Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/gc_implementation/parallelScavenge/psScavenge.cpp
38920 views
1
/*
2
* Copyright (c) 2002, 2016, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "classfile/symbolTable.hpp"
27
#include "code/codeCache.hpp"
28
#include "gc_implementation/parallelScavenge/cardTableExtension.hpp"
29
#include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
30
#include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
31
#include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
32
#include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
33
#include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
34
#include "gc_implementation/parallelScavenge/psScavenge.inline.hpp"
35
#include "gc_implementation/parallelScavenge/psTasks.hpp"
36
#include "gc_implementation/shared/gcHeapSummary.hpp"
37
#include "gc_implementation/shared/gcTimer.hpp"
38
#include "gc_implementation/shared/gcTrace.hpp"
39
#include "gc_implementation/shared/gcTraceTime.hpp"
40
#include "gc_implementation/shared/isGCActiveMark.hpp"
41
#include "gc_implementation/shared/spaceDecorator.hpp"
42
#include "gc_interface/gcCause.hpp"
43
#include "memory/collectorPolicy.hpp"
44
#include "memory/gcLocker.inline.hpp"
45
#include "memory/referencePolicy.hpp"
46
#include "memory/referenceProcessor.hpp"
47
#include "memory/resourceArea.hpp"
48
#include "oops/oop.inline.hpp"
49
#include "oops/oop.psgc.inline.hpp"
50
#include "runtime/biasedLocking.hpp"
51
#include "runtime/fprofiler.hpp"
52
#include "runtime/handles.inline.hpp"
53
#include "runtime/threadCritical.hpp"
54
#include "runtime/vmThread.hpp"
55
#include "runtime/vm_operations.hpp"
56
#include "services/memoryService.hpp"
57
#include "utilities/stack.inline.hpp"
58
59
PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
60
61
HeapWord* PSScavenge::_to_space_top_before_gc = NULL;
62
int PSScavenge::_consecutive_skipped_scavenges = 0;
63
ReferenceProcessor* PSScavenge::_ref_processor = NULL;
64
CardTableExtension* PSScavenge::_card_table = NULL;
65
bool PSScavenge::_survivor_overflow = false;
66
uint PSScavenge::_tenuring_threshold = 0;
67
HeapWord* PSScavenge::_young_generation_boundary = NULL;
68
uintptr_t PSScavenge::_young_generation_boundary_compressed = 0;
69
elapsedTimer PSScavenge::_accumulated_time;
70
STWGCTimer PSScavenge::_gc_timer;
71
ParallelScavengeTracer PSScavenge::_gc_tracer;
72
Stack<markOop, mtGC> PSScavenge::_preserved_mark_stack;
73
Stack<oop, mtGC> PSScavenge::_preserved_oop_stack;
74
CollectorCounters* PSScavenge::_counters = NULL;
75
76
// Define before use
77
class PSIsAliveClosure: public BoolObjectClosure {
78
public:
79
bool do_object_b(oop p) {
80
return (!PSScavenge::is_obj_in_young(p)) || p->is_forwarded();
81
}
82
};
83
84
PSIsAliveClosure PSScavenge::_is_alive_closure;
85
86
class PSKeepAliveClosure: public OopClosure {
87
protected:
88
MutableSpace* _to_space;
89
PSPromotionManager* _promotion_manager;
90
91
public:
92
PSKeepAliveClosure(PSPromotionManager* pm) : _promotion_manager(pm) {
93
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
94
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
95
_to_space = heap->young_gen()->to_space();
96
97
assert(_promotion_manager != NULL, "Sanity");
98
}
99
100
template <class T> void do_oop_work(T* p) {
101
assert (!oopDesc::is_null(*p), "expected non-null ref");
102
assert ((oopDesc::load_decode_heap_oop_not_null(p))->is_oop(),
103
"expected an oop while scanning weak refs");
104
105
// Weak refs may be visited more than once.
