Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/gc_implementation/g1/g1CollectorPolicy.cpp
38920 views
1
/*
2
* Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "gc_implementation/g1/concurrentG1Refine.hpp"
27
#include "gc_implementation/g1/concurrentMark.hpp"
28
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
29
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
30
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
31
#include "gc_implementation/g1/g1ErgoVerbose.hpp"
32
#include "gc_implementation/g1/g1GCPhaseTimes.hpp"
33
#include "gc_implementation/g1/g1Log.hpp"
34
#include "gc_implementation/g1/heapRegionRemSet.hpp"
35
#include "gc_implementation/shared/gcPolicyCounters.hpp"
36
#include "runtime/arguments.hpp"
37
#include "runtime/java.hpp"
38
#include "runtime/mutexLocker.hpp"
39
#include "utilities/debug.hpp"
40
41
// Different defaults for different number of GC threads
42
// They were chosen by running GCOld and SPECjbb on debris with different
43
// numbers of GC threads and choosing them based on the results
44
45
// all the same
46
static double rs_length_diff_defaults[] = {
47
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
48
};
49
50
static double cost_per_card_ms_defaults[] = {
51
0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
52
};
53
54
// all the same
55
static double young_cards_per_entry_ratio_defaults[] = {
56
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
57
};
58
59
static double cost_per_entry_ms_defaults[] = {
60
0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
61
};
62
63
static double cost_per_byte_ms_defaults[] = {
64
0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
65
};
66
67
// these should be pretty consistent
68
static double constant_other_time_ms_defaults[] = {
69
5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
70
};
71
72
73
static double young_other_cost_per_region_ms_defaults[] = {
74
0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
75
};
76
77
static double non_young_other_cost_per_region_ms_defaults[] = {
78
1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
79
};
80
81
G1CollectorPolicy::G1CollectorPolicy() :
82
_parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
83
? ParallelGCThreads : 1),
84
85
_recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
86
_stop_world_start(0.0),
87
88
_concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
89
_concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
90
91
_alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
92
_prev_collection_pause_end_ms(0.0),
93
_rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
94
_cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
95
_young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
96
_mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
97
_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
98
_mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
99
_cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
100
_cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
101
_constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
102
_young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
103
_non_young_other_cost_per_region_ms_seq(
104
new TruncatedSeq(TruncatedSeqLength)),
105
106
_pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
107
_rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
108
109
_pause_time_target_ms((double) MaxGCPauseMillis),
110
111
_gcs_are_young(true),
112
113
_during_marking(false),
114
_in_marking_window(false),
115
_in_marking_window_im(false),
116
117
_recent_prev_end_times_for_all_gcs_sec(
118
new TruncatedSeq(NumPrevPausesForHeuristics)),
119
120
_recent_avg_pause_time_ratio(0.0),
121
122
_initiate_conc_mark_if_possible(false),
123
_during_initial_mark_pause(false),
124
_last_young_gc(false),
125
_last_gc_was_young(false),
126
127
_eden_used_bytes_before_gc(0),
128
_survivor_used_bytes_before_gc(0),
129
_heap_used_bytes_before_gc(0),
130
_metaspace_used_bytes_before_gc(0),
131
_eden_capacity_bytes_before_gc(0),
132
_heap_capacity_bytes_before_gc(0),
133
134
_eden_cset_region_length(0),
135
_survivor_cset_region_length(0),
136
_old_cset_region_length(0),
137
138
_collection_set(NULL),
139
_collection_set_bytes_used_before(0),
140
141
// Incremental CSet attributes
142
_inc_cset_build_state(Inactive),
143
_inc_cset_head(NULL),
144
_inc_cset_tail(NULL),
145
_inc_cset_bytes_used_before(0),
146
_inc_cset_max_finger(NULL),
147
_inc_cset_recorded_rs_lengths(0),
148
_inc_cset_recorded_rs_lengths_diffs(0),
149
_inc_cset_predicted_elapsed_time_ms(0.0),
150
_inc_cset_predicted_elapsed_time_ms_diffs(0.0),
151
152
#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
153
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
154
#endif // _MSC_VER
155
156
_short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
157
G1YoungSurvRateNumRegionsSummary)),
158
_survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
159
G1YoungSurvRateNumRegionsSummary)),
160
// add here any more surv rate groups
161
_recorded_survivor_regions(0),
162
_recorded_survivor_head(NULL),
163
_recorded_survivor_tail(NULL),
164
_survivors_age_table(true),
165
166
_gc_overhead_perc(0.0) {
167
168
// Set up the region size and associated fields. Given that the
169
// policy is created before the heap, we have to set this up here,
170
// so it's done as soon as possible.
171
172
// It would have been natural to pass initial_heap_byte_size() and
173
// max_heap_byte_size() to setup_heap_region_size() but those have
174
// not been set up at this point since they should be aligned with
175
// the region size. So, there is a circular dependency here. We base
176
// the region size on the heap size, but the heap size should be
177
// aligned with the region size. To get around this we use the
178
// unaligned values for the heap.
179
HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
180
HeapRegionRemSet::setup_remset_size();
181
182
G1ErgoVerbose::initialize();
183
if (PrintAdaptiveSizePolicy) {
184
// Currently, we only use a single switch for all the heuristics.
185
G1ErgoVerbose::set_enabled(true);
186
// Given that we don't currently have a verboseness level
187
// parameter, we'll hardcode this to high. This can be easily
188
// changed in the future.
189
G1ErgoVerbose::set_level(ErgoHigh);
190
} else {
191
G1ErgoVerbose::set_enabled(false);
192
}
193
194
// Verify PLAB sizes
195
const size_t region_size = HeapRegion::GrainWords;
196
if (YoungPLABSize > region_size || OldPLABSize > region_size) {
197
char buffer[128];
198
jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most " SIZE_FORMAT,
199
OldPLABSize > region_size ? "Old" : "Young", region_size);
200
vm_exit_during_initialization(buffer);
201
}
202
203
_recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
204
_prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
205
206
_phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
207
208
int index = MIN2(_parallel_gc_threads - 1, 7);
209
210
_rs_length_diff_seq->add(rs_length_diff_defaults[index]);
211
_cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
212
_young_cards_per_entry_ratio_seq->add(
213
young_cards_per_entry_ratio_defaults[index]);
214
_cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
215
_cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
216
_constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
217
_young_other_cost_per_region_ms_seq->add(
218
young_other_cost_per_region_ms_defaults[index]);
219
_non_young_other_cost_per_region_ms_seq->add(
220
non_young_other_cost_per_region_ms_defaults[index]);
221
222
// Below, we might need to calculate the pause time target based on
223
// the pause interval. When we do so we are going to give G1 maximum
224
// flexibility and allow it to do pauses when it needs to. So, we'll
225
// arrange that the pause interval to be pause time target + 1 to
226
// ensure that a) the pause time target is maximized with respect to
227
// the pause interval and b) we maintain the invariant that pause
228
// time target < pause interval. If the user does not want this
229
// maximum flexibility, they will have to set the pause interval
230
// explicitly.
231
232
// First make sure that, if either parameter is set, its value is
233
// reasonable.
234
if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
235
if (MaxGCPauseMillis < 1) {
236
vm_exit_during_initialization("MaxGCPauseMillis should be "
237
"greater than 0");
238
}
239
}
240
if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
241
if (GCPauseIntervalMillis < 1) {
242
vm_exit_during_initialization("GCPauseIntervalMillis should be "
243
"greater than 0");
244
}
245
}
246
247
// Then, if the pause time target parameter was not set, set it to
248
// the default value.
249
if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
250
if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
251
// The default pause time target in G1 is 200ms
252
FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
253
} else {
254
// We do not allow the pause interval to be set without the
255
// pause time target
256
vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
257
"without setting MaxGCPauseMillis");
258
}
259
}
260
261
// Then, if the interval parameter was not set, set it according to
262
// the pause time target (this will also deal with the case when the
263
// pause time target is the default value).
264
if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
265
FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
266
}
267
268
// Finally, make sure that the two parameters are consistent.
269
if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
270
char buffer[256];
271
jio_snprintf(buffer, 256,
272
"MaxGCPauseMillis (%u) should be less than "
273
"GCPauseIntervalMillis (%u)",
274
MaxGCPauseMillis, GCPauseIntervalMillis);
275
vm_exit_during_initialization(buffer);
276
}
277
278
double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
279
double time_slice = (double) GCPauseIntervalMillis / 1000.0;
280
_mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
281
282
uintx confidence_perc = G1ConfidencePercent;
283
// Put an artificial ceiling on this so that it's not set to a silly value.
284
if (confidence_perc > 100) {
285
confidence_perc = 100;
286
warning("G1ConfidencePercent is set to a value that is too large, "
287
"it's been updated to " UINTX_FORMAT, confidence_perc);
288
}
289
_sigma = (double) confidence_perc / 100.0;
290
291
// start conservatively (around 50ms is about right)
292
_concurrent_mark_remark_times_ms->add(0.05);
293
_concurrent_mark_cleanup_times_ms->add(0.20);
294
_tenuring_threshold = MaxTenuringThreshold;
295
// _max_survivor_regions will be calculated by
296
// update_young_list_target_length() during initialization.
297
_max_survivor_regions = 0;
298
299
assert(GCTimeRatio > 0,
300
"we should have set it to a default value set_g1_gc_flags() "
301
"if a user set it to 0");
302
_gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
303
304
uintx reserve_perc = G1ReservePercent;
305
// Put an artificial ceiling on this so that it's not set to a silly value.
306
if (reserve_perc > 50) {
307
reserve_perc = 50;
308
warning("G1ReservePercent is set to a value that is too large, "
309
"it's been updated to " UINTX_FORMAT, reserve_perc);
310
}
311
_reserve_factor = (double) reserve_perc / 100.0;
312
// This will be set when the heap is expanded
313
// for the first time during initialization.
