Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/gc_implementation/parNew/parNewGeneration.cpp
38920 views
1
/*
2
* Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.hpp"
27
#include "gc_implementation/parNew/parNewGeneration.hpp"
28
#include "gc_implementation/parNew/parOopClosures.inline.hpp"
29
#include "gc_implementation/shared/adaptiveSizePolicy.hpp"
30
#include "gc_implementation/shared/ageTable.hpp"
31
#include "gc_implementation/shared/copyFailedInfo.hpp"
32
#include "gc_implementation/shared/gcHeapSummary.hpp"
33
#include "gc_implementation/shared/gcTimer.hpp"
34
#include "gc_implementation/shared/gcTrace.hpp"
35
#include "gc_implementation/shared/gcTraceTime.hpp"
36
#include "gc_implementation/shared/parGCAllocBuffer.inline.hpp"
37
#include "gc_implementation/shared/spaceDecorator.hpp"
38
#include "memory/defNewGeneration.inline.hpp"
39
#include "memory/genCollectedHeap.hpp"
40
#include "memory/genOopClosures.inline.hpp"
41
#include "memory/generation.hpp"
42
#include "memory/generation.inline.hpp"
43
#include "memory/referencePolicy.hpp"
44
#include "memory/resourceArea.hpp"
45
#include "memory/sharedHeap.hpp"
46
#include "memory/space.hpp"
47
#include "oops/objArrayOop.hpp"
48
#include "oops/oop.inline.hpp"
49
#include "oops/oop.pcgc.inline.hpp"
50
#include "runtime/handles.hpp"
51
#include "runtime/handles.inline.hpp"
52
#include "runtime/java.hpp"
53
#include "runtime/thread.inline.hpp"
54
#include "utilities/copy.hpp"
55
#include "utilities/globalDefinitions.hpp"
56
#include "utilities/workgroup.hpp"
57
58
PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
59
60
#ifdef _MSC_VER
61
#pragma warning( push )
62
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
63
#endif
64
ParScanThreadState::ParScanThreadState(Space* to_space_,
65
ParNewGeneration* gen_,
66
Generation* old_gen_,
67
int thread_num_,
68
ObjToScanQueueSet* work_queue_set_,
69
Stack<oop, mtGC>* overflow_stacks_,
70
size_t desired_plab_sz_,
71
ParallelTaskTerminator& term_) :
72
_to_space(to_space_), _old_gen(old_gen_), _young_gen(gen_), _thread_num(thread_num_),
73
_work_queue(work_queue_set_->queue(thread_num_)), _to_space_full(false),
74
_overflow_stack(overflow_stacks_ ? overflow_stacks_ + thread_num_ : NULL),
75
_ageTable(false), // false ==> not the global age table, no perf data.
76
_to_space_alloc_buffer(desired_plab_sz_),
77
_to_space_closure(gen_, this), _old_gen_closure(gen_, this),
78
_to_space_root_closure(gen_, this), _old_gen_root_closure(gen_, this),
79
_older_gen_closure(gen_, this),
80
_evacuate_followers(this, &_to_space_closure, &_old_gen_closure,
81
&_to_space_root_closure, gen_, &_old_gen_root_closure,
82
work_queue_set_, &term_),
83
_is_alive_closure(gen_), _scan_weak_ref_closure(gen_, this),
84
_keep_alive_closure(&_scan_weak_ref_closure),
85
_strong_roots_time(0.0), _term_time(0.0)
86
{
87
#if TASKQUEUE_STATS
88
_term_attempts = 0;
89
_overflow_refills = 0;
90
_overflow_refill_objs = 0;
91
#endif // TASKQUEUE_STATS
92
93
_survivor_chunk_array =
94
(ChunkArray*) old_gen()->get_data_recorder(thread_num());
95
_hash_seed = 17; // Might want to take time-based random value.
96
_start = os::elapsedTime();
97
_old_gen_closure.set_generation(old_gen_);
98
_old_gen_root_closure.set_generation(old_gen_);
99
}
100
#ifdef _MSC_VER
101
#pragma warning( pop )
102
#endif
103
104
void ParScanThreadState::record_survivor_plab(HeapWord* plab_start,
105
size_t plab_word_size) {
106
ChunkArray* sca = survivor_chunk_array();
107
if (sca != NULL) {
108
// A non-null SCA implies that we want the PLAB data recorded.
109
sca->record_sample(plab_start, plab_word_size);
110
}
111
}
112
113
bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const {
114
return new_obj->is_objArray() &&
115
arrayOop(new_obj)->length() > ParGCArrayScanChunk &&
116
new_obj != old_obj;
117
}
118
119
void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) {
120
assert(old->is_objArray(), "must be obj array");
121
assert(old->is_forwarded(), "must be forwarded");
122
assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
123
assert(!old_gen()->is_in(old), "must be in young generation.");
124
125
objArrayOop obj = objArrayOop(old->forwardee());
126
// Process ParGCArrayScanChunk elements now
127
// and push the remainder back onto queue
128
int start = arrayOop(old)->length();
129
int end = obj->length();
130
int remainder = end - start;
131
assert(start <= end, "just checking");
132
if (remainder > 2 * ParGCArrayScanChunk) {
133
// Test above combines last partial chunk with a full chunk
134
end = start + ParGCArrayScanChunk;
135
arrayOop(old)->set_length(end);
136
// Push remainder.
137
bool ok = work_queue()->push(old);
138
assert(ok, "just popped, push must be okay");
139
} else {
140
// Restore length so that it can be used if there
141
// is a promotion failure and forwarding pointers
142
// must be removed.
143
arrayOop(old)->set_length(end);
144
}
145
146
// process our set of indices (include header in first chunk)
147
// should make sure end is even (aligned to HeapWord in case of compressed oops)
148
if ((HeapWord *)obj < young_old_boundary()) {
149
// object is in to_space
150
obj->oop_iterate_range(&_to_space_closure, start, end);
151
} else {
152
// object is in old generation
153
obj->oop_iterate_range(&_old_gen_closure, start, end);
154
}
155
}
156
157
158
void ParScanThreadState::trim_queues(int max_size) {
159
ObjToScanQueue* queue = work_queue();
160
do {
161
while (queue->size() > (juint)max_size) {
162
oop obj_to_scan;
163
if (queue->pop_local(obj_to_scan)) {
164
if ((HeapWord *)obj_to_scan < young_old_boundary()) {
165
if (obj_to_scan->is_objArray() &&
166
obj_to_scan->is_forwarded() &&
167
obj_to_scan->forwardee() != obj_to_scan) {
168
scan_partial_array_and_push_remainder(obj_to_scan);
169
} else {
170
// object is in to_space
171
obj_to_scan->oop_iterate(&_to_space_closure);
172
}
173
} else {
174
// object is in old generation
175
obj_to_scan->oop_iterate(&_old_gen_closure);
176
}
177
}
178
}
179
// For the case of compressed oops, we have a private, non-shared
180
// overflow stack, so we eagerly drain it so as to more evenly
181
// distribute load early. Note: this may be good to do in
182
// general rather than delay for the final stealing phase.
183
// If applicable, we'll transfer a set of objects over to our
184
// work queue, allowing them to be stolen and draining our
185
// private overflow stack.
186
} while (ParGCTrimOverflow && young_gen()->take_from_overflow_list(this));
187
}
188
189
bool ParScanThreadState::take_from_overflow_stack() {
190
assert(ParGCUseLocalOverflow, "Else should not call");
191
assert(young_gen()->overflow_list() == NULL, "Error");
192
ObjToScanQueue* queue = work_queue();
193
Stack<oop, mtGC>* const of_stack = overflow_stack();
194
const size_t num_overflow_elems = of_stack->size();
195
const size_t space_available = queue->max_elems() - queue->size();
196
const size_t num_take_elems = MIN3(space_available / 4,
197
ParGCDesiredObjsFromOverflowList,
198
num_overflow_elems);
199
// Transfer the most recent num_take_elems from the overflow
200
// stack to our work queue.
