Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.cpp
38920 views
1
/*
2
* Copyright (c) 2005, 2014, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "classfile/symbolTable.hpp"
27
#include "classfile/systemDictionary.hpp"
28
#include "code/codeCache.hpp"
29
#include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
30
#include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
31
#include "gc_implementation/parallelScavenge/pcTasks.hpp"
32
#include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
33
#include "gc_implementation/parallelScavenge/psCompactionManager.inline.hpp"
34
#include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
35
#include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
36
#include "gc_implementation/parallelScavenge/psOldGen.hpp"
37
#include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
38
#include "gc_implementation/parallelScavenge/psPromotionManager.inline.hpp"
39
#include "gc_implementation/parallelScavenge/psScavenge.hpp"
40
#include "gc_implementation/parallelScavenge/psYoungGen.hpp"
41
#include "gc_implementation/shared/gcHeapSummary.hpp"
42
#include "gc_implementation/shared/gcTimer.hpp"
43
#include "gc_implementation/shared/gcTrace.hpp"
44
#include "gc_implementation/shared/gcTraceTime.hpp"
45
#include "gc_implementation/shared/isGCActiveMark.hpp"
46
#include "gc_interface/gcCause.hpp"
47
#include "memory/gcLocker.inline.hpp"
48
#include "memory/referencePolicy.hpp"
49
#include "memory/referenceProcessor.hpp"
50
#include "oops/methodData.hpp"
51
#include "oops/oop.inline.hpp"
52
#include "oops/oop.pcgc.inline.hpp"
53
#include "runtime/fprofiler.hpp"
54
#include "runtime/safepoint.hpp"
55
#include "runtime/vmThread.hpp"
56
#include "services/management.hpp"
57
#include "services/memoryService.hpp"
58
#include "services/memTracker.hpp"
59
#include "utilities/events.hpp"
60
#include "utilities/stack.inline.hpp"
61
#if INCLUDE_JFR
62
#include "jfr/jfr.hpp"
63
#endif // INCLUDE_JFR
64
65
#include <math.h>
66
67
PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
68
69
// All sizes are in HeapWords.
70
const size_t ParallelCompactData::Log2RegionSize = 16; // 64K words
71
const size_t ParallelCompactData::RegionSize = (size_t)1 << Log2RegionSize;
72
const size_t ParallelCompactData::RegionSizeBytes =
73
RegionSize << LogHeapWordSize;
74
const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
75
const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
76
const size_t ParallelCompactData::RegionAddrMask = ~RegionAddrOffsetMask;
77
78
const size_t ParallelCompactData::Log2BlockSize = 7; // 128 words
79
const size_t ParallelCompactData::BlockSize = (size_t)1 << Log2BlockSize;
80
const size_t ParallelCompactData::BlockSizeBytes =
81
BlockSize << LogHeapWordSize;
82
const size_t ParallelCompactData::BlockSizeOffsetMask = BlockSize - 1;
83
const size_t ParallelCompactData::BlockAddrOffsetMask = BlockSizeBytes - 1;
84
const size_t ParallelCompactData::BlockAddrMask = ~BlockAddrOffsetMask;
85
86
const size_t ParallelCompactData::BlocksPerRegion = RegionSize / BlockSize;
87
const size_t ParallelCompactData::Log2BlocksPerRegion =
88
Log2RegionSize - Log2BlockSize;
89
90
const ParallelCompactData::RegionData::region_sz_t
91
ParallelCompactData::RegionData::dc_shift = 27;
92
93
const ParallelCompactData::RegionData::region_sz_t
94
ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
95
96
const ParallelCompactData::RegionData::region_sz_t
97
ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
98
99
const ParallelCompactData::RegionData::region_sz_t
100
ParallelCompactData::RegionData::los_mask = ~dc_mask;
101
102
const ParallelCompactData::RegionData::region_sz_t
103
ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
104
105
const ParallelCompactData::RegionData::region_sz_t
106
ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
107
108
SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
109
bool PSParallelCompact::_print_phases = false;
110
111
ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
112
Klass* PSParallelCompact::_updated_int_array_klass_obj = NULL;
113
114
double PSParallelCompact::_dwl_mean;
115
double PSParallelCompact::_dwl_std_dev;
116
double PSParallelCompact::_dwl_first_term;
117
double PSParallelCompact::_dwl_adjustment;
118
#ifdef ASSERT
119
bool PSParallelCompact::_dwl_initialized = false;
120
#endif // #ifdef ASSERT
121
122
void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
123
HeapWord* destination)
124
{
125
assert(src_region_idx != 0, "invalid src_region_idx");
126
assert(partial_obj_size != 0, "invalid partial_obj_size argument");
127
assert(destination != NULL, "invalid destination argument");
128
129
_src_region_idx = src_region_idx;
130
_partial_obj_size = partial_obj_size;
131
_destination = destination;
132
133
// These fields may not be updated below, so make sure they're clear.
134
assert(_dest_region_addr == NULL, "should have been cleared");
135
assert(_first_src_addr == NULL, "should have been cleared");
136
137
// Determine the number of destination regions for the partial object.
138
HeapWord* const last_word = destination + partial_obj_size - 1;
139
const ParallelCompactData& sd = PSParallelCompact::summary_data();
140
HeapWord* const beg_region_addr = sd.region_align_down(destination);
141
HeapWord* const end_region_addr = sd.region_align_down(last_word);
142
143
if (beg_region_addr == end_region_addr) {
144
// One destination region.
145
_destination_count = 1;
146
if (end_region_addr == destination) {
147
// The destination falls on a region boundary, thus the first word of the
148
// partial object will be the first word copied to the destination region.
149
_dest_region_addr = end_region_addr;
150
_first_src_addr = sd.region_to_addr(src_region_idx);
151
}
152
} else {
153
// Two destination regions. When copied, the partial object will cross a
154
// destination region boundary, so a word somewhere within the partial
155
// object will be the first word copied to the second destination region.
156
_destination_count = 2;
157
_dest_region_addr = end_region_addr;
158
const size_t ofs = pointer_delta(end_region_addr, destination);
159
assert(ofs < _partial_obj_size, "sanity");
160
_first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
161
}
162
}
163
164
void SplitInfo::clear()
165
{
166
_src_region_idx = 0;
167
_partial_obj_size = 0;
168
_destination = NULL;
169
_destination_count = 0;
170
_dest_region_addr = NULL;
171
_first_src_addr = NULL;
172
assert(!is_valid(), "sanity");
173
}
174
175
#ifdef ASSERT
176
void SplitInfo::verify_clear()
177
{
178
assert(_src_region_idx == 0, "not clear");
179
assert(_partial_obj_size == 0, "not clear");
180
assert(_destination == NULL, "not clear");
181
assert(_destination_count == 0, "not clear");
182
assert(_dest_region_addr == NULL, "not clear");
183
assert(_first_src_addr == NULL, "not clear");
184
}
185
#endif // #ifdef ASSERT
186
187
188
void PSParallelCompact::print_on_error(outputStream* st) {
189
_mark_bitmap.print_on_error(st);
190
}
191
192
#ifndef PRODUCT
193
const char* PSParallelCompact::space_names[] = {
194
"old ", "eden", "from", "to "
195
};
196
197
void PSParallelCompact::print_region_ranges()
198
{
199
tty->print_cr("space bottom top end new_top");
200
tty->print_cr("------ ---------- ---------- ---------- ----------");
201
202
for (unsigned int id = 0; id < last_space_id; ++id) {
203
const MutableSpace* space = _space_info[id].space();
204
tty->print_cr("%u %s "
205
SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
206
SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
207
id, space_names[id],
208
summary_data().addr_to_region_idx(space->bottom()),
209
summary_data().addr_to_region_idx(space->top()),
210
summary_data().addr_to_region_idx(space->end()),
211
summary_data().addr_to_region_idx(_space_info[id].new_top()));
212
}
213
}
214
215
void
216
print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
217
{
218
#define REGION_IDX_FORMAT SIZE_FORMAT_W(7)
219
#define REGION_DATA_FORMAT SIZE_FORMAT_W(5)
220
221
ParallelCompactData& sd = PSParallelCompact::summary_data();
222
size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
223
tty->print_cr(REGION_IDX_FORMAT " " PTR_FORMAT " "
224
REGION_IDX_FORMAT " " PTR_FORMAT " "
225
REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
226
REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
227
i, c->data_location(), dci, c->destination(),
228
c->partial_obj_size(), c->live_obj_size(),
229
c->data_size(), c->source_region(), c->destination_count());
230
231
#undef REGION_IDX_FORMAT
232
#undef REGION_DATA_FORMAT
233
}
234
235
void
236
print_generic_summary_data(ParallelCompactData& summary_data,
237
HeapWord* const beg_addr,
238
HeapWord* const end_addr)
239
{
240
size_t total_words = 0;
241
size_t i = summary_data.addr_to_region_idx(beg_addr);
242
const size_t last = summary_data.addr_to_region_idx(end_addr);
243
HeapWord* pdest = 0;
244
245
while (i <= last) {
246
ParallelCompactData::RegionData* c = summary_data.region(i);
247
if (c->data_size() != 0 || c->destination() != pdest) {
248
print_generic_summary_region(i, c);
249
total_words += c->data_size();
250
pdest = c->destination();
251
}
252
++i;
253
}
254
255
tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
256
}
257
258
void
259
print_generic_summary_data(ParallelCompactData& summary_data,
260
SpaceInfo* space_info)
261
{
262
for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
263
const MutableSpace* space = space_info[id].space();
264
print_generic_summary_data(summary_data, space->bottom(),
265
MAX2(space->top(), space_info[id].new_top()));
266
}
267
}
268
269
void
270
print_initial_summary_region(size_t i,
271
const ParallelCompactData::RegionData* c,
272
bool newline = true)
273
{
274
tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " "
275
SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " "
276
SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
277
i, c->destination(),
278
c->partial_obj_size(), c->live_obj_size(),
279
c->data_size(), c->source_region(), c->destination_count());
280
if (newline) tty->cr();
281
}
282
283
void
284
print_initial_summary_data(ParallelCompactData& summary_data,
285
const MutableSpace* space) {
286
if (space->top() == space->bottom()) {
287
return;
288
}
289
290
const size_t region_size = ParallelCompactData::RegionSize;
291
typedef ParallelCompactData::RegionData RegionData;
292
HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
293
const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
294
const RegionData* c = summary_data.region(end_region - 1);
295
HeapWord* end_addr = c->destination() + c->data_size();
296
const size_t live_in_space = pointer_delta(end_addr, space->bottom());
297
298
// Print (and count) the full regions at the beginning of the space.
299
size_t full_region_count = 0;
300
size_t i = summary_data.addr_to_region_idx(space->bottom());
301
while (i < end_region && summary_data.region(i)->data_size() == region_size) {
302
print_initial_summary_region(i, summary_data.region(i));
303
++full_region_count;
304
++i;
305
}
306
307
size_t live_to_right = live_in_space - full_region_count * region_size;
308
309
double max_reclaimed_ratio = 0.0;
310
size_t max_reclaimed_ratio_region = 0;
311
size_t max_dead_to_right = 0;
312
size_t max_live_to_right = 0;
313
314
// Print the 'reclaimed ratio' for regions while there is something live in
315
// the region or to the right of it. The remaining regions are empty (and
316
// uninteresting), and computing the ratio will result in division by 0.
317
while (i < end_region && live_to_right > 0) {
318
c = summary_data.region(i);
319
HeapWord* const region_addr = summary_data.region_to_addr(i);
320
const size_t used_to_right = pointer_delta(space->top(), region_addr);
321
const size_t dead_to_right = used_to_right - live_to_right;
322
const double reclaimed_ratio = double(dead_to_right) / live_to_right;
323
324
if (reclaimed_ratio > max_reclaimed_ratio) {
325
max_reclaimed_ratio = reclaimed_ratio;
326
max_reclaimed_ratio_region = i;
327
max_dead_to_right = dead_to_right;
328
max_live_to_right = live_to_right;
329
}
330
331
print_initial_summary_region(i, c, false);
332
tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
333
reclaimed_ratio, dead_to_right, live_to_right);
334
335
live_to_right -= c->data_size();
336
++i;
337
}
338
339
// Any remaining regions are empty. Print one more if there is one.
340
if (i < end_region) {
341
print_initial_summary_region(i, summary_data.region(i));
342
}
343
344
tty->print_cr("max: " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " "
345
"l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
346
max_reclaimed_ratio_region, max_dead_to_right,
347
max_live_to_right, max_reclaimed_ratio);
348
}
349
350
void
351
print_initial_summary_data(ParallelCompactData& summary_data,
352
SpaceInfo* space_info) {
353
unsigned int id = PSParallelCompact::old_space_id;
354
const MutableSpace* space;
355
do {
356
space = space_info[id].space();
357
print_initial_summary_data(summary_data, space);
358
} while (++id < PSParallelCompact::eden_space_id);
359
360
do {
361
space = space_info[id].space();
362
print_generic_summary_data(summary_data, space->bottom(), space->top());
363
} while (++id < PSParallelCompact::last_space_id);
364
}
365
#endif // #ifndef PRODUCT
366
367
#ifdef ASSERT
368
size_t add_obj_count;
369
size_t add_obj_size;
370
size_t mark_bitmap_count;
371
size_t mark_bitmap_size;
372
#endif // #ifdef ASSERT
373
374
ParallelCompactData::ParallelCompactData()
375
{
376
_region_start = 0;
377
378
_region_vspace = 0;
379
_reserved_byte_size = 0;
380
_region_data = 0;
381
_region_count = 0;
382
383
_block_vspace = 0;
384
_block_data = 0;
385
_block_count = 0;
386
}
387
388
bool ParallelCompactData::initialize(MemRegion covered_region)
389
{
390
_region_start = covered_region.start();
391
const size_t region_size = covered_region.word_size();
392
DEBUG_ONLY(_region_end = _region_start + region_size;)
393
394
assert(region_align_down(_region_start) == _region_start,
395
"region start not aligned");
396
assert((region_size & RegionSizeOffsetMask) == 0,
397
"region size not a multiple of RegionSize");
398
399
bool result = initialize_region_data(region_size) && initialize_block_data();
400
return result;
401
}
402
403
PSVirtualSpace*
404
ParallelCompactData::create_vspace(size_t count, size_t element_size)
405
{
406
const size_t raw_bytes = count * element_size;
407
const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10);
408
const size_t granularity = os::vm_allocation_granularity();
409
_reserved_byte_size = align_size_up(raw_bytes, MAX2(page_sz, granularity));
410
411
const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
412
MAX2(page_sz, granularity);
413
ReservedSpace rs(_reserved_byte_size, rs_align, rs_align > 0);
414
os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
415
rs.size());
416
417
MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
418
419
PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
420
if (vspace != 0) {
421
if (vspace->expand_by(_reserved_byte_size)) {
422
return vspace;
423
}
424
delete vspace;
425
// Release memory reserved in the space.