314
_reserve_regions = 0;
315
316
_collectionSetChooser = new CollectionSetChooser();
317
}
318
319
void G1CollectorPolicy::initialize_alignments() {
320
_space_alignment = HeapRegion::GrainBytes;
321
size_t card_table_alignment = GenRemSet::max_alignment_constraint(GenRemSet::CardTable);
322
size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
323
_heap_alignment = MAX3(card_table_alignment, _space_alignment, page_size);
324
}
325
326
void G1CollectorPolicy::initialize_flags() {
327
if (G1HeapRegionSize != HeapRegion::GrainBytes) {
328
FLAG_SET_ERGO(uintx, G1HeapRegionSize, HeapRegion::GrainBytes);
329
}
330
331
if (SurvivorRatio < 1) {
332
vm_exit_during_initialization("Invalid survivor ratio specified");
333
}
334
CollectorPolicy::initialize_flags();
335
_young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
336
}
337
338
void G1CollectorPolicy::post_heap_initialize() {
339
uintx max_regions = G1CollectedHeap::heap()->max_regions();
340
size_t max_young_size = (size_t)_young_gen_sizer->max_young_length(max_regions) * HeapRegion::GrainBytes;
341
if (max_young_size != MaxNewSize) {
342
FLAG_SET_ERGO(uintx, MaxNewSize, max_young_size);
343
}
344
}
345
346
G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true),
347
_min_desired_young_length(0), _max_desired_young_length(0) {
348
if (FLAG_IS_CMDLINE(NewRatio)) {
349
if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
350
warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
351
} else {
352
_sizer_kind = SizerNewRatio;
353
_adaptive_size = false;
354
return;
355
}
356
}
357
358
if (NewSize > MaxNewSize) {
359
if (FLAG_IS_CMDLINE(MaxNewSize)) {
360
warning("NewSize (" SIZE_FORMAT "k) is greater than the MaxNewSize (" SIZE_FORMAT "k). "
361
"A new max generation size of " SIZE_FORMAT "k will be used.",
362
NewSize/K, MaxNewSize/K, NewSize/K);
363
}
364
MaxNewSize = NewSize;
365
}
366
367
if (FLAG_IS_CMDLINE(NewSize)) {
368
_min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
369
1U);
370
if (FLAG_IS_CMDLINE(MaxNewSize)) {
371
_max_desired_young_length =
372
MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
373
1U);
374
_sizer_kind = SizerMaxAndNewSize;
375
_adaptive_size = _min_desired_young_length != _max_desired_young_length;
376
} else {
377
_sizer_kind = SizerNewSizeOnly;
378
}
379
} else if (FLAG_IS_CMDLINE(MaxNewSize)) {
380
_max_desired_young_length =
381
MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
382
1U);
383
_sizer_kind = SizerMaxNewSizeOnly;
384
}
385
}
386
387
uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
388
uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
389
return MAX2(1U, default_value);
390
}
391
392
uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
393
uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
394
return MAX2(1U, default_value);
395
}
396
397
void G1YoungGenSizer::recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length) {
398
assert(number_of_heap_regions > 0, "Heap must be initialized");
399
400
switch (_sizer_kind) {
401
case SizerDefaults:
402
*min_young_length = calculate_default_min_length(number_of_heap_regions);
403
*max_young_length = calculate_default_max_length(number_of_heap_regions);
404
break;
405
case SizerNewSizeOnly:
406
*max_young_length = calculate_default_max_length(number_of_heap_regions);
407
*max_young_length = MAX2(*min_young_length, *max_young_length);
408
break;
409
case SizerMaxNewSizeOnly:
410
*min_young_length = calculate_default_min_length(number_of_heap_regions);
411
*min_young_length = MIN2(*min_young_length, *max_young_length);
412
break;
413
case SizerMaxAndNewSize:
414
// Do nothing. Values set on the command line, don't update them at runtime.
415
break;
416
case SizerNewRatio:
417
*min_young_length = number_of_heap_regions / (NewRatio + 1);
418
*max_young_length = *min_young_length;
419
break;
420
default:
421
ShouldNotReachHere();
422
}
423
424
assert(*min_young_length <= *max_young_length, "Invalid min/max young gen size values");
425
}
426
427
uint G1YoungGenSizer::max_young_length(uint number_of_heap_regions) {
428
// We need to pass the desired values because recalculation may not update these
429
// values in some cases.
430
uint temp = _min_desired_young_length;
431
uint result = _max_desired_young_length;
432
recalculate_min_max_young_length(number_of_heap_regions, &temp, &result);
433
return result;
434
}
435
436
void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
437
recalculate_min_max_young_length(new_number_of_heap_regions, &_min_desired_young_length,
438
&_max_desired_young_length);
439
}
440
441
void G1CollectorPolicy::init() {
442
// Set aside an initial future to_space.
443
_g1 = G1CollectedHeap::heap();
444
445
assert(Heap_lock->owned_by_self(), "Locking discipline.");
446
447
initialize_gc_policy_counters();
448
449
if (adaptive_young_list_length()) {
450
_young_list_fixed_length = 0;
451
} else {
452
_young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
453
}
454
_free_regions_at_end_of_collection = _g1->num_free_regions();
455
update_young_list_target_length();
456
457
// We may immediately start allocating regions and placing them on the
458
// collection set list. Initialize the per-collection set info
459
start_incremental_cset_building();
460
}
461
462
// Create the jstat counters for the policy.
463
void G1CollectorPolicy::initialize_gc_policy_counters() {
464
_gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
465
}
466
467
bool G1CollectorPolicy::predict_will_fit(uint young_length,
468
double base_time_ms,
469
uint base_free_regions,
470
double target_pause_time_ms) {
471
if (young_length >= base_free_regions) {
472
// end condition 1: not enough space for the young regions
473
return false;
474
}
475
476
double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
477
size_t bytes_to_copy =
478
(size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
479
double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
480
double young_other_time_ms = predict_young_other_time_ms(young_length);
481
double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
482
if (pause_time_ms > target_pause_time_ms) {
483
// end condition 2: prediction is over the target pause time
484
return false;
485
}
486
487
size_t free_bytes =
488
(base_free_regions - young_length) * HeapRegion::GrainBytes;
489
if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
490
// end condition 3: out-of-space (conservatively!)
491
return false;
492
}
493
494
// success!
495
return true;
496
}
497
498
void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
499
// re-calculate the necessary reserve
500
double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
501
// We use ceiling so that if reserve_regions_d is > 0.0 (but
502
// smaller than 1.0) we'll get 1.
503
_reserve_regions = (uint) ceil(reserve_regions_d);
504
505
_young_gen_sizer->heap_size_changed(new_number_of_regions);
506
}
507
508
uint G1CollectorPolicy::calculate_young_list_desired_min_length(
509
uint base_min_length) {
510
uint desired_min_length = 0;
511
if (adaptive_young_list_length()) {
512
if (_alloc_rate_ms_seq->num() > 3) {
513
double now_sec = os::elapsedTime();
514
double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
515
double alloc_rate_ms = predict_alloc_rate_ms();
516
desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
517
} else {
518
// otherwise we don't have enough info to make the prediction
519
}
520
}
521
desired_min_length += base_min_length;
522
// make sure we don't go below any user-defined minimum bound
523
return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
524
}
525
526
uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
527
// Here, we might want to also take into account any additional
528
// constraints (i.e., user-defined minimum bound). Currently, we
529
// effectively don't set this bound.
530
return _young_gen_sizer->max_desired_young_length();
531
}
532
533
void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
534
if (rs_lengths == (size_t) -1) {
535
// if it's set to the default value (-1), we should predict it;
536
// otherwise, use the given value.
537
rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
538
}
539
540
// Calculate the absolute and desired min bounds.
541
542
// This is how many young regions we already have (currently: the survivors).
543
uint base_min_length = recorded_survivor_regions();
544
// This is the absolute minimum young length, which ensures that we
545
// can allocate one eden region in the worst-case.
546
uint absolute_min_length = base_min_length + 1;
547
uint desired_min_length =
548
calculate_young_list_desired_min_length(base_min_length);
549
if (desired_min_length < absolute_min_length) {
550
desired_min_length = absolute_min_length;
551
}
552
553
// Calculate the absolute and desired max bounds.
554
555
// We will try our best not to "eat" into the reserve.
556
uint absolute_max_length = 0;
557
if (_free_regions_at_end_of_collection > _reserve_regions) {
558
absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
559
}
560
uint desired_max_length = calculate_young_list_desired_max_length();
561
if (desired_max_length > absolute_max_length) {
562
desired_max_length = absolute_max_length;
563
}
564
565
uint young_list_target_length = 0;
566
if (adaptive_young_list_length()) {
567
if (gcs_are_young()) {
568
young_list_target_length =
569
calculate_young_list_target_length(rs_lengths,
570
base_min_length,
571
desired_min_length,
572
desired_max_length);
573
_rs_lengths_prediction = rs_lengths;
574
} else {
575
// Don't calculate anything and let the code below bound it to
576
// the desired_min_length, i.e., do the next GC as soon as
577
// possible to maximize how many old regions we can add to it.
578
}
579
} else {
580
// The user asked for a fixed young gen so we'll fix the young gen
581
// whether the next GC is young or mixed.
582
young_list_target_length = _young_list_fixed_length;
583
}
584
585
// Make sure we don't go over the desired max length, nor under the
586
// desired min length. In case they clash, desired_min_length wins
587
// which is why that test is second.
588
if (young_list_target_length > desired_max_length) {
589
young_list_target_length = desired_max_length;
590
}
591
if (young_list_target_length < desired_min_length) {
592
young_list_target_length = desired_min_length;
593
}
594
595
assert(young_list_target_length > recorded_survivor_regions(),
596
"we should be able to allocate at least one eden region");
597
assert(young_list_target_length >= absolute_min_length, "post-condition");
598
_young_list_target_length = young_list_target_length;
599
600
update_max_gc_locker_expansion();
601
}
602
603
uint
604
G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
605
uint base_min_length,
606
uint desired_min_length,
607
uint desired_max_length) {
608
assert(adaptive_young_list_length(), "pre-condition");
609
assert(gcs_are_young(), "only call this for young GCs");
610
611
// In case some edge-condition makes the desired max length too small...
612
if (desired_max_length <= desired_min_length) {
613
return desired_min_length;
614
}
615
616
// We'll adjust min_young_length and max_young_length not to include
617
// the already allocated young regions (i.e., so they reflect the
618
// min and max eden regions we'll allocate). The base_min_length
619
// will be reflected in the predictions by the
620
// survivor_regions_evac_time prediction.
621
assert(desired_min_length > base_min_length, "invariant");
622
uint min_young_length = desired_min_length - base_min_length;
623
assert(desired_max_length > base_min_length, "invariant");
624
uint max_young_length = desired_max_length - base_min_length;
625
626
double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
627
double survivor_regions_evac_time = predict_survivor_regions_evac_time();
628
size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
629
size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
630
size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
631
double base_time_ms =
632
predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
633
survivor_regions_evac_time;
634
uint available_free_regions = _free_regions_at_end_of_collection;
635
uint base_free_regions = 0;
636
if (available_free_regions > _reserve_regions) {
637
base_free_regions = available_free_regions - _reserve_regions;
638
}
639
640
// Here, we will make sure that the shortest young length that
641
// makes sense fits within the target pause time.