106
if (PSScavenge::should_scavenge(p, _to_space)) {
107
PSScavenge::copy_and_push_safe_barrier<T, /*promote_immediately=*/false>(_promotion_manager, p);
108
}
109
}
110
virtual void do_oop(oop* p) { PSKeepAliveClosure::do_oop_work(p); }
111
virtual void do_oop(narrowOop* p) { PSKeepAliveClosure::do_oop_work(p); }
112
};
113
114
class PSEvacuateFollowersClosure: public VoidClosure {
115
private:
116
PSPromotionManager* _promotion_manager;
117
public:
118
PSEvacuateFollowersClosure(PSPromotionManager* pm) : _promotion_manager(pm) {}
119
120
virtual void do_void() {
121
assert(_promotion_manager != NULL, "Sanity");
122
_promotion_manager->drain_stacks(true);
123
guarantee(_promotion_manager->stacks_empty(),
124
"stacks should be empty at this point");
125
}
126
};
127
128
class PSPromotionFailedClosure : public ObjectClosure {
129
virtual void do_object(oop obj) {
130
if (obj->is_forwarded()) {
131
obj->init_mark();
132
}
133
}
134
};
135
136
class PSRefProcTaskProxy: public GCTask {
137
typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
138
ProcessTask & _rp_task;
139
uint _work_id;
140
public:
141
PSRefProcTaskProxy(ProcessTask & rp_task, uint work_id)
142
: _rp_task(rp_task),
143
_work_id(work_id)
144
{ }
145
146
private:
147
virtual char* name() { return (char *)"Process referents by policy in parallel"; }
148
virtual void do_it(GCTaskManager* manager, uint which);
149
};
150
151
void PSRefProcTaskProxy::do_it(GCTaskManager* manager, uint which)
152
{
153
PSPromotionManager* promotion_manager =
154
PSPromotionManager::gc_thread_promotion_manager(which);
155
assert(promotion_manager != NULL, "sanity check");
156
PSKeepAliveClosure keep_alive(promotion_manager);
157
PSEvacuateFollowersClosure evac_followers(promotion_manager);
158
PSIsAliveClosure is_alive;
159
_rp_task.work(_work_id, is_alive, keep_alive, evac_followers);
160
}
161
162
class PSRefEnqueueTaskProxy: public GCTask {
163
typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
164
EnqueueTask& _enq_task;
165
uint _work_id;
166
167
public:
168
PSRefEnqueueTaskProxy(EnqueueTask& enq_task, uint work_id)
169
: _enq_task(enq_task),
170
_work_id(work_id)
171
{ }
172
173
virtual char* name() { return (char *)"Enqueue reference objects in parallel"; }
174
virtual void do_it(GCTaskManager* manager, uint which)
175
{
176
_enq_task.work(_work_id);
177
}
178
};
179
180
class PSRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
181
virtual void execute(ProcessTask& task);
182
virtual void execute(EnqueueTask& task);
183
};
184
185
void PSRefProcTaskExecutor::execute(ProcessTask& task)
186
{
187
GCTaskQueue* q = GCTaskQueue::create();
188
GCTaskManager* manager = ParallelScavengeHeap::gc_task_manager();
189
for(uint i=0; i < manager->active_workers(); i++) {
190
q->enqueue(new PSRefProcTaskProxy(task, i));
191
}
192
ParallelTaskTerminator terminator(manager->active_workers(),
193
(TaskQueueSetSuper*) PSPromotionManager::stack_array_depth());
194
if (task.marks_oops_alive() && manager->active_workers() > 1) {
195
for (uint j = 0; j < manager->active_workers(); j++) {
196
q->enqueue(new StealTask(&terminator));
197
}
198
}
199
manager->execute_and_wait(q);
200
}
201
202
203
void PSRefProcTaskExecutor::execute(EnqueueTask& task)
204
{
205
GCTaskQueue* q = GCTaskQueue::create();
206
GCTaskManager* manager = ParallelScavengeHeap::gc_task_manager();
207
for(uint i=0; i < manager->active_workers(); i++) {
208
q->enqueue(new PSRefEnqueueTaskProxy(task, i));
209
}
210
manager->execute_and_wait(q);
211
}
212
213
// This method contains all heap specific policy for invoking scavenge.
