Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/gc_implementation/shenandoah/shenandoahHeap.inline.hpp
38920 views
1
/*
2
* Copyright (c) 2015, 2020, Red Hat, Inc. All rights reserved.
3
*
4
* This code is free software; you can redistribute it and/or modify it
5
* under the terms of the GNU General Public License version 2 only, as
6
* published by the Free Software Foundation.
7
*
8
* This code is distributed in the hope that it will be useful, but WITHOUT
9
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
11
* version 2 for more details (a copy is included in the LICENSE file that
12
* accompanied this code).
13
*
14
* You should have received a copy of the GNU General Public License version
15
* 2 along with this work; if not, write to the Free Software Foundation,
16
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
17
*
18
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
19
* or visit www.oracle.com if you need additional information or have any
20
* questions.
21
*
22
*/
23
24
#ifndef SHARE_VM_GC_SHENANDOAH_SHENANDOAHHEAP_INLINE_HPP
25
#define SHARE_VM_GC_SHENANDOAH_SHENANDOAHHEAP_INLINE_HPP
26
27
#include "gc_implementation/shared/markBitMap.inline.hpp"
28
#include "memory/threadLocalAllocBuffer.inline.hpp"
29
#include "gc_implementation/shenandoah/shenandoahAsserts.hpp"
30
#include "gc_implementation/shenandoah/shenandoahBarrierSet.inline.hpp"
31
#include "gc_implementation/shenandoah/shenandoahCollectionSet.hpp"
32
#include "gc_implementation/shenandoah/shenandoahCollectionSet.inline.hpp"
33
#include "gc_implementation/shenandoah/shenandoahForwarding.inline.hpp"
34
#include "gc_implementation/shenandoah/shenandoahControlThread.hpp"
35
#include "gc_implementation/shenandoah/shenandoahMarkingContext.inline.hpp"
36
#include "gc_implementation/shenandoah/shenandoahHeap.hpp"
37
#include "gc_implementation/shenandoah/shenandoahHeapRegionSet.hpp"
38
#include "gc_implementation/shenandoah/shenandoahHeapRegion.inline.hpp"
39
#include "oops/oop.inline.hpp"
40
#include "runtime/atomic.hpp"
41
#include "runtime/prefetch.hpp"
42
#include "runtime/prefetch.inline.hpp"
43
#include "utilities/copy.hpp"
44
#include "utilities/globalDefinitions.hpp"
45
46
inline ShenandoahHeap* ShenandoahHeap::heap() {
47
assert(_heap != NULL, "Heap is not initialized yet");
48
return _heap;
49
}
50
51
inline ShenandoahHeapRegion* ShenandoahRegionIterator::next() {
52
size_t new_index = Atomic::add((size_t) 1, &_index);
53
// get_region() provides the bounds-check and returns NULL on OOB.
54
return _heap->get_region(new_index - 1);
55
}
56
57
inline bool ShenandoahHeap::has_forwarded_objects() const {
58
return _gc_state.is_set(HAS_FORWARDED);
59
}
60
61
inline ShenandoahWorkGang* ShenandoahHeap::workers() const {
62
return (ShenandoahWorkGang*)_workers;
63
}
64
65
inline size_t ShenandoahHeap::heap_region_index_containing(const void* addr) const {
66
uintptr_t region_start = ((uintptr_t) addr);
67
uintptr_t index = (region_start - (uintptr_t) base()) >> ShenandoahHeapRegion::region_size_bytes_shift();
68
assert(index < num_regions(), err_msg("Region index is in bounds: " PTR_FORMAT, p2i(addr)));
69
return index;
70
}
71
72
inline ShenandoahHeapRegion* const ShenandoahHeap::heap_region_containing(const void* addr) const {
73
size_t index = heap_region_index_containing(addr);
74
ShenandoahHeapRegion* const result = get_region(index);
75
assert(addr >= result->bottom() && addr < result->end(), err_msg("Heap region contains the address: " PTR_FORMAT, p2i(addr)));
76
return result;
77
}
78
79
template <class T>
80
inline oop ShenandoahHeap::update_with_forwarded_not_null(T* p, oop obj) {
81
if (in_collection_set(obj)) {
82