642
643
if (predict_will_fit(min_young_length, base_time_ms,
644
base_free_regions, target_pause_time_ms)) {
645
// The shortest young length will fit into the target pause time;
646
// we'll now check whether the absolute maximum number of young
647
// regions will fit in the target pause time. If not, we'll do
648
// a binary search between min_young_length and max_young_length.
649
if (predict_will_fit(max_young_length, base_time_ms,
650
base_free_regions, target_pause_time_ms)) {
651
// The maximum young length will fit into the target pause time.
652
// We are done so set min young length to the maximum length (as
653
// the result is assumed to be returned in min_young_length).
654
min_young_length = max_young_length;
655
} else {
656
// The maximum possible number of young regions will not fit within
657
// the target pause time so we'll search for the optimal
658
// length. The loop invariants are:
659
//
660
// min_young_length < max_young_length
661
// min_young_length is known to fit into the target pause time
662
// max_young_length is known not to fit into the target pause time
663
//
664
// Going into the loop we know the above hold as we've just
665
// checked them. Every time around the loop we check whether
666
// the middle value between min_young_length and
667
// max_young_length fits into the target pause time. If it
668
// does, it becomes the new min. If it doesn't, it becomes
669
// the new max. This way we maintain the loop invariants.
670
671
assert(min_young_length < max_young_length, "invariant");
672
uint diff = (max_young_length - min_young_length) / 2;
673
while (diff > 0) {
674
uint young_length = min_young_length + diff;
675
if (predict_will_fit(young_length, base_time_ms,
676
base_free_regions, target_pause_time_ms)) {
677
min_young_length = young_length;
678
} else {
679
max_young_length = young_length;
680
}
681
assert(min_young_length < max_young_length, "invariant");
682
diff = (max_young_length - min_young_length) / 2;
683
}
684
// The results is min_young_length which, according to the
685
// loop invariants, should fit within the target pause time.
686
687
// These are the post-conditions of the binary search above:
688
assert(min_young_length < max_young_length,
689
"otherwise we should have discovered that max_young_length "
690
"fits into the pause target and not done the binary search");
691
assert(predict_will_fit(min_young_length, base_time_ms,
692
base_free_regions, target_pause_time_ms),
693
"min_young_length, the result of the binary search, should "
694
"fit into the pause target");
695
assert(!predict_will_fit(min_young_length + 1, base_time_ms,
696
base_free_regions, target_pause_time_ms),
697
"min_young_length, the result of the binary search, should be "
698
"optimal, so no larger length should fit into the pause target");
699
}
700
} else {
701
// Even the minimum length doesn't fit into the pause time
702
// target, return it as the result nevertheless.
703
}
704
return base_min_length + min_young_length;
705
}
706
707
double G1CollectorPolicy::predict_survivor_regions_evac_time() {
708
double survivor_regions_evac_time = 0.0;
709
for (HeapRegion * r = _recorded_survivor_head;
710
r != NULL && r != _recorded_survivor_tail->get_next_young_region();
711
r = r->get_next_young_region()) {
712
survivor_regions_evac_time += predict_region_elapsed_time_ms(r, gcs_are_young());
713
}
714
return survivor_regions_evac_time;
715
}
716
717
void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
718
guarantee( adaptive_young_list_length(), "should not call this otherwise" );
719
720
size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
721
if (rs_lengths > _rs_lengths_prediction) {
722
// add 10% to avoid having to recalculate often
723
size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
724
update_young_list_target_length(rs_lengths_prediction);
725
}
726
}
727
728
729
730
HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
731
bool is_tlab,
732
bool* gc_overhead_limit_was_exceeded) {
733
guarantee(false, "Not using this policy feature yet.");
734
return NULL;
735
}
736
737
// This method controls how a collector handles one or more
738
// of its generations being fully allocated.
739
HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
740
bool is_tlab) {
741
guarantee(false, "Not using this policy feature yet.");
742
return NULL;
743
}
744
745
746
#ifndef PRODUCT
747
bool G1CollectorPolicy::verify_young_ages() {
748
HeapRegion* head = _g1->young_list()->first_region();
749
return
750
verify_young_ages(head, _short_lived_surv_rate_group);
751
// also call verify_young_ages on any additional surv rate groups
752
}
753
754
bool
755
G1CollectorPolicy::verify_young_ages(HeapRegion* head,
756
SurvRateGroup *surv_rate_group) {
757
guarantee( surv_rate_group != NULL, "pre-condition" );
758
759
const char* name = surv_rate_group->name();
760
bool ret = true;
761
int prev_age = -1;
762
763
for (HeapRegion* curr = head;
764
curr != NULL;
765
curr = curr->get_next_young_region()) {
766
SurvRateGroup* group = curr->surv_rate_group();
767
if (group == NULL && !curr->is_survivor()) {
768
gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
769
ret = false;
770
}
771
772
if (surv_rate_group == group) {
773
int age = curr->age_in_surv_rate_group();
774
775
if (age < 0) {
776
gclog_or_tty->print_cr("## %s: encountered negative age", name);
777
ret = false;
778
}
779
780
if (age <= prev_age) {
781
gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
782
"(%d, %d)", name, age, prev_age);
783
ret = false;
784
}
785
prev_age = age;
786
}
787
}
788
789
return ret;
790
}
791
#endif // PRODUCT
792
793
void G1CollectorPolicy::record_full_collection_start() {
794
_full_collection_start_sec = os::elapsedTime();
795
record_heap_size_info_at_start(true /* full */);
796
// Release the future to-space so that it is available for compaction into.
797
_g1->set_full_collection();
798
}
799
800
void G1CollectorPolicy::record_full_collection_end() {
801
// Consider this like a collection pause for the purposes of allocation
802
// since last pause.
803
double end_sec = os::elapsedTime();
804
double full_gc_time_sec = end_sec - _full_collection_start_sec;
805
double full_gc_time_ms = full_gc_time_sec * 1000.0;
806
807
_trace_gen1_time_data.record_full_collection(full_gc_time_ms);
808
809
update_recent_gc_times(end_sec, full_gc_time_ms);
810
811
_g1->clear_full_collection();
812
813
// "Nuke" the heuristics that control the young/mixed GC
814
// transitions and make sure we start with young GCs after the Full GC.
815
set_gcs_are_young(true);
816
_last_young_gc = false;
817
clear_initiate_conc_mark_if_possible();
818
clear_during_initial_mark_pause();
819
_in_marking_window = false;
820
_in_marking_window_im = false;
821
822
_short_lived_surv_rate_group->start_adding_regions();
823
// also call this on any additional surv rate groups
824
825
record_survivor_regions(0, NULL, NULL);
826
827
_free_regions_at_end_of_collection = _g1->num_free_regions();
828
// Reset survivors SurvRateGroup.
829
_survivor_surv_rate_group->reset();
830
update_young_list_target_length();
831
_collectionSetChooser->clear();
832
}
833
834
void G1CollectorPolicy::record_stop_world_start() {
835
_stop_world_start = os::elapsedTime();
836
}
837
838
void G1CollectorPolicy::record_collection_pause_start(double start_time_sec, GCTracer &tracer) {
839
// We only need to do this here as the policy will only be applied
840
// to the GC we're about to start. so, no point is calculating this
841
// every time we calculate / recalculate the target young length.
842
update_survivors_policy(tracer);
843
844
assert(_g1->used() == _g1->recalculate_used(),
845
err_msg("sanity, used: " SIZE_FORMAT " recalculate_used: " SIZE_FORMAT,
846
_g1->used(), _g1->recalculate_used()));
847
848
double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
849
_trace_gen0_time_data.record_start_collection(s_w_t_ms);
850
_stop_world_start = 0.0;
851
852
record_heap_size_info_at_start(false /* full */);
853
854
phase_times()->record_cur_collection_start_sec(start_time_sec);
855
_pending_cards = _g1->pending_card_num();
856
857
_collection_set_bytes_used_before = 0;
858
_bytes_copied_during_gc = 0;
859
860
_last_gc_was_young = false;
861
862
// do that for any other surv rate groups
863
_short_lived_surv_rate_group->stop_adding_regions();
864
_survivors_age_table.clear();
865
866
assert( verify_young_ages(), "region age verification" );
867
}
868
869
void G1CollectorPolicy::record_concurrent_mark_init_end(double
870
mark_init_elapsed_time_ms) {
871
_during_marking = true;
872
assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
873
clear_during_initial_mark_pause();
874
_cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
875
}
876
877
void G1CollectorPolicy::record_concurrent_mark_remark_start() {
878
_mark_remark_start_sec = os::elapsedTime();
879
_during_marking = false;
880
}
881
882
void G1CollectorPolicy::record_concurrent_mark_remark_end() {
883
double end_time_sec = os::elapsedTime();
884
double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
885
_concurrent_mark_remark_times_ms->add(elapsed_time_ms);
886
_cur_mark_stop_world_time_ms += elapsed_time_ms;
887
_prev_collection_pause_end_ms += elapsed_time_ms;
888
889
_mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
890
}
891
892
void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
893
_mark_cleanup_start_sec = os::elapsedTime();
894
}
895
896
void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
897
_last_young_gc = true;
898
_in_marking_window = false;
899
}
900
901
void G1CollectorPolicy::record_concurrent_pause() {
902
if (_stop_world_start > 0.0) {
903
double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
904
_trace_gen0_time_data.record_yield_time(yield_ms);
905
}
906
}
907
908
bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
909
if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
910
return false;
911
}
912
913
size_t marking_initiating_used_threshold =
914
(_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
915
size_t cur_used_bytes = _g1->non_young_capacity_bytes();
916
size_t alloc_byte_size = alloc_word_size * HeapWordSize;
917
918
if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
919
if (gcs_are_young() && !_last_young_gc) {
920
ergo_verbose5(ErgoConcCycles,
921
"request concurrent cycle initiation",
922
ergo_format_reason("occupancy higher than threshold")
923
ergo_format_byte("occupancy")
924
ergo_format_byte("allocation request")
925
ergo_format_byte_perc("threshold")
926
ergo_format_str("source"),
927
cur_used_bytes,
928
alloc_byte_size,
929
marking_initiating_used_threshold,
930
(double) InitiatingHeapOccupancyPercent,
931
source);
932
return true;
933
} else {
934
ergo_verbose5(ErgoConcCycles,
935
"do not request concurrent cycle initiation",
936
ergo_format_reason("still doing mixed collections")
937
ergo_format_byte("occupancy")
938
ergo_format_byte("allocation request")
939
ergo_format_byte_perc("threshold")
940
ergo_format_str("source"),
941
cur_used_bytes,
942
alloc_byte_size,
943
marking_initiating_used_threshold,
944
(double) InitiatingHeapOccupancyPercent,
945
source);
946
}
947
}
948
949
return false;
950
}
951
952
// Anything below that is considered to be zero
953
#define MIN_TIMER_GRANULARITY 0.0000001
954
955
void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, EvacuationInfo& evacuation_info) {
956
double end_time_sec = os::elapsedTime();
957
assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
958
"otherwise, the subtraction below does not make sense");
959
size_t rs_size =
960
_cur_collection_pause_used_regions_at_start - cset_region_length();
961
size_t cur_used_bytes = _g1->used();
962
assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
963
bool last_pause_included_initial_mark = false;
964
bool update_stats = !_g1->evacuation_failed();
965
966
#ifndef PRODUCT
967
if (G1YoungSurvRateVerbose) {
968
gclog_or_tty->cr();
969
_short_lived_surv_rate_group->print();
970
// do that for any other surv rate groups too
971
}
972
#endif // PRODUCT
973
974
last_pause_included_initial_mark = during_initial_mark_pause();
975
if (last_pause_included_initial_mark) {
976
record_concurrent_mark_init_end(0.0);
977
} else if (need_to_start_conc_mark("end of GC")) {
978
// Note: this might have already been set, if during the last
979
// pause we decided to start a cycle but at the beginning of
980
// this pause we decided to postpone it. That's OK.
