Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/gc_interface/collectedHeap.cpp
32285 views
1
/*
2
* Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "classfile/systemDictionary.hpp"
27
#include "gc_implementation/shared/gcHeapSummary.hpp"
28
#include "gc_implementation/shared/gcTrace.hpp"
29
#include "gc_implementation/shared/gcTraceTime.hpp"
30
#include "gc_implementation/shared/gcWhen.hpp"
31
#include "gc_implementation/shared/vmGCOperations.hpp"
32
#include "gc_interface/allocTracer.hpp"
33
#include "gc_interface/collectedHeap.hpp"
34
#include "gc_interface/collectedHeap.inline.hpp"
35
#include "memory/metaspace.hpp"
36
#include "oops/oop.inline.hpp"
37
#include "oops/instanceMirrorKlass.hpp"
38
#include "runtime/init.hpp"
39
#include "runtime/thread.inline.hpp"
40
#include "services/heapDumper.hpp"
41
42
43
#ifdef ASSERT
44
int CollectedHeap::_fire_out_of_memory_count = 0;
45
#endif
46
47
size_t CollectedHeap::_filler_array_max_size = 0;
48
49
template <>
50
void EventLogBase<GCMessage>::print(outputStream* st, GCMessage& m) {
51
st->print_cr("GC heap %s", m.is_before ? "before" : "after");
52
st->print_raw(m);
53
}
54
55
void GCHeapLog::log_heap(bool before) {
56
if (!should_log()) {
57
return;
58
}
59
60
double timestamp = fetch_timestamp();
61
MutexLockerEx ml(&_mutex, Mutex::_no_safepoint_check_flag);
62
int index = compute_log_index();
63
_records[index].thread = NULL; // Its the GC thread so it's not that interesting.
64
_records[index].timestamp = timestamp;
65
_records[index].data.is_before = before;
66
stringStream st(_records[index].data.buffer(), _records[index].data.size());
67
if (before) {
68
Universe::print_heap_before_gc(&st, true);
69
} else {
70
Universe::print_heap_after_gc(&st, true);
71
}
72
}
73
74
VirtualSpaceSummary CollectedHeap::create_heap_space_summary() {
75
size_t capacity_in_words = capacity() / HeapWordSize;
76
77
return VirtualSpaceSummary(
78
reserved_region().start(), reserved_region().start() + capacity_in_words, reserved_region().end());
79
}
80
81
GCHeapSummary CollectedHeap::create_heap_summary() {
82
VirtualSpaceSummary heap_space = create_heap_space_summary();
83
return GCHeapSummary(heap_space, used());
84
}
85
86
MetaspaceSummary CollectedHeap::create_metaspace_summary() {
87
const MetaspaceSizes meta_space(
88
MetaspaceAux::committed_bytes(),
89
MetaspaceAux::used_bytes(),
90
MetaspaceAux::reserved_bytes());
91
const MetaspaceSizes data_space(
92
MetaspaceAux::committed_bytes(Metaspace::NonClassType),
93
MetaspaceAux::used_bytes(Metaspace::NonClassType),
94
MetaspaceAux::reserved_bytes(Metaspace::NonClassType));
95
const MetaspaceSizes class_space(
96
MetaspaceAux::committed_bytes(Metaspace::ClassType),
97
MetaspaceAux::used_bytes(Metaspace::ClassType),
98
MetaspaceAux::reserved_bytes(Metaspace::ClassType));
99
100
const MetaspaceChunkFreeListSummary& ms_chunk_free_list_summary =
101
MetaspaceAux::chunk_free_list_summary(Metaspace::NonClassType);
102
const MetaspaceChunkFreeListSummary& class_chunk_free_list_summary =
103
MetaspaceAux::chunk_free_list_summary(Metaspace::ClassType);
104
105
return MetaspaceSummary(MetaspaceGC::capacity_until_GC(), meta_space, data_space, class_space,
106
ms_chunk_free_list_summary, class_chunk_free_list_summary);
107
}
108
109
void CollectedHeap::print_heap_before_gc() {
110
if (PrintHeapAtGC) {
111