201
for (size_t i = 0; i != num_take_elems; i++) {
202
oop cur = of_stack->pop();
203
oop obj_to_push = cur->forwardee();
204
assert(Universe::heap()->is_in_reserved(cur), "Should be in heap");
205
assert(!old_gen()->is_in_reserved(cur), "Should be in young gen");
206
assert(Universe::heap()->is_in_reserved(obj_to_push), "Should be in heap");
207
if (should_be_partially_scanned(obj_to_push, cur)) {
208
assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
209
obj_to_push = cur;
210
}
211
bool ok = queue->push(obj_to_push);
212
assert(ok, "Should have succeeded");
213
}
214
assert(young_gen()->overflow_list() == NULL, "Error");
215
return num_take_elems > 0; // was something transferred?
216
}
217
218
void ParScanThreadState::push_on_overflow_stack(oop p) {
219
assert(ParGCUseLocalOverflow, "Else should not call");
220
overflow_stack()->push(p);
221
assert(young_gen()->overflow_list() == NULL, "Error");
222
}
223
224
HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz) {
225
226
// Otherwise, if the object is small enough, try to reallocate the
227
// buffer.
228
HeapWord* obj = NULL;
229
if (!_to_space_full) {
230
ParGCAllocBuffer* const plab = to_space_alloc_buffer();
231
Space* const sp = to_space();
232
if (word_sz * 100 <
233
ParallelGCBufferWastePct * plab->word_sz()) {
234
// Is small enough; abandon this buffer and start a new one.
235
plab->retire(false, false);
236
size_t buf_size = plab->word_sz();
237
HeapWord* buf_space = sp->par_allocate(buf_size);
238
if (buf_space == NULL) {
239
const size_t min_bytes =
240
ParGCAllocBuffer::min_size() << LogHeapWordSize;
241
size_t free_bytes = sp->free();
242
while(buf_space == NULL && free_bytes >= min_bytes) {
243
buf_size = free_bytes >> LogHeapWordSize;
244
assert(buf_size == (size_t)align_object_size(buf_size),
245
"Invariant");
246
buf_space = sp->par_allocate(buf_size);
247
free_bytes = sp->free();
248
}
249
}
250
if (buf_space != NULL) {
251
plab->set_word_size(buf_size);
252
plab->set_buf(buf_space);
253
record_survivor_plab(buf_space, buf_size);
254
obj = plab->allocate_aligned(word_sz, SurvivorAlignmentInBytes);
255
// Note that we cannot compare buf_size < word_sz below
256
// because of AlignmentReserve (see ParGCAllocBuffer::allocate()).
257
assert(obj != NULL || plab->words_remaining() < word_sz,
258
"Else should have been able to allocate");
259
// It's conceivable that we may be able to use the
260
// buffer we just grabbed for subsequent small requests
261
// even if not for this one.
262
} else {
263
// We're used up.
264
_to_space_full = true;
265
}
266
267
} else {
268
// Too large; allocate the object individually.
269
obj = sp->par_allocate(word_sz);
270
}
271
}
272
return obj;
273
}
274
275
276
void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj,
277
size_t word_sz) {
278
// Is the alloc in the current alloc buffer?
279
if (to_space_alloc_buffer()->contains(obj)) {
280
assert(to_space_alloc_buffer()->contains(obj + word_sz - 1),
281
"Should contain whole object.");
282
to_space_alloc_buffer()->undo_allocation(obj, word_sz);
283
} else {
284
CollectedHeap::fill_with_object(obj, word_sz);
285
}
286
}
287
288
void ParScanThreadState::print_promotion_failure_size() {
289
if (_promotion_failed_info.has_failed() && PrintPromotionFailure) {
290
gclog_or_tty->print(" (%d: promotion failure size = " SIZE_FORMAT ") ",
291
_thread_num, _promotion_failed_info.first_size());
292
}
293
}
294
295
class ParScanThreadStateSet: private ResourceArray {
296
public:
297
// Initializes states for the specified number of threads;
298
ParScanThreadStateSet(int num_threads,
299
Space& to_space,
300
ParNewGeneration& gen,
301
Generation& old_gen,
302
ObjToScanQueueSet& queue_set,
303
Stack<oop, mtGC>* overflow_stacks_,
304
size_t desired_plab_sz,
305
ParallelTaskTerminator& term);
306
307
~ParScanThreadStateSet() { TASKQUEUE_STATS_ONLY(reset_stats()); }
308
309
inline ParScanThreadState& thread_state(int i);
310
311
void trace_promotion_failed(YoungGCTracer& gc_tracer);
312
void reset(int active_workers, bool promotion_failed);
313
void flush();
314
315
#if TASKQUEUE_STATS
316
static void
317
print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
318
void print_termination_stats(outputStream* const st = gclog_or_tty);
319
static void
320
print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
321
void print_taskqueue_stats(outputStream* const st = gclog_or_tty);
322
void reset_stats();
323
#endif // TASKQUEUE_STATS
324
325
private:
326
ParallelTaskTerminator& _term;
327
ParNewGeneration& _gen;
328
Generation& _next_gen;
329
public:
330
bool is_valid(int id) const { return id < length(); }
331
ParallelTaskTerminator* terminator() { return &_term; }
332
};
333
334
335
ParScanThreadStateSet::ParScanThreadStateSet(
336
int num_threads, Space& to_space, ParNewGeneration& gen,
337
Generation& old_gen, ObjToScanQueueSet& queue_set,
338
Stack<oop, mtGC>* overflow_stacks,
339
size_t desired_plab_sz, ParallelTaskTerminator& term)
340
: ResourceArray(sizeof(ParScanThreadState), num_threads),
341
_gen(gen), _next_gen(old_gen), _term(term)
342
{
343
assert(num_threads > 0, "sanity check!");
344
assert(ParGCUseLocalOverflow == (overflow_stacks != NULL),
345
"overflow_stack allocation mismatch");
346
// Initialize states.
347
for (int i = 0; i < num_threads; ++i) {
348
new ((ParScanThreadState*)_data + i)
349
ParScanThreadState(&to_space, &gen, &old_gen, i, &queue_set,
350
overflow_stacks, desired_plab_sz, term);
351
}
352
}
353
354
inline ParScanThreadState& ParScanThreadStateSet::thread_state(int i)
355
{
356
assert(i >= 0 && i < length(), "sanity check!");
357
return ((ParScanThreadState*)_data)[i];
358
}
359
360
void ParScanThreadStateSet::trace_promotion_failed(YoungGCTracer& gc_tracer) {
361
for (int i = 0; i < length(); ++i) {
362
if (thread_state(i).promotion_failed()) {
363
gc_tracer.report_promotion_failed(thread_state(i).promotion_failed_info());
364
thread_state(i).promotion_failed_info().reset();
365
}
366
}
367
}
368
369
void ParScanThreadStateSet::reset(int active_threads, bool promotion_failed)
370
{
371
_term.reset_for_reuse(active_threads);
372
if (promotion_failed) {
373
for (int i = 0; i < length(); ++i) {
374
thread_state(i).print_promotion_failure_size();
375
}
376
}
377
}
378
379
#if TASKQUEUE_STATS
380
void
381
ParScanThreadState::reset_stats()
382
{
383
taskqueue_stats().reset();
384
_term_attempts = 0;
385
_overflow_refills = 0;
386
_overflow_refill_objs = 0;
387
}
388
389
void ParScanThreadStateSet::reset_stats()
390
{
391
for (int i = 0; i < length(); ++i) {
392
thread_state(i).reset_stats();
393
}
394
}
395
396
void
397
ParScanThreadStateSet::print_termination_stats_hdr(outputStream* const st)
398
{
399
st->print_raw_cr("GC Termination Stats");
400
st->print_raw_cr(" elapsed --strong roots-- "
401
"-------termination-------");
402
st->print_raw_cr("thr ms ms % "
403
" ms % attempts");
404
st->print_raw_cr("--- --------- --------- ------ "
405
"--------- ------ --------");
406
}
407
408
void ParScanThreadStateSet::print_termination_stats(outputStream* const st)
409
{
410
print_termination_stats_hdr(st);
411
412
for (int i = 0; i < length(); ++i) {
413
const ParScanThreadState & pss = thread_state(i);
414
const double elapsed_ms = pss.elapsed_time() * 1000.0;
415
const double s_roots_ms = pss.strong_roots_time() * 1000.0;
416
const double term_ms = pss.term_time() * 1000.0;
417
st->print_cr("%3d %9.2f %9.2f %6.2f "
418
"%9.2f %6.2f " SIZE_FORMAT_W(8),
419
i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
420
term_ms, term_ms * 100 / elapsed_ms, pss.term_attempts());
421
}
422
}
423
424
// Print stats related to work queue activity.
