Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/libadt/dict.cpp
32285 views
1
/*
2
* Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "libadt/dict.hpp"
27
#include "memory/allocation.inline.hpp"
28
#include "memory/resourceArea.hpp"
29
#include "runtime/thread.hpp"
30
31
// Dictionaries - An Abstract Data Type
32
33
// %%%%% includes not needed with AVM framework - Ungar
34
35
// #include "port.hpp"
36
//IMPLEMENTATION
37
// #include "dict.hpp"
38
39
#include <assert.h>
40
41
PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
42
43
// The iostream is not needed and it gets confused for gcc by the
44
// define of bool.
45
//
46
// #include <iostream.h>
47
48
//------------------------------data-----------------------------------------
49
// String hash tables
50
#define MAXID 20
51
static byte initflag = 0; // True after 1st initialization
52
static const char shft[MAXID] = {1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6};
53
static short xsum[MAXID];
54
55
//------------------------------bucket---------------------------------------
56
class bucket : public ResourceObj {
57
public:
58
uint _cnt, _max; // Size of bucket
59
void **_keyvals; // Array of keys and values
60
};
61
62
//------------------------------Dict-----------------------------------------
63
// The dictionary is kept has a hash table. The hash table is a even power
64
// of two, for nice modulo operations. Each bucket in the hash table points
65
// to a linear list of key-value pairs; each key & value is just a (void *).
66
// The list starts with a count. A hash lookup finds the list head, then a
67
// simple linear scan finds the key. If the table gets too full, it's
68
// doubled in size; the total amount of EXTRA times all hash functions are
69
// computed for the doubling is no more than the current size - thus the
70
// doubling in size costs no more than a constant factor in speed.
71
Dict::Dict(CmpKey initcmp, Hash inithash) : _hash(inithash), _cmp(initcmp),
72
_arena(Thread::current()->resource_area()) {
73
int i;
74
75
// Precompute table of null character hashes
76
if( !initflag ) { // Not initializated yet?
77
xsum[0] = (1<<shft[0])+1; // Initialize
78
for(i=1; i<MAXID; i++) {
79
xsum[i] = (1<<shft[i])+1+xsum[i-1];
80
}
81
initflag = 1; // Never again
82
}
83
84
_size = 16; // Size is a power of 2
85
_cnt = 0; // Dictionary is empty
86
_bin = (bucket*)_arena->Amalloc_4(sizeof(bucket)*_size);
87
memset(_bin,0,sizeof(bucket)*_size);
88
}
89
90
Dict::Dict(CmpKey initcmp, Hash inithash, Arena *arena, int size)
91
: _hash(inithash), _cmp(initcmp), _arena(arena) {
92
int i;
93
94
// Precompute table of null character hashes
95
if( !initflag ) { // Not initializated yet?
96
xsum[0] = (1<<shft[0])+1; // Initialize
97
for(i=1; i<MAXID; i++) {
98
xsum[i] = (1<<shft[i])+1+xsum[i-1];
99
}
100
initflag = 1; // Never again
101
}
102
103
i=16;
104
while( i < size ) i <<= 1;
105
_size = i; // Size is a power of 2
106
_cnt = 0; // Dictionary is empty
107
_bin = (bucket*)_arena->Amalloc_4(sizeof(bucket)*_size);
108
memset(_bin,0,sizeof(bucket)*_size);
109
}
110
111
//------------------------------~Dict------------------------------------------
112
// Delete an existing dictionary.
113
Dict::~Dict() {
114
/*
115
tty->print("~Dict %d/%d: ",_cnt,_size);
116
for( uint i=0; i < _size; i++) // For complete new table do
117
tty->print("%d ",_bin[i]._cnt);
118
tty->print("\n");*/
119
/*for( uint i=0; i<_size; i++ ) {
120
FREE_FAST( _bin[i]._keyvals );
121
} */
122
}
123
124
//------------------------------Clear----------------------------------------
125
// Zap to empty; ready for re-use
126
void Dict::Clear() {
127
_cnt = 0; // Empty contents
128
for( uint i=0; i<_size; i++ )
129
_bin[i]._cnt = 0; // Empty buckets, but leave allocated
130
// Leave _size & _bin alone, under the assumption that dictionary will
131
// grow to this size again.
