Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp
38920 views
1
/*
2
* Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
26
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
27
28
#include "gc_implementation/g1/collectionSetChooser.hpp"
29
#include "gc_implementation/g1/g1Allocator.hpp"
30
#include "gc_implementation/g1/g1MMUTracker.hpp"
31
#include "memory/collectorPolicy.hpp"
32
33
// A G1CollectorPolicy makes policy decisions that determine the
34
// characteristics of the collector. Examples include:
35
// * choice of collection set.
36
// * when to collect.
37
38
class HeapRegion;
39
class CollectionSetChooser;
40
class G1GCPhaseTimes;
41
42
// TraceGen0Time collects data on _both_ young and mixed evacuation pauses
43
// (the latter may contain non-young regions - i.e. regions that are
44
// technically in Gen1) while TraceGen1Time collects data about full GCs.
45
class TraceGen0TimeData : public CHeapObj<mtGC> {
46
private:
47
unsigned _young_pause_num;
48
unsigned _mixed_pause_num;
49
50
NumberSeq _all_stop_world_times_ms;
51
NumberSeq _all_yield_times_ms;
52
53
NumberSeq _total;
54
NumberSeq _other;
55
NumberSeq _root_region_scan_wait;
56
NumberSeq _parallel;
57
NumberSeq _ext_root_scan;
58
NumberSeq _satb_filtering;
59
NumberSeq _update_rs;
60
NumberSeq _scan_rs;
61
NumberSeq _obj_copy;
62
NumberSeq _termination;
63
NumberSeq _parallel_other;
64
NumberSeq _clear_ct;
65
66
void print_summary(const char* str, const NumberSeq* seq) const;
67
void print_summary_sd(const char* str, const NumberSeq* seq) const;
68
69
public:
70
TraceGen0TimeData() : _young_pause_num(0), _mixed_pause_num(0) {};
71
void record_start_collection(double time_to_stop_the_world_ms);
72
void record_yield_time(double yield_time_ms);
73
void record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times);
74
void increment_young_collection_count();
75
void increment_mixed_collection_count();
76
void print() const;
77
};
78
79
class TraceGen1TimeData : public CHeapObj<mtGC> {
80
private:
81
NumberSeq _all_full_gc_times;
82
83
public:
84
void record_full_collection(double full_gc_time_ms);
85
void print() const;
86
};
87
88
// There are three command line options related to the young gen size:
89
// NewSize, MaxNewSize and NewRatio (There is also -Xmn, but that is
90
// just a short form for NewSize==MaxNewSize). G1 will use its internal
91
// heuristics to calculate the actual young gen size, so these options
92
// basically only limit the range within which G1 can pick a young gen
93
// size. Also, these are general options taking byte sizes. G1 will
94
// internally work with a number of regions instead. So, some rounding
95
// will occur.
96
//
97
// If nothing related to the the young gen size is set on the command
98
// line we should allow the young gen to be between G1NewSizePercent
99
// and G1MaxNewSizePercent of the heap size. This means that every time
100
// the heap size changes, the limits for the young gen size will be
101
// recalculated.
102
//
103
// If only -XX:NewSize is set we should use the specified value as the
104
// minimum size for young gen. Still using G1MaxNewSizePercent of the
105
// heap as maximum.
106
//
107
// If only -XX:MaxNewSize is set we should use the specified value as the
108
// maximum size for young gen. Still using G1NewSizePercent of the heap
109
// as minimum.
110
//
111
// If -XX:NewSize and -XX:MaxNewSize are both specified we use these values.
112
// No updates when the heap size changes. There is a special case when
113
// NewSize==MaxNewSize. This is interpreted as "fixed" and will use a
114
// different heuristic for calculating the collection set when we do mixed
115
// collection.
116
//
117
// If only -XX:NewRatio is set we should use the specified ratio of the heap
118
// as both min and max. This will be interpreted as "fixed" just like the
119
// NewSize==MaxNewSize case above. But we will update the min and max
120
// everytime the heap size changes.
121
//
122
// NewSize and MaxNewSize override NewRatio. So, NewRatio is ignored if it is
123
// combined with either NewSize or MaxNewSize. (A warning message is printed.)