Universe::print_heap_before_gc();
112
}
113
if (_gc_heap_log != NULL) {
114
_gc_heap_log->log_heap_before();
115
}
116
}
117
118
void CollectedHeap::print_heap_after_gc() {
119
if (PrintHeapAtGC) {
120
Universe::print_heap_after_gc();
121
}
122
if (_gc_heap_log != NULL) {
123
_gc_heap_log->log_heap_after();
124
}
125
}
126
127
void CollectedHeap::register_nmethod(nmethod* nm) {
128
assert_locked_or_safepoint(CodeCache_lock);
129
}
130
131
void CollectedHeap::unregister_nmethod(nmethod* nm) {
132
assert_locked_or_safepoint(CodeCache_lock);
133
}
134
135
void CollectedHeap::trace_heap(GCWhen::Type when, GCTracer* gc_tracer) {
136
const GCHeapSummary& heap_summary = create_heap_summary();
137
gc_tracer->report_gc_heap_summary(when, heap_summary);
138
139
const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
140
gc_tracer->report_metaspace_summary(when, metaspace_summary);
141
}
142
143
void CollectedHeap::trace_heap_before_gc(GCTracer* gc_tracer) {
144
trace_heap(GCWhen::BeforeGC, gc_tracer);
145
}
146
147
void CollectedHeap::trace_heap_after_gc(GCTracer* gc_tracer) {
148
trace_heap(GCWhen::AfterGC, gc_tracer);
149
}
150
151
// Memory state functions.
152
153
154
CollectedHeap::CollectedHeap() : _n_par_threads(0)
155
{
156
const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT));
157
const size_t elements_per_word = HeapWordSize / sizeof(jint);
158
_filler_array_max_size = align_object_size(filler_array_hdr_size() +
159
max_len / elements_per_word);
160
161
_barrier_set = NULL;
162
_is_gc_active = false;
163
_total_collections = _total_full_collections = 0;
164
_gc_cause = _gc_lastcause = GCCause::_no_gc;
165
NOT_PRODUCT(_promotion_failure_alot_count = 0;)
166
NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;)
167
168
if (UsePerfData) {
169
EXCEPTION_MARK;
170
171
// create the gc cause jvmstat counters
172
_perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause",
173
80, GCCause::to_string(_gc_cause), CHECK);
174
175
_perf_gc_lastcause =
176
PerfDataManager::create_string_variable(SUN_GC, "lastCause",
177
80, GCCause::to_string(_gc_lastcause), CHECK);
178
}
179
_defer_initial_card_mark = false; // strengthened by subclass in pre_initialize() below.
180
// Create the ring log
181
if (LogEvents) {
182
_gc_heap_log = new GCHeapLog();
183
} else {
184
_gc_heap_log = NULL;
185
}
186
}
187
188
// This interface assumes that it's being called by the
189
// vm thread. It collects the heap assuming that the
190
// heap lock is already held and that we are executing in
191
// the context of the vm thread.
192
void CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
193
assert(Thread::current()->is_VM_thread(), "Precondition#1");
194
assert(Heap_lock->is_locked(), "Precondition#2");
195
GCCauseSetter gcs(this, cause);
196
switch (cause) {
197
case GCCause::_heap_inspection:
198
case GCCause::_heap_dump:
199
case GCCause::_metadata_GC_threshold : {
200
HandleMark hm;
201
do_full_collection(false); // don't clear all soft refs
202
break;
203
}
204
case GCCause::_last_ditch_collection: {
205
HandleMark hm;
206
do_full_collection(true); // do clear all soft refs
207
break;
208
}
209
default:
210
ShouldNotReachHere(); // Unexpected use of this function
211
}
212
}
213
214
void CollectedHeap::pre_initialize() {
215
// Used for ReduceInitialCardMarks (when COMPILER2 is used);
216
// otherwise remains unused.
