {
6042
ct_bs->verify_dirty_region(mr);
6043
}
6044
}
6045
6046
void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
6047
G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6048
for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
6049
verify_dirty_region(hr);
6050
}
6051
}
6052
6053
void G1CollectedHeap::verify_dirty_young_regions() {
6054
verify_dirty_young_list(_young_list->first_region());
6055
}
6056
6057
bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
6058
HeapWord* tams, HeapWord* end) {
6059
guarantee(tams <= end,
6060
err_msg("tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end)));
6061
HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
6062
if (result < end) {
6063
gclog_or_tty->cr();
6064
gclog_or_tty->print_cr("## wrong marked address on %s bitmap: " PTR_FORMAT,
6065
bitmap_name, p2i(result));
6066
gclog_or_tty->print_cr("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT,
6067
bitmap_name, p2i(tams), p2i(end));
6068
return false;
6069
}
6070
return true;
6071
}
6072
6073
bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
6074
CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
6075
CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
6076
6077
HeapWord* bottom = hr->bottom();
6078
HeapWord* ptams = hr->prev_top_at_mark_start();
6079
HeapWord* ntams = hr->next_top_at_mark_start();
6080
HeapWord* end = hr->end();
6081
6082
bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
6083
6084
bool res_n = true;
6085
// We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
6086
// we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
6087
// if we happen to be in that state.
6088
if (mark_in_progress() || !_cmThread->in_progress()) {
6089
res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
6090
}
6091
if (!res_p || !res_n) {
6092
gclog_or_tty->print_cr("#### Bitmap verification failed for " HR_FORMAT,
6093
HR_FORMAT_PARAMS(hr));
6094
gclog_or_tty->print_cr("#### Caller: %s", caller);
6095
return false;
6096
}
6097
return true;
6098
}
6099
6100
void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
6101
if (!G1VerifyBitmaps) return;
6102
6103
guarantee(verify_bitmaps(caller, hr), "bitmap verification");
6104
}
6105
6106
class G1VerifyBitmapClosure : public HeapRegionClosure {
6107
private:
6108
const char* _caller;
6109
G1CollectedHeap* _g1h;
6110
bool _failures;
6111
6112
public:
6113
G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
6114
_caller(caller), _g1h(g1h), _failures(false) { }
6115
6116
bool failures() { return _failures; }
6117
6118
virtual bool doHeapRegion(HeapRegion* hr) {
6119
if (hr->continuesHumongous()) return false;
6120
6121
bool result = _g1h->verify_bitmaps(_caller, hr);
6122
if (!result) {
6123
_failures = true;
6124
}
6125
return false;
6126
}
6127
};
6128
6129
void G1CollectedHeap::check_bitmaps(const char* caller) {
6130
if (!G1VerifyBitmaps) return;
6131
6132
G1VerifyBitmapClosure cl(caller, this);
6133
heap_region_iterate(&cl);
6134
guarantee(!cl.failures(), "bitmap verification");
6135
}
6136
6137
class G1CheckCSetFastTableClosure : public HeapRegionClosure {
6138
private:
6139
bool _failures;
6140
public:
6141
G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
6142
6143
virtual bool doHeapRegion(HeapRegion* hr) {
6144
uint i = hr->hrm_index();
6145
InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
6146
if (hr->isHumongous()) {
6147
if (hr->in_collection_set()) {
6148
gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
6149
_failures = true;
6150
return true;
6151
}
6152
if (cset_state.is_in_cset()) {
6153
gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
6154
_failures = true;
6155
return true;
6156
}
6157
if (hr->continuesHumongous() && cset_state.is_humongous()) {
6158
gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
6159
_failures = true;
6160
return true;
6161
}
6162
} else {
6163
if (cset_state.is_humongous()) {
6164
gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
6165
_failures = true;
6166
return true;
6167
}
6168
if (hr->in_collection_set() != cset_state.is_in_cset()) {
6169
gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
6170
hr->in_collection_set(), cset_state.value(), i);
6171
_failures = true;
6172
return true;
6173
}
6174
if (cset_state.is_in_cset()) {
6175
if (hr->is_young() != (cset_state.is_young())) {
6176
gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
6177
hr->is_young(), cset_state.value(), i);
6178
_failures = true;
6179
return true;
6180
}
6181
if (hr->is_old() != (cset_state.is_old())) {
6182
gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
6183
hr->is_old(), cset_state.value(), i);
6184
_failures = true;
6185
return true;
6186
}
6187
}
6188
}
6189
return false;
6190
}
6191
6192
bool failures() const { return _failures; }
6193
};
6194
6195
bool G1CollectedHeap::check_cset_fast_test() {
6196
G1CheckCSetFastTableClosure cl;
6197
_hrm.iterate(&cl);
6198
return !cl.failures();
6199
}
6200
#endif // PRODUCT
6201
6202
void G1CollectedHeap::cleanUpCardTable() {
6203
G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6204
double start = os::elapsedTime();
6205
6206
{
6207
// Iterate over the dirty cards region list.