981
set_initiate_conc_mark_if_possible();
982
}
983
984
_mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0,
985
end_time_sec, false);
986
987
evacuation_info.set_collectionset_used_before(_collection_set_bytes_used_before);
988
evacuation_info.set_bytes_copied(_bytes_copied_during_gc);
989
990
if (update_stats) {
991
_trace_gen0_time_data.record_end_collection(pause_time_ms, phase_times());
992
// this is where we update the allocation rate of the application
993
double app_time_ms =
994
(phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
995
if (app_time_ms < MIN_TIMER_GRANULARITY) {
996
// This usually happens due to the timer not having the required
997
// granularity. Some Linuxes are the usual culprits.
998
// We'll just set it to something (arbitrarily) small.
999
app_time_ms = 1.0;
1000
}
1001
// We maintain the invariant that all objects allocated by mutator
1002
// threads will be allocated out of eden regions. So, we can use
1003
// the eden region number allocated since the previous GC to
1004
// calculate the application's allocate rate. The only exception
1005
// to that is humongous objects that are allocated separately. But
1006
// given that humongous object allocations do not really affect
1007
// either the pause's duration nor when the next pause will take
1008
// place we can safely ignore them here.
1009
uint regions_allocated = eden_cset_region_length();
1010
double alloc_rate_ms = (double) regions_allocated / app_time_ms;
1011
_alloc_rate_ms_seq->add(alloc_rate_ms);
1012
1013
double interval_ms =
1014
(end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
1015
update_recent_gc_times(end_time_sec, pause_time_ms);
1016
_recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
1017
if (recent_avg_pause_time_ratio() < 0.0 ||
1018
(recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
1019
#ifndef PRODUCT
1020
// Dump info to allow post-facto debugging
1021
gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
1022
gclog_or_tty->print_cr("-------------------------------------------");
1023
gclog_or_tty->print_cr("Recent GC Times (ms):");
1024
_recent_gc_times_ms->dump();
1025
gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
1026
_recent_prev_end_times_for_all_gcs_sec->dump();
1027
gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
1028
_recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
1029
// In debug mode, terminate the JVM if the user wants to debug at this point.
1030
assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
1031
#endif // !PRODUCT
1032
// Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
1033
// CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1034
if (_recent_avg_pause_time_ratio < 0.0) {
1035
_recent_avg_pause_time_ratio = 0.0;
1036
} else {
1037
assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
1038
_recent_avg_pause_time_ratio = 1.0;
1039
}
1040
}
1041
}
1042
1043
bool new_in_marking_window = _in_marking_window;
1044
bool new_in_marking_window_im = false;
1045
if (last_pause_included_initial_mark) {
1046
new_in_marking_window = true;
1047
new_in_marking_window_im = true;
1048
}
1049
1050
if (_last_young_gc) {
1051
// This is supposed to to be the "last young GC" before we start
1052
// doing mixed GCs. Here we decide whether to start mixed GCs or not.
1053
1054
if (!last_pause_included_initial_mark) {
1055
if (next_gc_should_be_mixed("start mixed GCs",
1056
"do not start mixed GCs")) {
1057
set_gcs_are_young(false);
1058
}
1059
} else {
1060
ergo_verbose0(ErgoMixedGCs,
1061
"do not start mixed GCs",
1062
ergo_format_reason("concurrent cycle is about to start"));
1063
}
1064
_last_young_gc = false;
1065
}
1066
1067
if (!_last_gc_was_young) {
1068
// This is a mixed GC. Here we decide whether to continue doing
1069
// mixed GCs or not.
1070
1071
if (!next_gc_should_be_mixed("continue mixed GCs",
1072
"do not continue mixed GCs")) {
1073
set_gcs_are_young(true);
1074
}
1075
}
1076
1077
_short_lived_surv_rate_group->start_adding_regions();
1078
// do that for any other surv rate groupsx
1079
1080
if (update_stats) {
1081
double cost_per_card_ms = 0.0;
1082
if (_pending_cards > 0) {
1083
cost_per_card_ms = phase_times()->average_time_ms(G1GCPhaseTimes::UpdateRS) / (double) _pending_cards;
1084
_cost_per_card_ms_seq->add(cost_per_card_ms);
1085
}
1086
1087
size_t cards_scanned = _g1->cards_scanned();
1088
1089
double cost_per_entry_ms = 0.0;
1090
if (cards_scanned > 10) {
1091
cost_per_entry_ms = phase_times()->average_time_ms(G1GCPhaseTimes::ScanRS) / (double) cards_scanned;
1092
if (_last_gc_was_young) {
1093
_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1094
} else {
1095
_mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1096
}
1097
}
1098
1099
if (_max_rs_lengths > 0) {
1100
double cards_per_entry_ratio =
1101
(double) cards_scanned / (double) _max_rs_lengths;
1102
if (_last_gc_was_young) {
1103
_young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1104
} else {
1105
_mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1106
}
1107
}
1108
1109
// This is defensive. For a while _max_rs_lengths could get
1110
// smaller than _recorded_rs_lengths which was causing
1111
// rs_length_diff to get very large and mess up the RSet length
1112
// predictions. The reason was unsafe concurrent updates to the
1113
// _inc_cset_recorded_rs_lengths field which the code below guards
1114
// against (see CR 7118202). This bug has now been fixed (see CR
1115
// 7119027). However, I'm still worried that
1116
// _inc_cset_recorded_rs_lengths might still end up somewhat
1117
// inaccurate. The concurrent refinement thread calculates an
1118
// RSet's length concurrently with other CR threads updating it
1119
// which might cause it to calculate the length incorrectly (if,
1120
// say, it's in mid-coarsening). So I'll leave in the defensive
1121
// conditional below just in case.
1122
size_t rs_length_diff = 0;
1123
if (_max_rs_lengths > _recorded_rs_lengths) {
1124
rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
1125
}
1126
_rs_length_diff_seq->add((double) rs_length_diff);
1127
1128
size_t freed_bytes = _heap_used_bytes_before_gc - cur_used_bytes;
1129
1130
if (_collection_set_bytes_used_before > freed_bytes) {
1131
size_t copied_bytes = _collection_set_bytes_used_before - freed_bytes;
1132
double average_copy_time = phase_times()->average_time_ms(G1GCPhaseTimes::ObjCopy);
1133
double cost_per_byte_ms = average_copy_time / (double) copied_bytes;
1134
if (_in_marking_window) {
1135
_cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1136
} else {
1137
_cost_per_byte_ms_seq->add(cost_per_byte_ms);
1138
}
1139
}
1140
1141
double all_other_time_ms = pause_time_ms -
1142
(phase_times()->average_time_ms(G1GCPhaseTimes::UpdateRS) + phase_times()->average_time_ms(G1GCPhaseTimes::ScanRS) +
1143
phase_times()->average_time_ms(G1GCPhaseTimes::ObjCopy) + phase_times()->average_time_ms(G1GCPhaseTimes::Termination));
1144
1145
double young_other_time_ms = 0.0;
1146
if (young_cset_region_length() > 0) {
1147
young_other_time_ms =
1148
phase_times()->young_cset_choice_time_ms() +
1149
phase_times()->young_free_cset_time_ms();
1150
_young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1151
(double) young_cset_region_length());
1152
}
1153
double non_young_other_time_ms = 0.0;
1154
if (old_cset_region_length() > 0) {
1155
non_young_other_time_ms =
1156
phase_times()->non_young_cset_choice_time_ms() +
1157
phase_times()->non_young_free_cset_time_ms();
1158
1159
_non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1160
(double) old_cset_region_length());
1161
}
1162
1163
double constant_other_time_ms = all_other_time_ms -
1164
(young_other_time_ms + non_young_other_time_ms);
1165
_constant_other_time_ms_seq->add(constant_other_time_ms);
1166
1167
double survival_ratio = 0.0;
1168
if (_collection_set_bytes_used_before > 0) {
1169
survival_ratio = (double) _bytes_copied_during_gc /
1170
(double) _collection_set_bytes_used_before;
1171
}
1172
1173
_pending_cards_seq->add((double) _pending_cards);
1174
_rs_lengths_seq->add((double) _max_rs_lengths);
1175
}
1176
1177
_in_marking_window = new_in_marking_window;
1178
_in_marking_window_im = new_in_marking_window_im;
1179
_free_regions_at_end_of_collection = _g1->num_free_regions();
1180
update_young_list_target_length();
1181
1182
// Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1183
double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1184
adjust_concurrent_refinement(phase_times()->average_time_ms(G1GCPhaseTimes::UpdateRS),
1185
phase_times()->sum_thread_work_items(G1GCPhaseTimes::UpdateRS), update_rs_time_goal_ms);
1186
1187
_collectionSetChooser->verify();
1188
}
1189
1190
#define EXT_SIZE_FORMAT "%.1f%s"
1191
#define EXT_SIZE_PARAMS(bytes) \
1192
byte_size_in_proper_unit((double)(bytes)), \
1193
proper_unit_for_byte_size((bytes))
1194
1195
void G1CollectorPolicy::record_heap_size_info_at_start(bool full) {
1196
YoungList* young_list = _g1->young_list();
1197
_eden_used_bytes_before_gc = young_list->eden_used_bytes();
1198
_survivor_used_bytes_before_gc = young_list->survivor_used_bytes();
1199
_heap_capacity_bytes_before_gc = _g1->capacity();
1200
_heap_used_bytes_before_gc = _g1->used();
1201
_cur_collection_pause_used_regions_at_start = _g1->num_used_regions();
1202
1203
_eden_capacity_bytes_before_gc =
1204