214
// PSScavenge::invoke_no_policy() will do nothing but attempt to
215
// scavenge. It will not clean up after failed promotions, bail out if
216
// we've exceeded policy time limits, or any other special behavior.
217
// All such policy should be placed here.
218
//
219
// Note that this method should only be called from the vm_thread while
220
// at a safepoint!
221
bool PSScavenge::invoke() {
222
assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
223
assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
224
assert(!Universe::heap()->is_gc_active(), "not reentrant");
225
226
ParallelScavengeHeap* const heap = (ParallelScavengeHeap*)Universe::heap();
227
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
228
229
PSAdaptiveSizePolicy* policy = heap->size_policy();
230
IsGCActiveMark mark;
231
232
const bool scavenge_done = PSScavenge::invoke_no_policy();
233
const bool need_full_gc = !scavenge_done ||
234
policy->should_full_GC(heap->old_gen()->free_in_bytes());
235
bool full_gc_done = false;
236
237
if (UsePerfData) {
238
PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
239
const int ffs_val = need_full_gc ? full_follows_scavenge : not_skipped;
240
counters->update_full_follows_scavenge(ffs_val);
241
}
242
243
if (need_full_gc) {
244
GCCauseSetter gccs(heap, GCCause::_adaptive_size_policy);
245
CollectorPolicy* cp = heap->collector_policy();
246
const bool clear_all_softrefs = cp->should_clear_all_soft_refs();
247
248
if (UseParallelOldGC) {
249
full_gc_done = PSParallelCompact::invoke_no_policy(clear_all_softrefs);
250
} else {
251
full_gc_done = PSMarkSweep::invoke_no_policy(clear_all_softrefs);
252
}
253
}
254
255
return full_gc_done;
256
}
257
258
// This method contains no policy. You should probably
259
// be calling invoke() instead.
260
bool PSScavenge::invoke_no_policy() {
261
assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
262
assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
263
264
assert(_preserved_mark_stack.is_empty(), "should be empty");
265
assert(_preserved_oop_stack.is_empty(), "should be empty");
266
267
_gc_timer.register_gc_start();
268
269
TimeStamp scavenge_entry;
270
TimeStamp scavenge_midpoint;
271
TimeStamp scavenge_exit;
272
273
scavenge_entry.update();
274
275
if (GC_locker::check_active_before_gc()) {
276
return false;
277
}
278
279
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
280
GCCause::Cause gc_cause = heap->gc_cause();
281
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
282
283
// Check for potential problems.
284
if (!should_attempt_scavenge()) {
285
return false;
286
}
287
288
_gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start());
289
290
bool promotion_failure_occurred = false;
291
292
PSYoungGen* young_gen = heap->young_gen();
293
PSOldGen* old_gen = heap->old_gen();
294
PSAdaptiveSizePolicy* size_policy = heap->size_policy();
295
296
heap->increment_total_collections();
297
298
AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
299
300
if ((gc_cause != GCCause::_java_lang_system_gc) ||
301
UseAdaptiveSizePolicyWithSystemGC) {
302
// Gather the feedback data for eden occupancy.
303
young_gen->eden_space()->accumulate_statistics();
304
}
305
306
if (ZapUnusedHeapArea) {
307
// Save information needed to minimize mangling
308
heap->record_gen_tops_before_GC();
309
}
310
311
heap->print_heap_before_gc();
312
heap->trace_heap_before_gc(&_gc_tracer);
313
314
assert(!NeverTenure || _tenuring_threshold == markOopDesc::max_age + 1, "Sanity");
315
assert(!AlwaysTenure || _tenuring_threshold == 0, "Sanity");
316
317
size_t prev_used = heap->used();
318
319
// Fill in TLABs
320
heap->accumulate_statistics_all_tlabs();
321
heap->ensure_parsability(true); // retire TLABs
322
323
if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
324
HandleMark hm; // Discard invalid handles created during verification
325
Universe::verify(" VerifyBeforeGC:");
326
}
327
328
{
329
ResourceMark rm;
330
HandleMark hm;
331
332
TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
333
GCTraceTime t1(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL, _gc_tracer.gc_id());
334
TraceCollectorStats tcs(counters());
335
TraceMemoryManagerStats tms(false /* not full GC */,gc_cause);
336
337
if (TraceGen0Time) accumulated_time()->start();
338
339
// Let the size policy know we're starting
340
size_policy->minor_collection_begin();
341
342
// Verify the object start arrays.