425
void ParScanThreadStateSet::print_taskqueue_stats_hdr(outputStream* const st)
426
{
427
st->print_raw_cr("GC Task Stats");
428
st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
429
st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
430
}
431
432
void ParScanThreadStateSet::print_taskqueue_stats(outputStream* const st)
433
{
434
print_taskqueue_stats_hdr(st);
435
436
TaskQueueStats totals;
437
for (int i = 0; i < length(); ++i) {
438
const ParScanThreadState & pss = thread_state(i);
439
const TaskQueueStats & stats = pss.taskqueue_stats();
440
st->print("%3d ", i); stats.print(st); st->cr();
441
totals += stats;
442
443
if (pss.overflow_refills() > 0) {
444
st->print_cr(" " SIZE_FORMAT_W(10) " overflow refills "
445
SIZE_FORMAT_W(10) " overflow objects",
446
pss.overflow_refills(), pss.overflow_refill_objs());
447
}
448
}
449
st->print("tot "); totals.print(st); st->cr();
450
451
DEBUG_ONLY(totals.verify());
452
}
453
#endif // TASKQUEUE_STATS
454
455
void ParScanThreadStateSet::flush()
456
{
457
// Work in this loop should be kept as lightweight as
458
// possible since this might otherwise become a bottleneck
459
// to scaling. Should we add heavy-weight work into this
460
// loop, consider parallelizing the loop into the worker threads.
461
for (int i = 0; i < length(); ++i) {
462
ParScanThreadState& par_scan_state = thread_state(i);
463
464
// Flush stats related to To-space PLAB activity and
465
// retire the last buffer.
466
par_scan_state.to_space_alloc_buffer()->
467
flush_stats_and_retire(_gen.plab_stats(),
468
true /* end_of_gc */,
469
false /* retain */);
470
471
// Every thread has its own age table. We need to merge
472
// them all into one.
473
ageTable *local_table = par_scan_state.age_table();
474
_gen.age_table()->merge(local_table);
475
476
// Inform old gen that we're done.
477
_next_gen.par_promote_alloc_done(i);
478
_next_gen.par_oop_since_save_marks_iterate_done(i);
479
}
480
481
if (UseConcMarkSweepGC && ParallelGCThreads > 0) {
482
// We need to call this even when ResizeOldPLAB is disabled
483
// so as to avoid breaking some asserts. While we may be able
484
// to avoid this by reorganizing the code a bit, I am loathe
485
// to do that unless we find cases where ergo leads to bad
486
// performance.
487
CFLS_LAB::compute_desired_plab_size();
488
}
489
}
490
491
ParScanClosure::ParScanClosure(ParNewGeneration* g,
492
ParScanThreadState* par_scan_state) :
493
OopsInKlassOrGenClosure(g), _par_scan_state(par_scan_state), _g(g)
494
{
495
assert(_g->level() == 0, "Optimized for youngest generation");
496
_boundary = _g->reserved().end();
497
}
498
499
void ParScanWithBarrierClosure::do_oop(oop* p) { ParScanClosure::do_oop_work(p, true, false); }
500
void ParScanWithBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, false); }
501
502
void ParScanWithoutBarrierClosure::do_oop(oop* p) { ParScanClosure::do_oop_work(p, false, false); }
503
void ParScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, false); }
504
505
void ParRootScanWithBarrierTwoGensClosure::do_oop(oop* p) { ParScanClosure::do_oop_work(p, true, true); }
506
void ParRootScanWithBarrierTwoGensClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, true); }
507
508
void ParRootScanWithoutBarrierClosure::do_oop(oop* p) { ParScanClosure::do_oop_work(p, false, true); }
509
void ParRootScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, true); }
510
511
ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g,
512
ParScanThreadState* par_scan_state)
513
: ScanWeakRefClosure(g), _par_scan_state(par_scan_state)
514
{}
515
516
void ParScanWeakRefClosure::do_oop(oop* p) { ParScanWeakRefClosure::do_oop_work(p); }
517
void ParScanWeakRefClosure::do_oop(narrowOop* p) { ParScanWeakRefClosure::do_oop_work(p); }
518
519
#ifdef WIN32
520
#pragma warning(disable: 4786) /* identifier was truncated to '255' characters in the browser information */
521
#endif
522
523
ParEvacuateFollowersClosure::ParEvacuateFollowersClosure(
524
ParScanThreadState* par_scan_state_,
525
ParScanWithoutBarrierClosure* to_space_closure_,
526
ParScanWithBarrierClosure* old_gen_closure_,
527
ParRootScanWithoutBarrierClosure* to_space_root_closure_,
528
ParNewGeneration* par_gen_,
529
ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure_,
530
ObjToScanQueueSet* task_queues_,
531
ParallelTaskTerminator* terminator_) :
532
533
_par_scan_state(par_scan_state_),
534
_to_space_closure(to_space_closure_),
535
_old_gen_closure(old_gen_closure_),
536
_to_space_root_closure(to_space_root_closure_),
537
_old_gen_root_closure(old_gen_root_closure_),
538
_par_gen(par_gen_),
539
_task_queues(task_queues_),
540
_terminator(terminator_)
541
{}
542
543
void ParEvacuateFollowersClosure::do_void() {
544
ObjToScanQueue* work_q = par_scan_state()->work_queue();
545
546
while (true) {
547
548
// Scan to-space and old-gen objs until we run out of both.
549
oop obj_to_scan;
550
par_scan_state()->trim_queues(0);
551
552
// We have no local work, attempt to steal from other threads.
553
554
// attempt to steal work from promoted.
555
if (task_queues()->steal(par_scan_state()->thread_num(),
556
par_scan_state()->hash_seed(),
557
obj_to_scan)) {
558
bool res = work_q->push(obj_to_scan);
559
assert(res, "Empty queue should have room for a push.");
560
561
// if successful, goto Start.
562
continue;
563
564
// try global overflow list.
565
} else if (par_gen()->take_from_overflow_list(par_scan_state())) {
566
continue;
567
}
568
569
// Otherwise, offer termination.
570
par_scan_state()->start_term_time();
571
if (terminator()->offer_termination()) break;
572
par_scan_state()->end_term_time();
573
}
574
assert(par_gen()->_overflow_list == NULL && par_gen()->_num_par_pushes == 0,
575
"Broken overflow list?");
576
// Finish the last termination pause.
577
par_scan_state()->end_term_time();
578
}
579
580
ParNewGenTask::ParNewGenTask(ParNewGeneration* gen, Generation* next_gen,
581
HeapWord* young_old_boundary, ParScanThreadStateSet* state_set) :
582
AbstractGangTask("ParNewGeneration collection"),
583
_gen(gen), _next_gen(next_gen),
584
_young_old_boundary(young_old_boundary),
585
_state_set(state_set)
586
{}
587
588
// Reset the terminator for the given number of
589
// active threads.
590
void ParNewGenTask::set_for_termination(int active_workers) {
591
_state_set->reset(active_workers, _gen->promotion_failed());
592
// Should the heap be passed in? There's only 1 for now so
593
// grab it instead.
594
GenCollectedHeap* gch = GenCollectedHeap::heap();
595
gch->set_n_termination(active_workers);
596
}
597
598
void ParNewGenTask::work(uint worker_id) {
599
GenCollectedHeap* gch = GenCollectedHeap::heap();
600
// Since this is being done in a separate thread, need new resource
601
// and handle marks.
602
ResourceMark rm;
603
HandleMark hm;
604
// We would need multiple old-gen queues otherwise.
605
assert(gch->n_gens() == 2, "Par young collection currently only works with one older gen.");
606
607
Generation* old_gen = gch->next_gen(_gen);
608
609
ParScanThreadState& par_scan_state = _state_set->thread_state(worker_id);
610
assert(_state_set->is_valid(worker_id), "Should not have been called");
611
612
par_scan_state.set_young_old_boundary(_young_old_boundary);
613
614
KlassScanClosure klass_scan_closure(&par_scan_state.to_space_root_closure(),
615
gch->rem_set()->klass_rem_set());
616
CLDToKlassAndOopClosure cld_scan_closure(&klass_scan_closure,
617
&par_scan_state.to_space_root_closure(),
618
false);
619
620
par_scan_state.start_strong_roots();
621
gch->gen_process_roots(_gen->level(),
622
true, // Process younger gens, if any,
623
// as strong roots.