6208
G1ParCleanupCTTask cleanup_task(ct_bs, this);
6209
6210
if (G1CollectedHeap::use_parallel_gc_threads()) {
6211
set_par_threads();
6212
workers()->run_task(&cleanup_task);
6213
set_par_threads(0);
6214
} else {
6215
while (_dirty_cards_region_list) {
6216
HeapRegion* r = _dirty_cards_region_list;
6217
cleanup_task.clear_cards(r);
6218
_dirty_cards_region_list = r->get_next_dirty_cards_region();
6219
if (_dirty_cards_region_list == r) {
6220
// The last region.
6221
_dirty_cards_region_list = NULL;
6222
}
6223
r->set_next_dirty_cards_region(NULL);
6224
}
6225
}
6226
#ifndef PRODUCT
6227
if (G1VerifyCTCleanup || VerifyAfterGC) {
6228
G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6229
heap_region_iterate(&cleanup_verifier);
6230
}
6231
#endif
6232
}
6233
6234
double elapsed = os::elapsedTime() - start;
6235
g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6236
}
6237
6238
void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6239
size_t pre_used = 0;
6240
FreeRegionList local_free_list("Local List for CSet Freeing");
6241
6242
double young_time_ms = 0.0;
6243
double non_young_time_ms = 0.0;
6244
6245
// Since the collection set is a superset of the the young list,
6246
// all we need to do to clear the young list is clear its
6247
// head and length, and unlink any young regions in the code below
6248
_young_list->clear();
6249
6250
G1CollectorPolicy* policy = g1_policy();
6251
6252
double start_sec = os::elapsedTime();
6253
bool non_young = true;
6254
6255
HeapRegion* cur = cs_head;
6256
int age_bound = -1;
6257
size_t rs_lengths = 0;
6258
6259
while (cur != NULL) {
6260
assert(!is_on_master_free_list(cur), "sanity");
6261
if (non_young) {
6262
if (cur->is_young()) {
6263
double end_sec = os::elapsedTime();
6264
double elapsed_ms = (end_sec - start_sec) * 1000.0;
6265
non_young_time_ms += elapsed_ms;
6266
6267
start_sec = os::elapsedTime();
6268
non_young = false;
6269
}
6270
} else {
6271
if (!cur->is_young()) {
6272
double end_sec = os::elapsedTime();
6273
double elapsed_ms = (end_sec - start_sec) * 1000.0;
6274
young_time_ms += elapsed_ms;
6275
6276
start_sec = os::elapsedTime();
6277
non_young = true;
6278
}
6279
}
6280
6281
rs_lengths += cur->rem_set()->occupied_locked();
6282
6283
HeapRegion* next = cur->next_in_collection_set();
6284
assert(cur->in_collection_set(), "bad CS");
6285
cur->set_next_in_collection_set(NULL);
6286
cur->set_in_collection_set(false);
6287
6288
if (cur->is_young()) {
6289
int index = cur->young_index_in_cset();
6290
assert(index != -1, "invariant");
6291
assert((uint) index < policy->young_cset_region_length(), "invariant");
6292
size_t words_survived = _surviving_young_words[index];
6293
cur->record_surv_words_in_group(words_survived);
6294
6295
// At this point the we have 'popped' cur from the collection set
6296
// (linked via next_in_collection_set()) but it is still in the
6297
// young list (linked via next_young_region()). Clear the
6298
// _next_young_region field.