426
rs.release();
427
}
428
429
return 0;
430
}
431
432
bool ParallelCompactData::initialize_region_data(size_t region_size)
433
{
434
const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
435
_region_vspace = create_vspace(count, sizeof(RegionData));
436
if (_region_vspace != 0) {
437
_region_data = (RegionData*)_region_vspace->reserved_low_addr();
438
_region_count = count;
439
return true;
440
}
441
return false;
442
}
443
444
bool ParallelCompactData::initialize_block_data()
445
{
446
assert(_region_count != 0, "region data must be initialized first");
447
const size_t count = _region_count << Log2BlocksPerRegion;
448
_block_vspace = create_vspace(count, sizeof(BlockData));
449
if (_block_vspace != 0) {
450
_block_data = (BlockData*)_block_vspace->reserved_low_addr();
451
_block_count = count;
452
return true;
453
}
454
return false;
455
}
456
457
void ParallelCompactData::clear()
458
{
459
memset(_region_data, 0, _region_vspace->committed_size());
460
memset(_block_data, 0, _block_vspace->committed_size());
461
}
462
463
void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
464
assert(beg_region <= _region_count, "beg_region out of range");
465
assert(end_region <= _region_count, "end_region out of range");
466
assert(RegionSize % BlockSize == 0, "RegionSize not a multiple of BlockSize");
467
468
const size_t region_cnt = end_region - beg_region;
469
memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
470
471
const size_t beg_block = beg_region * BlocksPerRegion;
472
const size_t block_cnt = region_cnt * BlocksPerRegion;
473
memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData));
474
}
475
476
HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
477
{
478
const RegionData* cur_cp = region(region_idx);
479
const RegionData* const end_cp = region(region_count() - 1);
480
481
HeapWord* result = region_to_addr(region_idx);
482
if (cur_cp < end_cp) {
483
do {
484
result += cur_cp->partial_obj_size();
485
} while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
486
}
487
return result;
488
}
489
490
void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
491
{
492
const size_t obj_ofs = pointer_delta(addr, _region_start);
493
const size_t beg_region = obj_ofs >> Log2RegionSize;
494
const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
495
496
DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
497
DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
498
499
if (beg_region == end_region) {
500
// All in one region.
501
_region_data[beg_region].add_live_obj(len);
502
return;
503
}
504
505
// First region.
506
const size_t beg_ofs = region_offset(addr);
507
_region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
508
509
Klass* klass = ((oop)addr)->klass();
510
// Middle regions--completely spanned by this object.
511
for (size_t region = beg_region + 1; region < end_region; ++region) {
512
_region_data[region].set_partial_obj_size(RegionSize);
513
_region_data[region].set_partial_obj_addr(addr);
514
}
515
516
// Last region.
517
const size_t end_ofs = region_offset(addr + len - 1);
518
_region_data[end_region].set_partial_obj_size(end_ofs + 1);
519
_region_data[end_region].set_partial_obj_addr(addr);
520
}
521
522
void
523
ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
524
{
525
assert(region_offset(beg) == 0, "not RegionSize aligned");
526
assert(region_offset(end) == 0, "not RegionSize aligned");
527
528
size_t cur_region = addr_to_region_idx(beg);
529
const size_t end_region = addr_to_region_idx(end);
530
HeapWord* addr = beg;
531
while (cur_region < end_region) {
532
_region_data[cur_region].set_destination(addr);
533
_region_data[cur_region].set_destination_count(0);
534
_region_data[cur_region].set_source_region(cur_region);
535
_region_data[cur_region].set_data_location(addr);
536
537
// Update live_obj_size so the region appears completely full.
538
size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
539
_region_data[cur_region].set_live_obj_size(live_size);
540
541
++cur_region;
542
addr += RegionSize;
543
}
544
}
545
546
// Find the point at which a space can be split and, if necessary, record the
547
// split point.
548
//
549
// If the current src region (which overflowed the destination space) doesn't
550
// have a partial object, the split point is at the beginning of the current src
551
// region (an "easy" split, no extra bookkeeping required).
552
//
553
// If the current src region has a partial object, the split point is in the
554
// region where that partial object starts (call it the split_region). If
555
// split_region has a partial object, then the split point is just after that
556
// partial object (a "hard" split where we have to record the split data and
557
// zero the partial_obj_size field). With a "hard" split, we know that the
558
// partial_obj ends within split_region because the partial object that caused
559
// the overflow starts in split_region. If split_region doesn't have a partial
560
// obj, then the split is at the beginning of split_region (another "easy"
561
// split).
562
HeapWord*
563
ParallelCompactData::summarize_split_space(size_t src_region,
564
SplitInfo& split_info,
565
HeapWord* destination,
566
HeapWord* target_end,
567
HeapWord** target_next)
568
{
569
assert(destination <= target_end, "sanity");
570
assert(destination + _region_data[src_region].data_size() > target_end,
571
"region should not fit into target space");
572
assert(is_region_aligned(target_end), "sanity");
573
574
size_t split_region = src_region;
575
HeapWord* split_destination = destination;
576
size_t partial_obj_size = _region_data[src_region].partial_obj_size();
577
578
if (destination + partial_obj_size > target_end) {
579
// The split point is just after the partial object (if any) in the
580
// src_region that contains the start of the object that overflowed the
581
// destination space.
582
//
583
// Find the start of the "overflow" object and set split_region to the
584
// region containing it.
585
HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
586
split_region = addr_to_region_idx(overflow_obj);
587
588
// Clear the source_region field of all destination regions whose first word
589
// came from data after the split point (a non-null source_region field
590
// implies a region must be filled).
591
//
592
// An alternative to the simple loop below: clear during post_compact(),
593
// which uses memcpy instead of individual stores, and is easy to
594
// parallelize. (The downside is that it clears the entire RegionData
595
// object as opposed to just one field.)
596
//
597
// post_compact() would have to clear the summary data up to the highest
598
// address that was written during the summary phase, which would be
599
//
600
// max(top, max(new_top, clear_top))
601
//
602
// where clear_top is a new field in SpaceInfo. Would have to set clear_top
603
// to target_end.
604
const RegionData* const sr = region(split_region);
605
const size_t beg_idx =
606
addr_to_region_idx(region_align_up(sr->destination() +
607
sr->partial_obj_size()));
608
const size_t end_idx = addr_to_region_idx(target_end);
609
610
if (TraceParallelOldGCSummaryPhase) {
611
gclog_or_tty->print_cr("split: clearing source_region field in ["
612
SIZE_FORMAT ", " SIZE_FORMAT ")",
613
beg_idx, end_idx);
614
}
615
for (size_t idx = beg_idx; idx < end_idx; ++idx) {
616
_region_data[idx].set_source_region(0);
617
}
618
619
// Set split_destination and partial_obj_size to reflect the split region.
620
split_destination = sr->destination();
621
partial_obj_size = sr->partial_obj_size();
622
}
623
624
// The split is recorded only if a partial object extends onto the region.
625
if (partial_obj_size != 0) {
626
_region_data[split_region].set_partial_obj_size(0);
627
split_info.record(split_region, partial_obj_size, split_destination);
628
}
629
630
// Setup the continuation addresses.
631
*target_next = split_destination + partial_obj_size;
632
HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
633
634
if (TraceParallelOldGCSummaryPhase) {
635
const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
636
gclog_or_tty->print_cr("%s split: src=" PTR_FORMAT " src_c=" SIZE_FORMAT
637
" pos=" SIZE_FORMAT,
638
split_type, source_next, split_region,
639
partial_obj_size);
640
gclog_or_tty->print_cr("%s split: dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT
641
" tn=" PTR_FORMAT,
642
split_type, split_destination,
643
addr_to_region_idx(split_destination),
644
*target_next);
645
646
if (partial_obj_size != 0) {
647
HeapWord* const po_beg = split_info.destination();
648
HeapWord* const po_end = po_beg + split_info.partial_obj_size();
649
gclog_or_tty->print_cr("%s split: "
650
"po_beg=" PTR_FORMAT " " SIZE_FORMAT " "
651
"po_end=" PTR_FORMAT " " SIZE_FORMAT,
652
split_type,
653
po_beg, addr_to_region_idx(po_beg),
654
po_end, addr_to_region_idx(po_end));
655
}
656
}
657
658
return source_next;
659
}
660
661
bool ParallelCompactData::summarize(SplitInfo& split_info,
662
HeapWord* source_beg, HeapWord* source_end,
663
HeapWord** source_next,
664
HeapWord* target_beg, HeapWord* target_end,
665
HeapWord** target_next)
666
{
667
if (TraceParallelOldGCSummaryPhase) {
668
HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
669
tty->print_cr("sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
670
"tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
671
source_beg, source_end, source_next_val,
672
target_beg, target_end, *target_next);
673
}
674
675
size_t cur_region = addr_to_region_idx(source_beg);
676
const size_t end_region = addr_to_region_idx(region_align_up(source_end));
677
678
HeapWord *dest_addr = target_beg;
679
while (cur_region < end_region) {
680
// The destination must be set even if the region has no data.
681
_region_data[cur_region].set_destination(dest_addr);
682
683
size_t words = _region_data[cur_region].data_size();
684
if (words > 0) {
685
// If cur_region does not fit entirely into the target space, find a point
686
// at which the source space can be 'split' so that part is copied to the
687
// target space and the rest is copied elsewhere.
688
if (dest_addr + words > target_end) {
689
assert(source_next != NULL, "source_next is NULL when splitting");
690
*source_next = summarize_split_space(cur_region, split_info, dest_addr,
691
target_end, target_next);
692
return false;
693
}
694
695
// Compute the destination_count for cur_region, and if necessary, update
696
// source_region for a destination region. The source_region field is
697
// updated if cur_region is the first (left-most) region to be copied to a
698
// destination region.
699
//
700
// The destination_count calculation is a bit subtle. A region that has
701
// data that compacts into itself does not count itself as a destination.
702
// This maintains the invariant that a zero count means the region is
703
// available and can be claimed and then filled.
704
uint destination_count = 0;
705
if (split_info.is_split(cur_region)) {
706
// The current region has been split: the partial object will be copied
707
// to one destination space and the remaining data will be copied to
708
// another destination space. Adjust the initial destination_count and,
709
// if necessary, set the source_region field if the partial object will
710
// cross a destination region boundary.
711
destination_count = split_info.destination_count();
712
if (destination_count == 2) {
713
size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
714
_region_data[dest_idx].set_source_region(cur_region);
715
}
716
}
717
718
HeapWord* const last_addr = dest_addr + words - 1;
719
const size_t dest_region_1 = addr_to_region_idx(dest_addr);
720
const size_t dest_region_2 = addr_to_region_idx(last_addr);
721
722
// Initially assume that the destination regions will be the same and
723
// adjust the value below if necessary. Under this assumption, if
724
// cur_region == dest_region_2, then cur_region will be compacted
725
// completely into itself.
726
destination_count += cur_region == dest_region_2 ? 0 : 1;
727
if (dest_region_1 != dest_region_2) {
728
// Destination regions differ; adjust destination_count.
729
destination_count += 1;
730
// Data from cur_region will be copied to the start of dest_region_2.
731
_region_data[dest_region_2].set_source_region(cur_region);
732
} else if (region_offset(dest_addr) == 0) {
733
// Data from cur_region will be copied to the start of the destination
734
// region.
735
_region_data[dest_region_1].set_source_region(cur_region);
736
}
737
738
_region_data[cur_region].set_destination_count(destination_count);
739
_region_data[cur_region].set_data_location(region_to_addr(cur_region));
740
dest_addr += words;
741
}
742
743
++cur_region;
744
}
745
746
*target_next = dest_addr;
747
return true;
748
}
749
750
HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
751
assert(addr != NULL, "Should detect NULL oop earlier");
752
assert(PSParallelCompact::gc_heap()->is_in(addr), "not in heap");
753
assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "not marked");
754
755
// Region covering the object.
756
RegionData* const region_ptr = addr_to_region_ptr(addr);
757
HeapWord* result = region_ptr->destination();
758
759
// If the entire Region is live, the new location is region->destination + the
760
// offset of the object within in the Region.
761
762
// Run some performance tests to determine if this special case pays off. It
763
// is worth it for pointers into the dense prefix. If the optimization to
764
// avoid pointer updates in regions that only point to the dense prefix is
765
// ever implemented, this should be revisited.
766
if (region_ptr->data_size() == RegionSize) {
767
result += region_offset(addr);
768
return result;
769
}
770
771
// Otherwise, the new location is region->destination + block offset + the
772
// number of live words in the Block that are (a) to the left of addr and (b)
773
// due to objects that start in the Block.
774
775
// Fill in the block table if necessary. This is unsynchronized, so multiple
776
// threads may fill the block table for a region (harmless, since it is
777
// idempotent).
778
if (!region_ptr->blocks_filled()) {
779
PSParallelCompact::fill_blocks(addr_to_region_idx(addr));
780
region_ptr->set_blocks_filled();
781
}
782
783
HeapWord* const search_start = block_align_down(addr);
784
const size_t block_offset = addr_to_block_ptr(addr)->offset();
785
786
const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
787
const size_t live = bitmap->live_words_in_range(search_start, oop(addr));
788
result += block_offset + live;
789
DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result));
790
return result;
791
}
792
793
#ifdef ASSERT
794
void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
795
{
796
const size_t* const beg = (const size_t*)vspace->committed_low_addr();
797
const size_t* const end = (const size_t*)vspace->committed_high_addr();
798
for (const size_t* p = beg; p < end; ++p) {
799
assert(*p == 0, "not zero");
800
}
801
}
802
803
void ParallelCompactData::verify_clear()
804
{
805
verify_clear(_region_vspace);
806
verify_clear(_block_vspace);
807
}
808
#endif // #ifdef ASSERT
809
810
STWGCTimer PSParallelCompact::_gc_timer;
811
ParallelOldTracer PSParallelCompact::_gc_tracer;
812
elapsedTimer PSParallelCompact::_accumulated_time;
813
unsigned int PSParallelCompact::_total_invocations = 0;
814
unsigned int PSParallelCompact::_maximum_compaction_gc_num = 0;
815
jlong PSParallelCompact::_time_of_last_gc = 0;
816
CollectorCounters* PSParallelCompact::_counters = NULL;
817
ParMarkBitMap PSParallelCompact::_mark_bitmap;
818
ParallelCompactData PSParallelCompact::_summary_data;
819
820
PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
821
822
bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
823
824
void PSParallelCompact::KeepAliveClosure::do_oop(oop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
825
void PSParallelCompact::KeepAliveClosure::do_oop(narrowOop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
826
827
PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure;
828
PSParallelCompact::AdjustKlassClosure PSParallelCompact::_adjust_klass_closure;
829
830
void PSParallelCompact::AdjustPointerClosure::do_oop(oop* p) { adjust_pointer(p); }
831
void PSParallelCompact::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p); }
832
833
void PSParallelCompact::FollowStackClosure::do_void() { _compaction_manager->follow_marking_stacks(); }
834
835
void PSParallelCompact::MarkAndPushClosure::do_oop(oop* p) {
836
mark_and_push(_compaction_manager, p);
837
}
838
void PSParallelCompact::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(_compaction_manager, p); }
839
840
void PSParallelCompact::FollowKlassClosure::do_klass(Klass* klass) {
841
klass->oops_do(_mark_and_push_closure);
842
}
843
void PSParallelCompact::AdjustKlassClosure::do_klass(Klass* klass) {
844
klass->oops_do(&PSParallelCompact::_adjust_pointer_closure);
845
}
846
847
void PSParallelCompact::post_initialize() {
848
ParallelScavengeHeap* heap = gc_heap();
849
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
850
851
MemRegion mr = heap->reserved_region();
852
_ref_processor =
853
new ReferenceProcessor(mr, // span
854
ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
855
(int) ParallelGCThreads, // mt processing degree
856
true, // mt discovery
857
(int) ParallelGCThreads, // mt discovery degree
858
true, // atomic_discovery
859
&_is_alive_closure); // non-header is alive closure
860
_counters = new CollectorCounters("PSParallelCompact", 1);
861
862
// Initialize static fields in ParCompactionManager.
863
ParCompactionManager::initialize(mark_bitmap());
864
}
865
866
bool PSParallelCompact::initialize() {
867
ParallelScavengeHeap* heap = gc_heap();
868
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
869
MemRegion mr = heap->reserved_region();
870
871
// Was the old gen get allocated successfully?