124
class G1YoungGenSizer : public CHeapObj<mtGC> {
125
private:
126
enum SizerKind {
127
SizerDefaults,
128
SizerNewSizeOnly,
129
SizerMaxNewSizeOnly,
130
SizerMaxAndNewSize,
131
SizerNewRatio
132
};
133
SizerKind _sizer_kind;
134
uint _min_desired_young_length;
135
uint _max_desired_young_length;
136
137
// False when using a fixed young generation size due to command-line options,
138
// true otherwise.
139
bool _adaptive_size;
140
141
uint calculate_default_min_length(uint new_number_of_heap_regions);
142
uint calculate_default_max_length(uint new_number_of_heap_regions);
143
144
// Update the given values for minimum and maximum young gen length in regions
145
// given the number of heap regions depending on the kind of sizing algorithm.
146
void recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length);
147
148
public:
149
G1YoungGenSizer();
150
// Calculate the maximum length of the young gen given the number of regions
151
// depending on the sizing algorithm.
152
uint max_young_length(uint number_of_heap_regions);
153
154
void heap_size_changed(uint new_number_of_heap_regions);
155
uint min_desired_young_length() {
156
return _min_desired_young_length;
157
}
158
uint max_desired_young_length() {
159
return _max_desired_young_length;
160
}
161
bool adaptive_young_list_length() {
162
return _adaptive_size;
163
}
164
};
165
166
class G1CollectorPolicy: public CollectorPolicy {
167
private:
168
// either equal to the number of parallel threads, if ParallelGCThreads
169
// has been set, or 1 otherwise
170
int _parallel_gc_threads;
171
172
// The number of GC threads currently active.
173
uintx _no_of_gc_threads;
174
175
enum SomePrivateConstants {
176
NumPrevPausesForHeuristics = 10
177
};
178
179
G1MMUTracker* _mmu_tracker;
180
181
void initialize_alignments();
182
void initialize_flags();
183
184
CollectionSetChooser* _collectionSetChooser;
185
186
double _full_collection_start_sec;
187
uint _cur_collection_pause_used_regions_at_start;
188
189
// These exclude marking times.
190
TruncatedSeq* _recent_gc_times_ms;
191
192
TruncatedSeq* _concurrent_mark_remark_times_ms;
193
TruncatedSeq* _concurrent_mark_cleanup_times_ms;
194
195
TraceGen0TimeData _trace_gen0_time_data;
196
TraceGen1TimeData _trace_gen1_time_data;
197
198
double _stop_world_start;
199
200
// indicates whether we are in young or mixed GC mode
201
bool _gcs_are_young;
202
203
uint _young_list_target_length;
204
uint _young_list_fixed_length;
205
206
// The max number of regions we can extend the eden by while the GC
207
// locker is active. This should be >= _young_list_target_length;
208
uint _young_list_max_length;
209
210
bool _last_gc_was_young;
211
212
bool _during_marking;
213
bool _in_marking_window;
214
bool _in_marking_window_im;
215
216
SurvRateGroup* _short_lived_surv_rate_group;
217
SurvRateGroup* _survivor_surv_rate_group;
218
// add here any more surv rate groups
219
220
double _gc_overhead_perc;
221
222
double _reserve_factor;
223
uint _reserve_regions;
224
225
bool during_marking() {
226
return _during_marking;
227
}
228
229
enum PredictionConstants {
230
TruncatedSeqLength = 10
231
};
232
233
TruncatedSeq* _alloc_rate_ms_seq;
234
double _prev_collection_pause_end_ms;
235
236
TruncatedSeq* _rs_length_diff_seq;
237
TruncatedSeq* _cost_per_card_ms_seq;
238
TruncatedSeq* _young_cards_per_entry_ratio_seq;
239
TruncatedSeq* _mixed_cards_per_entry_ratio_seq;
240
TruncatedSeq* _cost_per_entry_ms_seq;
241
TruncatedSeq* _mixed_cost_per_entry_ms_seq;
242
TruncatedSeq* _cost_per_byte_ms_seq;
243
TruncatedSeq* _constant_other_time_ms_seq;
244
TruncatedSeq* _young_other_cost_per_region_ms_seq;
245
TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
246
247
TruncatedSeq* _pending_cards_seq;
248
TruncatedSeq* _rs_lengths_seq;
249
250
TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
251
252
G1YoungGenSizer* _young_gen_sizer;
253
254
uint _eden_cset_region_length;
255
uint _survivor_cset_region_length;
256
uint _old_cset_region_length;
257
258
void init_cset_region_lengths(uint eden_cset_region_length,
259
uint survivor_cset_region_length);
260
261
uint eden_cset_region_length() { return _eden_cset_region_length; }
262
uint survivor_cset_region_length() { return _survivor_cset_region_length; }
263
uint old_cset_region_length() { return _old_cset_region_length; }
264
265
uint _free_regions_at_end_of_collection;
266
267
size_t _recorded_rs_lengths;
268
size_t _max_rs_lengths;
269
double _sigma;
270
271
size_t _rs_lengths_prediction;
272
273
double sigma() { return _sigma; }
274
275
// A function that prevents us putting too much stock in small sample
276
// sets. Returns a number between 2.0 and 1.0, depending on the number
277
// of samples. 5 or more samples yields one; fewer scales linearly from
278
// 2.0 at 1 sample to 1.0 at 5.