343
if (VerifyObjectStartArray &&
344
VerifyBeforeGC) {
345
old_gen->verify_object_start_array();
346
}
347
348
// Verify no unmarked old->young roots
349
if (VerifyRememberedSets) {
350
CardTableExtension::verify_all_young_refs_imprecise();
351
}
352
353
if (!ScavengeWithObjectsInToSpace) {
354
assert(young_gen->to_space()->is_empty(),
355
"Attempt to scavenge with live objects in to_space");
356
young_gen->to_space()->clear(SpaceDecorator::Mangle);
357
} else if (ZapUnusedHeapArea) {
358
young_gen->to_space()->mangle_unused_area();
359
}
360
save_to_space_top_before_gc();
361
362
COMPILER2_PRESENT(DerivedPointerTable::clear());
363
364
reference_processor()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
365
reference_processor()->setup_policy(false);
366
367
// We track how much was promoted to the next generation for
368
// the AdaptiveSizePolicy.
369
size_t old_gen_used_before = old_gen->used_in_bytes();
370
371
// For PrintGCDetails
372
size_t young_gen_used_before = young_gen->used_in_bytes();
373
374
// Reset our survivor overflow.
375
set_survivor_overflow(false);
376
377
// We need to save the old top values before
378
// creating the promotion_manager. We pass the top
379
// values to the card_table, to prevent it from
380
// straying into the promotion labs.
381
HeapWord* old_top = old_gen->object_space()->top();
382
383
// Release all previously held resources
384
gc_task_manager()->release_all_resources();
385
386
// Set the number of GC threads to be used in this collection
387
gc_task_manager()->set_active_gang();
388
gc_task_manager()->task_idle_workers();
389
// Get the active number of workers here and use that value
390
// throughout the methods.
391
uint active_workers = gc_task_manager()->active_workers();
392
heap->set_par_threads(active_workers);
393
394
PSPromotionManager::pre_scavenge();
395
396
// We'll use the promotion manager again later.
397
PSPromotionManager* promotion_manager = PSPromotionManager::vm_thread_promotion_manager();
398
{
399
GCTraceTime tm("Scavenge", false, false, &_gc_timer, _gc_tracer.gc_id());
400
ParallelScavengeHeap::ParStrongRootsScope psrs;
401
402
GCTaskQueue* q = GCTaskQueue::create();
403
404
if (!old_gen->object_space()->is_empty()) {
405
// There are only old-to-young pointers if there are objects
406
// in the old gen.
407
uint stripe_total = active_workers;
408
for(uint i=0; i < stripe_total; i++) {
409
q->enqueue(new OldToYoungRootsTask(old_gen, old_top, i, stripe_total));
410
}
411
}
412
413
q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::universe));
414
q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::jni_handles));
415
// We scan the thread roots in parallel
416
Threads::create_thread_roots_tasks(q);
417
q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::object_synchronizer));
418
q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::flat_profiler));
419
q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::management));
420
q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::system_dictionary));
421
q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::class_loader_data));
422
q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::jvmti));
423
q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::code_cache));
424
425
ParallelTaskTerminator terminator(
426
active_workers,
427
(TaskQueueSetSuper*) promotion_manager->stack_array_depth());
428
if (active_workers > 1) {
429
for (uint j = 0; j < active_workers; j++) {
430
q->enqueue(new StealTask(&terminator));
431
}
432
}
433
434
gc_task_manager()->execute_and_wait(q);
435
}
436
437
scavenge_midpoint.update();
438
439
// Process reference objects discovered during scavenge
440
{
441
GCTraceTime tm("References", false, false, &_gc_timer, _gc_tracer.gc_id());
442
443
reference_processor()->setup_policy(false); // not always_clear
444
reference_processor()->set_active_mt_degree(active_workers);
445
PSKeepAliveClosure keep_alive(promotion_manager);
446
PSEvacuateFollowersClosure evac_followers(promotion_manager);
447
ReferenceProcessorStats stats;
448
if (reference_processor()->processing_is_mt()) {
449
PSRefProcTaskExecutor task_executor;
450
stats = reference_processor()->process_discovered_references(
451
&_is_alive_closure, &keep_alive, &evac_followers, &task_executor,
452
&_gc_timer, _gc_tracer.gc_id());
453
} else {
454
stats = reference_processor()->process_discovered_references(
455
&_is_alive_closure, &keep_alive, &evac_followers, NULL, &_gc_timer, _gc_tracer.gc_id());
456
}
457
458
_gc_tracer.report_gc_reference_stats(stats);
459
460
// Enqueue reference objects discovered during scavenge.