(_young_list_target_length * HeapRegion::GrainBytes) - _survivor_used_bytes_before_gc;
1205
1206
if (full) {
1207
_metaspace_used_bytes_before_gc = MetaspaceAux::used_bytes();
1208
}
1209
}
1210
1211
void G1CollectorPolicy::print_heap_transition() {
1212
_g1->print_size_transition(gclog_or_tty,
1213
_heap_used_bytes_before_gc,
1214
_g1->used(),
1215
_g1->capacity());
1216
}
1217
1218
void G1CollectorPolicy::print_detailed_heap_transition(bool full) {
1219
YoungList* young_list = _g1->young_list();
1220
1221
size_t eden_used_bytes_after_gc = young_list->eden_used_bytes();
1222
size_t survivor_used_bytes_after_gc = young_list->survivor_used_bytes();
1223
size_t heap_used_bytes_after_gc = _g1->used();
1224
1225
size_t heap_capacity_bytes_after_gc = _g1->capacity();
1226
size_t eden_capacity_bytes_after_gc =
1227
(_young_list_target_length * HeapRegion::GrainBytes) - survivor_used_bytes_after_gc;
1228
1229
gclog_or_tty->print(
1230
" [Eden: " EXT_SIZE_FORMAT "(" EXT_SIZE_FORMAT ")->" EXT_SIZE_FORMAT "(" EXT_SIZE_FORMAT ") "
1231
"Survivors: " EXT_SIZE_FORMAT "->" EXT_SIZE_FORMAT " "
1232
"Heap: " EXT_SIZE_FORMAT "(" EXT_SIZE_FORMAT ")->"
1233
EXT_SIZE_FORMAT "(" EXT_SIZE_FORMAT ")]",
1234
EXT_SIZE_PARAMS(_eden_used_bytes_before_gc),
1235
EXT_SIZE_PARAMS(_eden_capacity_bytes_before_gc),
1236
EXT_SIZE_PARAMS(eden_used_bytes_after_gc),
1237
EXT_SIZE_PARAMS(eden_capacity_bytes_after_gc),
1238
EXT_SIZE_PARAMS(_survivor_used_bytes_before_gc),
1239
EXT_SIZE_PARAMS(survivor_used_bytes_after_gc),
1240
EXT_SIZE_PARAMS(_heap_used_bytes_before_gc),
1241
EXT_SIZE_PARAMS(_heap_capacity_bytes_before_gc),
1242
EXT_SIZE_PARAMS(heap_used_bytes_after_gc),
1243
EXT_SIZE_PARAMS(heap_capacity_bytes_after_gc));
1244
1245
if (full) {
1246
MetaspaceAux::print_metaspace_change(_metaspace_used_bytes_before_gc);
1247
}
1248
1249
gclog_or_tty->cr();
1250
}
1251
1252
void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1253
double update_rs_processed_buffers,
1254
double goal_ms) {
1255
DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1256
ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1257
1258
if (G1UseAdaptiveConcRefinement) {
1259
const int k_gy = 3, k_gr = 6;
1260
const double inc_k = 1.1, dec_k = 0.9;
1261
1262
int g = cg1r->green_zone();
1263
if (update_rs_time > goal_ms) {
1264
g = (int)(g * dec_k); // Can become 0, that's OK. That would mean a mutator-only processing.
1265
} else {
1266
if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1267
g = (int)MAX2(g * inc_k, g + 1.0);
1268
}
1269
}
1270
// Change the refinement threads params
1271
cg1r->set_green_zone(g);
1272
cg1r->set_yellow_zone(g * k_gy);
1273
cg1r->set_red_zone(g * k_gr);
1274
cg1r->reinitialize_threads();
1275
1276
int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
1277
int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1278
cg1r->yellow_zone());
1279
// Change the barrier params
1280
dcqs.set_process_completed_threshold(processing_threshold);
1281
dcqs.set_max_completed_queue(cg1r->red_zone());
1282
}
1283
1284
int curr_queue_size = dcqs.completed_buffers_num();
1285
if (curr_queue_size >= cg1r->yellow_zone()) {
1286
dcqs.set_completed_queue_padding(curr_queue_size);
1287
} else {
1288
dcqs.set_completed_queue_padding(0);
1289
}
1290
dcqs.notify_if_necessary();
1291
}
1292
1293
double
1294
G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1295
size_t scanned_cards) {
1296
return
1297
predict_rs_update_time_ms(pending_cards) +
1298
predict_rs_scan_time_ms(scanned_cards) +
1299
predict_constant_other_time_ms();
1300
}
1301
1302
double
1303
G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
1304
size_t rs_length = predict_rs_length_diff();
1305
size_t card_num;
1306
if (gcs_are_young()) {
1307
card_num = predict_young_card_num(rs_length);
1308
} else {
1309
card_num = predict_non_young_card_num(rs_length);
1310
}
1311
return predict_base_elapsed_time_ms(pending_cards, card_num);
1312
}
1313
1314
size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
1315
size_t bytes_to_copy;
1316
if (hr->is_marked())
1317
bytes_to_copy = hr->max_live_bytes();
1318
else {
1319
assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
1320
int age = hr->age_in_surv_rate_group();
1321
double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1322
bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
1323
}
1324
return bytes_to_copy;
1325
}
1326
1327
double
1328
G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1329
bool for_young_gc) {
1330
size_t rs_length = hr->rem_set()->occupied();
1331
size_t card_num;
1332
1333
// Predicting the number of cards is based on which type of GC
1334
// we're predicting for.
1335
if (for_young_gc) {
1336
card_num = predict_young_card_num(rs_length);
1337
} else {
1338
card_num = predict_non_young_card_num(rs_length);
1339
}
1340
size_t bytes_to_copy = predict_bytes_to_copy(hr);
1341
1342
double region_elapsed_time_ms =
1343
predict_rs_scan_time_ms(card_num) +
1344
predict_object_copy_time_ms(bytes_to_copy);
1345
1346
// The prediction of the "other" time for this region is based
1347
// upon the region type and NOT the GC type.
1348
if (hr->is_young()) {
1349
region_elapsed_time_ms += predict_young_other_time_ms(1);
1350
} else {
1351
region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1352
}
1353
return region_elapsed_time_ms;
1354
}
1355
1356
void
1357
G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
1358
uint survivor_cset_region_length) {
1359
_eden_cset_region_length = eden_cset_region_length;
1360
_survivor_cset_region_length = survivor_cset_region_length;
1361
_old_cset_region_length = 0;
1362
}
1363
1364
void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
1365
_recorded_rs_lengths = rs_lengths;
1366
}
1367
1368
void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1369
double elapsed_ms) {
1370
_recent_gc_times_ms->add(elapsed_ms);
1371
_recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1372
_prev_collection_pause_end_ms = end_time_sec * 1000.0;
1373
}
1374
1375
size_t G1CollectorPolicy::expansion_amount() {
1376
double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
1377
double threshold = _gc_overhead_perc;
1378
if (recent_gc_overhead > threshold) {
1379
// We will double the existing space, or take
1380
// G1ExpandByPercentOfAvailable % of the available expansion
1381
// space, whichever is smaller, bounded below by a minimum
1382
// expansion (unless that's all that's left.)
1383
const size_t min_expand_bytes = 1*M;
1384
size_t reserved_bytes = _g1->max_capacity();
1385
size_t committed_bytes = _g1->capacity();
1386
size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1387
size_t expand_bytes;
1388
size_t expand_bytes_via_pct =
1389
uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1390
expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1391
expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1392
expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1393
1394
ergo_verbose5(ErgoHeapSizing,
1395
"attempt heap expansion",
1396
ergo_format_reason("recent GC overhead higher than "
1397
"threshold after GC")
1398
ergo_format_perc("recent GC overhead")
1399
ergo_format_perc("threshold")
1400
ergo_format_byte("uncommitted")
1401
ergo_format_byte_perc("calculated expansion amount"),
1402
recent_gc_overhead, threshold,
1403
uncommitted_bytes,
1404
expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
1405
1406
return expand_bytes;
1407
} else {
1408
return 0;
1409
}
1410
}
1411
1412
void G1CollectorPolicy::print_tracing_info() const {
1413
_trace_gen0_time_data.print();
1414
_trace_gen1_time_data.print();
1415
}
1416
1417
void G1CollectorPolicy::print_yg_surv_rate_info() const {
1418
#ifndef PRODUCT
1419
_short_lived_surv_rate_group->print_surv_rate_summary();
1420
// add this call for any other surv rate groups
1421
#endif // PRODUCT
1422
}
1423
1424
bool G1CollectorPolicy::is_young_list_full() {
1425
uint young_list_length = _g1->young_list()->length();
1426
uint young_list_target_length = _young_list_target_length;
1427
return young_list_length >= young_list_target_length;
1428
}
1429
1430
bool G1CollectorPolicy::can_expand_young_list() {
1431
uint young_list_length = _g1->young_list()->length();
1432
uint young_list_max_length = _young_list_max_length;
1433
return young_list_length < young_list_max_length;
1434
}
1435
1436
void G1CollectorPolicy::update_max_gc_locker_expansion() {
1437
uint expansion_region_num = 0;
1438
if (GCLockerEdenExpansionPercent > 0) {
1439
double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1440
double expansion_region_num_d = perc * (double) _young_list_target_length;
1441
// We use ceiling so that if expansion_region_num_d is > 0.0 (but
1442
// less than 1.0) we'll get 1.
1443
expansion_region_num = (uint) ceil(expansion_region_num_d);
1444
} else {
1445
assert(expansion_region_num == 0, "sanity");
1446
}
1447
_young_list_max_length = _young_list_target_length + expansion_region_num;
1448
assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1449
}
1450
1451
// Calculates survivor space parameters.
1452
void G1CollectorPolicy::update_survivors_policy(GCTracer &tracer) {
1453
double max_survivor_regions_d =
1454
(double) _young_list_target_length / (double) SurvivorRatio;
1455
// We use ceiling so that if max_survivor_regions_d is > 0.0 (but
1456
// smaller than 1.0) we'll get 1.