217
#ifdef COMPILER2
218
_defer_initial_card_mark = ReduceInitialCardMarks && can_elide_tlab_store_barriers()
219
&& (DeferInitialCardMark || card_mark_must_follow_store());
220
#else
221
assert(_defer_initial_card_mark == false, "Who would set it?");
222
#endif
223
}
224
225
#ifndef PRODUCT
226
void CollectedHeap::check_for_bad_heap_word_value(HeapWord* addr, size_t size) {
227
if (CheckMemoryInitialization && ZapUnusedHeapArea) {
228
for (size_t slot = 0; slot < size; slot += 1) {
229
assert((*(intptr_t*) (addr + slot)) != ((intptr_t) badHeapWordVal),
230
"Found badHeapWordValue in post-allocation check");
231
}
232
}
233
}
234
235
void CollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, size_t size) {
236
if (CheckMemoryInitialization && ZapUnusedHeapArea) {
237
for (size_t slot = 0; slot < size; slot += 1) {
238
assert((*(intptr_t*) (addr + slot)) == ((intptr_t) badHeapWordVal),
239
"Found non badHeapWordValue in pre-allocation check");
240
}
241
}
242
}
243
#endif // PRODUCT
244
245
#ifdef ASSERT
246
void CollectedHeap::check_for_valid_allocation_state() {
247
Thread *thread = Thread::current();
248
// How to choose between a pending exception and a potential
249
// OutOfMemoryError? Don't allow pending exceptions.
250
// This is a VM policy failure, so how do we exhaustively test it?
251
assert(!thread->has_pending_exception(),
252
"shouldn't be allocating with pending exception");
253
if (StrictSafepointChecks) {
254
assert(thread->allow_allocation(),
255
"Allocation done by thread for which allocation is blocked "
256
"by No_Allocation_Verifier!");
257
// Allocation of an oop can always invoke a safepoint,
258
// hence, the true argument
259
thread->check_for_valid_safepoint_state(true);
260
}
261
}
262
#endif
263
264
HeapWord* CollectedHeap::allocate_from_tlab_slow(KlassHandle klass, Thread* thread, size_t size) {
265
266
// Retain tlab and allocate object in shared space if
267
// the amount free in the tlab is too large to discard.
268
if (thread->tlab().free() > thread->tlab().refill_waste_limit()) {
269
thread->tlab().record_slow_allocation(size);
270
return NULL;
271
}
272
273
// Discard tlab and allocate a new one.
274
// To minimize fragmentation, the last TLAB may be smaller than the rest.
275
size_t new_tlab_size = thread->tlab().compute_size(size);
276
277
thread->tlab().clear_before_allocation();
278
279
if (new_tlab_size == 0) {
280
return NULL;
281
}
282
283
// Allocate a new TLAB...
284
HeapWord* obj = Universe::heap()->allocate_new_tlab(new_tlab_size);
285
if (obj == NULL) {
286
return NULL;
287
}
288
289
if (ZeroTLAB) {
290
// ..and clear it.
291
Copy::zero_to_words(obj, new_tlab_size);
292
} else {
293
// ...and zap just allocated object.
294
#ifdef ASSERT
295
// Skip mangling the space corresponding to the object header to
296
// ensure that the returned space is not considered parsable by
297
// any concurrent GC thread.
298
size_t hdr_size = oopDesc::header_size();
299
Copy::fill_to_words(obj + hdr_size, new_tlab_size - hdr_size, badHeapWordVal);
300
#endif // ASSERT
301
}
302
thread->tlab().fill(obj, obj + size, new_tlab_size);
303
return obj;
304
}
305
306
void CollectedHeap::flush_deferred_store_barrier(JavaThread* thread) {
307
MemRegion deferred = thread->deferred_card_mark();
308
if (!deferred.is_empty()) {
309
assert(_defer_initial_card_mark, "Otherwise should be empty");
310
{
311
// Verify that the storage points to a parsable object in heap
312
DEBUG_ONLY(oop old_obj = oop(deferred.start());)
313
assert(is_in(old_obj), "Not in allocated heap");
314
assert(!can_elide_initializing_store_barrier(old_obj),
315
"Else should have been filtered in new_store_pre_barrier()");
316
assert(old_obj->is_oop(true), "Not an oop");
317
assert(deferred.word_size() == (size_t)(old_obj->size()),
318
"Mismatch: multiple objects?");
319
}
320
BarrierSet* bs = barrier_set();
321
assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
322
bs->write_region(deferred);
323
// "Clear" the deferred_card_mark field
324
thread->set_deferred_card_mark(MemRegion());
325
}
326
assert(thread->deferred_card_mark().is_empty(), "invariant");
327
}
328
329
size_t CollectedHeap::max_tlab_size() const {
330
// TLABs can't be bigger than we can fill with a int[Integer.MAX_VALUE].