624
false, // no scope; this is parallel code
625
GenCollectedHeap::SO_ScavengeCodeCache,
626
GenCollectedHeap::StrongAndWeakRoots,
627
&par_scan_state.to_space_root_closure(),
628
&par_scan_state.older_gen_closure(),
629
&cld_scan_closure);
630
631
par_scan_state.end_strong_roots();
632
633
// "evacuate followers".
634
par_scan_state.evacuate_followers_closure().do_void();
635
}
636
637
#ifdef _MSC_VER
638
#pragma warning( push )
639
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
640
#endif
641
ParNewGeneration::
642
ParNewGeneration(ReservedSpace rs, size_t initial_byte_size, int level)
643
: DefNewGeneration(rs, initial_byte_size, level, "PCopy"),
644
_overflow_list(NULL),
645
_is_alive_closure(this),
646
_plab_stats(YoungPLABSize, PLABWeight)
647
{
648
NOT_PRODUCT(_overflow_counter = ParGCWorkQueueOverflowInterval;)
649
NOT_PRODUCT(_num_par_pushes = 0;)
650
_task_queues = new ObjToScanQueueSet(ParallelGCThreads);
651
guarantee(_task_queues != NULL, "task_queues allocation failure.");
652
653
for (uint i1 = 0; i1 < ParallelGCThreads; i1++) {
654
ObjToScanQueue *q = new ObjToScanQueue();
655
guarantee(q != NULL, "work_queue Allocation failure.");
656
_task_queues->register_queue(i1, q);
657
}
658
659
for (uint i2 = 0; i2 < ParallelGCThreads; i2++)
660
_task_queues->queue(i2)->initialize();
661
662
_overflow_stacks = NULL;
663
if (ParGCUseLocalOverflow) {
664
665
// typedef to workaround NEW_C_HEAP_ARRAY macro, which can not deal
666
// with ','
667
typedef Stack<oop, mtGC> GCOopStack;
668
669
_overflow_stacks = NEW_C_HEAP_ARRAY(GCOopStack, ParallelGCThreads, mtGC);
670
for (size_t i = 0; i < ParallelGCThreads; ++i) {
671
new (_overflow_stacks + i) Stack<oop, mtGC>();
672
}
673
}
674
675
if (UsePerfData) {
676
EXCEPTION_MARK;
677
ResourceMark rm;
678
679
const char* cname =
680
PerfDataManager::counter_name(_gen_counters->name_space(), "threads");
681
PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None,
682
ParallelGCThreads, CHECK);
683
}
684
}
685
#ifdef _MSC_VER
686
#pragma warning( pop )
687
#endif
688
689
// ParNewGeneration::
690
ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl) :
691
DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {}
692
693
template <class T>
694
void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop_work(T* p) {
695
#ifdef ASSERT
696
{
697
assert(!oopDesc::is_null(*p), "expected non-null ref");
698
oop obj = oopDesc::load_decode_heap_oop_not_null(p);
699
// We never expect to see a null reference being processed
700
// as a weak reference.
701
assert(obj->is_oop(), "expected an oop while scanning weak refs");
702
}
703
#endif // ASSERT
704
705
_par_cl->do_oop_nv(p);
706
707
if (Universe::heap()->is_in_reserved(p)) {
708
oop obj = oopDesc::load_decode_heap_oop_not_null(p);
709
_rs->write_ref_field_gc_par(p, obj);
710
}
711
}
712
713
void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(oop* p) { ParKeepAliveClosure::do_oop_work(p); }
714
void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(narrowOop* p) { ParKeepAliveClosure::do_oop_work(p); }
715
716
// ParNewGeneration::
717
KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl) :
718
DefNewGeneration::KeepAliveClosure(cl) {}
719
720
template <class T>
721
void /*ParNewGeneration::*/KeepAliveClosure::do_oop_work(T* p) {
722
#ifdef ASSERT
723
{
724
assert(!oopDesc::is_null(*p), "expected non-null ref");
725
oop obj = oopDesc::load_decode_heap_oop_not_null(p);
726
// We never expect to see a null reference being processed
727
// as a weak reference.
728
assert(obj->is_oop(), "expected an oop while scanning weak refs");
729
}
730
#endif // ASSERT
731
732
_cl->do_oop_nv(p);
733
734
if (Universe::heap()->is_in_reserved(p)) {
735
oop obj = oopDesc::load_decode_heap_oop_not_null(p);
736
_rs->write_ref_field_gc_par(p, obj);
737
}
738
}
739
740
void /*ParNewGeneration::*/KeepAliveClosure::do_oop(oop* p) { KeepAliveClosure::do_oop_work(p); }
741
void /*ParNewGeneration::*/KeepAliveClosure::do_oop(narrowOop* p) { KeepAliveClosure::do_oop_work(p); }
742
743
template <class T> void ScanClosureWithParBarrier::do_oop_work(T* p) {
744
T heap_oop = oopDesc::load_heap_oop(p);
745
if (!oopDesc::is_null(heap_oop)) {
746
oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
747
if ((HeapWord*)obj < _boundary) {
748
assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?");
749
oop new_obj = obj->is_forwarded()
750
? obj->forwardee()
751
: _g->DefNewGeneration::copy_to_survivor_space(obj);
752
oopDesc::encode_store_heap_oop_not_null(p, new_obj);
753
}
754
if (_gc_barrier) {
755
// If p points to a younger generation, mark the card.
756
if ((HeapWord*)obj < _gen_boundary) {
757
_rs->write_ref_field_gc_par(p, obj);
758
}
759
}
760
}
761
}
762
763
void ScanClosureWithParBarrier::do_oop(oop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
764
void ScanClosureWithParBarrier::do_oop(narrowOop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
765
766
class ParNewRefProcTaskProxy: public AbstractGangTask {
767
typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
768
public:
769
ParNewRefProcTaskProxy(ProcessTask& task, ParNewGeneration& gen,
770
Generation& next_gen,
771
HeapWord* young_old_boundary,
772
ParScanThreadStateSet& state_set);
773
774
private:
775
virtual void work(uint worker_id);
776
virtual void set_for_termination(int active_workers) {
777
_state_set.terminator()->reset_for_reuse(active_workers);
778
}
779
private:
780
ParNewGeneration& _gen;
781
ProcessTask& _task;
782
Generation& _next_gen;
783
HeapWord* _young_old_boundary;
784
ParScanThreadStateSet& _state_set;
785
};
786
787
ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(
788
ProcessTask& task, ParNewGeneration& gen,
789
Generation& next_gen,
790
HeapWord* young_old_boundary,
791
ParScanThreadStateSet& state_set)
792
: AbstractGangTask("ParNewGeneration parallel reference processing"),
793
_gen(gen),
794
_task(task),
795
_next_gen(next_gen),
796
_young_old_boundary(young_old_boundary),
797
_state_set(state_set)
798
{
799
}
800
801
void ParNewRefProcTaskProxy::work(uint worker_id)
802
{
803
ResourceMark rm;
804
HandleMark hm;
805
ParScanThreadState& par_scan_state = _state_set.thread_state(worker_id);
806
par_scan_state.set_young_old_boundary(_young_old_boundary);
807
_task.work(worker_id, par_scan_state.is_alive_closure(),
808
par_scan_state.keep_alive_closure(),
809
par_scan_state.evacuate_followers_closure());
810
}
811
812
class ParNewRefEnqueueTaskProxy: public AbstractGangTask {
813
typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
814
EnqueueTask& _task;
815
816
public:
817
ParNewRefEnqueueTaskProxy(EnqueueTask& task)
818
: AbstractGangTask("ParNewGeneration parallel reference enqueue"),
819
_task(task)
820
{ }
821
822
virtual void work(uint worker_id)
823
{
824
_task.work(worker_id);
825
}
826
};
827
828
829
void ParNewRefProcTaskExecutor::execute(ProcessTask& task)
830
{
831
GenCollectedHeap* gch = GenCollectedHeap::heap();
832
assert(gch->kind() == CollectedHeap::GenCollectedHeap,
833
"not a generational heap");
834
FlexibleWorkGang* workers = gch->workers();
835
assert(workers != NULL, "Need parallel worker threads.");
836
_state_set.reset(workers->active_workers(), _generation.promotion_failed());
837
ParNewRefProcTaskProxy rp_task(task, _generation, *_generation.next_gen(),
838
_generation.reserved().end(), _state_set);
839
workers->run_task(&rp_task);
840
_state_set.reset(0 /* bad value in debug if not reset */,
841
_generation.promotion_failed());
842
}
843
844
void ParNewRefProcTaskExecutor::execute(EnqueueTask& task)
845
{
846
GenCollectedHeap* gch = GenCollectedHeap::heap();
847
FlexibleWorkGang* workers = gch->workers();
848
assert(workers != NULL, "Need parallel worker threads.");
849
ParNewRefEnqueueTaskProxy enq_task(task);
850
workers->run_task(&enq_task);
851
}
852
853
void ParNewRefProcTaskExecutor::set_single_threaded_mode()
854
{
855
_state_set.flush();
856
GenCollectedHeap* gch = GenCollectedHeap::heap();
857
gch->set_par_threads(0); // 0 ==> non-parallel.