279
double confidence_factor(int samples) {
280
if (samples > 4) return 1.0;
281
else return 1.0 + sigma() * ((double)(5 - samples))/2.0;
282
}
283
284
double get_new_neg_prediction(TruncatedSeq* seq) {
285
return seq->davg() - sigma() * seq->dsd();
286
}
287
288
#ifndef PRODUCT
289
bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
290
#endif // PRODUCT
291
292
void adjust_concurrent_refinement(double update_rs_time,
293
double update_rs_processed_buffers,
294
double goal_ms);
295
296
uintx no_of_gc_threads() { return _no_of_gc_threads; }
297
void set_no_of_gc_threads(uintx v) { _no_of_gc_threads = v; }
298
299
double _pause_time_target_ms;
300
301
size_t _pending_cards;
302
303
public:
304
// Accessors
305
306
void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
307
hr->set_eden();
308
hr->install_surv_rate_group(_short_lived_surv_rate_group);
309
hr->set_young_index_in_cset(young_index_in_cset);
310
}
311
312
void set_region_survivor(HeapRegion* hr, int young_index_in_cset) {
313
assert(hr->is_survivor(), "pre-condition");
314
hr->install_surv_rate_group(_survivor_surv_rate_group);
315
hr->set_young_index_in_cset(young_index_in_cset);
316
}
317
318
#ifndef PRODUCT
319
bool verify_young_ages();
320
#endif // PRODUCT
321
322
double get_new_prediction(TruncatedSeq* seq) {
323
return MAX2(seq->davg() + sigma() * seq->dsd(),
324
seq->davg() * confidence_factor(seq->num()));
325
}
326
327
void record_max_rs_lengths(size_t rs_lengths) {
328
_max_rs_lengths = rs_lengths;
329
}
330
331
size_t predict_rs_length_diff() {
332
return (size_t) get_new_prediction(_rs_length_diff_seq);
333
}
334
335
double predict_alloc_rate_ms() {
336
return get_new_prediction(_alloc_rate_ms_seq);
337
}
338
339
double predict_cost_per_card_ms() {
340
return get_new_prediction(_cost_per_card_ms_seq);
341
}
342
343
double predict_rs_update_time_ms(size_t pending_cards) {
344
return (double) pending_cards * predict_cost_per_card_ms();
345
}
346
347
double predict_young_cards_per_entry_ratio() {
348
return get_new_prediction(_young_cards_per_entry_ratio_seq);
349
}
350
351
double predict_mixed_cards_per_entry_ratio() {
352
if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
353
return predict_young_cards_per_entry_ratio();
354
} else {
355
return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
356
}
357
}
358
359
size_t predict_young_card_num(size_t rs_length) {
360
return (size_t) ((double) rs_length *
361
predict_young_cards_per_entry_ratio());
362
}
363
364
size_t predict_non_young_card_num(size_t rs_length) {
365
return (size_t) ((double) rs_length *
366
predict_mixed_cards_per_entry_ratio());
367
}
368
369
double predict_rs_scan_time_ms(size_t card_num) {
370
if (gcs_are_young()) {
371
return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
372
} else {
373
return predict_mixed_rs_scan_time_ms(card_num);
374
}
375
}
376
377
double predict_mixed_rs_scan_time_ms(size_t card_num) {
378
if (_mixed_cost_per_entry_ms_seq->num() < 3) {
379
return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
380
} else {
381
return (double) (card_num *
382
get_new_prediction(_mixed_cost_per_entry_ms_seq));
383
}
384
}
385
386
double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
387
if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
388
return (1.1 * (double) bytes_to_copy) *
389