461
if (reference_processor()->processing_is_mt()) {
462
PSRefProcTaskExecutor task_executor;
463
reference_processor()->enqueue_discovered_references(&task_executor);
464
} else {
465
reference_processor()->enqueue_discovered_references(NULL);
466
}
467
}
468
469
{
470
GCTraceTime tm("StringTable", false, false, &_gc_timer, _gc_tracer.gc_id());
471
// Unlink any dead interned Strings and process the remaining live ones.
472
PSScavengeRootsClosure root_closure(promotion_manager);
473
StringTable::unlink_or_oops_do(&_is_alive_closure, &root_closure);
474
}
475
476
// Finally, flush the promotion_manager's labs, and deallocate its stacks.
477
promotion_failure_occurred = PSPromotionManager::post_scavenge(_gc_tracer);
478
if (promotion_failure_occurred) {
479
clean_up_failed_promotion();
480
if (PrintGC) {
481
gclog_or_tty->print("--");
482
}
483
}
484
485
// Let the size policy know we're done. Note that we count promotion
486
// failure cleanup time as part of the collection (otherwise, we're
487
// implicitly saying it's mutator time).
488
size_policy->minor_collection_end(gc_cause);
489
490
if (!promotion_failure_occurred) {
491
// Swap the survivor spaces.
492
young_gen->eden_space()->clear(SpaceDecorator::Mangle);
493
young_gen->from_space()->clear(SpaceDecorator::Mangle);
494
young_gen->swap_spaces();
495
496
size_t survived = young_gen->from_space()->used_in_bytes();
497
size_t promoted = old_gen->used_in_bytes() - old_gen_used_before;
498
size_policy->update_averages(_survivor_overflow, survived, promoted);
499
500
// A successful scavenge should restart the GC time limit count which is
501
// for full GC's.
502
size_policy->reset_gc_overhead_limit_count();
503
if (UseAdaptiveSizePolicy) {
504
// Calculate the new survivor size and tenuring threshold
505
506
if (PrintAdaptiveSizePolicy) {
507
gclog_or_tty->print("AdaptiveSizeStart: ");
508
gclog_or_tty->stamp();
509
gclog_or_tty->print_cr(" collection: %d ",
510
heap->total_collections());
511
512
if (Verbose) {
513
gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d",
514
old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
515
}
516
}
517
518
519
if (UsePerfData) {
520
PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
521
counters->update_old_eden_size(
522
size_policy->calculated_eden_size_in_bytes());
523
counters->update_old_promo_size(
524
size_policy->calculated_promo_size_in_bytes());
525
counters->update_old_capacity(old_gen->capacity_in_bytes());
526
counters->update_young_capacity(young_gen->capacity_in_bytes());
527
counters->update_survived(survived);
528
counters->update_promoted(promoted);
529
counters->update_survivor_overflowed(_survivor_overflow);
530
}
531
532
size_t max_young_size = young_gen->max_size();
533
534
// Deciding a free ratio in the young generation is tricky, so if
535
// MinHeapFreeRatio or MaxHeapFreeRatio are in use (implicating
536
// that the old generation size may have been limited because of them) we
537
// should then limit our young generation size using NewRatio to have it
538
// follow the old generation size.