858
gch->save_marks();
859
}
860
861
ScanClosureWithParBarrier::
862
ScanClosureWithParBarrier(ParNewGeneration* g, bool gc_barrier) :
863
ScanClosure(g, gc_barrier) {}
864
865
EvacuateFollowersClosureGeneral::
866
EvacuateFollowersClosureGeneral(GenCollectedHeap* gch, int level,
867
OopsInGenClosure* cur,
868
OopsInGenClosure* older) :
869
_gch(gch), _level(level),
870
_scan_cur_or_nonheap(cur), _scan_older(older)
871
{}
872
873
void EvacuateFollowersClosureGeneral::do_void() {
874
do {
875
// Beware: this call will lead to closure applications via virtual
876
// calls.
877
_gch->oop_since_save_marks_iterate(_level,
878
_scan_cur_or_nonheap,
879
_scan_older);
880
} while (!_gch->no_allocs_since_save_marks(_level));
881
}
882
883
884
// A Generation that does parallel young-gen collection.
885
886
bool ParNewGeneration::_avoid_promotion_undo = false;
887
888
void ParNewGeneration::handle_promotion_failed(GenCollectedHeap* gch, ParScanThreadStateSet& thread_state_set, ParNewTracer& gc_tracer) {
889
assert(_promo_failure_scan_stack.is_empty(), "post condition");
890
_promo_failure_scan_stack.clear(true); // Clear cached segments.
891
892
remove_forwarding_pointers();
893
if (PrintGCDetails) {
894
gclog_or_tty->print(" (promotion failed)");
895
}
896
// All the spaces are in play for mark-sweep.
897
swap_spaces(); // Make life simpler for CMS || rescan; see 6483690.
898
from()->set_next_compaction_space(to());
899
gch->set_incremental_collection_failed();
900
// Inform the next generation that a promotion failure occurred.
901
_next_gen->promotion_failure_occurred();
902
903
// Trace promotion failure in the parallel GC threads
904
thread_state_set.trace_promotion_failed(gc_tracer);
905
// Single threaded code may have reported promotion failure to the global state
906
if (_promotion_failed_info.has_failed()) {
907
gc_tracer.report_promotion_failed(_promotion_failed_info);
908
}
909
// Reset the PromotionFailureALot counters.
910
NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
911
}
912
913
void ParNewGeneration::collect(bool full,
914
bool clear_all_soft_refs,
915
size_t size,
916
bool is_tlab) {
917
assert(full || size > 0, "otherwise we don't want to collect");
918
919
GenCollectedHeap* gch = GenCollectedHeap::heap();
920
921
_gc_timer->register_gc_start();
922
923
assert(gch->kind() == CollectedHeap::GenCollectedHeap,
924
"not a CMS generational heap");
925
AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
926
FlexibleWorkGang* workers = gch->workers();
927
assert(workers != NULL, "Need workgang for parallel work");
928
int active_workers =
929
AdaptiveSizePolicy::calc_active_workers(workers->total_workers(),
930
workers->active_workers(),
931
Threads::number_of_non_daemon_threads());
932
workers->set_active_workers(active_workers);
933
assert(gch->n_gens() == 2,
934
"Par collection currently only works with single older gen.");
935
_next_gen = gch->next_gen(this);
936
// Do we have to avoid promotion_undo?
937
if (gch->collector_policy()->is_concurrent_mark_sweep_policy()) {
938
set_avoid_promotion_undo(true);
939
}
940
941
// If the next generation is too full to accommodate worst-case promotion
942
// from this generation, pass on collection; let the next generation
943
// do it.
944
if (!collection_attempt_is_safe()) {
945
gch->set_incremental_collection_failed(); // slight lie, in that we did not even attempt one
946
return;
947
}
948
assert(to()->is_empty(), "Else not collection_attempt_is_safe");
949
950
ParNewTracer gc_tracer;
951
gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
952
gch->trace_heap_before_gc(&gc_tracer);
953
954
init_assuming_no_promotion_failure();
955
956
if (UseAdaptiveSizePolicy) {
957
set_survivor_overflow(false);
958
size_policy->minor_collection_begin();
959
}
960
961
GCTraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL, gc_tracer.gc_id());
962
// Capture heap used before collection (for printing).
963
size_t gch_prev_used = gch->used();
964
965
SpecializationStats::clear();
966
967
age_table()->clear();
968
to()->clear(SpaceDecorator::Mangle);
969
970
gch->save_marks();
971
assert(workers != NULL, "Need parallel worker threads.");
972
int n_workers = active_workers;
973
974
// Set the correct parallelism (number of queues) in the reference processor
975
ref_processor()->set_active_mt_degree(n_workers);
976
977
// Always set the terminator for the active number of workers
978
// because only those workers go through the termination protocol.
979
ParallelTaskTerminator _term(n_workers, task_queues());
980
ParScanThreadStateSet thread_state_set(workers->active_workers(),
981
*to(), *this, *_next_gen, *task_queues(),
982
_overflow_stacks, desired_plab_sz(), _term);
983
984
ParNewGenTask tsk(this, _next_gen, reserved().end(), &thread_state_set);
985
gch->set_par_threads(n_workers);
986
gch->rem_set()->prepare_for_younger_refs_iterate(true);
987
// It turns out that even when we're using 1 thread, doing the work in a
988
// separate thread causes wide variance in run times. We can't help this
989
// in the multi-threaded case, but we special-case n=1 here to get
990
// repeatable measurements of the 1-thread overhead of the parallel code.
991
if (n_workers > 1) {
992
GenCollectedHeap::StrongRootsScope srs(gch);
993
workers->run_task(&tsk);
994
} else {
995
GenCollectedHeap::StrongRootsScope srs(gch);
996
tsk.work(0);
997
}
998
thread_state_set.reset(0 /* Bad value in debug if not reset */,
999
promotion_failed());
1000
1001
// Process (weak) reference objects found during scavenge.
1002
ReferenceProcessor* rp = ref_processor();
1003
IsAliveClosure is_alive(this);
1004
ScanWeakRefClosure scan_weak_ref(this);
1005
KeepAliveClosure keep_alive(&scan_weak_ref);
1006
ScanClosure scan_without_gc_barrier(this, false);
1007
ScanClosureWithParBarrier scan_with_gc_barrier(this, true);
1008
set_promo_failure_scan_stack_closure(&scan_without_gc_barrier);
1009
EvacuateFollowersClosureGeneral evacuate_followers(gch, _level,
1010
&scan_without_gc_barrier, &scan_with_gc_barrier);
1011
rp->setup_policy(clear_all_soft_refs);
1012
// Can the mt_degree be set later (at run_task() time would be best)?
1013
rp->set_active_mt_degree(active_workers);
1014
ReferenceProcessorStats stats;
1015
if (rp->processing_is_mt()) {
1016
ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
1017
stats = rp->process_discovered_references(&is_alive, &keep_alive,
1018
&evacuate_followers, &task_executor,
1019
_gc_timer, gc_tracer.gc_id());
1020
} else {
1021
thread_state_set.flush();
1022
gch->set_par_threads(0); // 0 ==> non-parallel.
