Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/memory/allocation.hpp
32285 views
1
/*
2
* Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#ifndef SHARE_VM_MEMORY_ALLOCATION_HPP
26
#define SHARE_VM_MEMORY_ALLOCATION_HPP
27
28
#include "runtime/globals.hpp"
29
#include "utilities/globalDefinitions.hpp"
30
#include "utilities/macros.hpp"
31
#ifdef COMPILER1
32
#include "c1/c1_globals.hpp"
33
#endif
34
#ifdef COMPILER2
35
#include "opto/c2_globals.hpp"
36
#endif
37
38
#include <new>
39
40
#define ARENA_ALIGN_M1 (((size_t)(ARENA_AMALLOC_ALIGNMENT)) - 1)
41
#define ARENA_ALIGN_MASK (~((size_t)ARENA_ALIGN_M1))
42
#define ARENA_ALIGN(x) ((((size_t)(x)) + ARENA_ALIGN_M1) & ARENA_ALIGN_MASK)
43
44
45
// noinline attribute
46
#ifdef _WINDOWS
47
#define _NOINLINE_ __declspec(noinline)
48
#else
49
#if __GNUC__ < 3 // gcc 2.x does not support noinline attribute
50
#define _NOINLINE_
51
#else
52
#define _NOINLINE_ __attribute__ ((noinline))
53
#endif
54
#endif
55
56
class AllocFailStrategy {
57
public:
58
enum AllocFailEnum { EXIT_OOM, RETURN_NULL };
59
};
60
typedef AllocFailStrategy::AllocFailEnum AllocFailType;
61
62
// All classes in the virtual machine must be subclassed
63
// by one of the following allocation classes:
64
//
65
// For objects allocated in the resource area (see resourceArea.hpp).
66
// - ResourceObj
67
//
68
// For objects allocated in the C-heap (managed by: free & malloc).
69
// - CHeapObj
70
//
71
// For objects allocated on the stack.
72
// - StackObj
73
//
74
// For embedded objects.
75
// - ValueObj
76
//
77
// For classes used as name spaces.
78
// - AllStatic
79
//
80
// For classes in Metaspace (class data)
81
// - MetaspaceObj
82
//
83
// The printable subclasses are used for debugging and define virtual
84
// member functions for printing. Classes that avoid allocating the
85
// vtbl entries in the objects should therefore not be the printable
86
// subclasses.
87
//
88
// The following macros and function should be used to allocate memory
89
// directly in the resource area or in the C-heap, The _OBJ variants
90
// of the NEW/FREE_C_HEAP macros are used for alloc/dealloc simple
91
// objects which are not inherited from CHeapObj, note constructor and
92
// destructor are not called. The preferable way to allocate objects
93
// is using the new operator.
94
//
95
// WARNING: The array variant must only be used for a homogenous array
96
// where all objects are of the exact type specified. If subtypes are
97
// stored in the array then must pay attention to calling destructors
98
// at needed.
99
//
100
// NEW_RESOURCE_ARRAY(type, size)
101
// NEW_RESOURCE_OBJ(type)
102
// NEW_C_HEAP_ARRAY(type, size)
103
// NEW_C_HEAP_OBJ(type, memflags)
104
// FREE_C_HEAP_ARRAY(type, old, memflags)
105
// FREE_C_HEAP_OBJ(objname, type, memflags)
106
// char* AllocateHeap(size_t size, const char* name);
107
// void FreeHeap(void* p);
108
//
109
// C-heap allocation can be traced using +PrintHeapAllocation.
110
// malloc and free should therefore never called directly.
111
112
// Base class for objects allocated in the C-heap.
113
114
// In non product mode we introduce a super class for all allocation classes
115
// that supports printing.
116
// We avoid the superclass in product mode since some C++ compilers add
117
// a word overhead for empty super classes.
118
119
#ifdef PRODUCT
120
#define ALLOCATION_SUPER_CLASS_SPEC
121
#else
122
#define ALLOCATION_SUPER_CLASS_SPEC : public AllocatedObj
123
class AllocatedObj {
124
public:
125
// Printing support
126
void print() const;
127
void print_value() const;
128
129
virtual void print_on(outputStream* st) const;
130
virtual void print_value_on(outputStream* st) const;
131
};
132
#endif
133
134
135
/*
136
* Memory types
137
*/
138
enum MemoryType {
139
// Memory type by sub systems. It occupies lower byte.