539
if (MinHeapFreeRatio != 0 || MaxHeapFreeRatio != 100) {
540
max_young_size = MIN2(old_gen->capacity_in_bytes() / NewRatio, young_gen->max_size());
541
}
542
543
size_t survivor_limit =
544
size_policy->max_survivor_size(max_young_size);
545
_tenuring_threshold =
546
size_policy->compute_survivor_space_size_and_threshold(
547
_survivor_overflow,
548
_tenuring_threshold,
549
survivor_limit);
550
551
if (PrintTenuringDistribution) {
552
gclog_or_tty->cr();
553
gclog_or_tty->print_cr("Desired survivor size " SIZE_FORMAT " bytes, new threshold %u (max %u)",
554
size_policy->calculated_survivor_size_in_bytes(),
555
_tenuring_threshold, MaxTenuringThreshold);
556
}
557
558
if (UsePerfData) {
559
PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
560
counters->update_tenuring_threshold(_tenuring_threshold);
561
counters->update_survivor_size_counters();
562
}
563
564
// Do call at minor collections?
565
// Don't check if the size_policy is ready at this
566
// level. Let the size_policy check that internally.
567
if (UseAdaptiveGenerationSizePolicyAtMinorCollection &&
568
((gc_cause != GCCause::_java_lang_system_gc) ||
569
UseAdaptiveSizePolicyWithSystemGC)) {
570
571
// Calculate optimial free space amounts
572
assert(young_gen->max_size() >
573
young_gen->from_space()->capacity_in_bytes() +
574
young_gen->to_space()->capacity_in_bytes(),
575
"Sizes of space in young gen are out-of-bounds");
576
577
size_t young_live = young_gen->used_in_bytes();
578
size_t eden_live = young_gen->eden_space()->used_in_bytes();
579
size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
580
size_t max_old_gen_size = old_gen->max_gen_size();
581
size_t max_eden_size = max_young_size -
582
young_gen->from_space()->capacity_in_bytes() -
583
young_gen->to_space()->capacity_in_bytes();
584
585
// Used for diagnostics
586
size_policy->clear_generation_free_space_flags();
587
588
size_policy->compute_eden_space_size(young_live,
589
eden_live,
590
cur_eden,
591
max_eden_size,
592
false /* not full gc*/);
593
594
size_policy->check_gc_overhead_limit(young_live,
595
eden_live,
596
max_old_gen_size,
597
max_eden_size,
598
false /* not full gc*/,
599
gc_cause,
600
heap->collector_policy());
601
602
size_policy->decay_supplemental_growth(false /* not full gc*/);
603
}
604
// Resize the young generation at every collection
605
// even if new sizes have not been calculated. This is
606
// to allow resizes that may have been inhibited by the
607
// relative location of the "to" and "from" spaces.
608
609
// Resizing the old gen at minor collects can cause increases
610
// that don't feed back to the generation sizing policy until
611
// a major collection. Don't resize the old gen here.
612
613
heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
614
size_policy->calculated_survivor_size_in_bytes());
615
616
if (PrintAdaptiveSizePolicy) {
617
gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
618
heap->total_collections());
619
}
620
}
621
622
// Update the structure of the eden. With NUMA-eden CPU hotplugging or offlining can
623
// cause the change of the heap layout. Make sure eden is reshaped if that's the case.
624
// Also update() will case adaptive NUMA chunk resizing.
625
assert(young_gen->eden_space()->is_empty(), "eden space should be empty now");
626
young_gen->eden_space()->update();
627
628
heap->gc_policy_counters()->update_counters();
629
630
heap->resize_all_tlabs();
631
632
assert(young_gen->to_space()->is_empty(), "to space should be empty now");
633
}
634
635
COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
636
637
NOT_PRODUCT(reference_processor()->verify_no_references_recorded());
638
639
// Re-verify object start arrays
640
if (VerifyObjectStartArray &&
641
VerifyAfterGC) {
642
old_gen->verify_object_start_array();
643
}
644
645
// Verify all old -> young cards are now precise
646
if (VerifyRememberedSets) {
647
// Precise verification will give false positives. Until this is fixed,
648
// use imprecise verification.