get_new_prediction(_cost_per_byte_ms_seq);
390
} else {
391
return (double) bytes_to_copy *
392
get_new_prediction(_cost_per_byte_ms_during_cm_seq);
393
}
394
}
395
396
double predict_object_copy_time_ms(size_t bytes_to_copy) {
397
if (_in_marking_window && !_in_marking_window_im) {
398
return predict_object_copy_time_ms_during_cm(bytes_to_copy);
399
} else {
400
return (double) bytes_to_copy *
401
get_new_prediction(_cost_per_byte_ms_seq);
402
}
403
}
404
405
double predict_constant_other_time_ms() {
406
return get_new_prediction(_constant_other_time_ms_seq);
407
}
408
409
double predict_young_other_time_ms(size_t young_num) {
410
return (double) young_num *
411
get_new_prediction(_young_other_cost_per_region_ms_seq);
412
}
413
414
double predict_non_young_other_time_ms(size_t non_young_num) {
415
return (double) non_young_num *
416
get_new_prediction(_non_young_other_cost_per_region_ms_seq);
417
}
418
419
double predict_base_elapsed_time_ms(size_t pending_cards);
420
double predict_base_elapsed_time_ms(size_t pending_cards,
421
size_t scanned_cards);
422
size_t predict_bytes_to_copy(HeapRegion* hr);
423
double predict_region_elapsed_time_ms(HeapRegion* hr, bool for_young_gc);
424
425
void set_recorded_rs_lengths(size_t rs_lengths);
426
427
uint cset_region_length() { return young_cset_region_length() +
428
old_cset_region_length(); }
429
uint young_cset_region_length() { return eden_cset_region_length() +
430
survivor_cset_region_length(); }
431
432
double predict_survivor_regions_evac_time();
433
434
void cset_regions_freed() {
435
bool propagate = _last_gc_was_young && !_in_marking_window;
436
_short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
437
_survivor_surv_rate_group->all_surviving_words_recorded(propagate);
438
// also call it on any more surv rate groups
439
}
440
441
G1MMUTracker* mmu_tracker() {
442
return _mmu_tracker;
443
}
444
445
double max_pause_time_ms() {
446
return _mmu_tracker->max_gc_time() * 1000.0;
447
}
448
449
double predict_remark_time_ms() {
450
return get_new_prediction(_concurrent_mark_remark_times_ms);
451
}
452
453
double predict_cleanup_time_ms() {
454
return get_new_prediction(_concurrent_mark_cleanup_times_ms);
455
}
456
457
// Returns an estimate of the survival rate of the region at yg-age
458
// "yg_age".
459
double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
460
TruncatedSeq* seq = surv_rate_group->get_seq(age);
461
if (seq->num() == 0)
462
gclog_or_tty->print("BARF! age is %d", age);
463
guarantee( seq->num() > 0, "invariant" );
464
double pred = get_new_prediction(seq);
465
if (pred > 1.0)
466
pred = 1.0;
467
return pred;
468
}
469
470
double predict_yg_surv_rate(int age) {
471
return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
472
}
473
474
double accum_yg_surv_rate_pred(int age) {
475
return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
476
}
477
478
private:
479
// Statistics kept per GC stoppage, pause or full.
480
TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
481
482
// Add a new GC of the given duration and end time to the record.
483
void update_recent_gc_times(double end_time_sec, double elapsed_ms);
484
485
// The head of the list (via "next_in_collection_set()") representing the
486
// current collection set. Set from the incrementally built collection
487
// set at the start of the pause.