shenandoah_assert_forwarded_except(p, obj, is_full_gc_in_progress() || cancelled_gc() || is_degenerated_gc_in_progress());
83
obj = ShenandoahBarrierSet::resolve_forwarded_not_null(obj);
84
oopDesc::encode_store_heap_oop(p, obj);
85
}
86
#ifdef ASSERT
87
else {
88
shenandoah_assert_not_forwarded(p, obj);
89
}
90
#endif
91
return obj;
92
}
93
94
template <class T>
95
inline oop ShenandoahHeap::maybe_update_with_forwarded(T* p) {
96
T o = oopDesc::load_heap_oop(p);
97
if (! oopDesc::is_null(o)) {
98
oop obj = oopDesc::decode_heap_oop_not_null(o);
99
return maybe_update_with_forwarded_not_null(p, obj);
100
} else {
101
return NULL;
102
}
103
}
104
105
template <class T>
106
inline oop ShenandoahHeap::evac_update_with_forwarded(T* p) {
107
T o = oopDesc::load_heap_oop(p);
108
if (!oopDesc::is_null(o)) {
109
oop heap_oop = oopDesc::decode_heap_oop_not_null(o);
110
if (in_collection_set(heap_oop)) {
111
oop forwarded_oop = ShenandoahBarrierSet::resolve_forwarded_not_null(heap_oop);
112
if (forwarded_oop == heap_oop) {
113
forwarded_oop = evacuate_object(heap_oop, Thread::current());
114
}
115
oop prev = cas_oop(forwarded_oop, p, heap_oop);
116
if (prev == heap_oop) {
117
return forwarded_oop;
118
} else {
119
return NULL;
120
}
121
}
122
return heap_oop;
123
} else {
124
return NULL;
125
}
126
}
127
128
inline oop ShenandoahHeap::cas_oop(oop n, oop* addr, oop c) {
129
assert(is_ptr_aligned(addr, sizeof(narrowOop)), err_msg("Address should be aligned: " PTR_FORMAT, p2i(addr)));
130
return (oop) Atomic::cmpxchg_ptr(n, addr, c);
131
}
132
133
inline oop ShenandoahHeap::cas_oop(oop n, narrowOop* addr, narrowOop c) {
134
narrowOop val = oopDesc::encode_heap_oop(n);
135
return oopDesc::decode_heap_oop((narrowOop) Atomic::cmpxchg(val, addr, c));
136
}
137
138
inline oop ShenandoahHeap::cas_oop(oop n, narrowOop* addr, oop c) {
139
assert(is_ptr_aligned(addr, sizeof(narrowOop)), err_msg("Address should be aligned: " PTR_FORMAT, p2i(addr)));
140
narrowOop cmp = oopDesc::encode_heap_oop(c);
141
narrowOop val = oopDesc::encode_heap_oop(n);
142
return oopDesc::decode_heap_oop((narrowOop) Atomic::cmpxchg(val, addr, cmp));
143
}
144
145
template <class T>
146
inline oop ShenandoahHeap::maybe_update_with_forwarded_not_null(T* p, oop heap_oop) {
147
shenandoah_assert_not_in_cset_loc_except(p, !is_in(p) || is_full_gc_in_progress() || is_degenerated_gc_in_progress());
148
shenandoah_assert_correct(p, heap_oop);
149
150
if (in_collection_set(heap_oop)) {
151
oop forwarded_oop = ShenandoahBarrierSet::resolve_forwarded_not_null(heap_oop);
152
153
shenandoah_assert_forwarded_except(p, heap_oop, is_full_gc_in_progress() || is_degenerated_gc_in_progress());
154
shenandoah_assert_not_forwarded(p, forwarded_oop);
155
shenandoah_assert_not_in_cset_except(p, forwarded_oop, cancelled_gc());
156
157
// If this fails, another thread wrote to p before us, it will be logged in SATB and the
158
// reference be updated later.
159
oop witness = cas_oop(forwarded_oop, p, heap_oop);
160
161
if (witness != heap_oop) {
162
// CAS failed, someone had beat us to it. Normally, we would return the failure witness,
163
// because that would be the proper write of to-space object, enforced by strong barriers.
164
// However, there is a corner case with arraycopy. It can happen that a Java thread
165
// beats us with an arraycopy, which first copies the array, which potentially contains
166
// from-space refs, and only afterwards updates all from-space refs to to-space refs,
167
// which leaves a short window where the new array elements can be from-space.
168
// In this case, we can just resolve the result again. As we resolve, we need to consider
169
// the contended write might have been NULL.