872
if (!heap->old_gen()->is_allocated()) {
873
return false;
874
}
875
876
initialize_space_info();
877
initialize_dead_wood_limiter();
878
879
if (!_mark_bitmap.initialize(mr)) {
880
vm_shutdown_during_initialization(
881
err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel "
882
"garbage collection for the requested " SIZE_FORMAT "KB heap.",
883
_mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K));
884
return false;
885
}
886
887
if (!_summary_data.initialize(mr)) {
888
vm_shutdown_during_initialization(
889
err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel "
890
"garbage collection for the requested " SIZE_FORMAT "KB heap.",
891
_summary_data.reserved_byte_size()/K, mr.byte_size()/K));
892
return false;
893
}
894
895
return true;
896
}
897
898
void PSParallelCompact::initialize_space_info()
899
{
900
memset(&_space_info, 0, sizeof(_space_info));
901
902
ParallelScavengeHeap* heap = gc_heap();
903
PSYoungGen* young_gen = heap->young_gen();
904
905
_space_info[old_space_id].set_space(heap->old_gen()->object_space());
906
_space_info[eden_space_id].set_space(young_gen->eden_space());
907
_space_info[from_space_id].set_space(young_gen->from_space());
908
_space_info[to_space_id].set_space(young_gen->to_space());
909
910
_space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
911
}
912
913
void PSParallelCompact::initialize_dead_wood_limiter()
914
{
915
const size_t max = 100;
916
_dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
917
_dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
918
_dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
919
DEBUG_ONLY(_dwl_initialized = true;)
920
_dwl_adjustment = normal_distribution(1.0);
921
}
922
923
// Simple class for storing info about the heap at the start of GC, to be used
924
// after GC for comparison/printing.
925
class PreGCValues {
926
public:
927
PreGCValues() { }
928
PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }
929
930
void fill(ParallelScavengeHeap* heap) {
931
_heap_used = heap->used();
932
_young_gen_used = heap->young_gen()->used_in_bytes();
933
_old_gen_used = heap->old_gen()->used_in_bytes();
934
_metadata_used = MetaspaceAux::used_bytes();
935
};
936
937
size_t heap_used() const { return _heap_used; }
938
size_t young_gen_used() const { return _young_gen_used; }
939
size_t old_gen_used() const { return _old_gen_used; }
940
size_t metadata_used() const { return _metadata_used; }
941
942
private:
943
size_t _heap_used;
944
size_t _young_gen_used;
945
size_t _old_gen_used;
946
size_t _metadata_used;
947
};
948
949
void
950
PSParallelCompact::clear_data_covering_space(SpaceId id)
951
{
952
// At this point, top is the value before GC, new_top() is the value that will
953
// be set at the end of GC. The marking bitmap is cleared to top; nothing
954
// should be marked above top. The summary data is cleared to the larger of
955
// top & new_top.
956
MutableSpace* const space = _space_info[id].space();
957
HeapWord* const bot = space->bottom();
958
HeapWord* const top = space->top();
959
HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
960
961
const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
962
const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
963
_mark_bitmap.clear_range(beg_bit, end_bit);
964
965
const size_t beg_region = _summary_data.addr_to_region_idx(bot);
966
const size_t end_region =
967
_summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
968
_summary_data.clear_range(beg_region, end_region);
969
970
// Clear the data used to 'split' regions.
971
SplitInfo& split_info = _space_info[id].split_info();
972
if (split_info.is_valid()) {
973
split_info.clear();
974
}
975
DEBUG_ONLY(split_info.verify_clear();)
976
}
977
978
void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
979
{
980
// Update the from & to space pointers in space_info, since they are swapped
981
// at each young gen gc. Do the update unconditionally (even though a
982
// promotion failure does not swap spaces) because an unknown number of minor
983
// collections will have swapped the spaces an unknown number of times.
984
GCTraceTime tm("pre compact", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
985
ParallelScavengeHeap* heap = gc_heap();
986
_space_info[from_space_id].set_space(heap->young_gen()->from_space());
987
_space_info[to_space_id].set_space(heap->young_gen()->to_space());
988
989
pre_gc_values->fill(heap);
990
991
DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
992
DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
993
994
// Increment the invocation count
995
heap->increment_total_collections(true);
996
997
// We need to track unique mark sweep invocations as well.
998
_total_invocations++;
999
1000
heap->print_heap_before_gc();
1001
heap->trace_heap_before_gc(&_gc_tracer);
1002
1003
// Fill in TLABs
1004
heap->accumulate_statistics_all_tlabs();
1005
heap->ensure_parsability(true); // retire TLABs
1006
1007
if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
1008
HandleMark hm; // Discard invalid handles created during verification
1009
Universe::verify(" VerifyBeforeGC:");
1010
}
1011
1012
// Verify object start arrays
1013
if (VerifyObjectStartArray &&
1014
VerifyBeforeGC) {
1015
heap->old_gen()->verify_object_start_array();
1016
}
1017
1018
DEBUG_ONLY(mark_bitmap()->verify_clear();)
1019
DEBUG_ONLY(summary_data().verify_clear();)
1020
1021
// Have worker threads release resources the next time they run a task.
1022
gc_task_manager()->release_all_resources();
1023
}
1024
1025
void PSParallelCompact::post_compact()
1026
{
1027
GCTraceTime tm("post compact", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
1028
1029
for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1030
// Clear the marking bitmap, summary data and split info.
1031
clear_data_covering_space(SpaceId(id));
1032
// Update top(). Must be done after clearing the bitmap and summary data.
1033
_space_info[id].publish_new_top();
1034
}
1035
1036
MutableSpace* const eden_space = _space_info[eden_space_id].space();
1037
MutableSpace* const from_space = _space_info[from_space_id].space();
1038
MutableSpace* const to_space = _space_info[to_space_id].space();
1039
1040
ParallelScavengeHeap* heap = gc_heap();
1041
bool eden_empty = eden_space->is_empty();
1042
if (!eden_empty) {
1043
eden_empty = absorb_live_data_from_eden(heap->size_policy(),
1044
heap->young_gen(), heap->old_gen());
1045
}
1046
1047
// Update heap occupancy information which is used as input to the soft ref
1048
// clearing policy at the next gc.
1049
Universe::update_heap_info_at_gc();
1050
1051
bool young_gen_empty = eden_empty && from_space->is_empty() &&
1052
to_space->is_empty();
1053
1054
BarrierSet* bs = heap->barrier_set();
1055
if (bs->is_a(BarrierSet::ModRef)) {
1056
ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
1057
MemRegion old_mr = heap->old_gen()->reserved();
1058
1059
if (young_gen_empty) {
1060
modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
1061
} else {
1062
modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
1063
}
1064
}
1065
1066
// Delete metaspaces for unloaded class loaders and clean up loader_data graph
1067
ClassLoaderDataGraph::purge();
1068
MetaspaceAux::verify_metrics();
1069
1070
Threads::gc_epilogue();
1071
CodeCache::gc_epilogue();
1072
JvmtiExport::gc_epilogue();
1073
1074
COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1075
1076
ref_processor()->enqueue_discovered_references(NULL);
1077
1078
if (ZapUnusedHeapArea) {
1079
heap->gen_mangle_unused_area();
1080
}
1081
1082
// Update time of last GC
1083
reset_millis_since_last_gc();
1084
}
1085
1086
HeapWord*
1087
PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
1088
bool maximum_compaction)
1089
{
1090
const size_t region_size = ParallelCompactData::RegionSize;
1091
const ParallelCompactData& sd = summary_data();
1092
1093
const MutableSpace* const space = _space_info[id].space();
1094
HeapWord* const top_aligned_up = sd.region_align_up(space->top());
1095
const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
1096
const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
1097
1098
// Skip full regions at the beginning of the space--they are necessarily part
1099
// of the dense prefix.
1100
size_t full_count = 0;
1101
const RegionData* cp;
1102
for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
1103
++full_count;
1104
}
1105
1106
assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1107
const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1108
const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
1109
if (maximum_compaction || cp == end_cp || interval_ended) {
1110
_maximum_compaction_gc_num = total_invocations();
1111
return sd.region_to_addr(cp);
1112
}
1113
1114
HeapWord* const new_top = _space_info[id].new_top();
1115
const size_t space_live = pointer_delta(new_top, space->bottom());
1116
const size_t space_used = space->used_in_words();
1117
const size_t space_capacity = space->capacity_in_words();
1118
1119
const double cur_density = double(space_live) / space_capacity;
1120
const double deadwood_density =
1121
(1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
1122
const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
1123
1124
if (TraceParallelOldGCDensePrefix) {
1125
tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
1126
cur_density, deadwood_density, deadwood_goal);
1127
tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1128
"space_cap=" SIZE_FORMAT,
1129
space_live, space_used,
1130
space_capacity);
1131
}
1132
1133
// XXX - Use binary search?
1134
HeapWord* dense_prefix = sd.region_to_addr(cp);
1135
const RegionData* full_cp = cp;
1136
const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
1137
while (cp < end_cp) {
1138
HeapWord* region_destination = cp->destination();
1139
const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
1140
if (TraceParallelOldGCDensePrefix && Verbose) {
1141
tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
1142
"dp=" SIZE_FORMAT_W(8) " " "cdw=" SIZE_FORMAT_W(8),
1143
sd.region(cp), region_destination,
1144
dense_prefix, cur_deadwood);
1145
}
1146
1147
if (cur_deadwood >= deadwood_goal) {
1148
// Found the region that has the correct amount of deadwood to the left.
1149
// This typically occurs after crossing a fairly sparse set of regions, so
1150
// iterate backwards over those sparse regions, looking for the region
1151
// that has the lowest density of live objects 'to the right.'
1152
size_t space_to_left = sd.region(cp) * region_size;
1153
size_t live_to_left = space_to_left - cur_deadwood;
1154
size_t space_to_right = space_capacity - space_to_left;
1155
size_t live_to_right = space_live - live_to_left;
1156
double density_to_right = double(live_to_right) / space_to_right;
1157
while (cp > full_cp) {
1158
--cp;
1159
const size_t prev_region_live_to_right = live_to_right -
1160
cp->data_size();
1161
const size_t prev_region_space_to_right = space_to_right + region_size;
1162
double prev_region_density_to_right =
1163
double(prev_region_live_to_right) / prev_region_space_to_right;
1164
if (density_to_right <= prev_region_density_to_right) {
1165
return dense_prefix;
1166
}
1167
if (TraceParallelOldGCDensePrefix && Verbose) {
1168
tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
1169
"pc_d2r=%10.8f", sd.region(cp), density_to_right,
1170
prev_region_density_to_right);
1171
}
1172
dense_prefix -= region_size;
1173
live_to_right = prev_region_live_to_right;
1174
space_to_right = prev_region_space_to_right;
1175
density_to_right = prev_region_density_to_right;
1176
}
1177
return dense_prefix;
1178
}
1179
1180
dense_prefix += region_size;
1181
++cp;
1182
}
1183
1184
return dense_prefix;
1185
}
1186
1187
#ifndef PRODUCT
1188
void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
1189
const SpaceId id,
1190
const bool maximum_compaction,
1191
HeapWord* const addr)
1192
{
1193
const size_t region_idx = summary_data().addr_to_region_idx(addr);
1194
RegionData* const cp = summary_data().region(region_idx);
1195
const MutableSpace* const space = _space_info[id].space();
1196
HeapWord* const new_top = _space_info[id].new_top();
1197
1198
const size_t space_live = pointer_delta(new_top, space->bottom());
1199
const size_t dead_to_left = pointer_delta(addr, cp->destination());
1200
const size_t space_cap = space->capacity_in_words();
1201
const double dead_to_left_pct = double(dead_to_left) / space_cap;
1202
const size_t live_to_right = new_top - cp->destination();
1203
const size_t dead_to_right = space->top() - addr - live_to_right;
1204
1205
tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
1206
"spl=" SIZE_FORMAT " "
1207
"d2l=" SIZE_FORMAT " d2l%%=%6.4f "
1208
"d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
1209
" ratio=%10.8f",
1210
algorithm, addr, region_idx,
1211
space_live,
1212
dead_to_left, dead_to_left_pct,
1213
dead_to_right, live_to_right,
1214
double(dead_to_right) / live_to_right);
1215
}
1216
#endif // #ifndef PRODUCT
1217
1218
// Return a fraction indicating how much of the generation can be treated as
1219
// "dead wood" (i.e., not reclaimed). The function uses a normal distribution
1220
// based on the density of live objects in the generation to determine a limit,
1221
// which is then adjusted so the return value is min_percent when the density is
1222
// 1.
1223
//
1224
// The following table shows some return values for a different values of the
1225
// standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
1226
// min_percent is 1.
1227
//
1228
// fraction allowed as dead wood
1229
// -----------------------------------------------------------------
1230
// density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
1231
// ------- ---------- ---------- ---------- ---------- ---------- ----------
1232
// 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1233
// 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1234
// 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1235
// 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1236
// 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1237
// 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1238
// 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1239
// 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1240
// 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1241
// 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1242
// 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
1243
// 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1244
// 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1245
// 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1246
// 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1247
// 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1248
// 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1249
// 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1250
// 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1251
// 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1252
// 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1253
1254
double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
1255
{
1256
assert(_dwl_initialized, "uninitialized");
1257
1258
// The raw limit is the value of the normal distribution at x = density.
1259
const double raw_limit = normal_distribution(density);
1260
1261
// Adjust the raw limit so it becomes the minimum when the density is 1.
1262
//
1263
// First subtract the adjustment value (which is simply the precomputed value
1264
// normal_distribution(1.0)); this yields a value of 0 when the density is 1.
1265
// Then add the minimum value, so the minimum is returned when the density is
1266
// 1. Finally, prevent negative values, which occur when the mean is not 0.5.
1267
const double min = double(min_percent) / 100.0;
1268
const double limit = raw_limit - _dwl_adjustment + min;
1269
return MAX2(limit, 0.0);
1270
}
1271
1272
ParallelCompactData::RegionData*
1273
PSParallelCompact::first_dead_space_region(const RegionData* beg,
1274
const RegionData* end)
1275
{
1276
const size_t region_size = ParallelCompactData::RegionSize;
1277
ParallelCompactData& sd = summary_data();
1278
size_t left = sd.region(beg);
1279
size_t right = end > beg ? sd.region(end) - 1 : left;
1280
1281
// Binary search.
1282
while (left < right) {
1283
// Equivalent to (left + right) / 2, but does not overflow.
1284
const size_t middle = left + (right - left) / 2;
1285
RegionData* const middle_ptr = sd.region(middle);
1286
HeapWord* const dest = middle_ptr->destination();
1287
HeapWord* const addr = sd.region_to_addr(middle);
1288
assert(dest != NULL, "sanity");
1289
assert(dest <= addr, "must move left");
1290
1291
if (middle > left && dest < addr) {
1292
right = middle - 1;
1293
} else if (middle < right && middle_ptr->data_size() == region_size) {
1294
left = middle + 1;
1295
} else {
1296
return middle_ptr;
1297
}
1298
}
1299
return sd.region(left);
1300
}
1301
1302
ParallelCompactData::RegionData*
1303
PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
1304
const RegionData* end,
1305
size_t dead_words)
1306
{
1307
ParallelCompactData& sd = summary_data();
1308
size_t left = sd.region(beg);
1309
size_t right = end > beg ? sd.region(end) - 1 : left;
1310
1311
// Binary search.
1312
while (left < right) {
1313
// Equivalent to (left + right) / 2, but does not overflow.