6299
cur->set_next_young_region(NULL);
6300
} else {
6301
int index = cur->young_index_in_cset();
6302
assert(index == -1, "invariant");
6303
}
6304
6305
assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6306
(!cur->is_young() && cur->young_index_in_cset() == -1),
6307
"invariant" );
6308
6309
if (!cur->evacuation_failed()) {
6310
MemRegion used_mr = cur->used_region();
6311
6312
// And the region is empty.
6313
assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6314
pre_used += cur->used();
6315
free_region(cur, &local_free_list, false /* par */, true /* locked */);
6316
} else {
6317
cur->uninstall_surv_rate_group();
6318
if (cur->is_young()) {
6319
cur->set_young_index_in_cset(-1);
6320
}
6321
cur->set_evacuation_failed(false);
6322
// The region is now considered to be old.
6323
cur->set_old();
6324
_old_set.add(cur);
6325
evacuation_info.increment_collectionset_used_after(cur->used());
6326
}
6327
cur = next;
6328
}
6329
6330
evacuation_info.set_regions_freed(local_free_list.length());
6331
policy->record_max_rs_lengths(rs_lengths);
6332
policy->cset_regions_freed();
6333
6334
double end_sec = os::elapsedTime();
6335
double elapsed_ms = (end_sec - start_sec) * 1000.0;
6336
6337
if (non_young) {
6338
non_young_time_ms += elapsed_ms;
6339
} else {
6340
young_time_ms += elapsed_ms;
6341
}
6342
6343
prepend_to_freelist(&local_free_list);
6344
decrement_summary_bytes(pre_used);
6345
policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6346
policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6347
}
6348
6349
class G1FreeHumongousRegionClosure : public HeapRegionClosure {
6350
private:
6351
FreeRegionList* _free_region_list;
6352
HeapRegionSet* _proxy_set;
6353
HeapRegionSetCount _humongous_regions_removed;
6354
size_t _freed_bytes;
6355
public:
6356
6357
G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
6358
_free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
6359
}
6360
6361
virtual bool doHeapRegion(HeapRegion* r) {
6362
if (!r->startsHumongous()) {
6363
return false;
6364
}
6365
6366
G1CollectedHeap* g1h = G1CollectedHeap::heap();
6367
6368
oop obj = (oop)r->bottom();
6369
CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
6370
6371
// The following checks whether the humongous object is live are sufficient.
6372
// The main additional check (in addition to having a reference from the roots
6373
// or the young gen) is whether the humongous object has a remembered set entry.
6374
//
6375
// A humongous object cannot be live if there is no remembered set for it
6376
// because:
6377
// - there can be no references from within humongous starts regions referencing
6378
// the object because we never allocate other objects into them.
6379
// (I.e. there are no intra-region references that may be missed by the
6380
// remembered set)
6381
// - as soon there is a remembered set entry to the humongous starts region
6382
// (i.e. it has "escaped" to an old object) this remembered set entry will stay
6383
// until the end of a concurrent mark.
6384
//
6385
// It is not required to check whether the object has been found dead by marking
6386
// or not, in fact it would prevent reclamation within a concurrent cycle, as
6387
// all objects allocated during that time are considered live.
6388
// SATB marking is even more conservative than the remembered set.
6389
// So if at this point in the collection there is no remembered set entry,
6390
// nobody has a reference to it.
6391
// At the start of collection we flush all refinement logs, and remembered sets
6392
// are completely up-to-date wrt to references to the humongous object.
6393
//
6394
// Other implementation considerations:
6395
// - never consider object arrays at this time because they would pose
6396
// considerable effort for cleaning up the the remembered sets. This is
6397
// required because stale remembered sets might reference locations that
6398
// are currently allocated into.