140
mtJavaHeap = 0x00, // Java heap
141
mtClass = 0x01, // memory class for Java classes
142
mtThread = 0x02, // memory for thread objects
143
mtThreadStack = 0x03,
144
mtCode = 0x04, // memory for generated code
145
mtGC = 0x05, // memory for GC
146
mtCompiler = 0x06, // memory for compiler
147
mtInternal = 0x07, // memory used by VM, but does not belong to
148
// any of above categories, and not used for
149
// native memory tracking
150
mtOther = 0x08, // memory not used by VM
151
mtSymbol = 0x09, // symbol
152
mtNMT = 0x0A, // memory used by native memory tracking
153
mtClassShared = 0x0B, // class data sharing
154
mtChunk = 0x0C, // chunk that holds content of arenas
155
mtTest = 0x0D, // Test type for verifying NMT
156
mtTracing = 0x0E, // memory used for Tracing
157
mtNone = 0x0F, // undefined
158
mt_number_of_types = 0x10 // number of memory types (mtDontTrack
159
// is not included as validate type)
160
};
161
162
typedef MemoryType MEMFLAGS;
163
164
165
#if INCLUDE_NMT
166
167
extern bool NMT_track_callsite;
168
169
#else
170
171
const bool NMT_track_callsite = false;
172
173
#endif // INCLUDE_NMT
174
175
class NativeCallStack;
176
177
178
template <MEMFLAGS F> class CHeapObj ALLOCATION_SUPER_CLASS_SPEC {
179
public:
180
_NOINLINE_ void* operator new(size_t size, const NativeCallStack& stack) throw();
181
_NOINLINE_ void* operator new(size_t size) throw();
182
_NOINLINE_ void* operator new (size_t size, const std::nothrow_t& nothrow_constant,
183
const NativeCallStack& stack) throw();
184
_NOINLINE_ void* operator new (size_t size, const std::nothrow_t& nothrow_constant)
185
throw();
186
_NOINLINE_ void* operator new [](size_t size, const NativeCallStack& stack) throw();
187
_NOINLINE_ void* operator new [](size_t size) throw();
188
_NOINLINE_ void* operator new [](size_t size, const std::nothrow_t& nothrow_constant,
189
const NativeCallStack& stack) throw();
190
_NOINLINE_ void* operator new [](size_t size, const std::nothrow_t& nothrow_constant)
191
throw();
192
void operator delete(void* p);
193
void operator delete [] (void* p);
194
};
195
196
// Base class for objects allocated on the stack only.
197
// Calling new or delete will result in fatal error.
198
199
class StackObj ALLOCATION_SUPER_CLASS_SPEC {
200
private:
201
void* operator new(size_t size) throw();
202
void* operator new [](size_t size) throw();
203
#ifdef __IBMCPP__
204
public:
205
#endif
206
void operator delete(void* p);
207
void operator delete [](void* p);
208
};
209
210
// Base class for objects used as value objects.
211
// Calling new or delete will result in fatal error.
212
//
213
// Portability note: Certain compilers (e.g. gcc) will
214
// always make classes bigger if it has a superclass, even
215
// if the superclass does not have any virtual methods or
216
// instance fields. The HotSpot implementation relies on this
217
// not to happen. So never make a ValueObj class a direct subclass
218
// of this object, but use the VALUE_OBJ_CLASS_SPEC class instead, e.g.,
219
// like this:
220
//
221
// class A VALUE_OBJ_CLASS_SPEC {
222
// ...
223
// }
224
//
225
// With gcc and possible other compilers the VALUE_OBJ_CLASS_SPEC can
226
// be defined as a an empty string "".
227
//
228
class _ValueObj {
229
private:
230
void* operator new(size_t size) throw();
231
void operator delete(void* p);
232
void* operator new [](size_t size) throw();
233
void operator delete [](void* p);
234
};
235
236
237
// Base class for objects stored in Metaspace.
238
// Calling delete will result in fatal error.
239
//
240
// Do not inherit from something with a vptr because this class does
241
// not introduce one. This class is used to allocate both shared read-only
242
// and shared read-write classes.