1314
const size_t middle = left + (right - left) / 2;
1315
RegionData* const middle_ptr = sd.region(middle);
1316
HeapWord* const dest = middle_ptr->destination();
1317
HeapWord* const addr = sd.region_to_addr(middle);
1318
assert(dest != NULL, "sanity");
1319
assert(dest <= addr, "must move left");
1320
1321
const size_t dead_to_left = pointer_delta(addr, dest);
1322
if (middle > left && dead_to_left > dead_words) {
1323
right = middle - 1;
1324
} else if (middle < right && dead_to_left < dead_words) {
1325
left = middle + 1;
1326
} else {
1327
return middle_ptr;
1328
}
1329
}
1330
return sd.region(left);
1331
}
1332
1333
// The result is valid during the summary phase, after the initial summarization
1334
// of each space into itself, and before final summarization.
1335
inline double
1336
PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
1337
HeapWord* const bottom,
1338
HeapWord* const top,
1339
HeapWord* const new_top)
1340
{
1341
ParallelCompactData& sd = summary_data();
1342
1343
assert(cp != NULL, "sanity");
1344
assert(bottom != NULL, "sanity");
1345
assert(top != NULL, "sanity");
1346
assert(new_top != NULL, "sanity");
1347
assert(top >= new_top, "summary data problem?");
1348
assert(new_top > bottom, "space is empty; should not be here");
1349
assert(new_top >= cp->destination(), "sanity");
1350
assert(top >= sd.region_to_addr(cp), "sanity");
1351
1352
HeapWord* const destination = cp->destination();
1353
const size_t dense_prefix_live = pointer_delta(destination, bottom);
1354
const size_t compacted_region_live = pointer_delta(new_top, destination);
1355
const size_t compacted_region_used = pointer_delta(top,
1356
sd.region_to_addr(cp));
1357
const size_t reclaimable = compacted_region_used - compacted_region_live;
1358
1359
const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
1360
return double(reclaimable) / divisor;
1361
}
1362
1363
// Return the address of the end of the dense prefix, a.k.a. the start of the
1364
// compacted region. The address is always on a region boundary.
1365
//
1366
// Completely full regions at the left are skipped, since no compaction can
1367
// occur in those regions. Then the maximum amount of dead wood to allow is
1368
// computed, based on the density (amount live / capacity) of the generation;
1369
// the region with approximately that amount of dead space to the left is
1370
// identified as the limit region. Regions between the last completely full
1371
// region and the limit region are scanned and the one that has the best
1372
// (maximum) reclaimed_ratio() is selected.
1373
HeapWord*
1374
PSParallelCompact::compute_dense_prefix(const SpaceId id,
1375
bool maximum_compaction)
1376
{
1377
if (ParallelOldGCSplitALot) {
1378
if (_space_info[id].dense_prefix() != _space_info[id].space()->bottom()) {
1379
// The value was chosen to provoke splitting a young gen space; use it.
1380
return _space_info[id].dense_prefix();
1381
}
1382
}
1383
1384
const size_t region_size = ParallelCompactData::RegionSize;
1385
const ParallelCompactData& sd = summary_data();
1386
1387
const MutableSpace* const space = _space_info[id].space();
1388
HeapWord* const top = space->top();
1389
HeapWord* const top_aligned_up = sd.region_align_up(top);
1390
HeapWord* const new_top = _space_info[id].new_top();
1391
HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
1392
HeapWord* const bottom = space->bottom();
1393
const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
1394
const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
1395
const RegionData* const new_top_cp =
1396
sd.addr_to_region_ptr(new_top_aligned_up);
1397
1398
// Skip full regions at the beginning of the space--they are necessarily part
1399
// of the dense prefix.
1400
const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
1401
assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
1402
space->is_empty(), "no dead space allowed to the left");
1403
assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
1404
"region must have dead space");
1405
1406
// The gc number is saved whenever a maximum compaction is done, and used to
1407
// determine when the maximum compaction interval has expired. This avoids
1408
// successive max compactions for different reasons.
1409
assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1410
const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1411
const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
1412
total_invocations() == HeapFirstMaximumCompactionCount;
1413
if (maximum_compaction || full_cp == top_cp || interval_ended) {
1414
_maximum_compaction_gc_num = total_invocations();
1415
return sd.region_to_addr(full_cp);
1416
}
1417
1418
const size_t space_live = pointer_delta(new_top, bottom);
1419
const size_t space_used = space->used_in_words();
1420
const size_t space_capacity = space->capacity_in_words();
1421
1422
const double density = double(space_live) / double(space_capacity);
1423
const size_t min_percent_free = MarkSweepDeadRatio;
1424
const double limiter = dead_wood_limiter(density, min_percent_free);
1425
const size_t dead_wood_max = space_used - space_live;
1426
const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
1427
dead_wood_max);
1428
1429
if (TraceParallelOldGCDensePrefix) {
1430
tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1431
"space_cap=" SIZE_FORMAT,
1432
space_live, space_used,
1433
space_capacity);
1434
tty->print_cr("dead_wood_limiter(%6.4f, %d)=%6.4f "
1435
"dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
1436
density, min_percent_free, limiter,
1437
dead_wood_max, dead_wood_limit);
1438
}
1439
1440
// Locate the region with the desired amount of dead space to the left.
1441
const RegionData* const limit_cp =
1442
dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
1443
1444
// Scan from the first region with dead space to the limit region and find the
1445
// one with the best (largest) reclaimed ratio.
1446
double best_ratio = 0.0;
1447
const RegionData* best_cp = full_cp;
1448
for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
1449
double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
1450
if (tmp_ratio > best_ratio) {
1451
best_cp = cp;
1452
best_ratio = tmp_ratio;
1453
}
1454
}
1455
1456
#if 0
1457
// Something to consider: if the region with the best ratio is 'close to' the
1458
// first region w/free space, choose the first region with free space
1459
// ("first-free"). The first-free region is usually near the start of the
1460
// heap, which means we are copying most of the heap already, so copy a bit
1461
// more to get complete compaction.
1462
if (pointer_delta(best_cp, full_cp, sizeof(RegionData)) < 4) {
1463
_maximum_compaction_gc_num = total_invocations();
1464
best_cp = full_cp;
1465
}
1466
#endif // #if 0
1467
1468
return sd.region_to_addr(best_cp);
1469
}
1470
1471
#ifndef PRODUCT
1472
void
1473
PSParallelCompact::fill_with_live_objects(SpaceId id, HeapWord* const start,
1474
size_t words)
1475
{
1476
if (TraceParallelOldGCSummaryPhase) {
1477
tty->print_cr("fill_with_live_objects [" PTR_FORMAT " " PTR_FORMAT ") "
1478
SIZE_FORMAT, start, start + words, words);
1479
}
1480
1481
ObjectStartArray* const start_array = _space_info[id].start_array();
1482
CollectedHeap::fill_with_objects(start, words);
1483
for (HeapWord* p = start; p < start + words; p += oop(p)->size()) {
1484
_mark_bitmap.mark_obj(p, words);
1485
_summary_data.add_obj(p, words);
1486
start_array->allocate_block(p);
1487
}
1488
}
1489
1490
void
1491
PSParallelCompact::summarize_new_objects(SpaceId id, HeapWord* start)
1492
{
1493
ParallelCompactData& sd = summary_data();
1494
MutableSpace* space = _space_info[id].space();
1495
1496
// Find the source and destination start addresses.
1497
HeapWord* const src_addr = sd.region_align_down(start);
1498
HeapWord* dst_addr;
1499
if (src_addr < start) {
1500
dst_addr = sd.addr_to_region_ptr(src_addr)->destination();
1501
} else if (src_addr > space->bottom()) {
1502
// The start (the original top() value) is aligned to a region boundary so
1503
// the associated region does not have a destination. Compute the
1504
// destination from the previous region.
1505
RegionData* const cp = sd.addr_to_region_ptr(src_addr) - 1;
1506
dst_addr = cp->destination() + cp->data_size();
1507
} else {
1508
// Filling the entire space.
1509
dst_addr = space->bottom();
1510
}
1511
assert(dst_addr != NULL, "sanity");
1512
1513
// Update the summary data.
1514
bool result = _summary_data.summarize(_space_info[id].split_info(),
1515
src_addr, space->top(), NULL,
1516
dst_addr, space->end(),
1517
_space_info[id].new_top_addr());
1518
assert(result, "should not fail: bad filler object size");
1519
}
1520
1521
void
1522
PSParallelCompact::provoke_split_fill_survivor(SpaceId id)
1523
{
1524
if (total_invocations() % (ParallelOldGCSplitInterval * 3) != 0) {
1525
return;
1526
}
1527
1528
MutableSpace* const space = _space_info[id].space();
1529
if (space->is_empty()) {
1530
HeapWord* b = space->bottom();
1531
HeapWord* t = b + space->capacity_in_words() / 2;
1532
space->set_top(t);
1533
if (ZapUnusedHeapArea) {
1534
space->set_top_for_allocations();
1535
}
1536
1537
size_t min_size = CollectedHeap::min_fill_size();
1538
size_t obj_len = min_size;
1539
while (b + obj_len <= t) {
1540
CollectedHeap::fill_with_object(b, obj_len);
1541
mark_bitmap()->mark_obj(b, obj_len);
1542
summary_data().add_obj(b, obj_len);
1543
b += obj_len;
1544
obj_len = (obj_len & (min_size*3)) + min_size; // 8 16 24 32 8 16 24 32 ...
1545
}
1546
if (b < t) {
1547
// The loop didn't completely fill to t (top); adjust top downward.
1548
space->set_top(b);
1549
if (ZapUnusedHeapArea) {
1550
space->set_top_for_allocations();
1551
}
1552
}
1553
1554
HeapWord** nta = _space_info[id].new_top_addr();
1555
bool result = summary_data().summarize(_space_info[id].split_info(),
1556
space->bottom(), space->top(), NULL,
1557
space->bottom(), space->end(), nta);
1558
assert(result, "space must fit into itself");
1559
}
1560
}
1561
1562
void
1563
PSParallelCompact::provoke_split(bool & max_compaction)
1564
{
1565
if (total_invocations() % ParallelOldGCSplitInterval != 0) {
1566
return;
1567
}
1568
1569
const size_t region_size = ParallelCompactData::RegionSize;
1570
ParallelCompactData& sd = summary_data();
1571
1572
MutableSpace* const eden_space = _space_info[eden_space_id].space();
1573
MutableSpace* const from_space = _space_info[from_space_id].space();
1574
const size_t eden_live = pointer_delta(eden_space->top(),
1575
_space_info[eden_space_id].new_top());
1576
const size_t from_live = pointer_delta(from_space->top(),
1577
_space_info[from_space_id].new_top());
1578
1579
const size_t min_fill_size = CollectedHeap::min_fill_size();
1580
const size_t eden_free = pointer_delta(eden_space->end(), eden_space->top());
1581
const size_t eden_fillable = eden_free >= min_fill_size ? eden_free : 0;
1582
const size_t from_free = pointer_delta(from_space->end(), from_space->top());
1583
const size_t from_fillable = from_free >= min_fill_size ? from_free : 0;
1584
1585
// Choose the space to split; need at least 2 regions live (or fillable).
1586
SpaceId id;
1587
MutableSpace* space;
1588
size_t live_words;
1589
size_t fill_words;
1590
if (eden_live + eden_fillable >= region_size * 2) {
1591
id = eden_space_id;
1592
space = eden_space;
1593
live_words = eden_live;
1594
fill_words = eden_fillable;
1595
} else if (from_live + from_fillable >= region_size * 2) {
1596
id = from_space_id;
1597
space = from_space;
1598
live_words = from_live;
1599
fill_words = from_fillable;
1600
} else {
1601
return; // Give up.
1602
}
1603
assert(fill_words == 0 || fill_words >= min_fill_size, "sanity");
1604
1605
if (live_words < region_size * 2) {
1606
// Fill from top() to end() w/live objects of mixed sizes.
1607
HeapWord* const fill_start = space->top();
1608
live_words += fill_words;
1609
1610
space->set_top(fill_start + fill_words);
1611
if (ZapUnusedHeapArea) {
1612
space->set_top_for_allocations();
1613
}
1614
1615
HeapWord* cur_addr = fill_start;
1616
while (fill_words > 0) {
1617
const size_t r = (size_t)os::random() % (region_size / 2) + min_fill_size;
1618
size_t cur_size = MIN2(align_object_size_(r), fill_words);
1619
if (fill_words - cur_size < min_fill_size) {
1620
cur_size = fill_words; // Avoid leaving a fragment too small to fill.
1621
}
1622
1623
CollectedHeap::fill_with_object(cur_addr, cur_size);
1624
mark_bitmap()->mark_obj(cur_addr, cur_size);
1625
sd.add_obj(cur_addr, cur_size);
1626
1627
cur_addr += cur_size;
1628
fill_words -= cur_size;
1629
}
1630
1631
summarize_new_objects(id, fill_start);
1632
}
1633
1634
max_compaction = false;
1635
1636
// Manipulate the old gen so that it has room for about half of the live data
1637
// in the target young gen space (live_words / 2).
1638
id = old_space_id;
1639
space = _space_info[id].space();
1640
const size_t free_at_end = space->free_in_words();
1641
const size_t free_target = align_object_size(live_words / 2);
1642
const size_t dead = pointer_delta(space->top(), _space_info[id].new_top());
1643
1644
if (free_at_end >= free_target + min_fill_size) {
1645
// Fill space above top() and set the dense prefix so everything survives.
1646
HeapWord* const fill_start = space->top();
1647
const size_t fill_size = free_at_end - free_target;
1648
space->set_top(space->top() + fill_size);
1649
if (ZapUnusedHeapArea) {
1650
space->set_top_for_allocations();
1651
}
1652
fill_with_live_objects(id, fill_start, fill_size);
1653
summarize_new_objects(id, fill_start);
1654
_space_info[id].set_dense_prefix(sd.region_align_down(space->top()));
1655
} else if (dead + free_at_end > free_target) {
1656
// Find a dense prefix that makes the right amount of space available.
1657
HeapWord* cur = sd.region_align_down(space->top());
1658
HeapWord* cur_destination = sd.addr_to_region_ptr(cur)->destination();
1659
size_t dead_to_right = pointer_delta(space->end(), cur_destination);
1660
while (dead_to_right < free_target) {
1661
cur -= region_size;
1662
cur_destination = sd.addr_to_region_ptr(cur)->destination();
1663
dead_to_right = pointer_delta(space->end(), cur_destination);
1664
}
1665
_space_info[id].set_dense_prefix(cur);
1666
}
1667
}
1668
#endif // #ifndef PRODUCT
1669
1670
void PSParallelCompact::summarize_spaces_quick()
1671
{
1672
for (unsigned int i = 0; i < last_space_id; ++i) {
1673
const MutableSpace* space = _space_info[i].space();
1674
HeapWord** nta = _space_info[i].new_top_addr();
1675
bool result = _summary_data.summarize(_space_info[i].split_info(),
1676
space->bottom(), space->top(), NULL,
1677
space->bottom(), space->end(), nta);
1678
assert(result, "space must fit into itself");
1679
_space_info[i].set_dense_prefix(space->bottom());
1680
}
1681
1682
#ifndef PRODUCT
1683
if (ParallelOldGCSplitALot) {
1684
provoke_split_fill_survivor(to_space_id);
1685
}
1686
#endif // #ifndef PRODUCT
1687
}
1688
1689
void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
1690
{
1691
HeapWord* const dense_prefix_end = dense_prefix(id);
1692
const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
1693
const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
1694
if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
1695
// Only enough dead space is filled so that any remaining dead space to the
1696
// left is larger than the minimum filler object. (The remainder is filled
1697
// during the copy/update phase.)
1698
//
1699
// The size of the dead space to the right of the boundary is not a
1700
// concern, since compaction will be able to use whatever space is
1701
// available.
1702
//
1703
// Here '||' is the boundary, 'x' represents a don't care bit and a box
1704
// surrounds the space to be filled with an object.
1705
//
1706
// In the 32-bit VM, each bit represents two 32-bit words:
1707
// +---+
1708
// a) beg_bits: ... x x x | 0 | || 0 x x ...