6399
uint region_idx = r->hrm_index();
6400
if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
6401
!r->rem_set()->is_empty()) {
6402
6403
if (G1TraceEagerReclaimHumongousObjects) {
6404
gclog_or_tty->print_cr("Live humongous region %u size " SIZE_FORMAT " start " PTR_FORMAT " length %u with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
6405
region_idx,
6406
(size_t)obj->size()*HeapWordSize,
6407
p2i(r->bottom()),
6408
r->region_num(),
6409
r->rem_set()->occupied(),
6410
r->rem_set()->strong_code_roots_list_length(),
6411
next_bitmap->isMarked(r->bottom()),
6412
g1h->is_humongous_reclaim_candidate(region_idx),
6413
obj->is_typeArray()
6414
);
6415
}
6416
6417
return false;
6418
}
6419
6420
guarantee(obj->is_typeArray(),
6421
err_msg("Only eagerly reclaiming type arrays is supported, but the object "
6422
PTR_FORMAT " is not.",
6423
p2i(r->bottom())));
6424
6425
if (G1TraceEagerReclaimHumongousObjects) {
6426
gclog_or_tty->print_cr("Dead humongous region %u size " SIZE_FORMAT " start " PTR_FORMAT " length %u with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
6427
region_idx,
6428
(size_t)obj->size()*HeapWordSize,
6429
p2i(r->bottom()),
6430
r->region_num(),
6431
r->rem_set()->occupied(),
6432
r->rem_set()->strong_code_roots_list_length(),
6433
next_bitmap->isMarked(r->bottom()),
6434
g1h->is_humongous_reclaim_candidate(region_idx),
6435
obj->is_typeArray()
6436
);
6437
}
6438
// Need to clear mark bit of the humongous object if already set.
6439
if (next_bitmap->isMarked(r->bottom())) {
6440
next_bitmap->clear(r->bottom());
6441
}
6442
_freed_bytes += r->used();
6443
r->set_containing_set(NULL);
6444
_humongous_regions_removed.increment(1u, r->capacity());
6445
g1h->free_humongous_region(r, _free_region_list, false);
6446
6447
return false;
6448
}
6449
6450
HeapRegionSetCount& humongous_free_count() {
6451
return _humongous_regions_removed;
6452
}
6453
6454
size_t bytes_freed() const {
6455
return _freed_bytes;
6456
}
6457
6458
size_t humongous_reclaimed() const {
6459
return _humongous_regions_removed.length();
6460
}
6461
};
6462
6463
void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6464
assert_at_safepoint(true);
6465
6466
if (!G1EagerReclaimHumongousObjects ||
6467
(!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
6468
g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6469
return;
6470
}
6471
6472
double start_time = os::elapsedTime();
6473
6474
FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6475
6476
G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6477
heap_region_iterate(&cl);
6478
6479
HeapRegionSetCount empty_set;
6480
remove_from_old_sets(empty_set, cl.humongous_free_count());
6481
6482
G1HRPrinter* hr_printer = _g1h->hr_printer();
6483
if (hr_printer->is_active()) {
6484
FreeRegionListIterator iter(&local_cleanup_list);
6485
while (iter.more_available()) {
6486
HeapRegion* hr = iter.get_next();
6487
hr_printer->cleanup(hr);
6488
}
6489
}
6490
6491
prepend_to_freelist(&local_cleanup_list);
6492
decrement_summary_bytes(cl.bytes_freed());
6493
6494
g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6495
cl.humongous_reclaimed());
6496
}
6497
6498
// This routine is similar to the above but does not record
6499
// any policy statistics or update free lists; we are abandoning
6500
// the current incremental collection set in preparation of a
6501
// full collection. After the full GC we will start to build up
6502
// the incremental collection set again.
6503
// This is only called when we're doing a full collection
6504
// and is immediately followed by the tearing down of the young list.