243
//
244
245
class ClassLoaderData;
246
247
class MetaspaceObj {
248
public:
249
bool is_metaspace_object() const;
250
bool is_shared() const;
251
void print_address_on(outputStream* st) const; // nonvirtual address printing
252
253
#define METASPACE_OBJ_TYPES_DO(f) \
254
f(Unknown) \
255
f(Class) \
256
f(Symbol) \
257
f(TypeArrayU1) \
258
f(TypeArrayU2) \
259
f(TypeArrayU4) \
260
f(TypeArrayU8) \
261
f(TypeArrayOther) \
262
f(Method) \
263
f(ConstMethod) \
264
f(MethodData) \
265
f(ConstantPool) \
266
f(ConstantPoolCache) \
267
f(Annotation) \
268
f(MethodCounters) \
269
f(Deallocated)
270
271
#define METASPACE_OBJ_TYPE_DECLARE(name) name ## Type,
272
#define METASPACE_OBJ_TYPE_NAME_CASE(name) case name ## Type: return #name;
273
274
enum Type {
275
// Types are MetaspaceObj::ClassType, MetaspaceObj::SymbolType, etc
276
METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_DECLARE)
277
_number_of_types
278
};
279
280
static const char * type_name(Type type) {
281
switch(type) {
282
METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_NAME_CASE)
283
default:
284
ShouldNotReachHere();
285
return NULL;
286
}
287
}
288
289
static MetaspaceObj::Type array_type(size_t elem_size) {
290
switch (elem_size) {
291
case 1: return TypeArrayU1Type;
292
case 2: return TypeArrayU2Type;
293
case 4: return TypeArrayU4Type;
294
case 8: return TypeArrayU8Type;
295
default:
296
return TypeArrayOtherType;
297
}
298
}
299
300
void* operator new(size_t size, ClassLoaderData* loader_data,
301
size_t word_size, bool read_only,
302
Type type, Thread* thread) throw();
303
// can't use TRAPS from this header file.
304
void operator delete(void* p) { ShouldNotCallThis(); }
305
};
306
307
// Base class for classes that constitute name spaces.
308
309
class AllStatic {
310
public:
311
AllStatic() { ShouldNotCallThis(); }
312
~AllStatic() { ShouldNotCallThis(); }
313
};
314
315
316
//------------------------------Chunk------------------------------------------
317
// Linked list of raw memory chunks
318
class Chunk: CHeapObj<mtChunk> {
319
friend class VMStructs;
320
321
protected:
322
Chunk* _next; // Next Chunk in list
323
const size_t _len; // Size of this Chunk
324
public:
325
void* operator new(size_t size, AllocFailType alloc_failmode, size_t length) throw();
326
void operator delete(void* p);
327
Chunk(size_t length);
328
329
enum {
330
// default sizes; make them slightly smaller than 2**k to guard against
331
// buddy-system style malloc implementations
332
#ifdef _LP64
333
slack = 40, // [RGV] Not sure if this is right, but make it
334
// a multiple of 8.
335
#else
336
slack = 20, // suspected sizeof(Chunk) + internal malloc headers
337
#endif
338
339
tiny_size = 256 - slack, // Size of first chunk (tiny)
340
init_size = 1*K - slack, // Size of first chunk (normal aka small)
341
medium_size= 10*K - slack, // Size of medium-sized chunk
342
size = 32*K - slack, // Default size of an Arena chunk (following the first)
343
non_pool_size = init_size + 32 // An initial size which is not one of above
344
};
345
346
void chop(); // Chop this chunk
347
void next_chop(); // Chop next chunk
348
static size_t aligned_overhead_size(void) { return ARENA_ALIGN(sizeof(Chunk)); }
349
static size_t aligned_overhead_size(size_t byte_size) { return ARENA_ALIGN(byte_size); }
350
351
size_t length() const { return _len; }
352
Chunk* next() const { return _next; }
353
void set_next(Chunk* n) { _next = n; }
354
// Boundaries of data area (possibly unused)
355
char* bottom() const { return ((char*) this) + aligned_overhead_size(); }
356
char* top() const { return bottom() + _len; }
357
bool contains(char* p) const { return bottom() <= p && p <= top(); }
358
359
// Start the chunk_pool cleaner task
360
static void start_chunk_pool_cleaner_task();
361
362
static void clean_chunk_pool();
363
};
364
365
//------------------------------Arena------------------------------------------
366
// Fast allocation of memory
367
class Arena : public CHeapObj<mtNone> {
368
protected:
369
friend class ResourceMark;
370
friend class HandleMark;
371
friend class NoHandleMark;
372
friend class VMStructs;
373
374
MEMFLAGS _flags; // Memory tracking flags
375
376