1709
// end_bits: ... x x x | 0 | || 0 x x ...
1710
// +---+
1711
//
1712
// In the 64-bit VM, each bit represents one 64-bit word:
1713
// +------------+
1714
// b) beg_bits: ... x x x | 0 || 0 | x x ...
1715
// end_bits: ... x x 1 | 0 || 0 | x x ...
1716
// +------------+
1717
// +-------+
1718
// c) beg_bits: ... x x | 0 0 | || 0 x x ...
1719
// end_bits: ... x 1 | 0 0 | || 0 x x ...
1720
// +-------+
1721
// +-----------+
1722
// d) beg_bits: ... x | 0 0 0 | || 0 x x ...
1723
// end_bits: ... 1 | 0 0 0 | || 0 x x ...
1724
// +-----------+
1725
// +-------+
1726
// e) beg_bits: ... 0 0 | 0 0 | || 0 x x ...
1727
// end_bits: ... 0 0 | 0 0 | || 0 x x ...
1728
// +-------+
1729
1730
// Initially assume case a, c or e will apply.
1731
size_t obj_len = CollectedHeap::min_fill_size();
1732
HeapWord* obj_beg = dense_prefix_end - obj_len;
1733
1734
#ifdef _LP64
1735
if (MinObjAlignment > 1) { // object alignment > heap word size
1736
// Cases a, c or e.
1737
} else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
1738
// Case b above.
1739
obj_beg = dense_prefix_end - 1;
1740
} else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
1741
_mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
1742
// Case d above.
1743
obj_beg = dense_prefix_end - 3;
1744
obj_len = 3;
1745
}
1746
#endif // #ifdef _LP64
1747
1748
CollectedHeap::fill_with_object(obj_beg, obj_len);
1749
_mark_bitmap.mark_obj(obj_beg, obj_len);
1750
_summary_data.add_obj(obj_beg, obj_len);
1751
assert(start_array(id) != NULL, "sanity");
1752
start_array(id)->allocate_block(obj_beg);
1753
}
1754
}
1755
1756
void
1757
PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr)
1758
{
1759
RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr);
1760
HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr);
1761
RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up);
1762
for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) {
1763
cur->set_source_region(0);
1764
}
1765
}
1766
1767
void
1768
PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
1769
{
1770
assert(id < last_space_id, "id out of range");
1771
assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom() ||
1772
ParallelOldGCSplitALot && id == old_space_id,
1773
"should have been reset in summarize_spaces_quick()");
1774
1775
const MutableSpace* space = _space_info[id].space();
1776
if (_space_info[id].new_top() != space->bottom()) {
1777
HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
1778
_space_info[id].set_dense_prefix(dense_prefix_end);
1779
1780
#ifndef PRODUCT
1781
if (TraceParallelOldGCDensePrefix) {
1782
print_dense_prefix_stats("ratio", id, maximum_compaction,
1783
dense_prefix_end);
1784
HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
1785
print_dense_prefix_stats("density", id, maximum_compaction, addr);
1786
}
1787
#endif // #ifndef PRODUCT
1788
1789
// Recompute the summary data, taking into account the dense prefix. If
1790
// every last byte will be reclaimed, then the existing summary data which
1791
// compacts everything can be left in place.
1792
if (!maximum_compaction && dense_prefix_end != space->bottom()) {
1793
// If dead space crosses the dense prefix boundary, it is (at least
1794
// partially) filled with a dummy object, marked live and added to the
1795
// summary data. This simplifies the copy/update phase and must be done
1796
// before the final locations of objects are determined, to prevent
1797
// leaving a fragment of dead space that is too small to fill.
1798
fill_dense_prefix_end(id);
1799
1800
// Compute the destination of each Region, and thus each object.
1801
_summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
1802
_summary_data.summarize(_space_info[id].split_info(),
1803
dense_prefix_end, space->top(), NULL,
1804
dense_prefix_end, space->end(),
1805
_space_info[id].new_top_addr());
1806
}
1807
}
1808
1809
if (TraceParallelOldGCSummaryPhase) {
1810
const size_t region_size = ParallelCompactData::RegionSize;
1811
HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
1812
const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
1813
const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
1814
HeapWord* const new_top = _space_info[id].new_top();
1815
const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
1816
const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
1817
tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
1818
"dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
1819
"cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
1820
id, space->capacity_in_words(), dense_prefix_end,
1821
dp_region, dp_words / region_size,
1822
cr_words / region_size, new_top);
1823
}
1824
}
1825
1826
#ifndef PRODUCT
1827
void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
1828
HeapWord* dst_beg, HeapWord* dst_end,
1829
SpaceId src_space_id,
1830
HeapWord* src_beg, HeapWord* src_end)
1831
{
1832
if (TraceParallelOldGCSummaryPhase) {
1833
tty->print_cr("summarizing %d [%s] into %d [%s]: "
1834
"src=" PTR_FORMAT "-" PTR_FORMAT " "
1835
SIZE_FORMAT "-" SIZE_FORMAT " "
1836
"dst=" PTR_FORMAT "-" PTR_FORMAT " "
1837
SIZE_FORMAT "-" SIZE_FORMAT,
1838
src_space_id, space_names[src_space_id],
1839
dst_space_id, space_names[dst_space_id],
1840
src_beg, src_end,
1841
_summary_data.addr_to_region_idx(src_beg),
1842
_summary_data.addr_to_region_idx(src_end),
1843
dst_beg, dst_end,
1844
_summary_data.addr_to_region_idx(dst_beg),
1845
_summary_data.addr_to_region_idx(dst_end));
1846
}
1847
}
1848
#endif // #ifndef PRODUCT
1849
1850
void PSParallelCompact::summary_phase(ParCompactionManager* cm,
1851
bool maximum_compaction)
1852
{
1853
GCTraceTime tm("summary phase", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
1854
// trace("2");
1855
1856
#ifdef ASSERT
1857
if (TraceParallelOldGCMarkingPhase) {
1858
tty->print_cr("add_obj_count=" SIZE_FORMAT " "
1859
"add_obj_bytes=" SIZE_FORMAT,
1860
add_obj_count, add_obj_size * HeapWordSize);
1861
tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
1862
"mark_bitmap_bytes=" SIZE_FORMAT,
1863
mark_bitmap_count, mark_bitmap_size * HeapWordSize);
1864
}
1865
#endif // #ifdef ASSERT
1866
1867
// Quick summarization of each space into itself, to see how much is live.
1868
summarize_spaces_quick();
1869
1870
if (TraceParallelOldGCSummaryPhase) {
1871
tty->print_cr("summary_phase: after summarizing each space to self");
1872
Universe::print();
1873
NOT_PRODUCT(print_region_ranges());
1874
if (Verbose) {
1875
NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1876
}
1877
}
1878
1879
// The amount of live data that will end up in old space (assuming it fits).
1880
size_t old_space_total_live = 0;
1881
for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1882
old_space_total_live += pointer_delta(_space_info[id].new_top(),
1883
_space_info[id].space()->bottom());
1884
}
1885
1886
MutableSpace* const old_space = _space_info[old_space_id].space();
1887
const size_t old_capacity = old_space->capacity_in_words();
1888
if (old_space_total_live > old_capacity) {
1889
// XXX - should also try to expand
1890
maximum_compaction = true;
1891
}
1892
#ifndef PRODUCT
1893
if (ParallelOldGCSplitALot && old_space_total_live < old_capacity) {
1894
provoke_split(maximum_compaction);
1895
}
1896
#endif // #ifndef PRODUCT
1897
1898
// Old generations.
1899
summarize_space(old_space_id, maximum_compaction);
1900
1901
// Summarize the remaining spaces in the young gen. The initial target space
1902
// is the old gen. If a space does not fit entirely into the target, then the
1903
// remainder is compacted into the space itself and that space becomes the new
1904
// target.
1905
SpaceId dst_space_id = old_space_id;
1906
HeapWord* dst_space_end = old_space->end();
1907
HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
1908
for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
1909
const MutableSpace* space = _space_info[id].space();
1910
const size_t live = pointer_delta(_space_info[id].new_top(),
1911
space->bottom());
1912
const size_t available = pointer_delta(dst_space_end, *new_top_addr);
1913
1914
NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
1915
SpaceId(id), space->bottom(), space->top());)
1916
if (live > 0 && live <= available) {
1917
// All the live data will fit.
1918
bool done = _summary_data.summarize(_space_info[id].split_info(),
1919
space->bottom(), space->top(),
1920
NULL,
1921
*new_top_addr, dst_space_end,
1922
new_top_addr);
1923
assert(done, "space must fit into old gen");
1924
1925
// Reset the new_top value for the space.
1926
_space_info[id].set_new_top(space->bottom());
1927
} else if (live > 0) {
1928
// Attempt to fit part of the source space into the target space.
1929
HeapWord* next_src_addr = NULL;
1930
bool done = _summary_data.summarize(_space_info[id].split_info(),
1931
space->bottom(), space->top(),
1932
&next_src_addr,
1933
*new_top_addr, dst_space_end,
1934
new_top_addr);
1935
assert(!done, "space should not fit into old gen");
1936
assert(next_src_addr != NULL, "sanity");
1937
1938
// The source space becomes the new target, so the remainder is compacted
1939
// within the space itself.
1940
dst_space_id = SpaceId(id);
1941
dst_space_end = space->end();
1942
new_top_addr = _space_info[id].new_top_addr();
1943
NOT_PRODUCT(summary_phase_msg(dst_space_id,
1944
space->bottom(), dst_space_end,
1945
SpaceId(id), next_src_addr, space->top());)
1946
done = _summary_data.summarize(_space_info[id].split_info(),
1947
next_src_addr, space->top(),
1948
NULL,
1949
space->bottom(), dst_space_end,
1950
new_top_addr);
1951
assert(done, "space must fit when compacted into itself");
1952
assert(*new_top_addr <= space->top(), "usage should not grow");
1953
}
1954
}
1955
1956
if (TraceParallelOldGCSummaryPhase) {
1957
tty->print_cr("summary_phase: after final summarization");
1958
Universe::print();
1959
NOT_PRODUCT(print_region_ranges());
1960
if (Verbose) {
1961
NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
1962
}
1963
}
1964
}
1965
1966
// This method should contain all heap-specific policy for invoking a full
1967
// collection. invoke_no_policy() will only attempt to compact the heap; it
1968
// will do nothing further. If we need to bail out for policy reasons, scavenge
1969
// before full gc, or any other specialized behavior, it needs to be added here.
1970
//
1971
// Note that this method should only be called from the vm_thread while at a
1972
// safepoint.
1973
//
1974
// Note that the all_soft_refs_clear flag in the collector policy
1975
// may be true because this method can be called without intervening
1976
// activity. For example when the heap space is tight and full measure
1977
// are being taken to free space.
1978
void PSParallelCompact::invoke(bool maximum_heap_compaction) {
1979
assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1980
assert(Thread::current() == (Thread*)VMThread::vm_thread(),
1981
"should be in vm thread");
1982
1983
ParallelScavengeHeap* heap = gc_heap();
1984
GCCause::Cause gc_cause = heap->gc_cause();
1985
assert(!heap->is_gc_active(), "not reentrant");
1986
1987
PSAdaptiveSizePolicy* policy = heap->size_policy();
1988
IsGCActiveMark mark;
1989
1990
if (ScavengeBeforeFullGC) {
1991
PSScavenge::invoke_no_policy();
1992
}
1993
1994
const bool clear_all_soft_refs =
1995
heap->collector_policy()->should_clear_all_soft_refs();
1996
1997
PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
1998
maximum_heap_compaction);
1999
}
2000
2001
// This method contains no policy. You should probably
2002
// be calling invoke() instead.
2003
bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
2004
assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
2005
assert(ref_processor() != NULL, "Sanity");
2006
2007
if (GC_locker::check_active_before_gc()) {
2008
return false;
2009
}
2010
2011
ParallelScavengeHeap* heap = gc_heap();
2012
2013
_gc_timer.register_gc_start();
2014
_gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start());
2015
2016
TimeStamp marking_start;
2017
TimeStamp compaction_start;
2018
TimeStamp collection_exit;
2019
2020
GCCause::Cause gc_cause = heap->gc_cause();
2021
PSYoungGen* young_gen = heap->young_gen();
2022
PSOldGen* old_gen = heap->old_gen();
2023
PSAdaptiveSizePolicy* size_policy = heap->size_policy();
2024
2025
// The scope of casr should end after code that can change
2026
// CollectorPolicy::_should_clear_all_soft_refs.
2027
ClearedAllSoftRefs casr(maximum_heap_compaction,
2028
heap->collector_policy());
2029
2030
if (ZapUnusedHeapArea) {
2031
// Save information needed to minimize mangling
2032
heap->record_gen_tops_before_GC();
2033
}
2034
2035
heap->pre_full_gc_dump(&_gc_timer);
2036
2037
_print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;
2038
2039
// Make sure data structures are sane, make the heap parsable, and do other
2040
// miscellaneous bookkeeping.
2041
PreGCValues pre_gc_values;
2042
pre_compact(&pre_gc_values);
2043
2044
// Get the compaction manager reserved for the VM thread.
2045
ParCompactionManager* const vmthread_cm =
2046
ParCompactionManager::manager_array(gc_task_manager()->workers());
2047
2048
// Place after pre_compact() where the number of invocations is incremented.
2049
AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
2050
2051
{
2052
ResourceMark rm;
2053
HandleMark hm;
2054
2055
// Set the number of GC threads to be used in this collection
2056
gc_task_manager()->set_active_gang();
2057
gc_task_manager()->task_idle_workers();
2058
heap->set_par_threads(gc_task_manager()->active_workers());
2059
2060
TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
2061
GCTraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, NULL, _gc_tracer.gc_id());
2062
TraceCollectorStats tcs(counters());
2063
TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
2064
2065
if (TraceGen1Time) accumulated_time()->start();
2066
2067
// Let the size policy know we're starting
2068
size_policy->major_collection_begin();
2069
2070
CodeCache::gc_prologue();
2071
Threads::gc_prologue();
2072
2073
COMPILER2_PRESENT(DerivedPointerTable::clear());
2074
2075
ref_processor()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
2076
ref_processor()->setup_policy(maximum_heap_compaction);
2077
2078
bool marked_for_unloading = false;
2079
2080
marking_start.update();
2081
marking_phase(vmthread_cm, maximum_heap_compaction, &_gc_tracer);
2082
2083
bool max_on_system_gc = UseMaximumCompactionOnSystemGC
2084
&& gc_cause == GCCause::_java_lang_system_gc;
2085
summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
2086
2087
COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
2088
COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
2089
2090
// adjust_roots() updates Universe::_intArrayKlassObj which is
2091
// needed by the compaction for filling holes in the dense prefix.
2092
adjust_roots();
2093
2094
compaction_start.update();
2095
compact();
2096
2097
// Reset the mark bitmap, summary data, and do other bookkeeping. Must be
2098
// done before resizing.
2099
post_compact();
2100
2101
// Let the size policy know we're done
2102
size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
2103
2104
if (UseAdaptiveSizePolicy) {
2105
if (PrintAdaptiveSizePolicy) {
2106
gclog_or_tty->print("AdaptiveSizeStart: ");
2107
gclog_or_tty->stamp();
2108
gclog_or_tty->print_cr(" collection: %d ",
2109
heap->total_collections());
2110
if (Verbose) {
2111
gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d",
2112
old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
2113
}
2114
}
2115
2116
// Don't check if the size_policy is ready here. Let
2117
// the size_policy check that internally.