6505
6506
void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6507
HeapRegion* cur = cs_head;
6508
6509
while (cur != NULL) {
6510
HeapRegion* next = cur->next_in_collection_set();
6511
assert(cur->in_collection_set(), "bad CS");
6512
cur->set_next_in_collection_set(NULL);
6513
cur->set_in_collection_set(false);
6514
cur->set_young_index_in_cset(-1);
6515
cur = next;
6516
}
6517
}
6518
6519
void G1CollectedHeap::set_free_regions_coming() {
6520
if (G1ConcRegionFreeingVerbose) {
6521
gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6522
"setting free regions coming");
6523
}
6524
6525
assert(!free_regions_coming(), "pre-condition");
6526
_free_regions_coming = true;
6527
}
6528
6529
void G1CollectedHeap::reset_free_regions_coming() {
6530
assert(free_regions_coming(), "pre-condition");
6531
6532
{
6533
MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6534
_free_regions_coming = false;
6535
SecondaryFreeList_lock->notify_all();
6536
}
6537
6538
if (G1ConcRegionFreeingVerbose) {
6539
gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6540
"reset free regions coming");
6541
}
6542
}
6543
6544
void G1CollectedHeap::wait_while_free_regions_coming() {
6545
// Most of the time we won't have to wait, so let's do a quick test
6546
// first before we take the lock.
6547
if (!free_regions_coming()) {
6548
return;
6549
}
6550
6551
if (G1ConcRegionFreeingVerbose) {
6552
gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6553
"waiting for free regions");
6554
}
6555
6556
{
6557
MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6558
while (free_regions_coming()) {
6559
SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6560
}
6561
}
6562
6563
if (G1ConcRegionFreeingVerbose) {
6564
gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6565
"done waiting for free regions");
6566
}
6567
}
6568
6569
void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6570
assert(heap_lock_held_for_gc(),
6571
"the heap lock should already be held by or for this thread");
6572
_young_list->push_region(hr);
6573
}
6574
6575
class NoYoungRegionsClosure: public HeapRegionClosure {
6576
private:
6577
bool _success;
6578
public:
6579
NoYoungRegionsClosure() : _success(true) { }
6580
bool doHeapRegion(HeapRegion* r) {
6581
if (r->is_young()) {
6582
gclog_or_tty->print_cr("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
6583
p2i(r->bottom()), p2i(r->end()));
6584
_success = false;
6585
}
6586
return false;
6587
}
6588
bool success() { return _success; }
6589
};
6590
6591
bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6592
bool ret = _young_list->check_list_empty(check_sample);
6593
6594
if (check_heap) {
6595
NoYoungRegionsClosure closure;
6596
heap_region_iterate(&closure);
6597
ret = ret && closure.success();
6598
}
6599
6600
return ret;
6601
}
6602
6603
class TearDownRegionSetsClosure : public HeapRegionClosure {
6604
private:
6605
HeapRegionSet *_old_set;
6606
6607
public:
6608
TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6609
6610
bool doHeapRegion(HeapRegion* r) {
6611
if (r->is_old()) {
6612
_old_set->remove(r);
6613
} else {
6614
// We ignore free regions, we'll empty the free list afterwards.
6615
// We ignore young regions, we'll empty the young list afterwards.
6616
// We ignore humongous regions, we're not tearing down the
6617
// humongous regions set.
6618
assert(r->is_free() || r->is_young() || r->isHumongous(),
6619
"it cannot be another type");
6620
}
6621
return false;
6622
}
6623
6624
~TearDownRegionSetsClosure() {
6625
assert(_old_set->is_empty(), "post-condition");
6626
}
6627
};
6628
6629
void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6630
assert_at_safepoint(true /* should_be_vm_thread */);
6631
6632
if (!free_list_only) {
6633
TearDownRegionSetsClosure cl(&_old_set);
6634
heap_region_iterate(&cl);
6635
6636
// Note that emptying the _young_list is postponed and instead done as
6637
// the first step when rebuilding the regions sets again. The reason for
6638
// this is that during a full GC string deduplication needs to know if
6639
// a collected region was young or old when the full GC was initiated.
