Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/gc_implementation/shared/gcUtil.cpp
38921 views
1
/*
2
* Copyright (c) 2002, 2012, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "gc_implementation/shared/gcUtil.hpp"
27
28
// Catch-all file for utility classes
29
30
float AdaptiveWeightedAverage::compute_adaptive_average(float new_sample,
31
float average) {
32
// We smooth the samples by not using weight() directly until we've
33
// had enough data to make it meaningful. We'd like the first weight
34
// used to be 1, the second to be 1/2, etc until we have
35
// OLD_THRESHOLD/weight samples.
36
unsigned count_weight = 0;
37
38
// Avoid division by zero if the counter wraps (7158457)
39
if (!is_old()) {
40
count_weight = OLD_THRESHOLD/count();
41
}
42
43
unsigned adaptive_weight = (MAX2(weight(), count_weight));
44
45
float new_avg = exp_avg(average, new_sample, adaptive_weight);
46
47
return new_avg;
48
}
49
50
void AdaptiveWeightedAverage::sample(float new_sample) {
51
increment_count();
52
53
// Compute the new weighted average
54
float new_avg = compute_adaptive_average(new_sample, average());
55
set_average(new_avg);
56
_last_sample = new_sample;
57
}
58
59
void AdaptiveWeightedAverage::print() const {
60
print_on(tty);
61
}
62
63
void AdaptiveWeightedAverage::print_on(outputStream* st) const {
64
guarantee(false, "NYI");
65
}
66
67
void AdaptivePaddedAverage::print() const {
68
print_on(tty);
69
}
70
71
void AdaptivePaddedAverage::print_on(outputStream* st) const {
72
guarantee(false, "NYI");
73
}
74
75
void AdaptivePaddedNoZeroDevAverage::print() const {
76
print_on(tty);
77
}
78
79
void AdaptivePaddedNoZeroDevAverage::print_on(outputStream* st) const {
80
guarantee(false, "NYI");
81
}
82
83
void AdaptivePaddedAverage::sample(float new_sample) {
84
// Compute new adaptive weighted average based on new sample.
85
AdaptiveWeightedAverage::sample(new_sample);
86
87
// Now update the deviation and the padded average.
88
float new_avg = average();
89
float new_dev = compute_adaptive_average(fabsd(new_sample - new_avg),
90
deviation());
91
set_deviation(new_dev);
92
set_padded_average(new_avg + padding() * new_dev);
93
_last_sample = new_sample;
94
}
95
96
void AdaptivePaddedNoZeroDevAverage::sample(float new_sample) {
97
// Compute our parent classes sample information
98
AdaptiveWeightedAverage::sample(new_sample);
99
100
float new_avg = average();
101
if (new_sample != 0) {
102
// We only create a new deviation if the sample is non-zero
103
float new_dev = compute_adaptive_average(fabsd(new_sample - new_avg),
104
deviation());
105
106
set_deviation(new_dev);
107
}
108
set_padded_average(new_avg + padding() * deviation());
109
_last_sample = new_sample;
110
}
111
112
LinearLeastSquareFit::LinearLeastSquareFit(unsigned weight) :
113
_sum_x(0), _sum_x_squared(0), _sum_y(0), _sum_xy(0),
114
_intercept(0), _slope(0), _mean_x(weight), _mean_y(weight) {}
115
116
void LinearLeastSquareFit::update(double x, double y) {
117
_sum_x = _sum_x + x;
118
_sum_x_squared = _sum_x_squared + x * x;
119
_sum_y = _sum_y + y;
120
_sum_xy = _sum_xy + x * y;
121
_mean_x.sample(x);
122
_mean_y.sample(y);
123
assert(_mean_x.count() == _mean_y.count(), "Incorrect count");
124
if ( _mean_x.count() > 1 ) {
125
double slope_denominator;
126
slope_denominator = (_mean_x.count() * _sum_x_squared - _sum_x * _sum_x);
127
// Some tolerance should be injected here. A denominator that is
128
// nearly 0 should be avoided.
129
130
if (slope_denominator != 0.0) {
131
double slope_numerator;
132
slope_numerator = (_mean_x.count() * _sum_xy - _sum_x * _sum_y);
133
_slope = slope_numerator / slope_denominator;
134
135
// The _mean_y and _mean_x are decaying averages and can
136
// be used to discount earlier data. If they are used,
137
// first consider whether all the quantities should be
138
// kept as decaying averages.
139
// _intercept = _mean_y.average() - _slope * _mean_x.average();
140
_intercept = (_sum_y - _slope * _sum_x) / ((double) _mean_x.count());
141
}
142
}
143
}
144
145
double LinearLeastSquareFit::y(double x) {
146
double new_y;
147
148
if ( _mean_x.count() > 1 ) {
149
new_y = (_intercept + _slope * x);
150
return new_y;
151
} else {
152
return _mean_y.average();
153
}
154
}
155
156
// Both decrement_will_decrease() and increment_will_decrease() return
157
// true for a slope of 0. That is because a change is necessary before
158
// a slope can be calculated and a 0 slope will, in general, indicate
159
// that no calculation of the slope has yet been done. Returning true
160
// for a slope equal to 0 reflects the intuitive expectation of the
161
// dependence on the slope. Don't use the complement of these functions
162
// since that untuitive expectation is not built into the complement.
163
bool LinearLeastSquareFit::decrement_will_decrease() {
164
return (_slope >= 0.00);
165
}
166
167
bool LinearLeastSquareFit::increment_will_decrease() {
168
return (_slope <= 0.00);
169
}
170
171