2118
if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
2119
((gc_cause != GCCause::_java_lang_system_gc) ||
2120
UseAdaptiveSizePolicyWithSystemGC)) {
2121
// Calculate optimal free space amounts
2122
assert(young_gen->max_size() >
2123
young_gen->from_space()->capacity_in_bytes() +
2124
young_gen->to_space()->capacity_in_bytes(),
2125
"Sizes of space in young gen are out-of-bounds");
2126
2127
size_t young_live = young_gen->used_in_bytes();
2128
size_t eden_live = young_gen->eden_space()->used_in_bytes();
2129
size_t old_live = old_gen->used_in_bytes();
2130
size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
2131
size_t max_old_gen_size = old_gen->max_gen_size();
2132
size_t max_eden_size = young_gen->max_size() -
2133
young_gen->from_space()->capacity_in_bytes() -
2134
young_gen->to_space()->capacity_in_bytes();
2135
2136
// Used for diagnostics
2137
size_policy->clear_generation_free_space_flags();
2138
2139
size_policy->compute_generations_free_space(young_live,
2140
eden_live,
2141
old_live,
2142
cur_eden,
2143
max_old_gen_size,
2144
max_eden_size,
2145
true /* full gc*/);
2146
2147
size_policy->check_gc_overhead_limit(young_live,
2148
eden_live,
2149
max_old_gen_size,
2150
max_eden_size,
2151
true /* full gc*/,
2152
gc_cause,
2153
heap->collector_policy());
2154
2155
size_policy->decay_supplemental_growth(true /* full gc*/);
2156
2157
heap->resize_old_gen(
2158
size_policy->calculated_old_free_size_in_bytes());
2159
2160
// Don't resize the young generation at an major collection. A
2161
// desired young generation size may have been calculated but
2162
// resizing the young generation complicates the code because the
2163
// resizing of the old generation may have moved the boundary
2164
// between the young generation and the old generation. Let the
2165
// young generation resizing happen at the minor collections.
2166
}
2167
if (PrintAdaptiveSizePolicy) {
2168
gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
2169
heap->total_collections());
2170
}
2171
}
2172
2173
if (UsePerfData) {
2174
PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
2175
counters->update_counters();
2176
counters->update_old_capacity(old_gen->capacity_in_bytes());
2177
counters->update_young_capacity(young_gen->capacity_in_bytes());
2178
}
2179
2180
heap->resize_all_tlabs();
2181
2182
// Resize the metaspace capactiy after a collection
2183
MetaspaceGC::compute_new_size();
2184
2185
if (TraceGen1Time) accumulated_time()->stop();
2186
2187
if (PrintGC) {
2188
if (PrintGCDetails) {
2189
// No GC timestamp here. This is after GC so it would be confusing.
2190
young_gen->print_used_change(pre_gc_values.young_gen_used());
2191
old_gen->print_used_change(pre_gc_values.old_gen_used());
2192
heap->print_heap_change(pre_gc_values.heap_used());
2193
MetaspaceAux::print_metaspace_change(pre_gc_values.metadata_used());
2194
} else {
2195
heap->print_heap_change(pre_gc_values.heap_used());
2196
}
2197
}
2198
2199
// Track memory usage and detect low memory
2200
MemoryService::track_memory_usage();
2201
heap->update_counters();
2202
gc_task_manager()->release_idle_workers();
2203
}
2204
2205
#ifdef ASSERT
2206
for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
2207
ParCompactionManager* const cm =
2208
ParCompactionManager::manager_array(int(i));
2209
assert(cm->marking_stack()->is_empty(), "should be empty");
2210
assert(ParCompactionManager::region_list(int(i))->is_empty(), "should be empty");
2211
}
2212
#endif // ASSERT
2213
2214
if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
2215
HandleMark hm; // Discard invalid handles created during verification
2216
Universe::verify(" VerifyAfterGC:");
2217
}
2218
2219
// Re-verify object start arrays
2220
if (VerifyObjectStartArray &&
2221
VerifyAfterGC) {
2222
old_gen->verify_object_start_array();
2223
}
2224
2225
if (ZapUnusedHeapArea) {
2226
old_gen->object_space()->check_mangled_unused_area_complete();
2227
}
2228
2229
NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
2230
2231
collection_exit.update();
2232
2233
heap->print_heap_after_gc();
2234
heap->trace_heap_after_gc(&_gc_tracer);
2235
2236
if (PrintGCTaskTimeStamps) {
2237
gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " "
2238
INT64_FORMAT,
2239
marking_start.ticks(), compaction_start.ticks(),
2240
collection_exit.ticks());
2241
gc_task_manager()->print_task_time_stamps();
2242
}
2243
2244
heap->post_full_gc_dump(&_gc_timer);
2245
2246
#ifdef TRACESPINNING
2247
ParallelTaskTerminator::print_termination_counts();
2248
#endif
2249
2250
_gc_timer.register_gc_end();
2251
2252
_gc_tracer.report_dense_prefix(dense_prefix(old_space_id));
2253
_gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions());
2254
2255
return true;
2256
}
2257
2258
bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
2259
PSYoungGen* young_gen,
2260
PSOldGen* old_gen) {
2261
MutableSpace* const eden_space = young_gen->eden_space();
2262
assert(!eden_space->is_empty(), "eden must be non-empty");
2263
assert(young_gen->virtual_space()->alignment() ==
2264
old_gen->virtual_space()->alignment(), "alignments do not match");
2265
2266
if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
2267
return false;
2268
}
2269
2270
// Both generations must be completely committed.
2271
if (young_gen->virtual_space()->uncommitted_size() != 0) {
2272
return false;
2273
}
2274
if (old_gen->virtual_space()->uncommitted_size() != 0) {
2275
return false;
2276
}
2277
2278
// Figure out how much to take from eden. Include the average amount promoted
2279
// in the total; otherwise the next young gen GC will simply bail out to a
2280
// full GC.
2281
const size_t alignment = old_gen->virtual_space()->alignment();
2282
const size_t eden_used = eden_space->used_in_bytes();
2283
const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
2284
const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
2285
const size_t eden_capacity = eden_space->capacity_in_bytes();
2286
2287
if (absorb_size >= eden_capacity) {
2288
return false; // Must leave some space in eden.
2289
}
2290
2291
const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
2292
if (new_young_size < young_gen->min_gen_size()) {
2293
return false; // Respect young gen minimum size.
2294
}
2295
2296
if (TraceAdaptiveGCBoundary && Verbose) {
2297
gclog_or_tty->print(" absorbing " SIZE_FORMAT "K: "
2298
"eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
2299
"from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
2300
"young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
2301
absorb_size / K,
2302
eden_capacity / K, (eden_capacity - absorb_size) / K,
2303
young_gen->from_space()->used_in_bytes() / K,
2304
young_gen->to_space()->used_in_bytes() / K,
2305
young_gen->capacity_in_bytes() / K, new_young_size / K);
2306
}
2307
2308
// Fill the unused part of the old gen.
2309
MutableSpace* const old_space = old_gen->object_space();
2310
HeapWord* const unused_start = old_space->top();
2311
size_t const unused_words = pointer_delta(old_space->end(), unused_start);
2312
2313
if (unused_words > 0) {
2314
if (unused_words < CollectedHeap::min_fill_size()) {
2315
return false; // If the old gen cannot be filled, must give up.
2316
}
2317
CollectedHeap::fill_with_objects(unused_start, unused_words);
2318
}
2319
2320
// Take the live data from eden and set both top and end in the old gen to
2321
// eden top. (Need to set end because reset_after_change() mangles the region
2322
// from end to virtual_space->high() in debug builds).
2323
HeapWord* const new_top = eden_space->top();
2324
old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
2325
absorb_size);
2326
young_gen->reset_after_change();
2327
old_space->set_top(new_top);
2328
old_space->set_end(new_top);
2329
old_gen->reset_after_change();
2330
2331
// Update the object start array for the filler object and the data from eden.
2332
ObjectStartArray* const start_array = old_gen->start_array();
2333
for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
2334
start_array->allocate_block(p);
2335
}
2336
2337
// Could update the promoted average here, but it is not typically updated at
2338
// full GCs and the value to use is unclear. Something like
2339
//
2340
// cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
2341
2342
size_policy->set_bytes_absorbed_from_eden(absorb_size);
2343
return true;
2344
}
2345
2346
GCTaskManager* const PSParallelCompact::gc_task_manager() {
2347
assert(ParallelScavengeHeap::gc_task_manager() != NULL,
2348
"shouldn't return NULL");
2349
return ParallelScavengeHeap::gc_task_manager();
2350
}
2351
2352
void PSParallelCompact::marking_phase(ParCompactionManager* cm,
2353
bool maximum_heap_compaction,
2354
ParallelOldTracer *gc_tracer) {
2355
// Recursively traverse all live objects and mark them
2356
GCTraceTime tm("marking phase", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2357
2358
ParallelScavengeHeap* heap = gc_heap();
2359
uint parallel_gc_threads = heap->gc_task_manager()->workers();
2360
uint active_gc_threads = heap->gc_task_manager()->active_workers();
2361
TaskQueueSetSuper* qset = ParCompactionManager::stack_array();
2362
ParallelTaskTerminator terminator(active_gc_threads, qset);
2363
2364
PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
2365
PSParallelCompact::FollowStackClosure follow_stack_closure(cm);
2366
2367
// Need new claim bits before marking starts.
2368
ClassLoaderDataGraph::clear_claimed_marks();
2369
2370
{
2371
GCTraceTime tm_m("par mark", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2372
2373
ParallelScavengeHeap::ParStrongRootsScope psrs;
2374
2375
GCTaskQueue* q = GCTaskQueue::create();
2376
2377
q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
2378
q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
2379
// We scan the thread roots in parallel
2380
Threads::create_thread_roots_marking_tasks(q);
2381
q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
2382
q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
2383
q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
2384
q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
2385
q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::class_loader_data));
2386
q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
2387
q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
2388
2389
if (active_gc_threads > 1) {
2390
for (uint j = 0; j < active_gc_threads; j++) {
2391
q->enqueue(new StealMarkingTask(&terminator));
2392
}
2393
}
2394
2395
gc_task_manager()->execute_and_wait(q);
2396
}
2397
2398
// Process reference objects found during marking
2399
{
2400
GCTraceTime tm_r("reference processing", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2401
2402
ReferenceProcessorStats stats;
2403
if (ref_processor()->processing_is_mt()) {
2404
RefProcTaskExecutor task_executor;
2405
stats = ref_processor()->process_discovered_references(
2406
is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
2407
&task_executor, &_gc_timer, _gc_tracer.gc_id());
2408
} else {
2409
stats = ref_processor()->process_discovered_references(
2410
is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL,
2411
&_gc_timer, _gc_tracer.gc_id());
2412
}
2413
2414
gc_tracer->report_gc_reference_stats(stats);
2415
}
2416
2417
GCTraceTime tm_c("class unloading", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2418
2419
// This is the point where the entire marking should have completed.
2420
assert(cm->marking_stacks_empty(), "Marking should have completed");
2421
2422
// Follow system dictionary roots and unload classes.
2423
bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
2424
2425
// Unload nmethods.
2426
CodeCache::do_unloading(is_alive_closure(), purged_class);
2427
2428
// Prune dead klasses from subklass/sibling/implementor lists.
2429
Klass::clean_weak_klass_links(is_alive_closure());
2430
2431
// Delete entries for dead interned strings.
2432
StringTable::unlink(is_alive_closure());
2433
2434
// Clean up unreferenced symbols in symbol table.
2435
SymbolTable::unlink();
2436
_gc_tracer.report_object_count_after_gc(is_alive_closure());
2437
}
2438
2439
void PSParallelCompact::follow_class_loader(ParCompactionManager* cm,
2440
ClassLoaderData* cld) {
2441
PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
2442
PSParallelCompact::FollowKlassClosure follow_klass_closure(&mark_and_push_closure);
2443
2444
cld->oops_do(&mark_and_push_closure, &follow_klass_closure, true);
2445
}
2446
2447
void PSParallelCompact::adjust_roots() {
2448
// Adjust the pointers to reflect the new locations
2449
GCTraceTime tm("adjust roots", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2450
2451
// Need new claim bits when tracing through and adjusting pointers.
2452
ClassLoaderDataGraph::clear_claimed_marks();
2453
2454
// General strong roots.
2455
Universe::oops_do(adjust_pointer_closure());
2456
JNIHandles::oops_do(adjust_pointer_closure()); // Global (strong) JNI handles
2457
CLDToOopClosure adjust_from_cld(adjust_pointer_closure());
2458
Threads::oops_do(adjust_pointer_closure(), &adjust_from_cld, NULL);
2459
ObjectSynchronizer::oops_do(adjust_pointer_closure());
2460
FlatProfiler::oops_do(adjust_pointer_closure());
2461
Management::oops_do(adjust_pointer_closure());
2462
JvmtiExport::oops_do(adjust_pointer_closure());
2463
SystemDictionary::oops_do(adjust_pointer_closure());
2464
ClassLoaderDataGraph::oops_do(adjust_pointer_closure(), adjust_klass_closure(), true);
2465
2466
// Now adjust pointers in remaining weak roots. (All of which should
2467
// have been cleared if they pointed to non-surviving objects.)
2468
// Global (weak) JNI handles
2469
JNIHandles::weak_oops_do(adjust_pointer_closure());
2470
JFR_ONLY(Jfr::weak_oops_do(adjust_pointer_closure()));
2471
2472
CodeBlobToOopClosure adjust_from_blobs(adjust_pointer_closure(), CodeBlobToOopClosure::FixRelocations);
2473
CodeCache::blobs_do(&adjust_from_blobs);
2474
StringTable::oops_do(adjust_pointer_closure());
2475
ref_processor()->weak_oops_do(adjust_pointer_closure());
2476
// Roots were visited so references into the young gen in roots
2477
// may have been scanned. Process them also.
2478
// Should the reference processor have a span that excludes
2479
// young gen objects?
2480
PSScavenge::reference_processor()->weak_oops_do(adjust_pointer_closure());
2481
}
2482
2483
void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
2484
uint parallel_gc_threads)
2485
{
2486
GCTraceTime tm("drain task setup", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2487
2488
// Find the threads that are active
2489
unsigned int which = 0;
2490
2491
const uint task_count = MAX2(parallel_gc_threads, 1U);
2492
for (uint j = 0; j < task_count; j++) {
2493
q->enqueue(new DrainStacksCompactionTask(j));
2494
ParCompactionManager::verify_region_list_empty(j);
2495
// Set the region stacks variables to "no" region stack values
2496
// so that they will be recognized and needing a region stack
2497
// in the stealing tasks if they do not get one by executing
2498
// a draining stack.
2499
ParCompactionManager* cm = ParCompactionManager::manager_array(j);
2500
cm->set_region_stack(NULL);
2501
cm->set_region_stack_index((uint)max_uintx);
2502
}
2503
ParCompactionManager::reset_recycled_stack_index();
2504
2505
// Find all regions that are available (can be filled immediately) and
2506
// distribute them to the thread stacks. The iteration is done in reverse
2507
// order (high to low) so the regions will be removed in ascending order.
2508
2509
const ParallelCompactData& sd = PSParallelCompact::summary_data();
2510
2511
size_t fillable_regions = 0; // A count for diagnostic purposes.
2512
// A region index which corresponds to the tasks created above.
2513
// "which" must be 0 <= which < task_count
2514
2515
which = 0;
2516
// id + 1 is used to test termination so unsigned can
2517
// be used with an old_space_id == 0.