1457
_max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1458
1459
_tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1460
HeapRegion::GrainWords * _max_survivor_regions, tracer);
1461
}
1462
1463
bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
1464
GCCause::Cause gc_cause) {
1465
bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1466
if (!during_cycle) {
1467
ergo_verbose1(ErgoConcCycles,
1468
"request concurrent cycle initiation",
1469
ergo_format_reason("requested by GC cause")
1470
ergo_format_str("GC cause"),
1471
GCCause::to_string(gc_cause));
1472
set_initiate_conc_mark_if_possible();
1473
return true;
1474
} else {
1475
ergo_verbose1(ErgoConcCycles,
1476
"do not request concurrent cycle initiation",
1477
ergo_format_reason("concurrent cycle already in progress")
1478
ergo_format_str("GC cause"),
1479
GCCause::to_string(gc_cause));
1480
return false;
1481
}
1482
}
1483
1484
void
1485
G1CollectorPolicy::decide_on_conc_mark_initiation() {
1486
// We are about to decide on whether this pause will be an
1487
// initial-mark pause.
1488
1489
// First, during_initial_mark_pause() should not be already set. We
1490
// will set it here if we have to. However, it should be cleared by
1491
// the end of the pause (it's only set for the duration of an
1492
// initial-mark pause).
1493
assert(!during_initial_mark_pause(), "pre-condition");
1494
1495
if (initiate_conc_mark_if_possible()) {
1496
// We had noticed on a previous pause that the heap occupancy has
1497
// gone over the initiating threshold and we should start a
1498
// concurrent marking cycle. So we might initiate one.
1499
1500
bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1501
if (!during_cycle) {
1502
// The concurrent marking thread is not "during a cycle", i.e.,
1503
// it has completed the last one. So we can go ahead and
1504
// initiate a new cycle.
1505
1506
set_during_initial_mark_pause();
1507
// We do not allow mixed GCs during marking.
1508
if (!gcs_are_young()) {
1509
set_gcs_are_young(true);
1510
ergo_verbose0(ErgoMixedGCs,
1511
"end mixed GCs",
1512
ergo_format_reason("concurrent cycle is about to start"));
1513
}
1514
1515
// And we can now clear initiate_conc_mark_if_possible() as
1516
// we've already acted on it.
1517
clear_initiate_conc_mark_if_possible();
1518
1519
ergo_verbose0(ErgoConcCycles,
1520
"initiate concurrent cycle",
1521
ergo_format_reason("concurrent cycle initiation requested"));
1522
} else {
1523
// The concurrent marking thread is still finishing up the
1524
// previous cycle. If we start one right now the two cycles
1525
// overlap. In particular, the concurrent marking thread might
1526
// be in the process of clearing the next marking bitmap (which
1527
// we will use for the next cycle if we start one). Starting a
1528
// cycle now will be bad given that parts of the marking
1529
// information might get cleared by the marking thread. And we
1530
// cannot wait for the marking thread to finish the cycle as it
1531
// periodically yields while clearing the next marking bitmap
1532
// and, if it's in a yield point, it's waiting for us to
1533
// finish. So, at this point we will not start a cycle and we'll
1534
// let the concurrent marking thread complete the last one.
1535
ergo_verbose0(ErgoConcCycles,
1536
"do not initiate concurrent cycle",
1537
ergo_format_reason("concurrent cycle already in progress"));
1538
}
1539
}
1540
}
1541
1542
class KnownGarbageClosure: public HeapRegionClosure {
1543
G1CollectedHeap* _g1h;
1544
CollectionSetChooser* _hrSorted;
1545
1546
public:
1547
KnownGarbageClosure(CollectionSetChooser* hrSorted) :
1548
_g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { }
1549
1550
bool doHeapRegion(HeapRegion* r) {
1551
// We only include humongous regions in collection
1552
// sets when concurrent mark shows that their contained object is
1553
// unreachable.
1554
1555
// Do we have any marking information for this region?
1556
if (r->is_marked()) {
1557
// We will skip any region that's currently used as an old GC
1558
// alloc region (we should not consider those for collection
1559
// before we fill them up).
1560
if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1561
_hrSorted->add_region(r);
1562
}
1563
}
1564
return false;
1565
}
1566
};
1567
1568
class ParKnownGarbageHRClosure: public HeapRegionClosure {
1569
G1CollectedHeap* _g1h;
1570
CSetChooserParUpdater _cset_updater;
1571
1572
public:
1573
ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1574
uint chunk_size) :
1575
_g1h(G1CollectedHeap::heap()),
1576
_cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1577
1578
bool doHeapRegion(HeapRegion* r) {
1579
// Do we have any marking information for this region?
1580
if (r->is_marked()) {
1581
// We will skip any region that's currently used as an old GC
1582
// alloc region (we should not consider those for collection
1583
// before we fill them up).
1584
if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1585
_cset_updater.add_region(r);
1586
}
1587
}
1588
return false;
1589
}
1590
};
1591
1592
class ParKnownGarbageTask: public AbstractGangTask {
1593
CollectionSetChooser* _hrSorted;
1594
uint _chunk_size;
1595
G1CollectedHeap* _g1;
1596
public:
1597
ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size) :
1598
AbstractGangTask("ParKnownGarbageTask"),
1599
_hrSorted(hrSorted), _chunk_size(chunk_size),
1600
_g1(G1CollectedHeap::heap()) { }
1601
1602
void work(uint worker_id) {
1603
ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
1604
1605
// Back to zero for the claim value.
1606
_g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
1607
_g1->workers()->active_workers(),
1608
HeapRegion::InitialClaimValue);
1609
}
1610
};
1611
1612
void
1613
G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
1614
_collectionSetChooser->clear();
1615
1616
uint region_num = _g1->num_regions();
1617
if (G1CollectedHeap::use_parallel_gc_threads()) {
1618
const uint OverpartitionFactor = 4;
1619
uint WorkUnit;
1620
// The use of MinChunkSize = 8 in the original code
1621
// causes some assertion failures when the total number of
1622
// region is less than 8. The code here tries to fix that.
1623
// Should the original code also be fixed?
1624
if (no_of_gc_threads > 0) {
1625
const uint MinWorkUnit = MAX2(region_num / no_of_gc_threads, 1U);
1626
WorkUnit = MAX2(region_num / (no_of_gc_threads * OverpartitionFactor),
1627
MinWorkUnit);
1628
} else {
1629
assert(no_of_gc_threads > 0,
1630
"The active gc workers should be greater than 0");
1631
// In a product build do something reasonable to avoid a crash.
1632
const uint MinWorkUnit = MAX2(region_num / (uint) ParallelGCThreads, 1U);
1633
WorkUnit =
1634
MAX2(region_num / (uint) (ParallelGCThreads * OverpartitionFactor),
1635
MinWorkUnit);
1636
}
1637
_collectionSetChooser->prepare_for_par_region_addition(_g1->num_regions(),
1638
WorkUnit);
1639
ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
1640
(int) WorkUnit);
1641
_g1->workers()->run_task(&parKnownGarbageTask);
1642
1643
assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
1644
"sanity check");
1645
} else {
1646
KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
1647
_g1->heap_region_iterate(&knownGarbagecl);
1648
}
1649
1650
_collectionSetChooser->sort_regions();
1651
1652
double end_sec = os::elapsedTime();
1653
double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1654
_concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
1655
_cur_mark_stop_world_time_ms += elapsed_time_ms;
1656
_prev_collection_pause_end_ms += elapsed_time_ms;
1657
_mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
1658
}
1659
1660
// Add the heap region at the head of the non-incremental collection set
1661
void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
1662
assert(_inc_cset_build_state == Active, "Precondition");
1663
assert(hr->is_old(), "the region should be old");
1664
1665
assert(!hr->in_collection_set(), "should not already be in the CSet");
1666
hr->set_in_collection_set(true);
1667
hr->set_next_in_collection_set(_collection_set);
1668
_collection_set = hr;
1669
_collection_set_bytes_used_before += hr->used();
1670
_g1->register_old_region_with_in_cset_fast_test(hr);
1671
size_t rs_length = hr->rem_set()->occupied();
1672
_recorded_rs_lengths += rs_length;
1673
_old_cset_region_length += 1;
1674
}
1675
1676
// Initialize the per-collection-set information
1677
void G1CollectorPolicy::start_incremental_cset_building() {
1678
assert(_inc_cset_build_state == Inactive, "Precondition");
1679
1680
_inc_cset_head = NULL;
1681
_inc_cset_tail = NULL;
1682
_inc_cset_bytes_used_before = 0;
1683
1684
_inc_cset_max_finger = 0;
1685
_inc_cset_recorded_rs_lengths = 0;
1686
_inc_cset_recorded_rs_lengths_diffs = 0;
1687
_inc_cset_predicted_elapsed_time_ms = 0.0;
1688
_inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1689
_inc_cset_build_state = Active;
1690
}
1691
1692
void G1CollectorPolicy::finalize_incremental_cset_building() {
1693
assert(_inc_cset_build_state == Active, "Precondition");
1694
assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1695
1696
// The two "main" fields, _inc_cset_recorded_rs_lengths and
1697
// _inc_cset_predicted_elapsed_time_ms, are updated by the thread
1698
// that adds a new region to the CSet. Further updates by the
1699
// concurrent refinement thread that samples the young RSet lengths
1700
// are accumulated in the *_diffs fields. Here we add the diffs to
1701
// the "main" fields.
1702
1703
if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
1704
_inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
1705
} else {
1706
// This is defensive. The diff should in theory be always positive
1707
// as RSets can only grow between GCs. However, given that we
1708
// sample their size concurrently with other threads updating them
1709
// it's possible that we might get the wrong size back, which
1710
// could make the calculations somewhat inaccurate.
1711
size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
1712
if (_inc_cset_recorded_rs_lengths >= diffs) {
1713
_inc_cset_recorded_rs_lengths -= diffs;
1714
} else {
1715
_inc_cset_recorded_rs_lengths = 0;
1716
}
1717
}
1718
_inc_cset_predicted_elapsed_time_ms +=
1719
_inc_cset_predicted_elapsed_time_ms_diffs;
1720
1721
_inc_cset_recorded_rs_lengths_diffs = 0;
1722
_inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1723
}
1724
1725
void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
1726
// This routine is used when:
1727
// * adding survivor regions to the incremental cset at the end of an
1728
// evacuation pause,
1729
// * adding the current allocation region to the incremental cset
1730
// when it is retired, and
1731
// * updating existing policy information for a region in the
1732
// incremental cset via young list RSet sampling.
1733
// Therefore this routine may be called at a safepoint by the
1734
// VM thread, or in-between safepoints by mutator threads (when
1735
// retiring the current allocation region) or a concurrent
1736
// refine thread (RSet sampling).