6640
}
6641
_hrm.remove_all_free_regions();
6642
}
6643
6644
class RebuildRegionSetsClosure : public HeapRegionClosure {
6645
private:
6646
bool _free_list_only;
6647
HeapRegionSet* _old_set;
6648
HeapRegionManager* _hrm;
6649
size_t _total_used;
6650
6651
public:
6652
RebuildRegionSetsClosure(bool free_list_only,
6653
HeapRegionSet* old_set, HeapRegionManager* hrm) :
6654
_free_list_only(free_list_only),
6655
_old_set(old_set), _hrm(hrm), _total_used(0) {
6656
assert(_hrm->num_free_regions() == 0, "pre-condition");
6657
if (!free_list_only) {
6658
assert(_old_set->is_empty(), "pre-condition");
6659
}
6660
}
6661
6662
bool doHeapRegion(HeapRegion* r) {
6663
if (r->continuesHumongous()) {
6664
return false;
6665
}
6666
6667
if (r->is_empty()) {
6668
// Add free regions to the free list
6669
r->set_free();
6670
r->set_allocation_context(AllocationContext::system());
6671
_hrm->insert_into_free_list(r);
6672
} else if (!_free_list_only) {
6673
assert(!r->is_young(), "we should not come across young regions");
6674
6675
if (r->isHumongous()) {
6676
// We ignore humongous regions, we left the humongous set unchanged
6677
} else {
6678
// Objects that were compacted would have ended up on regions
6679
// that were previously old or free.
6680
assert(r->is_free() || r->is_old(), "invariant");
6681
// We now consider them old, so register as such.
6682
r->set_old();
6683
_old_set->add(r);
6684
}
6685
_total_used += r->used();
6686
}
6687
6688
return false;
6689
}
6690
6691
size_t total_used() {
6692
return _total_used;
6693
}
6694
};
6695
6696
void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6697
assert_at_safepoint(true /* should_be_vm_thread */);
6698
6699
if (!free_list_only) {
6700
_young_list->empty_list();
6701
}
6702
6703
RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6704
heap_region_iterate(&cl);
6705
6706
if (!free_list_only) {
6707
_allocator->set_used(cl.total_used());
6708
}
6709
assert(_allocator->used_unlocked() == recalculate_used(),
6710
err_msg("inconsistent _allocator->used_unlocked(), "
6711
"value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
6712
_allocator->used_unlocked(), recalculate_used()));
6713
}
6714
6715
void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6716
_refine_cte_cl->set_concurrent(concurrent);
6717
}
6718
6719
bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6720
HeapRegion* hr = heap_region_containing(p);
6721
return hr->is_in(p);
6722
}
6723
6724
// Methods for the mutator alloc region
6725
6726
HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6727
bool force) {
6728
assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6729
assert(!force || g1_policy()->can_expand_young_list(),
6730
"if force is true we should be able to expand the young list");
6731
bool young_list_full = g1_policy()->is_young_list_full();
6732
if (force || !young_list_full) {
6733
HeapRegion* new_alloc_region = new_region(word_size,
6734
false /* is_old */,
6735
false /* do_expand */);
6736
if (new_alloc_region != NULL) {
6737
set_region_short_lived_locked(new_alloc_region);
6738
_hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6739
check_bitmaps("Mutator Region Allocation", new_alloc_region);
6740
return new_alloc_region;
6741
}
6742
}
6743
return NULL;
6744
}
6745
6746
void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6747
size_t allocated_bytes) {
6748
assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6749
assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6750
6751
g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6752
_allocator->increase_used(allocated_bytes);
6753
_hr_printer.retire(alloc_region);
6754
// We update the eden sizes here, when the region is retired,
6755
// instead of when it's allocated, since this is the point that its
6756
// used space has been recored in _summary_bytes_used.
6757
g1mm()->update_eden_size();
6758
}
6759
6760
void G1CollectedHeap::set_par_threads() {
6761
// Don't change the number of workers. Use the value previously set
6762
// in the workgroup.
