Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/gc_implementation/shared/allocationStats.hpp
38920 views
1
/*
2
* Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#ifndef SHARE_VM_GC_IMPLEMENTATION_SHARED_ALLOCATIONSTATS_HPP
26
#define SHARE_VM_GC_IMPLEMENTATION_SHARED_ALLOCATIONSTATS_HPP
27
28
#include "utilities/macros.hpp"
29
#include "memory/allocation.hpp"
30
#include "utilities/globalDefinitions.hpp"
31
#include "gc_implementation/shared/gcUtil.hpp"
32
33
class AllocationStats VALUE_OBJ_CLASS_SPEC {
34
// A duration threshold (in ms) used to filter
35
// possibly unreliable samples.
36
static float _threshold;
37
38
// We measure the demand between the end of the previous sweep and
39
// beginning of this sweep:
40
// Count(end_last_sweep) - Count(start_this_sweep)
41
// + split_births(between) - split_deaths(between)
42
// The above number divided by the time since the end of the
43
// previous sweep gives us a time rate of demand for blocks
44
// of this size. We compute a padded average of this rate as
45
// our current estimate for the time rate of demand for blocks
46
// of this size. Similarly, we keep a padded average for the time
47
// between sweeps. Our current estimate for demand for blocks of
48
// this size is then simply computed as the product of these two
49
// estimates.
50
AdaptivePaddedAverage _demand_rate_estimate;
51
52
ssize_t _desired; // Demand stimate computed as described above
53
ssize_t _coal_desired; // desired +/- small-percent for tuning coalescing
54
55
ssize_t _surplus; // count - (desired +/- small-percent),
56
// used to tune splitting in best fit
57
ssize_t _bfr_surp; // surplus at start of current sweep
58
ssize_t _prev_sweep; // count from end of previous sweep
59
ssize_t _before_sweep; // count from before current sweep
60
ssize_t _coal_births; // additional chunks from coalescing
61
ssize_t _coal_deaths; // loss from coalescing
62
ssize_t _split_births; // additional chunks from splitting
63
ssize_t _split_deaths; // loss from splitting
64
size_t _returned_bytes; // number of bytes returned to list.
65
public:
66
void initialize(bool split_birth = false) {
67
AdaptivePaddedAverage* dummy =
68
new (&_demand_rate_estimate) AdaptivePaddedAverage(CMS_FLSWeight,
69
CMS_FLSPadding);
70
_desired = 0;
71
_coal_desired = 0;
72
_surplus = 0;
73
_bfr_surp = 0;
74
_prev_sweep = 0;
75
_before_sweep = 0;
76
_coal_births = 0;
77
_coal_deaths = 0;
78
_split_births = (split_birth ? 1 : 0);
79
_split_deaths = 0;
80
_returned_bytes = 0;
81
}
82
83
AllocationStats() {
84
initialize();
85
}
86
87
// The rate estimate is in blocks per second.
88
void compute_desired(size_t count,
89
float inter_sweep_current,
90
float inter_sweep_estimate,
91
float intra_sweep_estimate) {
92
// If the latest inter-sweep time is below our granularity
93
// of measurement, we may call in here with
94
// inter_sweep_current == 0. However, even for suitably small
95
// but non-zero inter-sweep durations, we may not trust the accuracy
96
// of accumulated data, since it has not been "integrated"
97
// (read "low-pass-filtered") long enough, and would be
98
// vulnerable to noisy glitches. In such cases, we
99
// ignore the current sample and use currently available
100
// historical estimates.
101
assert(prev_sweep() + split_births() + coal_births() // "Total Production Stock"
102
>= split_deaths() + coal_deaths() + (ssize_t)count, // "Current stock + depletion"
103
"Conservation Principle");
104
if (inter_sweep_current > _threshold) {
105
ssize_t demand = prev_sweep() - (ssize_t)count + split_births() + coal_births()
106
- split_deaths() - coal_deaths();
107
assert(demand >= 0,
108
err_msg("Demand (" SSIZE_FORMAT ") should be non-negative for "
109
PTR_FORMAT " (size=" SIZE_FORMAT ")",
110
demand, p2i(this), count));
111
// Defensive: adjust for imprecision in event counting
112
if (demand < 0) {
113
demand = 0;
114
}
115
float old_rate = _demand_rate_estimate.padded_average();
116
float rate = ((float)demand)/inter_sweep_current;
117
_demand_rate_estimate.sample(rate);
118
float new_rate = _demand_rate_estimate.padded_average();
119
ssize_t old_desired = _desired;
120
float delta_ise = (CMSExtrapolateSweep ? intra_sweep_estimate : 0.0);
121
_desired = (ssize_t)(new_rate * (inter_sweep_estimate + delta_ise));
122
if (PrintFLSStatistics > 1) {
123
gclog_or_tty->print_cr(
124
"demand: " SSIZE_FORMAT ", old_rate: %f, current_rate: %f, new_rate: %f, old_desired: " SSIZE_FORMAT ", new_desired: " SSIZE_FORMAT,
125
demand, old_rate, rate, new_rate, old_desired, _desired);
126
}
127
}
128
}
129
130
ssize_t desired() const { return _desired; }
131
void set_desired(ssize_t v) { _desired = v; }
132
133
ssize_t coal_desired() const { return _coal_desired; }
134
void set_coal_desired(ssize_t v) { _coal_desired = v; }
135
136
ssize_t surplus() const { return _surplus; }
137
void set_surplus(ssize_t v) { _surplus = v; }
138
void increment_surplus() { _surplus++; }
139
void decrement_surplus() { _surplus--; }
140
141
ssize_t bfr_surp() const { return _bfr_surp; }
142
void set_bfr_surp(ssize_t v) { _bfr_surp = v; }
143
ssize_t prev_sweep() const { return _prev_sweep; }
144
void set_prev_sweep(ssize_t v) { _prev_sweep = v; }
145
ssize_t before_sweep() const { return _before_sweep; }
146
void set_before_sweep(ssize_t v) { _before_sweep = v; }
147
148
ssize_t coal_births() const { return _coal_births; }
149
void set_coal_births(ssize_t v) { _coal_births = v; }
150
void increment_coal_births() { _coal_births++; }
151
152
ssize_t coal_deaths() const { return _coal_deaths; }
153
void set_coal_deaths(ssize_t v) { _coal_deaths = v; }
154
void increment_coal_deaths() { _coal_deaths++; }
155
156
ssize_t split_births() const { return _split_births; }
157
void set_split_births(ssize_t v) { _split_births = v; }
158
void increment_split_births() { _split_births++; }
159
160
ssize_t split_deaths() const { return _split_deaths; }
161
void set_split_deaths(ssize_t v) { _split_deaths = v; }
162
void increment_split_deaths() { _split_deaths++; }
163
164
NOT_PRODUCT(
165
size_t returned_bytes() const { return _returned_bytes; }
166
void set_returned_bytes(size_t v) { _returned_bytes = v; }
167
)
168
};
169
170
#endif // SHARE_VM_GC_IMPLEMENTATION_SHARED_ALLOCATIONSTATS_HPP
171
172