1023
gch->save_marks();
1024
stats = rp->process_discovered_references(&is_alive, &keep_alive,
1025
&evacuate_followers, NULL,
1026
_gc_timer, gc_tracer.gc_id());
1027
}
1028
gc_tracer.report_gc_reference_stats(stats);
1029
if (!promotion_failed()) {
1030
// Swap the survivor spaces.
1031
eden()->clear(SpaceDecorator::Mangle);
1032
from()->clear(SpaceDecorator::Mangle);
1033
if (ZapUnusedHeapArea) {
1034
// This is now done here because of the piece-meal mangling which
1035
// can check for valid mangling at intermediate points in the
1036
// collection(s). When a minor collection fails to collect
1037
// sufficient space resizing of the young generation can occur
1038
// an redistribute the spaces in the young generation. Mangle
1039
// here so that unzapped regions don't get distributed to
1040
// other spaces.
1041
to()->mangle_unused_area();
1042
}
1043
swap_spaces();
1044
1045
// A successful scavenge should restart the GC time limit count which is
1046
// for full GC's.
1047
size_policy->reset_gc_overhead_limit_count();
1048
1049
assert(to()->is_empty(), "to space should be empty now");
1050
1051
adjust_desired_tenuring_threshold(gc_tracer);
1052
} else {
1053
handle_promotion_failed(gch, thread_state_set, gc_tracer);
1054
}
1055
// set new iteration safe limit for the survivor spaces
1056
from()->set_concurrent_iteration_safe_limit(from()->top());
1057
to()->set_concurrent_iteration_safe_limit(to()->top());
1058
1059
if (ResizePLAB) {
1060
plab_stats()->adjust_desired_plab_sz(n_workers);
1061
}
1062
1063
if (PrintGC && !PrintGCDetails) {
1064
gch->print_heap_change(gch_prev_used);
1065
}
1066
1067
if (PrintGCDetails && ParallelGCVerbose) {
1068
TASKQUEUE_STATS_ONLY(thread_state_set.print_termination_stats());
1069
TASKQUEUE_STATS_ONLY(thread_state_set.print_taskqueue_stats());
1070
}
1071
1072
if (UseAdaptiveSizePolicy) {
1073
size_policy->minor_collection_end(gch->gc_cause());
1074
size_policy->avg_survived()->sample(from()->used());
1075
}
1076
1077
// We need to use a monotonically non-deccreasing time in ms
1078
// or we will see time-warp warnings and os::javaTimeMillis()
1079
// does not guarantee monotonicity.
1080
jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1081
update_time_of_last_gc(now);
1082
1083
SpecializationStats::print();
1084
1085
rp->set_enqueuing_is_done(true);
1086
if (rp->processing_is_mt()) {
1087
ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
1088
rp->enqueue_discovered_references(&task_executor);
1089
} else {
1090
rp->enqueue_discovered_references(NULL);
1091
}
1092
rp->verify_no_references_recorded();
1093
1094
gch->trace_heap_after_gc(&gc_tracer);
1095
gc_tracer.report_tenuring_threshold(tenuring_threshold());
1096
1097
_gc_timer->register_gc_end();
1098
1099
gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
1100
}
1101
1102
static int sum;
1103
void ParNewGeneration::waste_some_time() {
1104
for (int i = 0; i < 100; i++) {
1105
sum += i;
1106
}
1107
}
1108
1109
static const oop ClaimedForwardPtr = cast_to_oop<intptr_t>(0x4);
1110
1111
// Because of concurrency, there are times where an object for which
1112
// "is_forwarded()" is true contains an "interim" forwarding pointer
1113
// value. Such a value will soon be overwritten with a real value.
1114
// This method requires "obj" to have a forwarding pointer, and waits, if
1115
// necessary for a real one to be inserted, and returns it.
1116
1117
oop ParNewGeneration::real_forwardee(oop obj) {
1118
oop forward_ptr = obj->forwardee();
1119
if (forward_ptr != ClaimedForwardPtr) {
1120
return forward_ptr;
1121
} else {
1122
return real_forwardee_slow(obj);
1123
}
1124
}
1125
1126
oop ParNewGeneration::real_forwardee_slow(oop obj) {
1127
// Spin-read if it is claimed but not yet written by another thread.
1128
oop forward_ptr = obj->forwardee();
1129
while (forward_ptr == ClaimedForwardPtr) {
1130
waste_some_time();
1131
assert(obj->is_forwarded(), "precondition");
1132
forward_ptr = obj->forwardee();
1133
}
1134
return forward_ptr;
1135
}
1136
1137
#ifdef ASSERT
1138
bool ParNewGeneration::is_legal_forward_ptr(oop p) {
1139
return
1140
(_avoid_promotion_undo && p == ClaimedForwardPtr)
1141
|| Universe::heap()->is_in_reserved(p);
1142
}
1143
#endif
1144
1145
void ParNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
1146
if (m->must_be_preserved_for_promotion_failure(obj)) {
1147
// We should really have separate per-worker stacks, rather
1148
// than use locking of a common pair of stacks.
1149
MutexLocker ml(ParGCRareEvent_lock);
1150
preserve_mark(obj, m);
1151
}
1152
}
1153
1154
// Multiple GC threads may try to promote an object. If the object
1155
// is successfully promoted, a forwarding pointer will be installed in
1156
// the object in the young generation. This method claims the right
1157
// to install the forwarding pointer before it copies the object,
1158
// thus avoiding the need to undo the copy as in
1159
// copy_to_survivor_space_avoiding_with_undo.
1160
1161
oop ParNewGeneration::copy_to_survivor_space_avoiding_promotion_undo(
1162
ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
1163
// In the sequential version, this assert also says that the object is
1164
// not forwarded. That might not be the case here. It is the case that
1165
// the caller observed it to be not forwarded at some time in the past.
1166
assert(is_in_reserved(old), "shouldn't be scavenging this oop");
1167
1168
// The sequential code read "old->age()" below. That doesn't work here,
1169
// since the age is in the mark word, and that might be overwritten with
1170
// a forwarding pointer by a parallel thread. So we must save the mark
1171
// word in a local and then analyze it.
1172
oopDesc dummyOld;
1173
dummyOld.set_mark(m);
1174
assert(!dummyOld.is_forwarded(),
1175
"should not be called with forwarding pointer mark word.");
1176
1177
oop new_obj = NULL;
1178
oop forward_ptr;
1179
1180
// Try allocating obj in to-space (unless too old)
1181
if (dummyOld.age() < tenuring_threshold()) {
1182
new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
1183
if (new_obj == NULL) {
1184
set_survivor_overflow(true);
1185
}
1186
}
1187
1188
if (new_obj == NULL) {
1189
// Either to-space is full or we decided to promote
1190
// try allocating obj tenured
1191
1192
// Attempt to install a null forwarding pointer (atomically),
1193
// to claim the right to install the real forwarding pointer.
1194
forward_ptr = old->forward_to_atomic(ClaimedForwardPtr);
1195
if (forward_ptr != NULL) {
1196
// someone else beat us to it.
1197
return real_forwardee(old);
1198
}
1199
1200
if (!_promotion_failed) {
1201
new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
1202
old, m, sz);
1203
}
1204
1205
if (new_obj == NULL) {
1206
// promotion failed, forward to self
1207
_promotion_failed = true;
1208
new_obj = old;
1209
1210
preserve_mark_if_necessary(old, m);
1211
par_scan_state->register_promotion_failure(sz);
1212
}
1213
1214
old->forward_to(new_obj);
1215
forward_ptr = NULL;
1216
} else {
1217
// Is in to-space; do copying ourselves.
1218
Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
1219
forward_ptr = old->forward_to_atomic(new_obj);
1220
// Restore the mark word copied above.
1221
new_obj->set_mark(m);
1222
// Increment age if obj still in new generation
1223
new_obj->incr_age();
1224
par_scan_state->age_table()->add(new_obj, sz);
1225
}
1226
assert(new_obj != NULL, "just checking");
1227
1228
#ifndef PRODUCT
1229
// This code must come after the CAS test, or it will print incorrect
1230
// information.