2518
for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
2519
SpaceInfo* const space_info = _space_info + id;
2520
MutableSpace* const space = space_info->space();
2521
HeapWord* const new_top = space_info->new_top();
2522
2523
const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
2524
const size_t end_region =
2525
sd.addr_to_region_idx(sd.region_align_up(new_top));
2526
2527
for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
2528
if (sd.region(cur)->claim_unsafe()) {
2529
ParCompactionManager::region_list_push(which, cur);
2530
2531
if (TraceParallelOldGCCompactionPhase && Verbose) {
2532
const size_t count_mod_8 = fillable_regions & 7;
2533
if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
2534
gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur);
2535
if (count_mod_8 == 7) gclog_or_tty->cr();
2536
}
2537
2538
NOT_PRODUCT(++fillable_regions;)
2539
2540
// Assign regions to tasks in round-robin fashion.
2541
if (++which == task_count) {
2542
assert(which <= parallel_gc_threads,
2543
"Inconsistent number of workers");
2544
which = 0;
2545
}
2546
}
2547
}
2548
}
2549
2550
if (TraceParallelOldGCCompactionPhase) {
2551
if (Verbose && (fillable_regions & 7) != 0) gclog_or_tty->cr();
2552
gclog_or_tty->print_cr("%u initially fillable regions", fillable_regions);
2553
}
2554
}
2555
2556
#define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
2557
2558
void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
2559
uint parallel_gc_threads) {
2560
GCTraceTime tm("dense prefix task setup", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2561
2562
ParallelCompactData& sd = PSParallelCompact::summary_data();
2563
2564
// Iterate over all the spaces adding tasks for updating
2565
// regions in the dense prefix. Assume that 1 gc thread
2566
// will work on opening the gaps and the remaining gc threads
2567
// will work on the dense prefix.
2568
unsigned int space_id;
2569
for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
2570
HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
2571
const MutableSpace* const space = _space_info[space_id].space();
2572
2573
if (dense_prefix_end == space->bottom()) {
2574
// There is no dense prefix for this space.
2575
continue;
2576
}
2577
2578
// The dense prefix is before this region.
2579
size_t region_index_end_dense_prefix =
2580
sd.addr_to_region_idx(dense_prefix_end);
2581
RegionData* const dense_prefix_cp =
2582
sd.region(region_index_end_dense_prefix);
2583
assert(dense_prefix_end == space->end() ||
2584
dense_prefix_cp->available() ||
2585
dense_prefix_cp->claimed(),
2586
"The region after the dense prefix should always be ready to fill");
2587
2588
size_t region_index_start = sd.addr_to_region_idx(space->bottom());
2589
2590
// Is there dense prefix work?
2591
size_t total_dense_prefix_regions =
2592
region_index_end_dense_prefix - region_index_start;
2593
// How many regions of the dense prefix should be given to
2594
// each thread?
2595
if (total_dense_prefix_regions > 0) {
2596
uint tasks_for_dense_prefix = 1;
2597
if (total_dense_prefix_regions <=
2598
(parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
2599
// Don't over partition. This assumes that
2600
// PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
2601
// so there are not many regions to process.
2602
tasks_for_dense_prefix = parallel_gc_threads;
2603
} else {
2604
// Over partition
2605
tasks_for_dense_prefix = parallel_gc_threads *
2606
PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
2607
}
2608
size_t regions_per_thread = total_dense_prefix_regions /
2609
tasks_for_dense_prefix;
2610
// Give each thread at least 1 region.
2611
if (regions_per_thread == 0) {
2612
regions_per_thread = 1;
2613
}
2614
2615
for (uint k = 0; k < tasks_for_dense_prefix; k++) {
2616
if (region_index_start >= region_index_end_dense_prefix) {
2617
break;
2618
}
2619
// region_index_end is not processed
2620
size_t region_index_end = MIN2(region_index_start + regions_per_thread,
2621
region_index_end_dense_prefix);
2622
q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2623
region_index_start,
2624
region_index_end));
2625
region_index_start = region_index_end;
2626
}
2627
}
2628
// This gets any part of the dense prefix that did not
2629
// fit evenly.
2630
if (region_index_start < region_index_end_dense_prefix) {
2631
q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2632
region_index_start,
2633
region_index_end_dense_prefix));
2634
}
2635
}
2636
}
2637
2638
void PSParallelCompact::enqueue_region_stealing_tasks(
2639
GCTaskQueue* q,
2640
ParallelTaskTerminator* terminator_ptr,
2641
uint parallel_gc_threads) {
2642
GCTraceTime tm("steal task setup", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2643
2644
// Once a thread has drained it's stack, it should try to steal regions from
2645
// other threads.
2646
if (parallel_gc_threads > 1) {
2647
for (uint j = 0; j < parallel_gc_threads; j++) {
2648
q->enqueue(new StealRegionCompactionTask(terminator_ptr));
2649
}
2650
}
2651
}
2652
2653
#ifdef ASSERT
2654
// Write a histogram of the number of times the block table was filled for a
2655
// region.
2656
void PSParallelCompact::write_block_fill_histogram(outputStream* const out)
2657
{
2658
if (!TraceParallelOldGCCompactionPhase) return;
2659
2660
typedef ParallelCompactData::RegionData rd_t;
2661
ParallelCompactData& sd = summary_data();
2662
2663
for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2664
MutableSpace* const spc = _space_info[id].space();
2665
if (spc->bottom() != spc->top()) {
2666
const rd_t* const beg = sd.addr_to_region_ptr(spc->bottom());
2667
HeapWord* const top_aligned_up = sd.region_align_up(spc->top());
2668
const rd_t* const end = sd.addr_to_region_ptr(top_aligned_up);
2669
2670
size_t histo[5] = { 0, 0, 0, 0, 0 };
2671
const size_t histo_len = sizeof(histo) / sizeof(size_t);
2672
const size_t region_cnt = pointer_delta(end, beg, sizeof(rd_t));
2673
2674
for (const rd_t* cur = beg; cur < end; ++cur) {
2675
++histo[MIN2(cur->blocks_filled_count(), histo_len - 1)];
2676
}
2677
out->print("%u %-4s" SIZE_FORMAT_W(5), id, space_names[id], region_cnt);
2678
for (size_t i = 0; i < histo_len; ++i) {
2679
out->print(" " SIZE_FORMAT_W(5) " %5.1f%%",
2680
histo[i], 100.0 * histo[i] / region_cnt);
2681
}
2682
out->cr();
2683
}
2684
}
2685
}
2686
#endif // #ifdef ASSERT
2687
2688
void PSParallelCompact::compact() {
2689
// trace("5");
2690
GCTraceTime tm("compaction phase", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2691
2692
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
2693
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
2694
PSOldGen* old_gen = heap->old_gen();
2695
old_gen->start_array()->reset();
2696
uint parallel_gc_threads = heap->gc_task_manager()->workers();
2697
uint active_gc_threads = heap->gc_task_manager()->active_workers();
2698
TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2699
ParallelTaskTerminator terminator(active_gc_threads, qset);
2700
2701
GCTaskQueue* q = GCTaskQueue::create();
2702
enqueue_region_draining_tasks(q, active_gc_threads);
2703
enqueue_dense_prefix_tasks(q, active_gc_threads);
2704
enqueue_region_stealing_tasks(q, &terminator, active_gc_threads);
2705
2706
{
2707
GCTraceTime tm_pc("par compact", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2708
2709
gc_task_manager()->execute_and_wait(q);
2710
2711
#ifdef ASSERT
2712
// Verify that all regions have been processed before the deferred updates.
2713
for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2714
verify_complete(SpaceId(id));
2715
}
2716
#endif
2717
}
2718
2719
{
2720
// Update the deferred objects, if any. Any compaction manager can be used.
2721
GCTraceTime tm_du("deferred updates", print_phases(), true, &_gc_timer, _gc_tracer.gc_id());
2722
ParCompactionManager* cm = ParCompactionManager::manager_array(0);
2723
for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2724
update_deferred_objects(cm, SpaceId(id));
2725
}
2726
}
2727
2728
DEBUG_ONLY(write_block_fill_histogram(gclog_or_tty));
2729
}
2730
2731
#ifdef ASSERT
2732
void PSParallelCompact::verify_complete(SpaceId space_id) {
2733
// All Regions between space bottom() to new_top() should be marked as filled
2734
// and all Regions between new_top() and top() should be available (i.e.,
2735
// should have been emptied).
2736
ParallelCompactData& sd = summary_data();
2737
SpaceInfo si = _space_info[space_id];
2738
HeapWord* new_top_addr = sd.region_align_up(si.new_top());
2739
HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
2740
const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
2741
const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
2742
const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
2743
2744
bool issued_a_warning = false;
2745
2746
size_t cur_region;
2747
for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
2748
const RegionData* const c = sd.region(cur_region);
2749
if (!c->completed()) {
2750
warning("region " SIZE_FORMAT " not filled: "
2751
"destination_count=" SIZE_FORMAT,
2752
cur_region, c->destination_count());
2753
issued_a_warning = true;
2754
}
2755
}
2756
2757
for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
2758
const RegionData* const c = sd.region(cur_region);
2759
if (!c->available()) {
2760
warning("region " SIZE_FORMAT " not empty: "
2761
"destination_count=" SIZE_FORMAT,
2762
cur_region, c->destination_count());
2763
issued_a_warning = true;
2764
}
2765
}
2766
2767
if (issued_a_warning) {
2768
print_region_ranges();
2769
}
2770
}
2771
#endif // #ifdef ASSERT
2772
2773
// Update interior oops in the ranges of regions [beg_region, end_region).
2774
void
2775
PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
2776
SpaceId space_id,
2777
size_t beg_region,
2778
size_t end_region) {
2779
ParallelCompactData& sd = summary_data();
2780
ParMarkBitMap* const mbm = mark_bitmap();
2781
2782
HeapWord* beg_addr = sd.region_to_addr(beg_region);
2783
HeapWord* const end_addr = sd.region_to_addr(end_region);
2784
assert(beg_region <= end_region, "bad region range");
2785
assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
2786
2787
#ifdef ASSERT
2788
// Claim the regions to avoid triggering an assert when they are marked as
2789
// filled.
2790
for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
2791
assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
2792
}
2793
#endif // #ifdef ASSERT
2794
2795
if (beg_addr != space(space_id)->bottom()) {
2796
// Find the first live object or block of dead space that *starts* in this
2797
// range of regions. If a partial object crosses onto the region, skip it;
2798
// it will be marked for 'deferred update' when the object head is
2799
// processed. If dead space crosses onto the region, it is also skipped; it
2800
// will be filled when the prior region is processed. If neither of those
2801
// apply, the first word in the region is the start of a live object or dead
2802
// space.
2803
assert(beg_addr > space(space_id)->bottom(), "sanity");
2804
const RegionData* const cp = sd.region(beg_region);
2805
if (cp->partial_obj_size() != 0) {
2806
beg_addr = sd.partial_obj_end(beg_region);
2807
} else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
2808
beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
2809
}
2810
}
2811
2812
if (beg_addr < end_addr) {
2813
// A live object or block of dead space starts in this range of Regions.
2814
HeapWord* const dense_prefix_end = dense_prefix(space_id);
2815
2816
// Create closures and iterate.
2817
UpdateOnlyClosure update_closure(mbm, cm, space_id);
2818
FillClosure fill_closure(cm, space_id);
2819
ParMarkBitMap::IterationStatus status;
2820
status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
2821
dense_prefix_end);
2822
if (status == ParMarkBitMap::incomplete) {
2823
update_closure.do_addr(update_closure.source());
2824
}
2825
}
2826
2827
// Mark the regions as filled.
2828
RegionData* const beg_cp = sd.region(beg_region);
2829
RegionData* const end_cp = sd.region(end_region);
2830
for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
2831
cp->set_completed();
2832
}
2833
}
2834
2835
// Return the SpaceId for the space containing addr. If addr is not in the
2836
// heap, last_space_id is returned. In debug mode it expects the address to be
2837
// in the heap and asserts such.
2838
PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
2839
assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap");
2840
2841
for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2842
if (_space_info[id].space()->contains(addr)) {
2843
return SpaceId(id);
2844
}
2845
}
2846
2847
assert(false, "no space contains the addr");
2848
return last_space_id;
2849
}
2850
2851
void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
2852
SpaceId id) {
2853
assert(id < last_space_id, "bad space id");
2854
2855
ParallelCompactData& sd = summary_data();
2856
const SpaceInfo* const space_info = _space_info + id;
2857
ObjectStartArray* const start_array = space_info->start_array();
2858
2859
const MutableSpace* const space = space_info->space();
2860
assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
2861
HeapWord* const beg_addr = space_info->dense_prefix();
2862
HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
2863
2864
const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
2865
const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
2866
const RegionData* cur_region;
2867
for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
2868
HeapWord* const addr = cur_region->deferred_obj_addr();
2869
if (addr != NULL) {
2870
if (start_array != NULL) {
2871
start_array->allocate_block(addr);
2872
}
2873
oop(addr)->update_contents(cm);
2874
assert(oop(addr)->is_oop_or_null(), "should be an oop now");
2875
}
2876
}
2877
}
2878
2879
// Skip over count live words starting from beg, and return the address of the
2880
// next live word. Unless marked, the word corresponding to beg is assumed to
2881
// be dead. Callers must either ensure beg does not correspond to the middle of
2882
// an object, or account for those live words in some other way. Callers must
2883
// also ensure that there are enough live words in the range [beg, end) to skip.
2884
HeapWord*
2885
PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
2886
{
2887
assert(count > 0, "sanity");
2888
2889
ParMarkBitMap* m = mark_bitmap();
2890
idx_t bits_to_skip = m->words_to_bits(count);
2891
idx_t cur_beg = m->addr_to_bit(beg);
2892
const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
2893
2894
do {
2895
cur_beg = m->find_obj_beg(cur_beg, search_end);
2896
idx_t cur_end = m->find_obj_end(cur_beg, search_end);
2897
const size_t obj_bits = cur_end - cur_beg + 1;
2898
if (obj_bits > bits_to_skip) {
2899
return m->bit_to_addr(cur_beg + bits_to_skip);
2900
}
2901
bits_to_skip -= obj_bits;
2902
cur_beg = cur_end + 1;
2903
} while (bits_to_skip > 0);
2904
2905
// Skipping the desired number of words landed just past the end of an object.
2906
// Find the start of the next object.
2907
cur_beg = m->find_obj_beg(cur_beg, search_end);
2908
assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
2909
return m->bit_to_addr(cur_beg);
2910
}
2911
2912
HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
2913
SpaceId src_space_id,
2914
size_t src_region_idx)
2915
{
2916
assert(summary_data().is_region_aligned(dest_addr), "not aligned");
2917
2918
const SplitInfo& split_info = _space_info[src_space_id].split_info();
2919
if (split_info.dest_region_addr() == dest_addr) {
2920
// The partial object ending at the split point contains the first word to
2921
// be copied to dest_addr.
2922
return split_info.first_src_addr();
2923
}
2924
2925
const ParallelCompactData& sd = summary_data();
2926
ParMarkBitMap* const bitmap = mark_bitmap();
2927
const size_t RegionSize = ParallelCompactData::RegionSize;
2928
2929
assert(sd.is_region_aligned(dest_addr), "not aligned");
2930
const RegionData* const src_region_ptr = sd.region(src_region_idx);
2931
const size_t partial_obj_size = src_region_ptr->partial_obj_size();
2932
HeapWord* const src_region_destination = src_region_ptr->destination();
2933
2934
assert(dest_addr >= src_region_destination, "wrong src region");
2935
assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
2936
2937
HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
2938
HeapWord* const src_region_end = src_region_beg + RegionSize;
2939
2940
HeapWord* addr = src_region_beg;
2941
if (dest_addr == src_region_destination) {
2942
// Return the first live word in the source region.
2943
if (partial_obj_size == 0) {
2944
addr = bitmap->find_obj_beg(addr, src_region_end);
2945
assert(addr < src_region_end, "no objects start in src region");
2946
}
2947
return addr;
2948
}
2949
2950
// Must skip some live data.