649
// CardTableExtension::verify_all_young_refs_precise();
650
CardTableExtension::verify_all_young_refs_imprecise();
651
}
652
653
if (TraceGen0Time) accumulated_time()->stop();
654
655
if (PrintGC) {
656
if (PrintGCDetails) {
657
// Don't print a GC timestamp here. This is after the GC so
658
// would be confusing.
659
young_gen->print_used_change(young_gen_used_before);
660
}
661
heap->print_heap_change(prev_used);
662
}
663
664
// Track memory usage and detect low memory
665
MemoryService::track_memory_usage();
666
heap->update_counters();
667
668
gc_task_manager()->release_idle_workers();
669
}
670
671
if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
672
HandleMark hm; // Discard invalid handles created during verification
673
Universe::verify(" VerifyAfterGC:");
674
}
675
676
heap->print_heap_after_gc();
677
heap->trace_heap_after_gc(&_gc_tracer);
678
_gc_tracer.report_tenuring_threshold(tenuring_threshold());
679
680
if (ZapUnusedHeapArea) {
681
young_gen->eden_space()->check_mangled_unused_area_complete();
682
young_gen->from_space()->check_mangled_unused_area_complete();
683
young_gen->to_space()->check_mangled_unused_area_complete();
684
}
685
686
scavenge_exit.update();
687
688
if (PrintGCTaskTimeStamps) {
689
tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " " INT64_FORMAT,
690
scavenge_entry.ticks(), scavenge_midpoint.ticks(),
691
scavenge_exit.ticks());
692
gc_task_manager()->print_task_time_stamps();
693
}
694
695
#ifdef TRACESPINNING
696
ParallelTaskTerminator::print_termination_counts();
697
#endif
698
699
700
_gc_timer.register_gc_end();
701
702
_gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions());
703
704
return !promotion_failure_occurred;
705
}
706
707
// This method iterates over all objects in the young generation,
708
// unforwarding markOops. It then restores any preserved mark oops,
709
// and clears the _preserved_mark_stack.
710
void PSScavenge::clean_up_failed_promotion() {
711
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
712
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
713
714
PSYoungGen* young_gen = heap->young_gen();
715
716
{
717
ResourceMark rm;
718
719
// Unforward all pointers in the young gen.
720
PSPromotionFailedClosure unforward_closure;
721
young_gen->object_iterate(&unforward_closure);
722
723
if (PrintGC && Verbose) {
724
gclog_or_tty->print_cr("Restoring %d marks", _preserved_oop_stack.size());
725
}
726
727
// Restore any saved marks.
728
while (!_preserved_oop_stack.is_empty()) {
729
oop obj = _preserved_oop_stack.pop();
730
markOop mark = _preserved_mark_stack.pop();
731
obj->set_mark(mark);
732
}
733
734
// Clear the preserved mark and oop stack caches.
735
_preserved_mark_stack.clear(true);
736
_preserved_oop_stack.clear(true);
737
}
738
739
// Reset the PromotionFailureALot counters.
740
NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
741
}
742
743
// This method is called whenever an attempt to promote an object
744
// fails. Some markOops will need preservation, some will not. Note
745
// that the entire eden is traversed after a failed promotion, with
746
// all forwarded headers replaced by the default markOop. This means
747
// it is not necessary to preserve most markOops.
748
void PSScavenge::oop_promotion_failed(oop obj, markOop obj_mark) {
749
if (obj_mark->must_be_preserved_for_promotion_failure(obj)) {
750
// Should use per-worker private stacks here rather than
751
// locking a common pair of stacks.