132
}
133
134
//------------------------------doubhash---------------------------------------
135
// Double hash table size. If can't do so, just suffer. If can, then run
136
// thru old hash table, moving things to new table. Note that since hash
137
// table doubled, exactly 1 new bit is exposed in the mask - so everything
138
// in the old table ends up on 1 of two lists in the new table; a hi and a
139
// lo list depending on the value of the bit.
140
void Dict::doubhash(void) {
141
uint oldsize = _size;
142
_size <<= 1; // Double in size
143
_bin = (bucket*)_arena->Arealloc( _bin, sizeof(bucket)*oldsize, sizeof(bucket)*_size );
144
memset( &_bin[oldsize], 0, oldsize*sizeof(bucket) );
145
// Rehash things to spread into new table
146
for( uint i=0; i < oldsize; i++) { // For complete OLD table do
147
bucket *b = &_bin[i]; // Handy shortcut for _bin[i]
148
if( !b->_keyvals ) continue; // Skip empties fast
149
150
bucket *nb = &_bin[i+oldsize]; // New bucket shortcut
151
uint j = b->_max; // Trim new bucket to nearest power of 2
152
while( j > b->_cnt ) j >>= 1; // above old bucket _cnt
153
if( !j ) j = 1; // Handle zero-sized buckets
154
nb->_max = j<<1;
155
// Allocate worst case space for key-value pairs
156
nb->_keyvals = (void**)_arena->Amalloc_4( sizeof(void *)*nb->_max*2 );
157
uint nbcnt = 0;
158
159
for( j=0; j<b->_cnt; j++ ) { // Rehash all keys in this bucket
160
void *key = b->_keyvals[j+j];
161
if( (_hash( key ) & (_size-1)) != i ) { // Moving to hi bucket?
162
nb->_keyvals[nbcnt+nbcnt] = key;
163
nb->_keyvals[nbcnt+nbcnt+1] = b->_keyvals[j+j+1];
164
nb->_cnt = nbcnt = nbcnt+1;
165
b->_cnt--; // Remove key/value from lo bucket
166
b->_keyvals[j+j ] = b->_keyvals[b->_cnt+b->_cnt ];
167
b->_keyvals[j+j+1] = b->_keyvals[b->_cnt+b->_cnt+1];
168
j--; // Hash compacted element also
169
}
170
} // End of for all key-value pairs in bucket
171
} // End of for all buckets
172
173
174
}
175
176
//------------------------------Dict-----------------------------------------
177
// Deep copy a dictionary.
178
Dict::Dict( const Dict &d ) : _size(d._size), _cnt(d._cnt), _hash(d._hash),_cmp(d._cmp), _arena(d._arena) {
179
_bin = (bucket*)_arena->Amalloc_4(sizeof(bucket)*_size);
180
memcpy( _bin, d._bin, sizeof(bucket)*_size );
181
for( uint i=0; i<_size; i++ ) {
182
if( !_bin[i]._keyvals ) continue;
183
_bin[i]._keyvals=(void**)_arena->Amalloc_4( sizeof(void *)*_bin[i]._max*2);
184
memcpy( _bin[i]._keyvals, d._bin[i]._keyvals,_bin[i]._cnt*2*sizeof(void*));
185
}
186
}
187
188
//------------------------------Dict-----------------------------------------
189
// Deep copy a dictionary.
190
Dict &Dict::operator =( const Dict &d ) {
191
if( _size < d._size ) { // If must have more buckets
192
_arena = d._arena;
193
_bin = (bucket*)_arena->Arealloc( _bin, sizeof(bucket)*_size, sizeof(bucket)*d._size );
194
memset( &_bin[_size], 0, (d._size-_size)*sizeof(bucket) );
195
_size = d._size;
196
}
197
uint i;
198
for( i=0; i<_size; i++ ) // All buckets are empty
199
_bin[i]._cnt = 0; // But leave bucket allocations alone
200
_cnt = d._cnt;
201
*(Hash*)(&_hash) = d._hash;
202
*(CmpKey*)(&_cmp) = d._cmp;
203
for( i=0; i<_size; i++ ) {
204
bucket *b = &d._bin[i]; // Shortcut to source bucket
205
for( uint j=0; j<b->_cnt; j++ )
206
Insert( b->_keyvals[j+j], b->_keyvals[j+j+1] );
207
}
208
return *this;
209
}
210
211
//------------------------------Insert----------------------------------------
212
// Insert or replace a key/value pair in the given dictionary. If the
213
// dictionary is too full, it's size is doubled. The prior value being
214
// replaced is returned (NULL if this is a 1st insertion of that key). If
215
// an old value is found, it's swapped with the prior key-value pair on the
216
// list. This moves a commonly searched-for value towards the list head.