488
HeapRegion* _collection_set;
489
490
// The number of bytes in the collection set before the pause. Set from
491
// the incrementally built collection set at the start of an evacuation
492
// pause, and incremented in finalize_cset() when adding old regions
493
// (if any) to the collection set.
494
size_t _collection_set_bytes_used_before;
495
496
// The number of bytes copied during the GC.
497
size_t _bytes_copied_during_gc;
498
499
// The associated information that is maintained while the incremental
500
// collection set is being built with young regions. Used to populate
501
// the recorded info for the evacuation pause.
502
503
enum CSetBuildType {
504
Active, // We are actively building the collection set
505
Inactive // We are not actively building the collection set
506
};
507
508
CSetBuildType _inc_cset_build_state;
509
510
// The head of the incrementally built collection set.
511
HeapRegion* _inc_cset_head;
512
513
// The tail of the incrementally built collection set.
514
HeapRegion* _inc_cset_tail;
515
516
// The number of bytes in the incrementally built collection set.
517
// Used to set _collection_set_bytes_used_before at the start of
518
// an evacuation pause.
519
size_t _inc_cset_bytes_used_before;
520
521
// Used to record the highest end of heap region in collection set
522
HeapWord* _inc_cset_max_finger;
523
524
// The RSet lengths recorded for regions in the CSet. It is updated
525
// by the thread that adds a new region to the CSet. We assume that
526
// only one thread can be allocating a new CSet region (currently,
527
// it does so after taking the Heap_lock) hence no need to
528
// synchronize updates to this field.
529
size_t _inc_cset_recorded_rs_lengths;
530
531
// A concurrent refinement thread periodcially samples the young
532
// region RSets and needs to update _inc_cset_recorded_rs_lengths as
533
// the RSets grow. Instead of having to syncronize updates to that
534
// field we accumulate them in this field and add it to
535
// _inc_cset_recorded_rs_lengths_diffs at the start of a GC.
536
ssize_t _inc_cset_recorded_rs_lengths_diffs;
537
538
// The predicted elapsed time it will take to collect the regions in
539
// the CSet. This is updated by the thread that adds a new region to
540
// the CSet. See the comment for _inc_cset_recorded_rs_lengths about
541
// MT-safety assumptions.
542
double _inc_cset_predicted_elapsed_time_ms;
543
544
// See the comment for _inc_cset_recorded_rs_lengths_diffs.
545
double _inc_cset_predicted_elapsed_time_ms_diffs;
546
547
// Stash a pointer to the g1 heap.
548
G1CollectedHeap* _g1;
549
550
G1GCPhaseTimes* _phase_times;
551
552
// The ratio of gc time to elapsed time, computed over recent pauses.
553
double _recent_avg_pause_time_ratio;
554
555
double recent_avg_pause_time_ratio() {
556
return _recent_avg_pause_time_ratio;
557
}
558
559
// At the end of a pause we check the heap occupancy and we decide
560
// whether we will start a marking cycle during the next pause. If
561
// we decide that we want to do that, we will set this parameter to
562
// true. So, this parameter will stay true between the end of a
563
// pause and the beginning of a subsequent pause (not necessarily
564
// the next one, see the comments on the next field) when we decide
565
// that we will indeed start a marking cycle and do the initial-mark
566
// work.
567
volatile bool _initiate_conc_mark_if_possible;
568
569
// If initiate_conc_mark_if_possible() is set at the beginning of a
570
// pause, it is a suggestion that the pause should start a marking
571
// cycle by doing the initial-mark work. However, it is possible
572
// that the concurrent marking thread is still finishing up the
573
// previous marking cycle (e.g., clearing the next marking
574
// bitmap). If that is the case we cannot start a new cycle and
575
// we'll have to wait for the concurrent marking thread to finish
576
// what it is doing. In this case we will postpone the marking cycle
577
// initiation decision for the next pause. When we eventually decide
578
// to start a cycle, we will set _during_initial_mark_pause which
579
// will stay true until the end of the initial-mark pause and it's
580
// the condition that indicates that a pause is doing the
581
// initial-mark work.
582
volatile bool _during_initial_mark_pause;
583
584
bool _last_young_gc;
585
586
// This set of variables tracks the collector efficiency, in order to
587
// determine whether we should initiate a new marking.