6763
assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6764
uint n_workers = workers()->active_workers();
6765
assert(UseDynamicNumberOfGCThreads ||
6766
n_workers == workers()->total_workers(),
6767
"Otherwise should be using the total number of workers");
6768
if (n_workers == 0) {
6769
assert(false, "Should have been set in prior evacuation pause.");
6770
n_workers = ParallelGCThreads;
6771
workers()->set_active_workers(n_workers);
6772
}
6773
set_par_threads(n_workers);
6774
}
6775
6776
// Methods for the GC alloc regions
6777
6778
HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6779
uint count,
6780
InCSetState dest) {
6781
assert(FreeList_lock->owned_by_self(), "pre-condition");
6782
6783
if (count < g1_policy()->max_regions(dest)) {
6784
const bool is_survivor = (dest.is_young());
6785
HeapRegion* new_alloc_region = new_region(word_size,
6786
!is_survivor,
6787
true /* do_expand */);
6788
if (new_alloc_region != NULL) {
6789
// We really only need to do this for old regions given that we
6790
// should never scan survivors. But it doesn't hurt to do it
6791
// for survivors too.
6792
new_alloc_region->record_timestamp();
6793
if (is_survivor) {
6794
new_alloc_region->set_survivor();
6795
_hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6796
check_bitmaps("Survivor Region Allocation", new_alloc_region);
6797
} else {
6798
new_alloc_region->set_old();
6799
_hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6800
check_bitmaps("Old Region Allocation", new_alloc_region);
6801
}
6802
bool during_im = g1_policy()->during_initial_mark_pause();
6803
new_alloc_region->note_start_of_copying(during_im);
6804
return new_alloc_region;
6805
}
6806
}
6807
return NULL;
6808
}
6809
6810
void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6811
size_t allocated_bytes,
6812
InCSetState dest) {
6813
bool during_im = g1_policy()->during_initial_mark_pause();
6814
alloc_region->note_end_of_copying(during_im);
6815
g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6816
if (dest.is_young()) {
6817
young_list()->add_survivor_region(alloc_region);
6818
} else {
6819
_old_set.add(alloc_region);
6820
}
6821
_hr_printer.retire(alloc_region);
6822
}
6823
6824
// Heap region set verification
6825
6826
class VerifyRegionListsClosure : public HeapRegionClosure {
6827
private:
6828
HeapRegionSet* _old_set;
6829
HeapRegionSet* _humongous_set;
6830
HeapRegionManager* _hrm;
6831
6832
public:
6833
HeapRegionSetCount _old_count;
6834
HeapRegionSetCount _humongous_count;
6835
HeapRegionSetCount _free_count;
6836
6837
VerifyRegionListsClosure(HeapRegionSet* old_set,
6838
HeapRegionSet* humongous_set,
6839
HeapRegionManager* hrm) :
6840
_old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6841
_old_count(), _humongous_count(), _free_count(){ }
6842
6843
bool doHeapRegion(HeapRegion* hr) {
6844
if (hr->continuesHumongous()) {
6845
return false;
6846
}
6847
6848
if (hr->is_young()) {
6849
// TODO
6850
} else if (hr->startsHumongous()) {
6851
assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6852
_humongous_count.increment(1u, hr->capacity());
6853
} else if (hr->is_empty()) {
6854
assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6855
_free_count.increment(1u, hr->capacity());
6856
} else if (hr->is_old()) {
6857
assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6858
_old_count.increment(1u, hr->capacity());
6859
} else {
6860
ShouldNotReachHere();
6861
}
6862
return false;
6863
}
6864
6865
void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6866
guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6867
guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6868
old_set->total_capacity_bytes(), _old_count.capacity()));
6869
6870
guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6871
guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6872
humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6873
6874
guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6875
guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6876
free_list->total_capacity_bytes(), _free_count.capacity()));
6877
}
6878
};
6879
6880
void G1CollectedHeap::verify_region_sets() {
6881
assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6882
6883
// First, check the explicit lists.
6884
_hrm.verify();
6885
{
6886
// Given that a concurrent operation might be adding regions to
6887
// the secondary free list we have to take the lock before
6888
// verifying it.
6889
MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6890
_secondary_free_list.verify_list();
6891
}
6892
6893
// If a concurrent region freeing operation is in progress it will
6894
// be difficult to correctly attributed any free regions we come
6895
// across to the correct free list given that they might belong to
6896
// one of several (free_list, secondary_free_list, any local lists,
6897
// etc.). So, if that's the case we will skip the rest of the
6898
// verification operation. Alternatively, waiting for the concurrent
6899
// operation to complete will have a non-trivial effect on the GC's
6900
// operation (no concurrent operation will last longer than the
6901
// interval between two calls to verification) and it might hide
6902
// any issues that we would like to catch during testing.