217
void *Dict::Insert(void *key, void *val, bool replace) {
218
uint hash = _hash( key ); // Get hash key
219
uint i = hash & (_size-1); // Get hash key, corrected for size
220
bucket *b = &_bin[i]; // Handy shortcut
221
for( uint j=0; j<b->_cnt; j++ ) {
222
if( !_cmp(key,b->_keyvals[j+j]) ) {
223
if (!replace) {
224
return b->_keyvals[j+j+1];
225
} else {
226
void *prior = b->_keyvals[j+j+1];
227
b->_keyvals[j+j ] = key; // Insert current key-value
228
b->_keyvals[j+j+1] = val;
229
return prior; // Return prior
230
}
231
}
232
}
233
if( ++_cnt > _size ) { // Hash table is full
234
doubhash(); // Grow whole table if too full
235
i = hash & (_size-1); // Rehash
236
b = &_bin[i]; // Handy shortcut
237
}
238
if( b->_cnt == b->_max ) { // Must grow bucket?
239
if( !b->_keyvals ) {
240
b->_max = 2; // Initial bucket size
241
b->_keyvals = (void**)_arena->Amalloc_4(sizeof(void*) * b->_max * 2);
242
} else {
243
b->_keyvals = (void**)_arena->Arealloc(b->_keyvals, sizeof(void*) * b->_max * 2, sizeof(void*) * b->_max * 4);
244
b->_max <<= 1; // Double bucket
245
}
246
}
247
b->_keyvals[b->_cnt+b->_cnt ] = key;
248
b->_keyvals[b->_cnt+b->_cnt+1] = val;
249
b->_cnt++;
250
return NULL; // Nothing found prior
251
}
252
253
//------------------------------Delete---------------------------------------
254
// Find & remove a value from dictionary. Return old value.
255
void *Dict::Delete(void *key) {
256
uint i = _hash( key ) & (_size-1); // Get hash key, corrected for size
257
bucket *b = &_bin[i]; // Handy shortcut
258
for( uint j=0; j<b->_cnt; j++ )
259
if( !_cmp(key,b->_keyvals[j+j]) ) {
260
void *prior = b->_keyvals[j+j+1];
261
b->_cnt--; // Remove key/value from lo bucket
262
b->_keyvals[j+j ] = b->_keyvals[b->_cnt+b->_cnt ];
263
b->_keyvals[j+j+1] = b->_keyvals[b->_cnt+b->_cnt+1];
264
_cnt--; // One less thing in table
265
return prior;
266
}
267
return NULL;
268
}
269
270
//------------------------------FindDict-------------------------------------
271
// Find a key-value pair in the given dictionary. If not found, return NULL.
272
// If found, move key-value pair towards head of list.
273
void *Dict::operator [](const void *key) const {
274
uint i = _hash( key ) & (_size-1); // Get hash key, corrected for size
275
bucket *b = &_bin[i]; // Handy shortcut
276
for( uint j=0; j<b->_cnt; j++ )
277
if( !_cmp(key,b->_keyvals[j+j]) )
278
return b->_keyvals[j+j+1];
279
return NULL;
280
}
281
282
//------------------------------CmpDict--------------------------------------
283
// CmpDict compares two dictionaries; they must have the same keys (their
284
// keys must match using CmpKey) and they must have the same values (pointer
285
// comparison). If so 1 is returned, if not 0 is returned.