588
double _cur_mark_stop_world_time_ms;
589
double _mark_remark_start_sec;
590
double _mark_cleanup_start_sec;
591
592
// Update the young list target length either by setting it to the
593
// desired fixed value or by calculating it using G1's pause
594
// prediction model. If no rs_lengths parameter is passed, predict
595
// the RS lengths using the prediction model, otherwise use the
596
// given rs_lengths as the prediction.
597
void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
598
599
// Calculate and return the minimum desired young list target
600
// length. This is the minimum desired young list length according
601
// to the user's inputs.
602
uint calculate_young_list_desired_min_length(uint base_min_length);
603
604
// Calculate and return the maximum desired young list target
605
// length. This is the maximum desired young list length according
606
// to the user's inputs.
607
uint calculate_young_list_desired_max_length();
608
609
// Calculate and return the maximum young list target length that
610
// can fit into the pause time goal. The parameters are: rs_lengths
611
// represent the prediction of how large the young RSet lengths will
612
// be, base_min_length is the alreay existing number of regions in
613
// the young list, min_length and max_length are the desired min and
614
// max young list length according to the user's inputs.
615
uint calculate_young_list_target_length(size_t rs_lengths,
616
uint base_min_length,
617
uint desired_min_length,
618
uint desired_max_length);
619
620
// Check whether a given young length (young_length) fits into the
621
// given target pause time and whether the prediction for the amount
622
// of objects to be copied for the given length will fit into the
623
// given free space (expressed by base_free_regions). It is used by
624
// calculate_young_list_target_length().
625
bool predict_will_fit(uint young_length, double base_time_ms,
626
uint base_free_regions, double target_pause_time_ms);
627
628
// Calculate the minimum number of old regions we'll add to the CSet
629
// during a mixed GC.
630
uint calc_min_old_cset_length();
631
632
// Calculate the maximum number of old regions we'll add to the CSet
633
// during a mixed GC.
634
uint calc_max_old_cset_length();
635
636
// Returns the given amount of uncollected reclaimable space
637
// as a percentage of the current heap capacity.
638
double reclaimable_bytes_perc(size_t reclaimable_bytes);
639
640
public:
641
642
G1CollectorPolicy();
643
644
virtual G1CollectorPolicy* as_g1_policy() { return this; }
645
646
virtual CollectorPolicy::Name kind() {
647
return CollectorPolicy::G1CollectorPolicyKind;
648
}
649
650
G1GCPhaseTimes* phase_times() const { return _phase_times; }
651
652
// Check the current value of the young list RSet lengths and
653
// compare it against the last prediction. If the current value is
654
// higher, recalculate the young list target length prediction.
655
void revise_young_list_target_length_if_necessary();
656
657
// This should be called after the heap is resized.
658
void record_new_heap_size(uint new_number_of_regions);
659
660
void init();
661
662
// Create jstat counters for the policy.
663
virtual void initialize_gc_policy_counters();
664
665
virtual HeapWord* mem_allocate_work(size_t size,
666
bool is_tlab,
667
bool* gc_overhead_limit_was_exceeded);
668
669
// This method controls how a collector handles one or more
670
// of its generations being fully allocated.
671
virtual HeapWord* satisfy_failed_allocation(size_t size,
672
bool is_tlab);
673
674
BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
675
676
bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0);
677
678
// Record the start and end of an evacuation pause.
679
void record_collection_pause_start(double start_time_sec, GCTracer &tracer);
680
void record_collection_pause_end(double pause_time_ms, EvacuationInfo& evacuation_info);
681
682
// Record the start and end of a full collection.
683
void record_full_collection_start();
684
void record_full_collection_end();
685
686
// Must currently be called while the world is stopped.
687
void record_concurrent_mark_init_end(double mark_init_elapsed_time_ms);
688
689
// Record start and end of remark.
690
void record_concurrent_mark_remark_start();
691
void record_concurrent_mark_remark_end();
692
693
// Record start, end, and completion of cleanup.
694
void record_concurrent_mark_cleanup_start();
695
void record_concurrent_mark_cleanup_end(int no_of_gc_threads);
696
void record_concurrent_mark_cleanup_completed();
697
698
// Records the information about the heap size for reporting in
699
// print_detailed_heap_transition
700
void record_heap_size_info_at_start(bool full);
701
702
// Print heap sizing transition (with less and more detail).