1231
if (TraceScavenge) {
1232
gclog_or_tty->print_cr("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}",
1233
is_in_reserved(new_obj) ? "copying" : "tenuring",
1234
new_obj->klass()->internal_name(), (void *)old, (void *)new_obj, new_obj->size());
1235
}
1236
#endif
1237
1238
if (forward_ptr == NULL) {
1239
oop obj_to_push = new_obj;
1240
if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
1241
// Length field used as index of next element to be scanned.
1242
// Real length can be obtained from real_forwardee()
1243
arrayOop(old)->set_length(0);
1244
obj_to_push = old;
1245
assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
1246
"push forwarded object");
1247
}
1248
// Push it on one of the queues of to-be-scanned objects.
1249
bool simulate_overflow = false;
1250
NOT_PRODUCT(
1251
if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
1252
// simulate a stack overflow
1253
simulate_overflow = true;
1254
}
1255
)
1256
if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
1257
// Add stats for overflow pushes.
1258
if (Verbose && PrintGCDetails) {
1259
gclog_or_tty->print("queue overflow!\n");
1260
}
1261
push_on_overflow_list(old, par_scan_state);
1262
TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
1263
}
1264
1265
return new_obj;
1266
}
1267
1268
// Oops. Someone beat us to it. Undo the allocation. Where did we
1269
// allocate it?
1270
if (is_in_reserved(new_obj)) {
1271
// Must be in to_space.
1272
assert(to()->is_in_reserved(new_obj), "Checking");
1273
if (forward_ptr == ClaimedForwardPtr) {
1274
// Wait to get the real forwarding pointer value.
1275
forward_ptr = real_forwardee(old);
1276
}
1277
par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
1278
}
1279
1280
return forward_ptr;
1281
}
1282
1283
1284
// Multiple GC threads may try to promote the same object. If two
1285
// or more GC threads copy the object, only one wins the race to install
1286
// the forwarding pointer. The other threads have to undo their copy.
1287
1288
oop ParNewGeneration::copy_to_survivor_space_with_undo(
1289
ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
1290
1291
// In the sequential version, this assert also says that the object is
1292
// not forwarded. That might not be the case here. It is the case that
1293
// the caller observed it to be not forwarded at some time in the past.
1294
assert(is_in_reserved(old), "shouldn't be scavenging this oop");
1295
1296
// The sequential code read "old->age()" below. That doesn't work here,
1297
// since the age is in the mark word, and that might be overwritten with
1298
// a forwarding pointer by a parallel thread. So we must save the mark
1299
// word here, install it in a local oopDesc, and then analyze it.
1300
oopDesc dummyOld;
1301
dummyOld.set_mark(m);
1302
assert(!dummyOld.is_forwarded(),
1303
"should not be called with forwarding pointer mark word.");
1304
1305
bool failed_to_promote = false;
1306
oop new_obj = NULL;
1307
oop forward_ptr;
1308
1309
// Try allocating obj in to-space (unless too old)
1310
if (dummyOld.age() < tenuring_threshold()) {
1311
new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
1312
if (new_obj == NULL) {
1313
set_survivor_overflow(true);
1314
}
1315
}
1316
1317
if (new_obj == NULL) {
1318
// Either to-space is full or we decided to promote
1319
// try allocating obj tenured
1320
new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
1321
old, m, sz);
1322
1323
if (new_obj == NULL) {
1324
// promotion failed, forward to self
1325
forward_ptr = old->forward_to_atomic(old);
1326
new_obj = old;
1327
1328
if (forward_ptr != NULL) {
1329
return forward_ptr; // someone else succeeded
1330
}
1331
1332
_promotion_failed = true;
1333
failed_to_promote = true;
1334
1335
preserve_mark_if_necessary(old, m);
1336
par_scan_state->register_promotion_failure(sz);
1337
}
1338
} else {
1339
// Is in to-space; do copying ourselves.
1340
Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
1341
// Restore the mark word copied above.
1342
new_obj->set_mark(m);
1343
// Increment age if new_obj still in new generation
1344
new_obj->incr_age();
1345
par_scan_state->age_table()->add(new_obj, sz);
1346
}
1347
assert(new_obj != NULL, "just checking");
1348
1349
#ifndef PRODUCT
1350
// This code must come after the CAS test, or it will print incorrect
1351
// information.
1352
if (TraceScavenge) {
1353
gclog_or_tty->print_cr("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}",
1354
is_in_reserved(new_obj) ? "copying" : "tenuring",
1355
new_obj->klass()->internal_name(), (void *)old, (void *)new_obj, new_obj->size());
1356
}
1357
#endif
1358
1359
// Now attempt to install the forwarding pointer (atomically).
1360
// We have to copy the mark word before overwriting with forwarding
1361
// ptr, so we can restore it below in the copy.
1362
if (!failed_to_promote) {
1363
forward_ptr = old->forward_to_atomic(new_obj);
1364
}
1365
1366
if (forward_ptr == NULL) {
1367
oop obj_to_push = new_obj;
1368
if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
1369
// Length field used as index of next element to be scanned.
1370
// Real length can be obtained from real_forwardee()
1371
arrayOop(old)->set_length(0);
1372
obj_to_push = old;
1373
assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
1374
"push forwarded object");
1375
}
1376
// Push it on one of the queues of to-be-scanned objects.
1377
bool simulate_overflow = false;
1378
NOT_PRODUCT(
1379
if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
1380
// simulate a stack overflow
1381
simulate_overflow = true;
1382
}
1383
)
1384
if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
1385
// Add stats for overflow pushes.
1386
push_on_overflow_list(old, par_scan_state);
1387
TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
1388
}
1389
1390
return new_obj;
1391
}
1392
1393
// Oops. Someone beat us to it. Undo the allocation. Where did we
1394
// allocate it?
1395
if (is_in_reserved(new_obj)) {
1396
// Must be in to_space.
1397
assert(to()->is_in_reserved(new_obj), "Checking");
1398
par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
1399
} else {
1400
assert(!_avoid_promotion_undo, "Should not be here if avoiding.");
1401
_next_gen->par_promote_alloc_undo(par_scan_state->thread_num(),
1402
(HeapWord*)new_obj, sz);
1403
}
1404
1405
return forward_ptr;
1406
}
1407
1408
#ifndef PRODUCT
1409
// It's OK to call this multi-threaded; the worst thing
1410
// that can happen is that we'll get a bunch of closely
1411
// spaced simulated oveflows, but that's OK, in fact
1412
// probably good as it would exercise the overflow code
1413
// under contention.
1414
bool ParNewGeneration::should_simulate_overflow() {
1415
if (_overflow_counter-- <= 0) { // just being defensive
1416
_overflow_counter = ParGCWorkQueueOverflowInterval;
1417
return true;
1418
} else {
1419
return false;
1420
}
1421
}
1422
#endif
1423
1424
// In case we are using compressed oops, we need to be careful.
1425
// If the object being pushed is an object array, then its length
1426
// field keeps track of the "grey boundary" at which the next
1427
// incremental scan will be done (see ParGCArrayScanChunk).
1428
// When using compressed oops, this length field is kept in the
1429
// lower 32 bits of the erstwhile klass word and cannot be used
1430
// for the overflow chaining pointer (OCP below). As such the OCP
1431
// would itself need to be compressed into the top 32-bits in this
1432
// case. Unfortunately, see below, in the event that we have a
1433
// promotion failure, the node to be pushed on the list can be
1434
// outside of the Java heap, so the heap-based pointer compression
1435
// would not work (we would have potential aliasing between C-heap
1436
// and Java-heap pointers). For this reason, when using compressed
1437
// oops, we simply use a worker-thread-local, non-shared overflow
1438
// list in the form of a growable array, with a slightly different
1439
// overflow stack draining strategy. If/when we start using fat
1440
// stacks here, we can go back to using (fat) pointer chains
1441
// (although some performance comparisons would be useful since
1442
// single global lists have their own performance disadvantages
1443
// as we were made painfully aware not long ago, see 6786503).
1444
#define BUSY (cast_to_oop<intptr_t>(0x1aff1aff))
1445
void ParNewGeneration::push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state) {
1446
assert(is_in_reserved(from_space_obj), "Should be from this generation");
1447
if (ParGCUseLocalOverflow) {
1448
// In the case of compressed oops, we use a private, not-shared
1449
// overflow stack.