Chunk *_first; // First chunk
377
Chunk *_chunk; // current chunk
378
char *_hwm, *_max; // High water mark and max in current chunk
379
// Get a new Chunk of at least size x
380
void* grow(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
381
size_t _size_in_bytes; // Size of arena (used for native memory tracking)
382
383
NOT_PRODUCT(static julong _bytes_allocated;) // total #bytes allocated since start
384
friend class AllocStats;
385
debug_only(void* malloc(size_t size);)
386
debug_only(void* internal_malloc_4(size_t x);)
387
NOT_PRODUCT(void inc_bytes_allocated(size_t x);)
388
389
void signal_out_of_memory(size_t request, const char* whence) const;
390
391
bool check_for_overflow(size_t request, const char* whence,
392
AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) const {
393
if (UINTPTR_MAX - request < (uintptr_t)_hwm) {
394
if (alloc_failmode == AllocFailStrategy::RETURN_NULL) {
395
return false;
396
}
397
signal_out_of_memory(request, whence);
398
}
399
return true;
400
}
401
402
public:
403
Arena(MEMFLAGS memflag);
404
Arena(MEMFLAGS memflag, size_t init_size);
405
~Arena();
406
void destruct_contents();
407
char* hwm() const { return _hwm; }
408
409
// new operators
410
void* operator new (size_t size) throw();
411
void* operator new (size_t size, const std::nothrow_t& nothrow_constant) throw();
412
413
// dynamic memory type tagging
414
void* operator new(size_t size, MEMFLAGS flags) throw();
415
void* operator new(size_t size, const std::nothrow_t& nothrow_constant, MEMFLAGS flags) throw();
416
void operator delete(void* p);
417
418
// Fast allocate in the arena. Common case is: pointer test + increment.
419
void* Amalloc(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
420
assert(is_power_of_2(ARENA_AMALLOC_ALIGNMENT) , "should be a power of 2");
421
x = ARENA_ALIGN(x);
422
debug_only(if (UseMallocOnly) return malloc(x);)
423
if (!check_for_overflow(x, "Arena::Amalloc", alloc_failmode))
424
return NULL;
425
NOT_PRODUCT(inc_bytes_allocated(x);)
426
if (_hwm + x > _max) {
427
return grow(x, alloc_failmode);
428
} else {
429
char *old = _hwm;
430
_hwm += x;
431
return old;
432
}
433
}
434
// Further assume size is padded out to words
435
void *Amalloc_4(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
436
assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
437
debug_only(if (UseMallocOnly) return malloc(x);)
438
if (!check_for_overflow(x, "Arena::Amalloc_4", alloc_failmode))
439
return NULL;
440
NOT_PRODUCT(inc_bytes_allocated(x);)
441
if (_hwm + x > _max) {
442
return grow(x, alloc_failmode);
443
} else {
444
char *old = _hwm;
445
_hwm += x;
446
return old;
447
}
448
}
449
450
// Allocate with 'double' alignment. It is 8 bytes on sparc.
451
// In other cases Amalloc_D() should be the same as Amalloc_4().
452
void* Amalloc_D(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
453
assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
454
debug_only(if (UseMallocOnly) return malloc(x);)
455
#if defined(SPARC) && !defined(_LP64)
456
#define DALIGN_M1 7
457
size_t delta = (((size_t)_hwm + DALIGN_M1) & ~DALIGN_M1) - (size_t)_hwm;
458
x += delta;
459
#endif
460
if (!check_for_overflow(x, "Arena::Amalloc_D", alloc_failmode))
461
return NULL;
462
NOT_PRODUCT(inc_bytes_allocated(x);)
463
if (_hwm + x > _max) {
464
return grow(x, alloc_failmode); // grow() returns a result aligned >= 8 bytes.
465
} else {
466
char *old = _hwm;
467
_hwm += x;
468
#if defined(SPARC) && !defined(_LP64)
469
old += delta; // align to 8-bytes
470
#endif
471
return old;
472
}
473
}
474
475
// Fast delete in area. Common case is: NOP (except for storage reclaimed)
476
void Afree(void *ptr, size_t size) {
477
#ifdef ASSERT
478
if (ZapResourceArea) memset(ptr, badResourceValue, size); // zap freed memory
479
if (UseMallocOnly) return;
480
#endif
481
if (((char*)ptr) + size == _hwm) _hwm = (char*)ptr;
482
}
483
484
void *Arealloc( void *old_ptr, size_t old_size, size_t new_size,
485
AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
486
487
// Move contents of this arena into an empty arena
488
Arena *move_contents(Arena *empty_arena);
489
490
// Determine if pointer belongs to this Arena or not.