170
oop result = ShenandoahBarrierSet::resolve_forwarded(witness);
171
shenandoah_assert_not_forwarded_except(p, result, (result == NULL));
172
shenandoah_assert_not_in_cset_except(p, result, (result == NULL) || cancelled_gc());
173
return result;
174
} else {
175
// Success! We have updated with known to-space copy. We have already asserted it is sane.
176
return forwarded_oop;
177
}
178
} else {
179
shenandoah_assert_not_forwarded(p, heap_oop);
180
return heap_oop;
181
}
182
}
183
184
inline bool ShenandoahHeap::cancelled_gc() const {
185
return _cancelled_gc.is_set();
186
}
187
188
inline bool ShenandoahHeap::try_cancel_gc() {
189
return _cancelled_gc.try_set();
190
}
191
192
inline void ShenandoahHeap::clear_cancelled_gc() {
193
_cancelled_gc.unset();
194
_oom_evac_handler.clear();
195
}
196
197
inline HeapWord* ShenandoahHeap::allocate_from_gclab(Thread* thread, size_t size) {
198
assert(UseTLAB, "TLABs should be enabled");
199
200
if (!thread->gclab().is_initialized()) {
201
assert(!thread->is_Java_thread() && !thread->is_Worker_thread(),
202
err_msg("Performance: thread should have GCLAB: %s", thread->name()));
203
// No GCLABs in this thread, fallback to shared allocation
204
return NULL;
205
}
206
HeapWord *obj = thread->gclab().allocate(size);
207
if (obj != NULL) {
208
return obj;
209
}
210
// Otherwise...
211
return allocate_from_gclab_slow(thread, size);
212
}
213
214
inline oop ShenandoahHeap::evacuate_object(oop p, Thread* thread) {
215
if (Thread::current()->is_oom_during_evac()) {
216
// This thread went through the OOM during evac protocol and it is safe to return
217
// the forward pointer. It must not attempt to evacuate any more.
218
return ShenandoahBarrierSet::resolve_forwarded(p);
219
}
220
221
assert(thread->is_evac_allowed(), "must be enclosed in in oom-evac scope");
222
223
size_t size = p->size();
224
225
assert(!heap_region_containing(p)->is_humongous(), "never evacuate humongous objects");
226
227
bool alloc_from_gclab = true;
228
HeapWord* copy = NULL;
229
230
#ifdef ASSERT
231
if (ShenandoahOOMDuringEvacALot &&
232
(os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call
233
copy = NULL;
234
} else {
235
#endif
236
if (UseTLAB) {
237
copy = allocate_from_gclab(thread, size);
238
}
239
if (copy == NULL) {
240
ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size);
241
copy = allocate_memory(req);
242
alloc_from_gclab = false;
243
}
244
#ifdef ASSERT
245
}
246
#endif
247
248
if (copy == NULL) {
249
control_thread()->handle_alloc_failure_evac(size);
250
251
_oom_evac_handler.handle_out_of_memory_during_evacuation();
252
253
return ShenandoahBarrierSet::resolve_forwarded(p);
254
}
255
256
// Copy the object:
257
Copy::aligned_disjoint_words((HeapWord*) p, copy, size);
258
259
// Try to install the new forwarding pointer.
260
oop copy_val = oop(copy);
261
oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val);
262
if (result == copy_val) {
263
// Successfully evacuated. Our copy is now the public one!
264
shenandoah_assert_correct(NULL, copy_val);
265
return copy_val;
266
} else {
267
// Failed to evacuate. We need to deal with the object that is left behind. Since this
268
// new allocation is certainly after TAMS, it will be considered live in the next cycle.
269
// But if it happens to contain references to evacuated regions, those references would
270
// not get updated for this stale copy during this cycle, and we will crash while scanning
271
// it the next cycle.
272
//
273
// For GCLAB allocations, it is enough to rollback the allocation ptr. Either the next
274
// object will overwrite this stale copy, or the filler object on LAB retirement will
275
// do this. For non-GCLAB allocations, we have no way to retract the allocation, and
276
// have to explicitly overwrite the copy with the filler object. With that overwrite,
277
// we have to keep the fwdptr initialized and pointing to our (stale) copy.