1737
1738
double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1739
size_t used_bytes = hr->used();
1740
_inc_cset_recorded_rs_lengths += rs_length;
1741
_inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
1742
_inc_cset_bytes_used_before += used_bytes;
1743
1744
// Cache the values we have added to the aggregated informtion
1745
// in the heap region in case we have to remove this region from
1746
// the incremental collection set, or it is updated by the
1747
// rset sampling code
1748
hr->set_recorded_rs_length(rs_length);
1749
hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
1750
}
1751
1752
void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
1753
size_t new_rs_length) {
1754
// Update the CSet information that is dependent on the new RS length
1755
assert(hr->is_young(), "Precondition");
1756
assert(!SafepointSynchronize::is_at_safepoint(),
1757
"should not be at a safepoint");
1758
1759
// We could have updated _inc_cset_recorded_rs_lengths and
1760
// _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
1761
// that atomically, as this code is executed by a concurrent
1762
// refinement thread, potentially concurrently with a mutator thread
1763
// allocating a new region and also updating the same fields. To
1764
// avoid the atomic operations we accumulate these updates on two
1765
// separate fields (*_diffs) and we'll just add them to the "main"
1766
// fields at the start of a GC.
1767
1768
ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
1769
ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
1770
_inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
1771
1772
double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
1773
double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1774
double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
1775
_inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
1776
1777
hr->set_recorded_rs_length(new_rs_length);
1778
hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
1779
}
1780
1781
void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
1782
assert(hr->is_young(), "invariant");
1783
assert(hr->young_index_in_cset() > -1, "should have already been set");
1784
assert(_inc_cset_build_state == Active, "Precondition");
1785
1786
// We need to clear and set the cached recorded/cached collection set
1787
// information in the heap region here (before the region gets added
1788
// to the collection set). An individual heap region's cached values
1789
// are calculated, aggregated with the policy collection set info,
1790
// and cached in the heap region here (initially) and (subsequently)
1791
// by the Young List sampling code.
1792
1793
size_t rs_length = hr->rem_set()->occupied();
1794
add_to_incremental_cset_info(hr, rs_length);
1795
1796
HeapWord* hr_end = hr->end();
1797
_inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
1798
1799
assert(!hr->in_collection_set(), "invariant");
1800
hr->set_in_collection_set(true);
1801
assert( hr->next_in_collection_set() == NULL, "invariant");
1802
1803
_g1->register_young_region_with_in_cset_fast_test(hr);
1804
}
1805
1806
// Add the region at the RHS of the incremental cset
1807
void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
1808
// We should only ever be appending survivors at the end of a pause
1809
assert(hr->is_survivor(), "Logic");
1810
1811
// Do the 'common' stuff
1812
add_region_to_incremental_cset_common(hr);
1813
1814
// Now add the region at the right hand side
1815
if (_inc_cset_tail == NULL) {
1816
assert(_inc_cset_head == NULL, "invariant");
1817
_inc_cset_head = hr;
1818
} else {
1819
_inc_cset_tail->set_next_in_collection_set(hr);
1820
}
1821
_inc_cset_tail = hr;
1822
}
1823
1824
// Add the region to the LHS of the incremental cset
1825
void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
1826
// Survivors should be added to the RHS at the end of a pause
1827
assert(hr->is_eden(), "Logic");
1828
1829
// Do the 'common' stuff
1830
add_region_to_incremental_cset_common(hr);
1831
1832
// Add the region at the left hand side
1833
hr->set_next_in_collection_set(_inc_cset_head);
1834
if (_inc_cset_head == NULL) {
1835
assert(_inc_cset_tail == NULL, "Invariant");
1836
_inc_cset_tail = hr;
1837
}
1838
_inc_cset_head = hr;
1839
}
1840
1841
#ifndef PRODUCT
1842
void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
1843
assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
1844
1845
st->print_cr("\nCollection_set:");
1846
HeapRegion* csr = list_head;
1847
while (csr != NULL) {
1848
HeapRegion* next = csr->next_in_collection_set();
1849
assert(csr->in_collection_set(), "bad CS");
1850
st->print_cr(" " HR_FORMAT ", P: " PTR_FORMAT "N: " PTR_FORMAT ", age: %4d",
1851
HR_FORMAT_PARAMS(csr),
1852
p2i(csr->prev_top_at_mark_start()), p2i(csr->next_top_at_mark_start()),
1853
csr->age_in_surv_rate_group_cond());
1854
csr = next;
1855
}
1856
}
1857
#endif // !PRODUCT
1858
1859
double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) {
1860
// Returns the given amount of reclaimable bytes (that represents
1861
// the amount of reclaimable space still to be collected) as a
1862
// percentage of the current heap capacity.
1863
size_t capacity_bytes = _g1->capacity();
1864
return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1865
}
1866
1867
bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
1868
const char* false_action_str) {
1869
CollectionSetChooser* cset_chooser = _collectionSetChooser;
1870
if (cset_chooser->is_empty()) {
1871
ergo_verbose0(ErgoMixedGCs,
1872
false_action_str,
1873
ergo_format_reason("candidate old regions not available"));
1874
return false;
1875
}
1876
1877
// Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1878
size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1879
double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1880
double threshold = (double) G1HeapWastePercent;
1881
if (reclaimable_perc <= threshold) {
1882
ergo_verbose4(ErgoMixedGCs,
1883
false_action_str,
1884
ergo_format_reason("reclaimable percentage not over threshold")
1885
ergo_format_region("candidate old regions")
1886
ergo_format_byte_perc("reclaimable")
1887
ergo_format_perc("threshold"),
1888
cset_chooser->remaining_regions(),
1889
reclaimable_bytes,
1890
reclaimable_perc, threshold);
1891
return false;
1892
}
1893
1894
ergo_verbose4(ErgoMixedGCs,
1895
true_action_str,
1896
ergo_format_reason("candidate old regions available")
1897
ergo_format_region("candidate old regions")
1898
ergo_format_byte_perc("reclaimable")
1899
ergo_format_perc("threshold"),
1900
cset_chooser->remaining_regions(),
1901
reclaimable_bytes,
1902
reclaimable_perc, threshold);
1903
return true;
1904
}
1905
1906
uint G1CollectorPolicy::calc_min_old_cset_length() {
1907
// The min old CSet region bound is based on the maximum desired
1908
// number of mixed GCs after a cycle. I.e., even if some old regions
1909
// look expensive, we should add them to the CSet anyway to make
1910
// sure we go through the available old regions in no more than the
1911
// maximum desired number of mixed GCs.
1912
//
1913
// The calculation is based on the number of marked regions we added
1914
// to the CSet chooser in the first place, not how many remain, so
1915
// that the result is the same during all mixed GCs that follow a cycle.
1916
1917
const size_t region_num = (size_t) _collectionSetChooser->length();
1918
const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1919
size_t result = region_num / gc_num;
1920
// emulate ceiling
1921
if (result * gc_num < region_num) {
1922
result += 1;
1923
}
1924
return (uint) result;
1925
}
1926
1927
uint G1CollectorPolicy::calc_max_old_cset_length() {
1928
// The max old CSet region bound is based on the threshold expressed
1929
// as a percentage of the heap size. I.e., it should bound the
1930
// number of old regions added to the CSet irrespective of how many
1931
// of them are available.
1932
1933
G1CollectedHeap* g1h = G1CollectedHeap::heap();
1934
const size_t region_num = g1h->num_regions();
1935
const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1936
size_t result = region_num * perc / 100;
1937
// emulate ceiling
1938
if (100 * result < region_num * perc) {
1939
result += 1;
1940
}
1941
return (uint) result;
1942
}
1943
1944
1945
void G1CollectorPolicy::finalize_cset(double target_pause_time_ms, EvacuationInfo& evacuation_info) {
1946
double young_start_time_sec = os::elapsedTime();
1947
1948
YoungList* young_list = _g1->young_list();
1949
finalize_incremental_cset_building();
1950
1951
guarantee(target_pause_time_ms > 0.0,
1952
err_msg("target_pause_time_ms = %1.6lf should be positive",
1953
target_pause_time_ms));
1954
guarantee(_collection_set == NULL, "Precondition");
1955
1956
double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
1957
double predicted_pause_time_ms = base_time_ms;
1958
double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
1959
1960
ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
1961
"start choosing CSet",
1962
ergo_format_size("_pending_cards")
1963
ergo_format_ms("predicted base time")
1964
ergo_format_ms("remaining time")
1965
ergo_format_ms("target pause time"),
1966
_pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
1967
1968
_last_gc_was_young = gcs_are_young() ? true : false;
1969
1970
if (_last_gc_was_young) {
1971
_trace_gen0_time_data.increment_young_collection_count();
1972
} else {
1973
_trace_gen0_time_data.increment_mixed_collection_count();
1974
}
1975
1976
// The young list is laid with the survivor regions from the previous
1977
// pause are appended to the RHS of the young list, i.e.
1978
// [Newly Young Regions ++ Survivors from last pause].
1979
1980
uint survivor_region_length = young_list->survivor_length();
1981
uint eden_region_length = young_list->length() - survivor_region_length;
1982
init_cset_region_lengths(eden_region_length, survivor_region_length);
1983
1984
HeapRegion* hr = young_list->first_survivor_region();
1985
while (hr != NULL) {
1986
assert(hr->is_survivor(), "badly formed young list");
1987
// There is a convention that all the young regions in the CSet
1988
// are tagged as "eden", so we do this for the survivors here. We
1989
// use the special set_eden_pre_gc() as it doesn't check that the
1990
// region is free (which is not the case here).
1991
hr->set_eden_pre_gc();
1992
hr = hr->get_next_young_region();
1993
}
1994
1995
// Clear the fields that point to the survivor list - they are all young now.
1996
young_list->clear_survivors();
1997
1998
_collection_set = _inc_cset_head;
1999
_collection_set_bytes_used_before = _inc_cset_bytes_used_before;
2000
time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
2001
predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
2002
2003
ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
2004
"add young regions to CSet",
2005
ergo_format_region("eden")
2006
ergo_format_region("survivors")
2007
ergo_format_ms("predicted young region time"),
2008
eden_region_length, survivor_region_length,
2009
_inc_cset_predicted_elapsed_time_ms);
2010
2011
// The number of recorded young regions is the incremental
2012
// collection set's current size
2013
set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
2014
2015
double young_end_time_sec = os::elapsedTime();
2016
phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
2017
2018
// Set the start of the non-young choice time.