491
bool contains( const void *ptr ) const;
492
493
// Total of all chunks in use (not thread-safe)
494
size_t used() const;
495
496
// Total # of bytes used
497
size_t size_in_bytes() const { return _size_in_bytes; };
498
void set_size_in_bytes(size_t size);
499
500
static void free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) PRODUCT_RETURN;
501
static void free_all(char** start, char** end) PRODUCT_RETURN;
502
503
private:
504
// Reset this Arena to empty, access will trigger grow if necessary
505
void reset(void) {
506
_first = _chunk = NULL;
507
_hwm = _max = NULL;
508
set_size_in_bytes(0);
509
}
510
};
511
512
// One of the following macros must be used when allocating
513
// an array or object from an arena
514
#define NEW_ARENA_ARRAY(arena, type, size) \
515
(type*) (arena)->Amalloc((size) * sizeof(type))
516
517
#define REALLOC_ARENA_ARRAY(arena, type, old, old_size, new_size) \
518
(type*) (arena)->Arealloc((char*)(old), (old_size) * sizeof(type), \
519
(new_size) * sizeof(type) )
520
521
#define FREE_ARENA_ARRAY(arena, type, old, size) \
522
(arena)->Afree((char*)(old), (size) * sizeof(type))
523
524
#define NEW_ARENA_OBJ(arena, type) \
525
NEW_ARENA_ARRAY(arena, type, 1)
526
527
528
//%note allocation_1
529
extern char* resource_allocate_bytes(size_t size,
530
AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
531
extern char* resource_allocate_bytes(Thread* thread, size_t size,
532
AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
533
extern char* resource_reallocate_bytes( char *old, size_t old_size, size_t new_size,
534
AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
535
extern void resource_free_bytes( char *old, size_t size );
536
537
//----------------------------------------------------------------------
538
// Base class for objects allocated in the resource area per default.
539
// Optionally, objects may be allocated on the C heap with
540
// new(ResourceObj::C_HEAP) Foo(...) or in an Arena with new (&arena)
541
// ResourceObj's can be allocated within other objects, but don't use
542
// new or delete (allocation_type is unknown). If new is used to allocate,
543
// use delete to deallocate.
544
class ResourceObj ALLOCATION_SUPER_CLASS_SPEC {
545
public:
546
enum allocation_type { STACK_OR_EMBEDDED = 0, RESOURCE_AREA, C_HEAP, ARENA, allocation_mask = 0x3 };
547
static void set_allocation_type(address res, allocation_type type) NOT_DEBUG_RETURN;
548
#ifdef ASSERT
549
private:
550
// When this object is allocated on stack the new() operator is not
551
// called but garbage on stack may look like a valid allocation_type.
552
// Store negated 'this' pointer when new() is called to distinguish cases.
553
// Use second array's element for verification value to distinguish garbage.
554
uintptr_t _allocation_t[2];
555
bool is_type_set() const;
556
public:
557
allocation_type get_allocation_type() const;
558
bool allocated_on_stack() const { return get_allocation_type() == STACK_OR_EMBEDDED; }
559
bool allocated_on_res_area() const { return get_allocation_type() == RESOURCE_AREA; }
560
bool allocated_on_C_heap() const { return get_allocation_type() == C_HEAP; }
561
bool allocated_on_arena() const { return get_allocation_type() == ARENA; }
562
ResourceObj(); // default construtor
563
ResourceObj(const ResourceObj& r); // default copy construtor
564
ResourceObj& operator=(const ResourceObj& r); // default copy assignment
565
~ResourceObj();
566
#endif // ASSERT
567
568
public:
569
void* operator new(size_t size, allocation_type type, MEMFLAGS flags) throw();
570
void* operator new [](size_t size, allocation_type type, MEMFLAGS flags) throw();
571
void* operator new(size_t size, const std::nothrow_t& nothrow_constant,
572
allocation_type type, MEMFLAGS flags) throw();
573
void* operator new [](size_t size, const std::nothrow_t& nothrow_constant,
574
allocation_type type, MEMFLAGS flags) throw();
575
576
void* operator new(size_t size, Arena *arena) throw() {
577
address res = (address)arena->Amalloc(size);
578
DEBUG_ONLY(set_allocation_type(res, ARENA);)
579
return res;
580
}
581
582
void* operator new [](size_t size, Arena *arena) throw() {
583
address res = (address)arena->Amalloc(size);
584
DEBUG_ONLY(set_allocation_type(res, ARENA);)
585
return res;
586
}
587
588
void* operator new(size_t size) throw() {
589
address res = (address)resource_allocate_bytes(size);
590
DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
591
return res;
592
}
593
594
void* operator new(size_t size, const std::nothrow_t& nothrow_constant) throw() {
595
address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
596
DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
597
return res;
598
}
599
600
void* operator new [](size_t size) throw() {
601
address res = (address)resource_allocate_bytes(size);
602
DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
603
return res;
604
}
605
606
void* operator new [](size_t size, const std::nothrow_t& nothrow_constant) throw() {
607
address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
608
DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
609
return res;
610
}
611
612
void operator delete(void* p);
613
void operator delete [](void* p);
614
};
615
616
// One of the following macros must be used when allocating an array
617
// or object to determine whether it should reside in the C heap on in
618
// the resource area.