703
void print_heap_transition();
704
void print_detailed_heap_transition(bool full = false);
705
706
void record_stop_world_start();
707
void record_concurrent_pause();
708
709
// Record how much space we copied during a GC. This is typically
710
// called when a GC alloc region is being retired.
711
void record_bytes_copied_during_gc(size_t bytes) {
712
_bytes_copied_during_gc += bytes;
713
}
714
715
// The amount of space we copied during a GC.
716
size_t bytes_copied_during_gc() {
717
return _bytes_copied_during_gc;
718
}
719
720
// Determine whether there are candidate regions so that the
721
// next GC should be mixed. The two action strings are used
722
// in the ergo output when the method returns true or false.
723
bool next_gc_should_be_mixed(const char* true_action_str,
724
const char* false_action_str);
725
726
// Choose a new collection set. Marks the chosen regions as being
727
// "in_collection_set", and links them together. The head and number of
728
// the collection set are available via access methods.
729
void finalize_cset(double target_pause_time_ms, EvacuationInfo& evacuation_info);
730
731
// The head of the list (via "next_in_collection_set()") representing the
732
// current collection set.
733
HeapRegion* collection_set() { return _collection_set; }
734
735
void clear_collection_set() { _collection_set = NULL; }
736
737
// Add old region "hr" to the CSet.
738
void add_old_region_to_cset(HeapRegion* hr);
739
740
// Incremental CSet Support
741
742
// The head of the incrementally built collection set.
743
HeapRegion* inc_cset_head() { return _inc_cset_head; }
744
745
// The tail of the incrementally built collection set.
746
HeapRegion* inc_set_tail() { return _inc_cset_tail; }
747
748
// Initialize incremental collection set info.
749
void start_incremental_cset_building();
750
751
// Perform any final calculations on the incremental CSet fields
752
// before we can use them.
753
void finalize_incremental_cset_building();
754
755
void clear_incremental_cset() {
756
_inc_cset_head = NULL;
757
_inc_cset_tail = NULL;
758
}
759
760
// Stop adding regions to the incremental collection set
761
void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
762
763
// Add information about hr to the aggregated information for the
764
// incrementally built collection set.
765
void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
766
767
// Update information about hr in the aggregated information for
768
// the incrementally built collection set.
769
void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
770
771
private:
772
// Update the incremental cset information when adding a region
773
// (should not be called directly).
774
void add_region_to_incremental_cset_common(HeapRegion* hr);
775
776
public:
777
// Add hr to the LHS of the incremental collection set.
778
void add_region_to_incremental_cset_lhs(HeapRegion* hr);
779
780
// Add hr to the RHS of the incremental collection set.
781
void add_region_to_incremental_cset_rhs(HeapRegion* hr);
782
783
#ifndef PRODUCT
784
void print_collection_set(HeapRegion* list_head, outputStream* st);
785
#endif // !PRODUCT
786
787
bool initiate_conc_mark_if_possible() { return _initiate_conc_mark_if_possible; }
788
void set_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = true; }
789
void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
790
791
bool during_initial_mark_pause() { return _during_initial_mark_pause; }
792
void set_during_initial_mark_pause() { _during_initial_mark_pause = true; }
793
void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
794
795
// This sets the initiate_conc_mark_if_possible() flag to start a
796
// new cycle, as long as we are not already in one. It's best if it
797
// is called during a safepoint when the test whether a cycle is in
798
// progress or not is stable.
799
bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
800
801
// This is called at the very beginning of an evacuation pause (it
802
// has to be the first thing that the pause does). If
803
// initiate_conc_mark_if_possible() is true, and the concurrent
804
// marking thread has completed its work during the previous cycle,
805
// it will set during_initial_mark_pause() to so that the pause does
806
// the initial-mark work and start a marking cycle.
807
void decide_on_conc_mark_initiation();
808
809
// If an expansion would be appropriate, because recent GC overhead had
810
// exceeded the desired limit, return an amount to expand by.
811
virtual size_t expansion_amount();
812
813
// Print tracing information.
