Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/gc_implementation/parallelScavenge/parMarkBitMap.hpp
38921 views
1
/*
2
* Copyright (c) 2005, 2014, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARMARKBITMAP_HPP
26
#define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARMARKBITMAP_HPP
27
28
#include "memory/memRegion.hpp"
29
#include "oops/oop.hpp"
30
#include "utilities/bitMap.hpp"
31
32
class ParMarkBitMapClosure;
33
class PSVirtualSpace;
34
35
class ParMarkBitMap: public CHeapObj<mtGC>
36
{
37
public:
38
typedef BitMap::idx_t idx_t;
39
40
// Values returned by the iterate() methods.
41
enum IterationStatus { incomplete, complete, full, would_overflow };
42
43
inline ParMarkBitMap();
44
bool initialize(MemRegion covered_region);
45
46
// Atomically mark an object as live.
47
bool mark_obj(HeapWord* addr, size_t size);
48
inline bool mark_obj(oop obj, int size);
49
50
// Return whether the specified begin or end bit is set.
51
inline bool is_obj_beg(idx_t bit) const;
52
inline bool is_obj_end(idx_t bit) const;
53
54
// Traditional interface for testing whether an object is marked or not (these
55
// test only the begin bits).
56
inline bool is_marked(idx_t bit) const;
57
inline bool is_marked(HeapWord* addr) const;
58
inline bool is_marked(oop obj) const;
59
60
inline bool is_unmarked(idx_t bit) const;
61
inline bool is_unmarked(HeapWord* addr) const;
62
inline bool is_unmarked(oop obj) const;
63
64
// Convert sizes from bits to HeapWords and back. An object that is n bits
65
// long will be bits_to_words(n) words long. An object that is m words long
66
// will take up words_to_bits(m) bits in the bitmap.
67
inline static size_t bits_to_words(idx_t bits);
68
inline static idx_t words_to_bits(size_t words);
69
70
// Return the size in words of an object given a begin bit and an end bit, or
71
// the equivalent beg_addr and end_addr.
72
inline size_t obj_size(idx_t beg_bit, idx_t end_bit) const;
73
inline size_t obj_size(HeapWord* beg_addr, HeapWord* end_addr) const;
74
75
// Return the size in words of the object (a search is done for the end bit).
76
inline size_t obj_size(idx_t beg_bit) const;
77
inline size_t obj_size(HeapWord* addr) const;
78
79
// Apply live_closure to each live object that lies completely within the
80
// range [live_range_beg, live_range_end). This is used to iterate over the
81
// compacted region of the heap. Return values:
82
//
83
// incomplete The iteration is not complete. The last object that
84
// begins in the range does not end in the range;
85
// closure->source() is set to the start of that object.
86
//
87
// complete The iteration is complete. All objects in the range
88
// were processed and the closure is not full;
89
// closure->source() is set one past the end of the range.
90
//
91
// full The closure is full; closure->source() is set to one
92
// past the end of the last object processed.
93
//
94
// would_overflow The next object in the range would overflow the closure;
95
// closure->source() is set to the start of that object.
96
IterationStatus iterate(ParMarkBitMapClosure* live_closure,
97
idx_t range_beg, idx_t range_end) const;
98
inline IterationStatus iterate(ParMarkBitMapClosure* live_closure,
99
HeapWord* range_beg,
100
HeapWord* range_end) const;
101
102
// Apply live closure as above and additionally apply dead_closure to all dead
103
// space in the range [range_beg, dead_range_end). Note that dead_range_end
104
// must be >= range_end. This is used to iterate over the dense prefix.
105
//
106
// This method assumes that if the first bit in the range (range_beg) is not
107
// marked, then dead space begins at that point and the dead_closure is
108
// applied. Thus callers must ensure that range_beg is not in the middle of a
109
// live object.
110
IterationStatus iterate(ParMarkBitMapClosure* live_closure,
111
ParMarkBitMapClosure* dead_closure,
112
idx_t range_beg, idx_t range_end,
113
idx_t dead_range_end) const;
114
inline IterationStatus iterate(ParMarkBitMapClosure* live_closure,
115
ParMarkBitMapClosure* dead_closure,
116
HeapWord* range_beg,
117
HeapWord* range_end,
118
HeapWord* dead_range_end) const;
119
120
// Return the number of live words in the range [beg_addr, end_obj) due to
121
// objects that start in the range. If a live object extends onto the range,
122
// the caller must detect and account for any live words due to that object.
123
// If a live object extends beyond the end of the range, only the words within
124
// the range are included in the result. The end of the range must be a live object,
125
// which is the case when updating pointers. This allows a branch to be removed
126
// from inside the loop.
127
size_t live_words_in_range(HeapWord* beg_addr, oop end_obj) const;
128
129
inline HeapWord* region_start() const;
130
inline HeapWord* region_end() const;
131
inline size_t region_size() const;
132
inline size_t size() const;
133
134
size_t reserved_byte_size() const { return _reserved_byte_size; }
135
136
// Convert a heap address to/from a bit index.