331
// This restriction could be removed by enabling filling with multiple arrays.
332
// If we compute that the reasonable way as
333
// header_size + ((sizeof(jint) * max_jint) / HeapWordSize)
334
// we'll overflow on the multiply, so we do the divide first.
335
// We actually lose a little by dividing first,
336
// but that just makes the TLAB somewhat smaller than the biggest array,
337
// which is fine, since we'll be able to fill that.
338
size_t max_int_size = typeArrayOopDesc::header_size(T_INT) +
339
sizeof(jint) *
340
((juint) max_jint / (size_t) HeapWordSize);
341
return align_size_down(max_int_size, MinObjAlignment);
342
}
343
344
// Helper for ReduceInitialCardMarks. For performance,
345
// compiled code may elide card-marks for initializing stores
346
// to a newly allocated object along the fast-path. We
347
// compensate for such elided card-marks as follows:
348
// (a) Generational, non-concurrent collectors, such as
349
// GenCollectedHeap(ParNew,DefNew,Tenured) and
350
// ParallelScavengeHeap(ParallelGC, ParallelOldGC)
351
// need the card-mark if and only if the region is
352
// in the old gen, and do not care if the card-mark
353
// succeeds or precedes the initializing stores themselves,
354
// so long as the card-mark is completed before the next
355
// scavenge. For all these cases, we can do a card mark
356
// at the point at which we do a slow path allocation
357
// in the old gen, i.e. in this call.
358
// (b) GenCollectedHeap(ConcurrentMarkSweepGeneration) requires
359
// in addition that the card-mark for an old gen allocated
360
// object strictly follow any associated initializing stores.
361
// In these cases, the memRegion remembered below is
362
// used to card-mark the entire region either just before the next
363
// slow-path allocation by this thread or just before the next scavenge or
364
// CMS-associated safepoint, whichever of these events happens first.
365
// (The implicit assumption is that the object has been fully
366
// initialized by this point, a fact that we assert when doing the
367
// card-mark.)
368
// (c) G1CollectedHeap(G1) uses two kinds of write barriers. When a
369
// G1 concurrent marking is in progress an SATB (pre-write-)barrier is
370
// is used to remember the pre-value of any store. Initializing
371
// stores will not need this barrier, so we need not worry about
372
// compensating for the missing pre-barrier here. Turning now
373
// to the post-barrier, we note that G1 needs a RS update barrier
374
// which simply enqueues a (sequence of) dirty cards which may
375
// optionally be refined by the concurrent update threads. Note
376
// that this barrier need only be applied to a non-young write,
377
// but, like in CMS, because of the presence of concurrent refinement
378
// (much like CMS' precleaning), must strictly follow the oop-store.
379
// Thus, using the same protocol for maintaining the intended
380
// invariants turns out, serendepitously, to be the same for both
381
// G1 and CMS.
382
//
383
// For any future collector, this code should be reexamined with
384
// that specific collector in mind, and the documentation above suitably
385
// extended and updated.
386
oop CollectedHeap::new_store_pre_barrier(JavaThread* thread, oop new_obj) {
387
// If a previous card-mark was deferred, flush it now.
388
flush_deferred_store_barrier(thread);
389
if (can_elide_initializing_store_barrier(new_obj)) {
390
// The deferred_card_mark region should be empty
391
// following the flush above.