2951
size_t words_to_skip = dest_addr - src_region_destination;
2952
assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
2953
2954
if (partial_obj_size >= words_to_skip) {
2955
// All the live words to skip are part of the partial object.
2956
addr += words_to_skip;
2957
if (partial_obj_size == words_to_skip) {
2958
// Find the first live word past the partial object.
2959
addr = bitmap->find_obj_beg(addr, src_region_end);
2960
assert(addr < src_region_end, "wrong src region");
2961
}
2962
return addr;
2963
}
2964
2965
// Skip over the partial object (if any).
2966
if (partial_obj_size != 0) {
2967
words_to_skip -= partial_obj_size;
2968
addr += partial_obj_size;
2969
}
2970
2971
// Skip over live words due to objects that start in the region.
2972
addr = skip_live_words(addr, src_region_end, words_to_skip);
2973
assert(addr < src_region_end, "wrong src region");
2974
return addr;
2975
}
2976
2977
void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
2978
SpaceId src_space_id,
2979
size_t beg_region,
2980
HeapWord* end_addr)
2981
{
2982
ParallelCompactData& sd = summary_data();
2983
2984
#ifdef ASSERT
2985
MutableSpace* const src_space = _space_info[src_space_id].space();
2986
HeapWord* const beg_addr = sd.region_to_addr(beg_region);
2987
assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
2988
"src_space_id does not match beg_addr");
2989
assert(src_space->contains(end_addr) || end_addr == src_space->end(),
2990
"src_space_id does not match end_addr");
2991
#endif // #ifdef ASSERT
2992
2993
RegionData* const beg = sd.region(beg_region);
2994
RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
2995
2996
// Regions up to new_top() are enqueued if they become available.
2997
HeapWord* const new_top = _space_info[src_space_id].new_top();
2998
RegionData* const enqueue_end =
2999
sd.addr_to_region_ptr(sd.region_align_up(new_top));
3000
3001
for (RegionData* cur = beg; cur < end; ++cur) {
3002
assert(cur->data_size() > 0, "region must have live data");
3003
cur->decrement_destination_count();
3004
if (cur < enqueue_end && cur->available() && cur->claim()) {
3005
cm->push_region(sd.region(cur));
3006
}
3007
}
3008
}
3009
3010
size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
3011
SpaceId& src_space_id,
3012
HeapWord*& src_space_top,
3013
HeapWord* end_addr)
3014
{
3015
typedef ParallelCompactData::RegionData RegionData;
3016
3017
ParallelCompactData& sd = PSParallelCompact::summary_data();
3018
const size_t region_size = ParallelCompactData::RegionSize;
3019
3020
size_t src_region_idx = 0;
3021
3022
// Skip empty regions (if any) up to the top of the space.
3023
HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
3024
RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
3025
HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
3026
const RegionData* const top_region_ptr =
3027
sd.addr_to_region_ptr(top_aligned_up);
3028
while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
3029
++src_region_ptr;
3030
}
3031
3032
if (src_region_ptr < top_region_ptr) {
3033
// The next source region is in the current space. Update src_region_idx
3034
// and the source address to match src_region_ptr.
3035
src_region_idx = sd.region(src_region_ptr);
3036
HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
3037
if (src_region_addr > closure.source()) {
3038
closure.set_source(src_region_addr);
3039
}
3040
return src_region_idx;
3041
}
3042
3043
// Switch to a new source space and find the first non-empty region.
3044
unsigned int space_id = src_space_id + 1;
3045
assert(space_id < last_space_id, "not enough spaces");
3046
3047
HeapWord* const destination = closure.destination();
3048
3049
do {
3050
MutableSpace* space = _space_info[space_id].space();
3051
HeapWord* const bottom = space->bottom();
3052
const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
3053
3054
// Iterate over the spaces that do not compact into themselves.
3055
if (bottom_cp->destination() != bottom) {
3056
HeapWord* const top_aligned_up = sd.region_align_up(space->top());
3057
const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
3058
3059
for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
3060
if (src_cp->live_obj_size() > 0) {
3061
// Found it.
3062
assert(src_cp->destination() == destination,
3063
"first live obj in the space must match the destination");
3064
assert(src_cp->partial_obj_size() == 0,
3065
"a space cannot begin with a partial obj");
3066
3067
src_space_id = SpaceId(space_id);
3068
src_space_top = space->top();
3069
const size_t src_region_idx = sd.region(src_cp);
3070
closure.set_source(sd.region_to_addr(src_region_idx));
3071
return src_region_idx;
3072
} else {
3073
assert(src_cp->data_size() == 0, "sanity");
3074
}
3075
}
3076
}
3077
} while (++space_id < last_space_id);
3078
3079
assert(false, "no source region was found");
3080
return 0;
3081
}
3082
3083
void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
3084
{
3085
typedef ParMarkBitMap::IterationStatus IterationStatus;
3086
const size_t RegionSize = ParallelCompactData::RegionSize;
3087
ParMarkBitMap* const bitmap = mark_bitmap();
3088
ParallelCompactData& sd = summary_data();
3089
RegionData* const region_ptr = sd.region(region_idx);
3090
3091
// Get the items needed to construct the closure.
3092
HeapWord* dest_addr = sd.region_to_addr(region_idx);
3093
SpaceId dest_space_id = space_id(dest_addr);
3094
ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
3095
HeapWord* new_top = _space_info[dest_space_id].new_top();
3096
assert(dest_addr < new_top, "sanity");
3097
const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
3098
3099
// Get the source region and related info.
3100
size_t src_region_idx = region_ptr->source_region();
3101
SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
3102
HeapWord* src_space_top = _space_info[src_space_id].space()->top();
3103
3104
MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
3105
closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
3106
3107
// Adjust src_region_idx to prepare for decrementing destination counts (the
3108
// destination count is not decremented when a region is copied to itself).
3109
if (src_region_idx == region_idx) {
3110
src_region_idx += 1;
3111
}
3112
3113
if (bitmap->is_unmarked(closure.source())) {
3114
// The first source word is in the middle of an object; copy the remainder
3115
// of the object or as much as will fit. The fact that pointer updates were
3116
// deferred will be noted when the object header is processed.
3117
HeapWord* const old_src_addr = closure.source();
3118
closure.copy_partial_obj();
3119
if (closure.is_full()) {
3120
decrement_destination_counts(cm, src_space_id, src_region_idx,
3121
closure.source());
3122
region_ptr->set_deferred_obj_addr(NULL);
3123
region_ptr->set_completed();
3124
return;
3125
}
3126
3127
HeapWord* const end_addr = sd.region_align_down(closure.source());
3128
if (sd.region_align_down(old_src_addr) != end_addr) {
3129
// The partial object was copied from more than one source region.
3130
decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
3131
3132
// Move to the next source region, possibly switching spaces as well. All
3133
// args except end_addr may be modified.
3134
src_region_idx = next_src_region(closure, src_space_id, src_space_top,
3135
end_addr);
3136
}
3137
}
3138
3139
do {
3140
HeapWord* const cur_addr = closure.source();
3141
HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
3142
src_space_top);
3143
IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
3144
3145
if (status == ParMarkBitMap::incomplete) {
3146
// The last obj that starts in the source region does not end in the
3147
// region.
3148
assert(closure.source() < end_addr, "sanity");
3149
HeapWord* const obj_beg = closure.source();
3150
HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
3151
src_space_top);
3152
HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
3153
if (obj_end < range_end) {
3154
// The end was found; the entire object will fit.
3155
status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
3156
assert(status != ParMarkBitMap::would_overflow, "sanity");
3157
} else {
3158
// The end was not found; the object will not fit.
3159
assert(range_end < src_space_top, "obj cannot cross space boundary");
3160
status = ParMarkBitMap::would_overflow;
3161
}
3162
}
3163
3164
if (status == ParMarkBitMap::would_overflow) {
3165
// The last object did not fit. Note that interior oop updates were
3166
// deferred, then copy enough of the object to fill the region.
3167
region_ptr->set_deferred_obj_addr(closure.destination());
3168
status = closure.copy_until_full(); // copies from closure.source()
3169
3170
decrement_destination_counts(cm, src_space_id, src_region_idx,
3171
closure.source());
3172
region_ptr->set_completed();
3173
return;
3174
}
3175
3176
if (status == ParMarkBitMap::full) {
3177
decrement_destination_counts(cm, src_space_id, src_region_idx,
3178
closure.source());
3179
region_ptr->set_deferred_obj_addr(NULL);
3180
region_ptr->set_completed();
3181
return;
3182
}
3183
3184
decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
3185
3186
// Move to the next source region, possibly switching spaces as well. All
3187
// args except end_addr may be modified.
3188
src_region_idx = next_src_region(closure, src_space_id, src_space_top,
3189
end_addr);
3190
} while (true);
3191
}
3192
3193
void PSParallelCompact::fill_blocks(size_t region_idx)
3194
{
3195
// Fill in the block table elements for the specified region. Each block
3196
// table element holds the number of live words in the region that are to the
3197
// left of the first object that starts in the block. Thus only blocks in
3198
// which an object starts need to be filled.
3199
//
3200
// The algorithm scans the section of the bitmap that corresponds to the
3201
// region, keeping a running total of the live words. When an object start is
3202
// found, if it's the first to start in the block that contains it, the
3203
// current total is written to the block table element.
3204
const size_t Log2BlockSize = ParallelCompactData::Log2BlockSize;
3205
const size_t Log2RegionSize = ParallelCompactData::Log2RegionSize;
3206
const size_t RegionSize = ParallelCompactData::RegionSize;
3207
3208
ParallelCompactData& sd = summary_data();
3209
const size_t partial_obj_size = sd.region(region_idx)->partial_obj_size();
3210
if (partial_obj_size >= RegionSize) {
3211
return; // No objects start in this region.
3212
}
3213
3214
// Ensure the first loop iteration decides that the block has changed.
3215
size_t cur_block = sd.block_count();
3216
3217
const ParMarkBitMap* const bitmap = mark_bitmap();
3218
3219
const size_t Log2BitsPerBlock = Log2BlockSize - LogMinObjAlignment;
3220
assert((size_t)1 << Log2BitsPerBlock ==
3221
bitmap->words_to_bits(ParallelCompactData::BlockSize), "sanity");
3222
3223
size_t beg_bit = bitmap->words_to_bits(region_idx << Log2RegionSize);
3224
const size_t range_end = beg_bit + bitmap->words_to_bits(RegionSize);
3225
size_t live_bits = bitmap->words_to_bits(partial_obj_size);
3226
beg_bit = bitmap->find_obj_beg(beg_bit + live_bits, range_end);
3227
while (beg_bit < range_end) {
3228
const size_t new_block = beg_bit >> Log2BitsPerBlock;
3229
if (new_block != cur_block) {
3230
cur_block = new_block;
3231
sd.block(cur_block)->set_offset(bitmap->bits_to_words(live_bits));
3232
}
3233
3234
const size_t end_bit = bitmap->find_obj_end(beg_bit, range_end);
3235
if (end_bit < range_end - 1) {
3236
live_bits += end_bit - beg_bit + 1;
3237
beg_bit = bitmap->find_obj_beg(end_bit + 1, range_end);
3238
} else {
3239
return;
3240
}
3241
}
3242
}
3243
3244
void
3245
PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
3246
const MutableSpace* sp = space(space_id);
3247
if (sp->is_empty()) {
3248
return;
3249
}
3250
3251
ParallelCompactData& sd = PSParallelCompact::summary_data();
3252
ParMarkBitMap* const bitmap = mark_bitmap();
3253
HeapWord* const dp_addr = dense_prefix(space_id);
3254
HeapWord* beg_addr = sp->bottom();
3255
HeapWord* end_addr = sp->top();
3256
3257
assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
3258
3259
const size_t beg_region = sd.addr_to_region_idx(beg_addr);
3260
const size_t dp_region = sd.addr_to_region_idx(dp_addr);
3261
if (beg_region < dp_region) {
3262
update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
3263
}
3264
3265
// The destination of the first live object that starts in the region is one
3266
// past the end of the partial object entering the region (if any).
3267
HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
3268
HeapWord* const new_top = _space_info[space_id].new_top();
3269
assert(new_top >= dest_addr, "bad new_top value");
3270
const size_t words = pointer_delta(new_top, dest_addr);
3271
3272
if (words > 0) {
3273
ObjectStartArray* start_array = _space_info[space_id].start_array();
3274
MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
3275
3276
ParMarkBitMap::IterationStatus status;
3277
status = bitmap->iterate(&closure, dest_addr, end_addr);
3278
assert(status == ParMarkBitMap::full, "iteration not complete");
3279
assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
3280
"live objects skipped because closure is full");
3281
}
3282
}
3283
3284
jlong PSParallelCompact::millis_since_last_gc() {
3285
// We need a monotonically non-deccreasing time in ms but
3286
// os::javaTimeMillis() does not guarantee monotonicity.
3287
jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3288
jlong ret_val = now - _time_of_last_gc;
3289
// XXX See note in genCollectedHeap::millis_since_last_gc().
3290
if (ret_val < 0) {
3291
NOT_PRODUCT(warning("time warp: " INT64_FORMAT, ret_val);)
3292
return 0;
3293
}
3294
return ret_val;
3295
}
3296
3297
void PSParallelCompact::reset_millis_since_last_gc() {
3298
// We need a monotonically non-deccreasing time in ms but
3299
// os::javaTimeMillis() does not guarantee monotonicity.
3300
_time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3301
}
3302
3303
ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
3304
{
3305
if (source() != destination()) {
3306
DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3307
Copy::aligned_conjoint_words(source(), destination(), words_remaining());
3308
}
3309
update_state(words_remaining());
3310
assert(is_full(), "sanity");
3311
return ParMarkBitMap::full;
3312
}
3313
3314
void MoveAndUpdateClosure::copy_partial_obj()
3315
{
3316
size_t words = words_remaining();
3317
3318
HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
3319
HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
3320
if (end_addr < range_end) {
3321
words = bitmap()->obj_size(source(), end_addr);
3322
}
3323
3324
// This test is necessary; if omitted, the pointer updates to a partial object
3325
// that crosses the dense prefix boundary could be overwritten.
3326
if (source() != destination()) {
3327
DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3328
Copy::aligned_conjoint_words(source(), destination(), words);
3329
}
3330
update_state(words);
3331
}
3332
3333
ParMarkBitMapClosure::IterationStatus
3334
MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
3335
assert(destination() != NULL, "sanity");
3336
assert(bitmap()->obj_size(addr) == words, "bad size");
3337
3338
_source = addr;
3339
assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
3340
destination(), "wrong destination");
3341
3342
if (words > words_remaining()) {
3343
return ParMarkBitMap::would_overflow;
3344
}
3345
3346
// The start_array must be updated even if the object is not moving.
3347
if (_start_array != NULL) {
3348
_start_array->allocate_block(destination());
3349
}
3350
3351
if (destination() != source()) {
3352
DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3353
Copy::aligned_conjoint_words(source(), destination(), words);
3354
}
3355
3356
oop moved_oop = (oop) destination();
3357
moved_oop->update_contents(compaction_manager());
3358
assert(moved_oop->is_oop_or_null(), "Object should be whole at this point");
3359
3360
update_state(words);
3361
assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
3362
return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
3363
}
3364
3365
UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
3366
ParCompactionManager* cm,
3367
PSParallelCompact::SpaceId space_id) :
3368
ParMarkBitMapClosure(mbm, cm),
3369
_space_id(space_id),
3370
_start_array(PSParallelCompact::start_array(space_id))
3371
{
3372
}
3373
3374
// Updates the references in the object to their new values.
3375
ParMarkBitMapClosure::IterationStatus
3376
UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
3377
do_addr(addr);
3378
return ParMarkBitMap::incomplete;
3379
}
3380
3381