278
if (alloc_from_gclab) {
279
thread->gclab().rollback(size);
280
} else {
281
fill_with_object(copy, size);
282
shenandoah_assert_correct(NULL, copy_val);
283
}
284
shenandoah_assert_correct(NULL, result);
285
return result;
286
}
287
}
288
289
inline bool ShenandoahHeap::requires_marking(const void* entry) const {
290
return !_marking_context->is_marked(oop(entry));
291
}
292
293
inline bool ShenandoahHeap::in_collection_set(oop p) const {
294
assert(collection_set() != NULL, "Sanity");
295
return collection_set()->is_in(p);
296
}
297
298
inline bool ShenandoahHeap::in_collection_set_loc(void* p) const {
299
assert(collection_set() != NULL, "Sanity");
300
return collection_set()->is_in_loc(p);
301
}
302
303
inline bool ShenandoahHeap::is_stable() const {
304
return _gc_state.is_clear();
305
}
306
307
inline bool ShenandoahHeap::is_idle() const {
308
return _gc_state.is_unset(MARKING | EVACUATION | UPDATEREFS);
309
}
310
311
inline bool ShenandoahHeap::is_concurrent_mark_in_progress() const {
312
return _gc_state.is_set(MARKING);
313
}
314
315
inline bool ShenandoahHeap::is_evacuation_in_progress() const {
316
return _gc_state.is_set(EVACUATION);
317
}
318
319
inline bool ShenandoahHeap::is_gc_in_progress_mask(uint mask) const {
320
return _gc_state.is_set(mask);
321
}
322
323
inline bool ShenandoahHeap::is_degenerated_gc_in_progress() const {
324
return _degenerated_gc_in_progress.is_set();
325
}
326
327
inline bool ShenandoahHeap::is_full_gc_in_progress() const {
328
return _full_gc_in_progress.is_set();
329
}
330
331
inline bool ShenandoahHeap::is_full_gc_move_in_progress() const {
332
return _full_gc_move_in_progress.is_set();
333
}
334
335
inline bool ShenandoahHeap::is_update_refs_in_progress() const {
336
return _gc_state.is_set(UPDATEREFS);
337
}
338
339
template<class T>
340
inline void ShenandoahHeap::marked_object_iterate(ShenandoahHeapRegion* region, T* cl) {
341
marked_object_iterate(region, cl, region->top());
342
}
343
344
template<class T>
345
inline void ShenandoahHeap::marked_object_iterate(ShenandoahHeapRegion* region, T* cl, HeapWord* limit) {
346
assert(! region->is_humongous_continuation(), "no humongous continuation regions here");
347
348
ShenandoahMarkingContext* const ctx = complete_marking_context();
349
assert(ctx->is_complete(), "sanity");
350
351
MarkBitMap* mark_bit_map = ctx->mark_bit_map();
352
HeapWord* tams = ctx->top_at_mark_start(region);
353
354
size_t skip_bitmap_delta = 1;
355
HeapWord* start = region->bottom();
356
HeapWord* end = MIN2(tams, region->end());
357
358
// Step 1. Scan below the TAMS based on bitmap data.
359
HeapWord* limit_bitmap = MIN2(limit, tams);
360
361
// Try to scan the initial candidate. If the candidate is above the TAMS, it would
362
// fail the subsequent "< limit_bitmap" checks, and fall through to Step 2.
363
HeapWord* cb = mark_bit_map->getNextMarkedWordAddress(start, end);
364
365
intx dist = ShenandoahMarkScanPrefetch;
366
if (dist > 0) {
367
// Batched scan that prefetches the oop data, anticipating the access to
368
// either header, oop field, or forwarding pointer. Not that we cannot
369
// touch anything in oop, while it still being prefetched to get enough
370
// time for prefetch to work. This is why we try to scan the bitmap linearly,
371
// disregarding the object size. However, since we know forwarding pointer
372
// preceeds the object, we can skip over it. Once we cannot trust the bitmap,
373
// there is no point for prefetching the oop contents, as oop->size() will
374
// touch it prematurely.
375
376
// No variable-length arrays in standard C++, have enough slots to fit
377
// the prefetch distance.