392
assert(thread->deferred_card_mark().is_empty(), "Error");
393
} else {
394
MemRegion mr((HeapWord*)new_obj, new_obj->size());
395
assert(!mr.is_empty(), "Error");
396
if (_defer_initial_card_mark) {
397
// Defer the card mark
398
thread->set_deferred_card_mark(mr);
399
} else {
400
// Do the card mark
401
BarrierSet* bs = barrier_set();
402
assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
403
bs->write_region(mr);
404
}
405
}
406
return new_obj;
407
}
408
409
size_t CollectedHeap::filler_array_hdr_size() {
410
return size_t(align_object_offset(arrayOopDesc::header_size(T_INT))); // align to Long
411
}
412
413
size_t CollectedHeap::filler_array_min_size() {
414
return align_object_size(filler_array_hdr_size()); // align to MinObjAlignment
415
}
416
417
#ifdef ASSERT
418
void CollectedHeap::fill_args_check(HeapWord* start, size_t words)
419
{
420
assert(words >= min_fill_size(), "too small to fill");
421
assert(words % MinObjAlignment == 0, "unaligned size");
422
assert(Universe::heap()->is_in_reserved(start), "not in heap");
423
assert(Universe::heap()->is_in_reserved(start + words - 1), "not in heap");
424
}
425
426
void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap)
427
{
428
if (ZapFillerObjects && zap) {
429
Copy::fill_to_words(start + filler_array_hdr_size(),
430
words - filler_array_hdr_size(), 0XDEAFBABE);
431
}
432
}
433
#endif // ASSERT
434
435
void
436
CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap)
437
{
438
assert(words >= filler_array_min_size(), "too small for an array");
439
assert(words <= filler_array_max_size(), "too big for a single object");
440
441
const size_t payload_size = words - filler_array_hdr_size();
442
const size_t len = payload_size * HeapWordSize / sizeof(jint);
443
assert((int)len >= 0, err_msg("size too large " SIZE_FORMAT " becomes %d", words, (int)len));
444
445
// Set the length first for concurrent GC.
446
((arrayOop)start)->set_length((int)len);
447
post_allocation_setup_common(Universe::intArrayKlassObj(), start);
448
DEBUG_ONLY(zap_filler_array(start, words, zap);)
449
}
450
451
void
452
CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap)
453
{
454
assert(words <= filler_array_max_size(), "too big for a single object");
455
456
if (words >= filler_array_min_size()) {
457
fill_with_array(start, words, zap);
458
} else if (words > 0) {
459
assert(words == min_fill_size(), "unaligned size");
460
post_allocation_setup_common(SystemDictionary::Object_klass(), start);
461
}
462
}
463
464
void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap)
465
{
466
DEBUG_ONLY(fill_args_check(start, words);)
467
HandleMark hm; // Free handles before leaving.
468
fill_with_object_impl(start, words, zap);
469
}
470
471
void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap)
472
{
473
DEBUG_ONLY(fill_args_check(start, words);)
474
HandleMark hm; // Free handles before leaving.
475
476
#ifdef _LP64
477
// A single array can fill ~8G, so multiple objects are needed only in 64-bit.
478
// First fill with arrays, ensuring that any remaining space is big enough to
479
// fill. The remainder is filled with a single object.
480
const size_t min = min_fill_size();
481
const size_t max = filler_array_max_size();
482
while (words > max) {
483
const size_t cur = words - max >= min ? max : max - min;
484
fill_with_array(start, cur, zap);
485
start += cur;
486
words -= cur;
487
}
488
#endif
489
490
fill_with_object_impl(start, words, zap);
491
}
492
493
void CollectedHeap::post_initialize() {
494
collector_policy()->post_heap_initialize();
495
}
496
497
HeapWord* CollectedHeap::allocate_new_tlab(size_t size) {
498
guarantee(false, "thread-local allocation buffers not supported");
499
return NULL;
500
}
501
502
void CollectedHeap::ensure_parsability(bool retire_tlabs) {
503
// The second disjunct in the assertion below makes a concession
504
// for the start-up verification done while the VM is being
505
// created. Callers be careful that you know that mutators
506
// aren't going to interfere -- for instance, this is permissible
507
// if we are still single-threaded and have either not yet
508
// started allocating (nothing much to verify) or we have
509
// started allocating but are now a full-fledged JavaThread
510
// (and have thus made our TLAB's) available for filling.
511
assert(SafepointSynchronize::is_at_safepoint() ||
512
!is_init_completed(),
513
"Should only be called at a safepoint or at start-up"
514
" otherwise concurrent mutator activity may make heap "
515
" unparsable again");
516
const bool use_tlab = UseTLAB;
517
const bool deferred = _defer_initial_card_mark;
518
// The main thread starts allocating via a TLAB even before it
519
// has added itself to the threads list at vm boot-up.
520
assert(!use_tlab || Threads::first() != NULL,
521
"Attempt to fill tlabs before main thread has been added"
522
" to threads list is doomed to failure!");
523
for (JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
524
if (use_tlab) thread->tlab().make_parsable(retire_tlabs);
525
#ifdef COMPILER2
526
// The deferred store barriers must all have been flushed to the
527
// card-table (or other remembered set structure) before GC starts
528
// processing the card-table (or other remembered set).