2019
double non_young_start_time_sec = young_end_time_sec;
2020
2021
if (!gcs_are_young()) {
2022
CollectionSetChooser* cset_chooser = _collectionSetChooser;
2023
cset_chooser->verify();
2024
const uint min_old_cset_length = calc_min_old_cset_length();
2025
const uint max_old_cset_length = calc_max_old_cset_length();
2026
2027
uint expensive_region_num = 0;
2028
bool check_time_remaining = adaptive_young_list_length();
2029
2030
HeapRegion* hr = cset_chooser->peek();
2031
while (hr != NULL) {
2032
if (old_cset_region_length() >= max_old_cset_length) {
2033
// Added maximum number of old regions to the CSet.
2034
ergo_verbose2(ErgoCSetConstruction,
2035
"finish adding old regions to CSet",
2036
ergo_format_reason("old CSet region num reached max")
2037
ergo_format_region("old")
2038
ergo_format_region("max"),
2039
old_cset_region_length(), max_old_cset_length);
2040
break;
2041
}
2042
2043
2044
// Stop adding regions if the remaining reclaimable space is
2045
// not above G1HeapWastePercent.
2046
size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
2047
double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
2048
double threshold = (double) G1HeapWastePercent;
2049
if (reclaimable_perc <= threshold) {
2050
// We've added enough old regions that the amount of uncollected
2051
// reclaimable space is at or below the waste threshold. Stop
2052
// adding old regions to the CSet.
2053
ergo_verbose5(ErgoCSetConstruction,
2054
"finish adding old regions to CSet",
2055
ergo_format_reason("reclaimable percentage not over threshold")
2056
ergo_format_region("old")
2057
ergo_format_region("max")
2058
ergo_format_byte_perc("reclaimable")
2059
ergo_format_perc("threshold"),
2060
old_cset_region_length(),
2061
max_old_cset_length,
2062
reclaimable_bytes,
2063
reclaimable_perc, threshold);
2064
break;
2065
}
2066
2067
double predicted_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
2068
if (check_time_remaining) {
2069
if (predicted_time_ms > time_remaining_ms) {
2070
// Too expensive for the current CSet.
2071
2072
if (old_cset_region_length() >= min_old_cset_length) {
2073
// We have added the minimum number of old regions to the CSet,
2074
// we are done with this CSet.
2075
ergo_verbose4(ErgoCSetConstruction,
2076
"finish adding old regions to CSet",
2077
ergo_format_reason("predicted time is too high")
2078
ergo_format_ms("predicted time")
2079
ergo_format_ms("remaining time")
2080
ergo_format_region("old")
2081
ergo_format_region("min"),
2082
predicted_time_ms, time_remaining_ms,
2083
old_cset_region_length(), min_old_cset_length);
2084
break;
2085
}
2086
2087
// We'll add it anyway given that we haven't reached the
2088
// minimum number of old regions.
2089
expensive_region_num += 1;
2090
}
2091
} else {
2092
if (old_cset_region_length() >= min_old_cset_length) {
2093
// In the non-auto-tuning case, we'll finish adding regions
2094
// to the CSet if we reach the minimum.
2095
ergo_verbose2(ErgoCSetConstruction,
2096
"finish adding old regions to CSet",
2097
ergo_format_reason("old CSet region num reached min")
2098
ergo_format_region("old")
2099
ergo_format_region("min"),
2100
old_cset_region_length(), min_old_cset_length);
2101
break;
2102
}
2103
}
2104
2105
// We will add this region to the CSet.
2106
time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
2107
predicted_pause_time_ms += predicted_time_ms;
2108
cset_chooser->remove_and_move_to_next(hr);
2109
_g1->old_set_remove(hr);
2110
add_old_region_to_cset(hr);
2111
2112
hr = cset_chooser->peek();
2113
}
2114
if (hr == NULL) {
2115
ergo_verbose0(ErgoCSetConstruction,
2116
"finish adding old regions to CSet",
2117
ergo_format_reason("candidate old regions not available"));
2118
}
2119
2120
if (expensive_region_num > 0) {
2121
// We print the information once here at the end, predicated on
2122
// whether we added any apparently expensive regions or not, to
2123
// avoid generating output per region.
2124
ergo_verbose4(ErgoCSetConstruction,
2125
"added expensive regions to CSet",
2126
ergo_format_reason("old CSet region num not reached min")
2127
ergo_format_region("old")
2128
ergo_format_region("expensive")
2129
ergo_format_region("min")
2130
ergo_format_ms("remaining time"),
2131
old_cset_region_length(),
2132
expensive_region_num,
2133
min_old_cset_length,
2134
time_remaining_ms);
2135
}
2136
2137
cset_chooser->verify();
2138
}
2139
2140
stop_incremental_cset_building();
2141
2142
ergo_verbose5(ErgoCSetConstruction,
2143
"finish choosing CSet",
2144
ergo_format_region("eden")
2145
ergo_format_region("survivors")
2146
ergo_format_region("old")
2147
ergo_format_ms("predicted pause time")
2148
ergo_format_ms("target pause time"),
2149
eden_region_length, survivor_region_length,
2150
old_cset_region_length(),
2151
predicted_pause_time_ms, target_pause_time_ms);
2152
2153
double non_young_end_time_sec = os::elapsedTime();
2154
phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
2155
evacuation_info.set_collectionset_regions(cset_region_length());
2156
}
2157
2158
void TraceGen0TimeData::record_start_collection(double time_to_stop_the_world_ms) {
2159
if(TraceGen0Time) {
2160
_all_stop_world_times_ms.add(time_to_stop_the_world_ms);
2161
}
2162
}
2163
2164
void TraceGen0TimeData::record_yield_time(double yield_time_ms) {
2165
if(TraceGen0Time) {
2166
_all_yield_times_ms.add(yield_time_ms);
2167
}
2168
}
2169
2170
void TraceGen0TimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
2171
if(TraceGen0Time) {
2172
_total.add(pause_time_ms);
2173
_other.add(pause_time_ms - phase_times->accounted_time_ms());
2174
_root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
2175
_parallel.add(phase_times->cur_collection_par_time_ms());
2176
_ext_root_scan.add(phase_times->average_time_ms(G1GCPhaseTimes::ExtRootScan));
2177
_satb_filtering.add(phase_times->average_time_ms(G1GCPhaseTimes::SATBFiltering));
2178
_update_rs.add(phase_times->average_time_ms(G1GCPhaseTimes::UpdateRS));
2179
_scan_rs.add(phase_times->average_time_ms(G1GCPhaseTimes::ScanRS));
2180
_obj_copy.add(phase_times->average_time_ms(G1GCPhaseTimes::ObjCopy));
2181
_termination.add(phase_times->average_time_ms(G1GCPhaseTimes::Termination));
2182
2183
double parallel_known_time = phase_times->average_time_ms(G1GCPhaseTimes::ExtRootScan) +
2184
phase_times->average_time_ms(G1GCPhaseTimes::SATBFiltering) +
2185
phase_times->average_time_ms(G1GCPhaseTimes::UpdateRS) +
2186
phase_times->average_time_ms(G1GCPhaseTimes::ScanRS) +
2187
phase_times->average_time_ms(G1GCPhaseTimes::ObjCopy) +
2188
phase_times->average_time_ms(G1GCPhaseTimes::Termination);
2189
2190
double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
2191
_parallel_other.add(parallel_other_time);
2192
_clear_ct.add(phase_times->cur_clear_ct_time_ms());
2193
}
2194
}
2195
2196
void TraceGen0TimeData::increment_young_collection_count() {
2197
if(TraceGen0Time) {
2198
++_young_pause_num;
2199
}
2200
}
2201
2202
void TraceGen0TimeData::increment_mixed_collection_count() {
2203
if(TraceGen0Time) {
2204
++_mixed_pause_num;
2205
}
2206
}
2207
2208
void TraceGen0TimeData::print_summary(const char* str,
2209
const NumberSeq* seq) const {
2210
double sum = seq->sum();
2211
gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
2212
str, sum / 1000.0, seq->avg());
2213
}
2214
2215
void TraceGen0TimeData::print_summary_sd(const char* str,
2216
const NumberSeq* seq) const {
2217
print_summary(str, seq);
2218
gclog_or_tty->print_cr("%45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
2219
"(num", seq->num(), seq->sd(), seq->maximum());
2220
}
2221
2222
void TraceGen0TimeData::print() const {
2223
if (!TraceGen0Time) {
2224
return;
2225
}
2226
2227
gclog_or_tty->print_cr("ALL PAUSES");
2228
print_summary_sd(" Total", &_total);
2229
gclog_or_tty->cr();
2230
gclog_or_tty->cr();
2231
gclog_or_tty->print_cr(" Young GC Pauses: %8d", _young_pause_num);
2232
gclog_or_tty->print_cr(" Mixed GC Pauses: %8d", _mixed_pause_num);
2233
gclog_or_tty->cr();
2234
2235
gclog_or_tty->print_cr("EVACUATION PAUSES");
2236
2237
if (_young_pause_num == 0 && _mixed_pause_num == 0) {
2238
gclog_or_tty->print_cr("none");
2239
} else {
2240
print_summary_sd(" Evacuation Pauses", &_total);
2241
print_summary(" Root Region Scan Wait", &_root_region_scan_wait);
2242
print_summary(" Parallel Time", &_parallel);
2243
print_summary(" Ext Root Scanning", &_ext_root_scan);
2244
print_summary(" SATB Filtering", &_satb_filtering);
2245
print_summary(" Update RS", &_update_rs);
2246
print_summary(" Scan RS", &_scan_rs);
2247
print_summary(" Object Copy", &_obj_copy);
2248
print_summary(" Termination", &_termination);
2249
print_summary(" Parallel Other", &_parallel_other);
2250
print_summary(" Clear CT", &_clear_ct);
2251
print_summary(" Other", &_other);
2252
}
2253
gclog_or_tty->cr();
2254
2255
gclog_or_tty->print_cr("MISC");
2256
print_summary_sd(" Stop World", &_all_stop_world_times_ms);
2257
print_summary_sd(" Yields", &_all_yield_times_ms);
2258
}
2259
2260
void TraceGen1TimeData::record_full_collection(double full_gc_time_ms) {
2261
if (TraceGen1Time) {
2262
_all_full_gc_times.add(full_gc_time_ms);
2263
}
2264
}
2265
2266
void TraceGen1TimeData::print() const {
2267
if (!TraceGen1Time) {
2268
return;
2269
}
2270
2271
if (_all_full_gc_times.num() > 0) {
2272
gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
2273
_all_full_gc_times.num(),
2274
_all_full_gc_times.sum() / 1000.0);
2275
gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
2276
gclog_or_tty->print_cr(" [std. dev = %8.2f ms, max = %8.2f ms]",
2277
_all_full_gc_times.sd(),
2278
_all_full_gc_times.maximum());
2279
}
2280
}
2281
2282