814
void print_tracing_info() const;
815
816
// Print stats on young survival ratio
817
void print_yg_surv_rate_info() const;
818
819
void finished_recalculating_age_indexes(bool is_survivors) {
820
if (is_survivors) {
821
_survivor_surv_rate_group->finished_recalculating_age_indexes();
822
} else {
823
_short_lived_surv_rate_group->finished_recalculating_age_indexes();
824
}
825
// do that for any other surv rate groups
826
}
827
828
size_t young_list_target_length() const { return _young_list_target_length; }
829
830
bool is_young_list_full();
831
832
bool can_expand_young_list();
833
834
uint young_list_max_length() {
835
return _young_list_max_length;
836
}
837
838
bool gcs_are_young() {
839
return _gcs_are_young;
840
}
841
void set_gcs_are_young(bool gcs_are_young) {
842
_gcs_are_young = gcs_are_young;
843
}
844
845
bool adaptive_young_list_length() {
846
return _young_gen_sizer->adaptive_young_list_length();
847
}
848
849
private:
850
//
851
// Survivor regions policy.
852
//
853
854
// Current tenuring threshold, set to 0 if the collector reaches the
855
// maximum amount of survivors regions.
856
uint _tenuring_threshold;
857
858
// The limit on the number of regions allocated for survivors.
859
uint _max_survivor_regions;
860
861
// For reporting purposes.
862
// The value of _heap_bytes_before_gc is also used to calculate
863
// the cost of copying.
864
865
size_t _eden_used_bytes_before_gc; // Eden occupancy before GC
866
size_t _survivor_used_bytes_before_gc; // Survivor occupancy before GC
867
size_t _heap_used_bytes_before_gc; // Heap occupancy before GC
868
size_t _metaspace_used_bytes_before_gc; // Metaspace occupancy before GC
869
870
size_t _eden_capacity_bytes_before_gc; // Eden capacity before GC
871
size_t _heap_capacity_bytes_before_gc; // Heap capacity before GC
872
873
// The amount of survivor regions after a collection.
874
uint _recorded_survivor_regions;
875
// List of survivor regions.
876
HeapRegion* _recorded_survivor_head;
877
HeapRegion* _recorded_survivor_tail;
878
879
ageTable _survivors_age_table;
880
881
public:
882
uint tenuring_threshold() const { return _tenuring_threshold; }
883
884
static const uint REGIONS_UNLIMITED = (uint) -1;
885
886
uint max_regions(InCSetState dest) {
887
switch (dest.value()) {
888
case InCSetState::Young:
889
return _max_survivor_regions;
890
case InCSetState::Old:
891
return REGIONS_UNLIMITED;
892
default:
893
assert(false, err_msg("Unknown dest state: " CSETSTATE_FORMAT, dest.value()));
894
break;
895
}
896
// keep some compilers happy
897
return 0;
898
}
899
900
void note_start_adding_survivor_regions() {
901
_survivor_surv_rate_group->start_adding_regions();
902
}
903
904
void note_stop_adding_survivor_regions() {
905
_survivor_surv_rate_group->stop_adding_regions();
906
}
907
908
void record_survivor_regions(uint regions,
909
HeapRegion* head,
910
HeapRegion* tail) {
911
_recorded_survivor_regions = regions;
912
_recorded_survivor_head = head;
913
_recorded_survivor_tail = tail;
914
}
915
916
uint recorded_survivor_regions() {
917
return _recorded_survivor_regions;
918
}
919
920
void record_thread_age_table(ageTable* age_table) {
921
_survivors_age_table.merge_par(age_table);
922
}
923
924
void update_max_gc_locker_expansion();
925
926
// Calculates survivor space parameters.
927
void update_survivors_policy(GCTracer &tracer);
928
929
virtual void post_heap_initialize();
930
};
931
932
// This should move to some place more general...
933
934
// If we have "n" measurements, and we've kept track of their "sum" and the
935
// "sum_of_squares" of the measurements, this returns the variance of the
936
// sequence.
937
inline double variance(int n, double sum_of_squares, double sum) {
938
double n_d = (double)n;
939
double avg = sum/n_d;
940
return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
941
}
942
943
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
944
945