529
if (deferred) flush_deferred_store_barrier(thread);
530
#else
531
assert(!deferred, "Should be false");
532
assert(thread->deferred_card_mark().is_empty(), "Should be empty");
533
#endif
534
}
535
}
536
537
void CollectedHeap::accumulate_statistics_all_tlabs() {
538
if (UseTLAB) {
539
assert(SafepointSynchronize::is_at_safepoint() ||
540
!is_init_completed(),
541
"should only accumulate statistics on tlabs at safepoint");
542
543
ThreadLocalAllocBuffer::accumulate_statistics_before_gc();
544
}
545
}
546
547
void CollectedHeap::resize_all_tlabs() {
548
if (UseTLAB) {
549
assert(SafepointSynchronize::is_at_safepoint() ||
550
!is_init_completed(),
551
"should only resize tlabs at safepoint");
552
553
ThreadLocalAllocBuffer::resize_all_tlabs();
554
}
555
}
556
557
void CollectedHeap::pre_full_gc_dump(GCTimer* timer) {
558
if (HeapDumpBeforeFullGC) {
559
GCTraceTime tt("Heap Dump (before full gc): ", PrintGCDetails, false, timer, GCId::create());
560
// We are doing a "major" collection and a heap dump before
561
// major collection has been requested.
562
HeapDumper::dump_heap();
563
}
564
if (PrintClassHistogramBeforeFullGC) {
565
GCTraceTime tt("Class Histogram (before full gc): ", PrintGCDetails, true, timer, GCId::create());
566
VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */);
567
inspector.doit();
568
}
569
}
570
571
void CollectedHeap::post_full_gc_dump(GCTimer* timer) {
572
if (HeapDumpAfterFullGC) {
573
GCTraceTime tt("Heap Dump (after full gc): ", PrintGCDetails, false, timer, GCId::create());
574
HeapDumper::dump_heap();
575
}
576
if (PrintClassHistogramAfterFullGC) {
577
GCTraceTime tt("Class Histogram (after full gc): ", PrintGCDetails, true, timer, GCId::create());
578
VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */);
579
inspector.doit();
580
}
581
}
582
583
/////////////// Unit tests ///////////////
584
585
#ifndef PRODUCT
586
void CollectedHeap::test_is_in() {
587
CollectedHeap* heap = Universe::heap();
588
589
uintptr_t epsilon = (uintptr_t) MinObjAlignment;
590
uintptr_t heap_start = (uintptr_t) heap->_reserved.start();
591
uintptr_t heap_end = (uintptr_t) heap->_reserved.end();
592
593
// Test that NULL is not in the heap.
594
assert(!heap->is_in(NULL), "NULL is unexpectedly in the heap");
595
596
// Test that a pointer to before the heap start is reported as outside the heap.
597
assert(heap_start >= ((uintptr_t)NULL + epsilon), "sanity");
598
void* before_heap = (void*)(heap_start - epsilon);
599
assert(!heap->is_in(before_heap),
600
err_msg("before_heap: " PTR_FORMAT " is unexpectedly in the heap", p2i(before_heap)));
601
602
// Test that a pointer to after the heap end is reported as outside the heap.
603
assert(heap_end <= ((uintptr_t)-1 - epsilon), "sanity");
604
void* after_heap = (void*)(heap_end + epsilon);
605
assert(!heap->is_in(after_heap),
606
err_msg("after_heap: " PTR_FORMAT " is unexpectedly in the heap", p2i(after_heap)));
607
}
608
#endif
609
610
void CollectedHeap::shutdown() {
611
// Default implementation does nothing.
612
}
613
614
void CollectedHeap::accumulate_statistics_all_gclabs() {
615
// Default implementation does nothing.
616
}
617
618
bool CollectedHeap::supports_object_pinning() const {
619
return false;
620
}
621
622
oop CollectedHeap::pin_object(JavaThread* thread, oop obj) {
623
ShouldNotReachHere();
624
return NULL;
625
}
626
627
void CollectedHeap::unpin_object(JavaThread* thread, oop obj) {
628
ShouldNotReachHere();
629
}
630
631