286
int32 Dict::operator ==(const Dict &d2) const {
287
if( _cnt != d2._cnt ) return 0;
288
if( _hash != d2._hash ) return 0;
289
if( _cmp != d2._cmp ) return 0;
290
for( uint i=0; i < _size; i++) { // For complete hash table do
291
bucket *b = &_bin[i]; // Handy shortcut
292
if( b->_cnt != d2._bin[i]._cnt ) return 0;
293
if( memcmp(b->_keyvals, d2._bin[i]._keyvals, b->_cnt*2*sizeof(void*) ) )
294
return 0; // Key-value pairs must match
295
}
296
return 1; // All match, is OK
297
}
298
299
//------------------------------print------------------------------------------
300
// Handier print routine
301
void Dict::print() {
302
DictI i(this); // Moved definition in iterator here because of g++.
303
tty->print("Dict@0x%lx[%d] = {", this, _cnt);
304
for( ; i.test(); ++i ) {
305
tty->print("(0x%lx,0x%lx),", i._key, i._value);
306
}
307
tty->print_cr("}");
308
}
309
310
//------------------------------Hashing Functions----------------------------
311
// Convert string to hash key. This algorithm implements a universal hash
312
// function with the multipliers frozen (ok, so it's not universal). The
313
// multipliers (and allowable characters) are all odd, so the resultant sum
314
// is odd - guaranteed not divisible by any power of two, so the hash tables
315
// can be any power of two with good results. Also, I choose multipliers
316
// that have only 2 bits set (the low is always set to be odd) so
317
// multiplication requires only shifts and adds. Characters are required to
318
// be in the range 0-127 (I double & add 1 to force oddness). Keys are
319
// limited to MAXID characters in length. Experimental evidence on 150K of
320
// C text shows excellent spreading of values for any size hash table.
321
int hashstr(const void *t) {
322
register char c, k = 0;
323
register int32 sum = 0;
324
register const char *s = (const char *)t;
325
326
while( ((c = *s++) != '\0') && (k < MAXID-1) ) { // Get characters till null or MAXID-1
327
c = (c<<1)+1; // Characters are always odd!
328
sum += c + (c<<shft[k++]); // Universal hash function
329
}
330
return (int)((sum+xsum[k]) >> 1); // Hash key, un-modulo'd table size
331
}
332
333
//------------------------------hashptr--------------------------------------
334
// Slimey cheap hash function; no guaranteed performance. Better than the
335
// default for pointers, especially on MS-DOS machines.
336
int hashptr(const void *key) {
337
#ifdef __TURBOC__
338
return ((intptr_t)key >> 16);
339
#else // __TURBOC__
340
return ((intptr_t)key >> 2);
341
#endif
342
}
343
344
// Slimey cheap hash function; no guaranteed performance.
345
int hashkey(const void *key) {
346
return (intptr_t)key;
347
}
348
349
//------------------------------Key Comparator Functions---------------------
350
int32 cmpstr(const void *k1, const void *k2) {
351
return strcmp((const char *)k1,(const char *)k2);
352
}
353
354
// Cheap key comparator.
355
int32 cmpkey(const void *key1, const void *key2) {
356
if (key1 == key2) return 0;
357
intptr_t delta = (intptr_t)key1 - (intptr_t)key2;
358
if (delta > 0) return 1;
359
return -1;
360
}
361
362
//=============================================================================
363
//------------------------------reset------------------------------------------
364
// Create an iterator and initialize the first variables.
365
void DictI::reset( const Dict *dict ) {
366
_d = dict; // The dictionary
367
_i = (uint)-1; // Before the first bin
368
_j = 0; // Nothing left in the current bin
369
++(*this); // Step to first real value
370
}
371
372
//------------------------------next-------------------------------------------
373
// Find the next key-value pair in the dictionary, or return a NULL key and
374
// value.
375
void DictI::operator ++(void) {
376
if( _j-- ) { // Still working in current bin?
377
_key = _d->_bin[_i]._keyvals[_j+_j];
378
_value = _d->_bin[_i]._keyvals[_j+_j+1];
379
return;
380
}
381
382
while( ++_i < _d->_size ) { // Else scan for non-zero bucket
383
_j = _d->_bin[_i]._cnt;
384
if( !_j ) continue;
385
_j--;
386
_key = _d->_bin[_i]._keyvals[_j+_j];
387
_value = _d->_bin[_i]._keyvals[_j+_j+1];
388
return;
389
}
390
_key = _value = NULL;
391
}
392
393