378
static const int SLOT_COUNT = 256;
379
guarantee(dist <= SLOT_COUNT, "adjust slot count");
380
HeapWord* slots[SLOT_COUNT];
381
382
int avail;
383
do {
384
avail = 0;
385
for (int c = 0; (c < dist) && (cb < limit_bitmap); c++) {
386
Prefetch::read(cb, oopDesc::mark_offset_in_bytes());
387
slots[avail++] = cb;
388
cb += skip_bitmap_delta;
389
if (cb < limit_bitmap) {
390
cb = mark_bit_map->getNextMarkedWordAddress(cb, limit_bitmap);
391
}
392
}
393
394
for (int c = 0; c < avail; c++) {
395
assert (slots[c] < tams, err_msg("only objects below TAMS here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(slots[c]), p2i(tams)));
396
assert (slots[c] < limit, err_msg("only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(slots[c]), p2i(limit)));
397
oop obj = oop(slots[c]);
398
assert(!oopDesc::is_null(obj), "sanity");
399
assert(obj->is_oop(), "sanity");
400
assert(_marking_context->is_marked(obj), "object expected to be marked");
401
cl->do_object(obj);
402
}
403
} while (avail > 0);
404
} else {
405
while (cb < limit_bitmap) {
406
assert (cb < tams, err_msg("only objects below TAMS here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cb), p2i(tams)));
407
assert (cb < limit, err_msg("only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cb), p2i(limit)));
408
oop obj = oop(cb);
409
assert(!oopDesc::is_null(obj), "sanity");
410
assert(obj->is_oop(), "sanity");
411
assert(_marking_context->is_marked(obj), "object expected to be marked");
412
cl->do_object(obj);
413
cb += skip_bitmap_delta;
414
if (cb < limit_bitmap) {
415
cb = mark_bit_map->getNextMarkedWordAddress(cb, limit_bitmap);
416
}
417
}
418
}
419
420
// Step 2. Accurate size-based traversal, happens past the TAMS.
421
// This restarts the scan at TAMS, which makes sure we traverse all objects,
422
// regardless of what happened at Step 1.
423
HeapWord* cs = tams;
424
while (cs < limit) {
425
assert (cs >= tams, err_msg("only objects past TAMS here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cs), p2i(tams)));
426
assert (cs < limit, err_msg("only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cs), p2i(limit)));
427
oop obj = oop(cs);
428
int size = obj->size();
429
assert(!oopDesc::is_null(obj), "sanity");
430
assert(obj->is_oop(), "sanity");
431
assert(_marking_context->is_marked(obj), "object expected to be marked");
432
cl->do_object(obj);
433
cs += size;
434
}
435
}
436
437
template <class T>
438
class ShenandoahObjectToOopClosure : public ObjectClosure {
439
T* _cl;
440
public:
441
ShenandoahObjectToOopClosure(T* cl) : _cl(cl) {}
442
443
void do_object(oop obj) {
444
obj->oop_iterate(_cl);
445
}
446
};
447
448
template <class T>
449
class ShenandoahObjectToOopBoundedClosure : public ObjectClosure {
450
T* _cl;
451
MemRegion _bounds;
452
public:
453
ShenandoahObjectToOopBoundedClosure(T* cl, HeapWord* bottom, HeapWord* top) :
454
_cl(cl), _bounds(bottom, top) {}
455
456
void do_object(oop obj) {
457
obj->oop_iterate(_cl, _bounds);
458
}
459
};
460
461
template<class T>
462
inline void ShenandoahHeap::marked_object_oop_iterate(ShenandoahHeapRegion* region, T* cl, HeapWord* top) {
463
if (region->is_humongous()) {
464
HeapWord* bottom = region->bottom();
465
if (top > bottom) {
466
region = region->humongous_start_region();
467
ShenandoahObjectToOopBoundedClosure<T> objs(cl, bottom, top);
468
marked_object_iterate(region, &objs);
469
}
470
} else {
471
ShenandoahObjectToOopClosure<T> objs(cl);
472
marked_object_iterate(region, &objs, top);
473
}
474
}
475
476
inline ShenandoahHeapRegion* const ShenandoahHeap::get_region(size_t region_idx) const {
477
if (region_idx < _num_regions) {
478
return _regions[region_idx];
479
} else {
480
return NULL;
481
}
482
}
483
484
inline void ShenandoahHeap::mark_complete_marking_context() {
485
_marking_context->mark_complete();
486
}
487
488
inline void ShenandoahHeap::mark_incomplete_marking_context() {
489
_marking_context->mark_incomplete();
490
}
491
492
inline ShenandoahMarkingContext* ShenandoahHeap::complete_marking_context() const {
493
assert (_marking_context->is_complete()," sanity");
494
return _marking_context;
495
}
496
497
inline ShenandoahMarkingContext* ShenandoahHeap::marking_context() const {
498
return _marking_context;
499
}
500
501
#endif // SHARE_VM_GC_SHENANDOAH_SHENANDOAHHEAP_INLINE_HPP
502
503