6903
if (free_regions_coming()) {
6904
return;
6905
}
6906
6907
// Make sure we append the secondary_free_list on the free_list so
6908
// that all free regions we will come across can be safely
6909
// attributed to the free_list.
6910
append_secondary_free_list_if_not_empty_with_lock();
6911
6912
// Finally, make sure that the region accounting in the lists is
6913
// consistent with what we see in the heap.
6914
6915
VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6916
heap_region_iterate(&cl);
6917
cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6918
}
6919
6920
// Optimized nmethod scanning
6921
6922
class RegisterNMethodOopClosure: public OopClosure {
6923
G1CollectedHeap* _g1h;
6924
nmethod* _nm;
6925
6926
template <class T> void do_oop_work(T* p) {
6927
T heap_oop = oopDesc::load_heap_oop(p);
6928
if (!oopDesc::is_null(heap_oop)) {
6929
oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6930
HeapRegion* hr = _g1h->heap_region_containing(obj);
6931
assert(!hr->continuesHumongous(),
6932
err_msg("trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6933
" starting at " HR_FORMAT,
6934
p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6935
6936
// HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6937
hr->add_strong_code_root_locked(_nm);
6938
}
6939
}
6940
6941
public:
6942
RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6943
_g1h(g1h), _nm(nm) {}
6944
6945
void do_oop(oop* p) { do_oop_work(p); }
6946
void do_oop(narrowOop* p) { do_oop_work(p); }
6947
};
6948
6949
class UnregisterNMethodOopClosure: public OopClosure {
6950
G1CollectedHeap* _g1h;
6951
nmethod* _nm;
6952
6953
template <class T> void do_oop_work(T* p) {
6954
T heap_oop = oopDesc::load_heap_oop(p);
6955
if (!oopDesc::is_null(heap_oop)) {
6956
oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6957
HeapRegion* hr = _g1h->heap_region_containing(obj);
6958
assert(!hr->continuesHumongous(),
6959
err_msg("trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6960
" starting at " HR_FORMAT,
6961
p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6962
6963
hr->remove_strong_code_root(_nm);
6964
}
6965
}
6966
6967
public:
6968
UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6969
_g1h(g1h), _nm(nm) {}
6970
6971
void do_oop(oop* p) { do_oop_work(p); }
6972
void do_oop(narrowOop* p) { do_oop_work(p); }
6973
};
6974
6975
void G1CollectedHeap::register_nmethod(nmethod* nm) {
6976
CollectedHeap::register_nmethod(nm);
6977
6978
guarantee(nm != NULL, "sanity");
6979
RegisterNMethodOopClosure reg_cl(this, nm);
6980
nm->oops_do(&reg_cl);
6981
}
6982
6983
void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6984
CollectedHeap::unregister_nmethod(nm);
6985
6986
guarantee(nm != NULL, "sanity");
6987
UnregisterNMethodOopClosure reg_cl(this, nm);
6988
nm->oops_do(&reg_cl, true);
6989
}
6990
6991
void G1CollectedHeap::purge_code_root_memory() {
6992
double purge_start = os::elapsedTime();
6993
G1CodeRootSet::purge();
6994
double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6995
g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6996
}
6997
6998
class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6999
G1CollectedHeap* _g1h;
7000
7001
public:
7002
RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
7003
_g1h(g1h) {}
7004
7005
void do_code_blob(CodeBlob* cb) {
7006
nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
7007
if (nm == NULL) {
7008
return;
7009
}
7010
7011
if (ScavengeRootsInCode) {
7012
_g1h->register_nmethod(nm);
7013
}
7014
}
7015
};
7016
7017
void G1CollectedHeap::rebuild_strong_code_roots() {
7018
RebuildStrongCodeRootClosure blob_cl(this);
7019
CodeCache::blobs_do(&blob_cl);
7020
}
7021
7022