752
ThreadCritical tc;
753
_preserved_oop_stack.push(obj);
754
_preserved_mark_stack.push(obj_mark);
755
}
756
}
757
758
bool PSScavenge::should_attempt_scavenge() {
759
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
760
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
761
PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
762
763
if (UsePerfData) {
764
counters->update_scavenge_skipped(not_skipped);
765
}
766
767
PSYoungGen* young_gen = heap->young_gen();
768
PSOldGen* old_gen = heap->old_gen();
769
770
if (!ScavengeWithObjectsInToSpace) {
771
// Do not attempt to promote unless to_space is empty
772
if (!young_gen->to_space()->is_empty()) {
773
_consecutive_skipped_scavenges++;
774
if (UsePerfData) {
775
counters->update_scavenge_skipped(to_space_not_empty);
776
}
777
return false;
778
}
779
}
780
781
// Test to see if the scavenge will likely fail.
782
PSAdaptiveSizePolicy* policy = heap->size_policy();
783
784
// A similar test is done in the policy's should_full_GC(). If this is
785
// changed, decide if that test should also be changed.
786
size_t avg_promoted = (size_t) policy->padded_average_promoted_in_bytes();
787
size_t promotion_estimate = MIN2(avg_promoted, young_gen->used_in_bytes());
788
bool result = promotion_estimate < old_gen->free_in_bytes();
789
790
if (PrintGCDetails && Verbose) {
791
gclog_or_tty->print(result ? " do scavenge: " : " skip scavenge: ");
792
gclog_or_tty->print_cr(" average_promoted " SIZE_FORMAT
793
" padded_average_promoted " SIZE_FORMAT
794
" free in old gen " SIZE_FORMAT,
795
(size_t) policy->average_promoted_in_bytes(),
796
(size_t) policy->padded_average_promoted_in_bytes(),
797
old_gen->free_in_bytes());
798
if (young_gen->used_in_bytes() <
799
(size_t) policy->padded_average_promoted_in_bytes()) {
800
gclog_or_tty->print_cr(" padded_promoted_average is greater"
801
" than maximum promotion = " SIZE_FORMAT, young_gen->used_in_bytes());
802
}
803
}
804
805
if (result) {
806
_consecutive_skipped_scavenges = 0;
807
} else {
808
_consecutive_skipped_scavenges++;
809
if (UsePerfData) {
810
counters->update_scavenge_skipped(promoted_too_large);
811
}
812
}
813
return result;
814
}
815
816
// Used to add tasks
817
GCTaskManager* const PSScavenge::gc_task_manager() {
818
assert(ParallelScavengeHeap::gc_task_manager() != NULL,
819
"shouldn't return NULL");
820
return ParallelScavengeHeap::gc_task_manager();
821
}
822
823
void PSScavenge::initialize() {
824
// Arguments must have been parsed
825
826
if (AlwaysTenure) {
827
_tenuring_threshold = 0;
828
} else if (NeverTenure) {
829
_tenuring_threshold = markOopDesc::max_age + 1;
830
} else {
831
// We want to smooth out our startup times for the AdaptiveSizePolicy
832
_tenuring_threshold = (UseAdaptiveSizePolicy) ? InitialTenuringThreshold :
833
MaxTenuringThreshold;
834
}
835
836
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
837
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
838
839
PSYoungGen* young_gen = heap->young_gen();
840
PSOldGen* old_gen = heap->old_gen();
841
842
// Set boundary between young_gen and old_gen
843
assert(old_gen->reserved().end() <= young_gen->eden_space()->bottom(),
844
"old above young");
845
set_young_generation_boundary(young_gen->eden_space()->bottom());
846
847
// Initialize ref handling object for scavenging.
848
MemRegion mr = young_gen->reserved();
849
850
_ref_processor =
851
new ReferenceProcessor(mr, // span
852
ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
853
(int) ParallelGCThreads, // mt processing degree
854
true, // mt discovery
855
(int) ParallelGCThreads, // mt discovery degree
856
true, // atomic_discovery
857
NULL); // header provides liveness info
858
859
// Cache the cardtable
860
BarrierSet* bs = Universe::heap()->barrier_set();
861
assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
862
_card_table = (CardTableExtension*)bs;
863
864
_counters = new CollectorCounters("PSScavenge", 0);
865
}
866
867