1450
par_scan_state->push_on_overflow_stack(from_space_obj);
1451
} else {
1452
assert(!UseCompressedOops, "Error");
1453
// if the object has been forwarded to itself, then we cannot
1454
// use the klass pointer for the linked list. Instead we have
1455
// to allocate an oopDesc in the C-Heap and use that for the linked list.
1456
// XXX This is horribly inefficient when a promotion failure occurs
1457
// and should be fixed. XXX FIX ME !!!
1458
#ifndef PRODUCT
1459
Atomic::inc_ptr(&_num_par_pushes);
1460
assert(_num_par_pushes > 0, "Tautology");
1461
#endif
1462
if (from_space_obj->forwardee() == from_space_obj) {
1463
oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1, mtGC);
1464
listhead->forward_to(from_space_obj);
1465
from_space_obj = listhead;
1466
}
1467
oop observed_overflow_list = _overflow_list;
1468
oop cur_overflow_list;
1469
do {
1470
cur_overflow_list = observed_overflow_list;
1471
if (cur_overflow_list != BUSY) {
1472
from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
1473
} else {
1474
from_space_obj->set_klass_to_list_ptr(NULL);
1475
}
1476
observed_overflow_list =
1477
(oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
1478
} while (cur_overflow_list != observed_overflow_list);
1479
}
1480
}
1481
1482
bool ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
1483
bool res;
1484
1485
if (ParGCUseLocalOverflow) {
1486
res = par_scan_state->take_from_overflow_stack();
1487
} else {
1488
assert(!UseCompressedOops, "Error");
1489
res = take_from_overflow_list_work(par_scan_state);
1490
}
1491
return res;
1492
}
1493
1494
1495
// *NOTE*: The overflow list manipulation code here and
1496
// in CMSCollector:: are very similar in shape,
1497
// except that in the CMS case we thread the objects
1498
// directly into the list via their mark word, and do
1499
// not need to deal with special cases below related
1500
// to chunking of object arrays and promotion failure
1501
// handling.
1502
// CR 6797058 has been filed to attempt consolidation of
1503
// the common code.
1504
// Because of the common code, if you make any changes in
1505
// the code below, please check the CMS version to see if
1506
// similar changes might be needed.
1507
// See CMSCollector::par_take_from_overflow_list() for
1508
// more extensive documentation comments.
1509
bool ParNewGeneration::take_from_overflow_list_work(ParScanThreadState* par_scan_state) {
1510
ObjToScanQueue* work_q = par_scan_state->work_queue();
1511
// How many to take?
1512
size_t objsFromOverflow = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
1513
(size_t)ParGCDesiredObjsFromOverflowList);
1514
1515
assert(!UseCompressedOops, "Error");
1516
assert(par_scan_state->overflow_stack() == NULL, "Error");
1517
if (_overflow_list == NULL) return false;
1518
1519
// Otherwise, there was something there; try claiming the list.
1520
oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
1521
// Trim off a prefix of at most objsFromOverflow items
1522
Thread* tid = Thread::current();
1523
size_t spin_count = (size_t)ParallelGCThreads;
1524
size_t sleep_time_millis = MAX2((size_t)1, objsFromOverflow/100);
1525
for (size_t spin = 0; prefix == BUSY && spin < spin_count; spin++) {
1526
// someone grabbed it before we did ...
1527
// ... we spin for a short while...
1528
os::sleep(tid, sleep_time_millis, false);
1529
if (_overflow_list == NULL) {
1530
// nothing left to take
1531
return false;
1532
} else if (_overflow_list != BUSY) {
1533
// try and grab the prefix
1534
prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
1535
}
1536
}
1537
if (prefix == NULL || prefix == BUSY) {
1538
// Nothing to take or waited long enough
1539
if (prefix == NULL) {
1540
// Write back the NULL in case we overwrote it with BUSY above
1541
// and it is still the same value.
1542
(void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
1543
}
1544
return false;
1545
}
1546
assert(prefix != NULL && prefix != BUSY, "Error");
1547
oop cur = prefix;
1548
for (size_t i = 1; i < objsFromOverflow; ++i) {
1549
oop next = cur->list_ptr_from_klass();
1550
if (next == NULL) break;
1551
cur = next;
1552
}
1553
assert(cur != NULL, "Loop postcondition");
1554
1555
// Reattach remaining (suffix) to overflow list
1556
oop suffix = cur->list_ptr_from_klass();
1557
if (suffix == NULL) {
1558
// Write back the NULL in lieu of the BUSY we wrote
1559
// above and it is still the same value.
1560
if (_overflow_list == BUSY) {
1561
(void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
1562
}
1563
} else {
1564
assert(suffix != BUSY, "Error");
1565
// suffix will be put back on global list
1566
cur->set_klass_to_list_ptr(NULL); // break off suffix
1567
// It's possible that the list is still in the empty(busy) state
1568
// we left it in a short while ago; in that case we may be
1569
// able to place back the suffix.
1570
oop observed_overflow_list = _overflow_list;
1571
oop cur_overflow_list = observed_overflow_list;
1572
bool attached = false;
1573
while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
1574
observed_overflow_list =
1575
(oop) Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
1576
if (cur_overflow_list == observed_overflow_list) {
1577
attached = true;
1578
break;
1579
} else cur_overflow_list = observed_overflow_list;
1580
}
1581
if (!attached) {
1582
// Too bad, someone else got in in between; we'll need to do a splice.
1583
// Find the last item of suffix list
1584
oop last = suffix;
1585
while (true) {
1586
oop next = last->list_ptr_from_klass();
1587
if (next == NULL) break;
1588
last = next;
1589
}
1590
// Atomically prepend suffix to current overflow list
1591
observed_overflow_list = _overflow_list;
1592
do {
1593
cur_overflow_list = observed_overflow_list;
1594
if (cur_overflow_list != BUSY) {
1595
// Do the splice ...
1596
last->set_klass_to_list_ptr(cur_overflow_list);
1597
} else { // cur_overflow_list == BUSY
1598
last->set_klass_to_list_ptr(NULL);
1599
}
1600
observed_overflow_list =
1601
(oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
1602
} while (cur_overflow_list != observed_overflow_list);
1603
}
1604
}
1605
1606
// Push objects on prefix list onto this thread's work queue
1607
assert(prefix != NULL && prefix != BUSY, "program logic");
1608
cur = prefix;
1609
ssize_t n = 0;
1610
while (cur != NULL) {
1611
oop obj_to_push = cur->forwardee();
1612
oop next = cur->list_ptr_from_klass();
1613
cur->set_klass(obj_to_push->klass());
1614
// This may be an array object that is self-forwarded. In that case, the list pointer
1615
// space, cur, is not in the Java heap, but rather in the C-heap and should be freed.
1616
if (!is_in_reserved(cur)) {
1617
// This can become a scaling bottleneck when there is work queue overflow coincident
1618
// with promotion failure.
1619
oopDesc* f = cur;
1620
FREE_C_HEAP_ARRAY(oopDesc, f, mtGC);
1621
} else if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
1622
assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
1623
obj_to_push = cur;
1624
}
1625
bool ok = work_q->push(obj_to_push);
1626
assert(ok, "Should have succeeded");
1627
cur = next;
1628
n++;
1629
}
1630
TASKQUEUE_STATS_ONLY(par_scan_state->note_overflow_refill(n));
1631
#ifndef PRODUCT
1632
assert(_num_par_pushes >= n, "Too many pops?");
1633
Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
1634
#endif
1635
return true;
1636
}
1637
#undef BUSY
1638
1639
void ParNewGeneration::ref_processor_init() {
1640
if (_ref_processor == NULL) {
1641
// Allocate and initialize a reference processor
1642
_ref_processor =
1643
new ReferenceProcessor(_reserved, // span
1644
ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
1645
(int) ParallelGCThreads, // mt processing degree
1646
refs_discovery_is_mt(), // mt discovery
1647
(int) ParallelGCThreads, // mt discovery degree
1648
refs_discovery_is_atomic(), // atomic_discovery
1649
NULL); // is_alive_non_header
1650
}
1651
}
1652
1653
const char* ParNewGeneration::name() const {
1654
return "par new generation";
1655
}
1656
1657