137
inline idx_t addr_to_bit(HeapWord* addr) const;
138
inline HeapWord* bit_to_addr(idx_t bit) const;
139
140
// Return the bit index of the first marked object that begins (or ends,
141
// respectively) in the range [beg, end). If no object is found, return end.
142
inline idx_t find_obj_beg(idx_t beg, idx_t end) const;
143
inline idx_t find_obj_end(idx_t beg, idx_t end) const;
144
145
inline HeapWord* find_obj_beg(HeapWord* beg, HeapWord* end) const;
146
inline HeapWord* find_obj_end(HeapWord* beg, HeapWord* end) const;
147
148
// Clear a range of bits or the entire bitmap (both begin and end bits are
149
// cleared).
150
inline void clear_range(idx_t beg, idx_t end);
151
152
// Return the number of bits required to represent the specified number of
153
// HeapWords, or the specified region.
154
static inline idx_t bits_required(size_t words);
155
static inline idx_t bits_required(MemRegion covered_region);
156
157
void print_on_error(outputStream* st) const {
158
st->print_cr("Marking Bits: (ParMarkBitMap*) " PTR_FORMAT, p2i(this));
159
_beg_bits.print_on_error(st, " Begin Bits: ");
160
_end_bits.print_on_error(st, " End Bits: ");
161
}
162
163
#ifdef ASSERT
164
void verify_clear() const;
165
inline void verify_bit(idx_t bit) const;
166
inline void verify_addr(HeapWord* addr) const;
167
#endif // #ifdef ASSERT
168
169
private:
170
// Each bit in the bitmap represents one unit of 'object granularity.' Objects
171
// are double-word aligned in 32-bit VMs, but not in 64-bit VMs, so the 32-bit
172
// granularity is 2, 64-bit is 1.
173
static inline size_t obj_granularity() { return size_t(MinObjAlignment); }
174
static inline int obj_granularity_shift() { return LogMinObjAlignment; }
175
176
HeapWord* _region_start;
177
size_t _region_size;
178
BitMap _beg_bits;
179
BitMap _end_bits;
180
PSVirtualSpace* _virtual_space;
181
size_t _reserved_byte_size;
182
};
183
184
inline ParMarkBitMap::ParMarkBitMap():
185
_beg_bits(), _end_bits(), _region_start(NULL), _region_size(0), _virtual_space(NULL), _reserved_byte_size(0)
186
{ }
187
188
inline void ParMarkBitMap::clear_range(idx_t beg, idx_t end)
189
{
190
_beg_bits.clear_range(beg, end);
191
_end_bits.clear_range(beg, end);
192
}
193
194
inline ParMarkBitMap::idx_t
195
ParMarkBitMap::bits_required(size_t words)
196
{
197
// Need two bits (one begin bit, one end bit) for each unit of 'object
198
// granularity' in the heap.
199
return words_to_bits(words * 2);
200
}
201
202
inline ParMarkBitMap::idx_t
203
ParMarkBitMap::bits_required(MemRegion covered_region)
204
{
205
return bits_required(covered_region.word_size());
206
}
207
208
inline HeapWord*
209
ParMarkBitMap::region_start() const
210
{
211
return _region_start;
212
}
213
214
inline HeapWord*
215
ParMarkBitMap::region_end() const
216
{
217
return region_start() + region_size();
218
}
219
220
inline size_t
221
ParMarkBitMap::region_size() const
222
{
223
return _region_size;
224
}
225
226
inline size_t
227
ParMarkBitMap::size() const
228
{
229
return _beg_bits.size();
230
}
231
232
inline bool ParMarkBitMap::is_obj_beg(idx_t bit) const
233
{
234
return _beg_bits.at(bit);
235
}
236
237
inline bool ParMarkBitMap::is_obj_end(idx_t bit) const
238
{
239
return _end_bits.at(bit);
240
}
241
242
inline bool ParMarkBitMap::is_marked(idx_t bit) const
243
{
244
return is_obj_beg(bit);
245
}
246
247
inline bool ParMarkBitMap::is_marked(HeapWord* addr) const
248
{
249
return is_marked(addr_to_bit(addr));
250
}
251
252
inline bool ParMarkBitMap::is_marked(oop obj) const
253
{
254
return is_marked((HeapWord*)obj);
255
}
256
257
inline bool ParMarkBitMap::is_unmarked(idx_t bit) const
258
{
259
return !is_marked(bit);
260
}
261
262
inline bool ParMarkBitMap::is_unmarked(HeapWord* addr) const
263
{
264
return !is_marked(addr);
265
}
266
267
inline bool ParMarkBitMap::is_unmarked(oop obj) const
268
{
269
return !is_marked(obj);
270
}
271
272
inline size_t
273
ParMarkBitMap::bits_to_words(idx_t bits)
274
{
275
return bits << obj_granularity_shift();
276
}
277
278
inline ParMarkBitMap::idx_t
279
ParMarkBitMap::words_to_bits(size_t words)
280
{
281
return words >> obj_granularity_shift();
282
}
283
284
inline size_t ParMarkBitMap::obj_size(idx_t beg_bit, idx_t end_bit) const
285
{
286
DEBUG_ONLY(verify_bit(beg_bit);)
287
DEBUG_ONLY(verify_bit(end_bit);)
288
return bits_to_words(end_bit - beg_bit + 1);
289
}
290
291
inline size_t
292
ParMarkBitMap::obj_size(HeapWord* beg_addr, HeapWord* end_addr) const
293
{
294
DEBUG_ONLY(verify_addr(beg_addr);)
295
DEBUG_ONLY(verify_addr(end_addr);)
296
return pointer_delta(end_addr, beg_addr) + obj_granularity();
297
}
298
299
inline size_t ParMarkBitMap::obj_size(idx_t beg_bit) const
300
{
301
const idx_t end_bit = _end_bits.get_next_one_offset_inline(beg_bit, size());
302
assert(is_marked(beg_bit), "obj not marked");
303
assert(end_bit < size(), "end bit missing");
304
return obj_size(beg_bit, end_bit);
305
}
306
307
inline size_t ParMarkBitMap::obj_size(HeapWord* addr) const
308
{
309
return obj_size(addr_to_bit(addr));
310
}
311
312
inline ParMarkBitMap::IterationStatus
313
ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure,
314
HeapWord* range_beg,
315
HeapWord* range_end) const
316
{
317
return iterate(live_closure, addr_to_bit(range_beg), addr_to_bit(range_end));
318
}
319
320
inline ParMarkBitMap::IterationStatus
321
ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure,
322
ParMarkBitMapClosure* dead_closure,
323
HeapWord* range_beg,
324
HeapWord* range_end,
325
HeapWord* dead_range_end) const
326
{
327
return iterate(live_closure, dead_closure,
328
addr_to_bit(range_beg), addr_to_bit(range_end),
329
addr_to_bit(dead_range_end));
330
}
331
332
inline bool
333
ParMarkBitMap::mark_obj(oop obj, int size)
334
{
335
return mark_obj((HeapWord*)obj, (size_t)size);
336
}
337
338
inline BitMap::idx_t
339
ParMarkBitMap::addr_to_bit(HeapWord* addr) const
340
{
341
DEBUG_ONLY(verify_addr(addr);)
342
return words_to_bits(pointer_delta(addr, region_start()));
343
}
344
345
inline HeapWord*
346
ParMarkBitMap::bit_to_addr(idx_t bit) const
347
{
348
DEBUG_ONLY(verify_bit(bit);)
349
return region_start() + bits_to_words(bit);
350
}
351
352
inline ParMarkBitMap::idx_t
353
ParMarkBitMap::find_obj_beg(idx_t beg, idx_t end) const
354
{
355
return _beg_bits.get_next_one_offset_inline_aligned_right(beg, end);
356
}
357
358
inline ParMarkBitMap::idx_t
359
ParMarkBitMap::find_obj_end(idx_t beg, idx_t end) const
360
{
361
return _end_bits.get_next_one_offset_inline_aligned_right(beg, end);
362
}
363
364
inline HeapWord*
365
ParMarkBitMap::find_obj_beg(HeapWord* beg, HeapWord* end) const
366
{
367
const idx_t beg_bit = addr_to_bit(beg);
368
const idx_t end_bit = addr_to_bit(end);
369
const idx_t search_end = BitMap::word_align_up(end_bit);
370
const idx_t res_bit = MIN2(find_obj_beg(beg_bit, search_end), end_bit);
371
return bit_to_addr(res_bit);
372
}
373
374
inline HeapWord*
375
ParMarkBitMap::find_obj_end(HeapWord* beg, HeapWord* end) const
376
{
377
const idx_t beg_bit = addr_to_bit(beg);
378
const idx_t end_bit = addr_to_bit(end);
379
const idx_t search_end = BitMap::word_align_up(end_bit);
380
const idx_t res_bit = MIN2(find_obj_end(beg_bit, search_end), end_bit);
381
return bit_to_addr(res_bit);
382
}
383
384
#ifdef ASSERT
385
inline void ParMarkBitMap::verify_bit(idx_t bit) const {
386
// Allow one past the last valid bit; useful for loop bounds.
387
assert(bit <= _beg_bits.size(), "bit out of range");
388
}
389
390
inline void ParMarkBitMap::verify_addr(HeapWord* addr) const {
391
// Allow one past the last valid address; useful for loop bounds.
392
assert(addr >= region_start(),
393
err_msg("addr too small, addr: " PTR_FORMAT " region start: " PTR_FORMAT, p2i(addr), p2i(region_start())));
394
assert(addr <= region_end(),
395
err_msg("addr too big, addr: " PTR_FORMAT " region end: " PTR_FORMAT, p2i(addr), p2i(region_end())));
396
}
397
#endif // #ifdef ASSERT
398
399
#endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARMARKBITMAP_HPP
400
401