619
620
#define NEW_RESOURCE_ARRAY(type, size)\
621
(type*) resource_allocate_bytes((size) * sizeof(type))
622
623
#define NEW_RESOURCE_ARRAY_RETURN_NULL(type, size)\
624
(type*) resource_allocate_bytes((size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
625
626
#define NEW_RESOURCE_ARRAY_IN_THREAD(thread, type, size)\
627
(type*) resource_allocate_bytes(thread, (size) * sizeof(type))
628
629
#define NEW_RESOURCE_ARRAY_IN_THREAD_RETURN_NULL(thread, type, size)\
630
(type*) resource_allocate_bytes(thread, (size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
631
632
#define REALLOC_RESOURCE_ARRAY(type, old, old_size, new_size)\
633
(type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type), (new_size) * sizeof(type))
634
635
#define REALLOC_RESOURCE_ARRAY_RETURN_NULL(type, old, old_size, new_size)\
636
(type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type),\
637
(new_size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
638
639
#define FREE_RESOURCE_ARRAY(type, old, size)\
640
resource_free_bytes((char*)(old), (size) * sizeof(type))
641
642
#define FREE_FAST(old)\
643
/* nop */
644
645
#define NEW_RESOURCE_OBJ(type)\
646
NEW_RESOURCE_ARRAY(type, 1)
647
648
#define NEW_RESOURCE_OBJ_RETURN_NULL(type)\
649
NEW_RESOURCE_ARRAY_RETURN_NULL(type, 1)
650
651
#define NEW_C_HEAP_ARRAY3(type, size, memflags, pc, allocfail)\
652
(type*) AllocateHeap((size) * sizeof(type), memflags, pc, allocfail)
653
654
#define NEW_C_HEAP_ARRAY2(type, size, memflags, pc)\
655
(type*) (AllocateHeap((size) * sizeof(type), memflags, pc))
656
657
#define NEW_C_HEAP_ARRAY(type, size, memflags)\
658
(type*) (AllocateHeap((size) * sizeof(type), memflags))
659
660
#define NEW_C_HEAP_ARRAY2_RETURN_NULL(type, size, memflags, pc)\
661
NEW_C_HEAP_ARRAY3(type, (size), memflags, pc, AllocFailStrategy::RETURN_NULL)
662
663
#define NEW_C_HEAP_ARRAY_RETURN_NULL(type, size, memflags)\
664
NEW_C_HEAP_ARRAY3(type, (size), memflags, CURRENT_PC, AllocFailStrategy::RETURN_NULL)
665
666
#define REALLOC_C_HEAP_ARRAY(type, old, size, memflags)\
667
(type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags))
668
669
#define REALLOC_C_HEAP_ARRAY_RETURN_NULL(type, old, size, memflags)\
670
(type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags, AllocFailStrategy::RETURN_NULL))
671
672
#define FREE_C_HEAP_ARRAY(type, old, memflags) \
673
FreeHeap((char*)(old), memflags)
674
675
// allocate type in heap without calling ctor
676
#define NEW_C_HEAP_OBJ(type, memflags)\
677
NEW_C_HEAP_ARRAY(type, 1, memflags)
678
679
#define NEW_C_HEAP_OBJ_RETURN_NULL(type, memflags)\
680
NEW_C_HEAP_ARRAY_RETURN_NULL(type, 1, memflags)
681
682
// deallocate obj of type in heap without calling dtor
683
#define FREE_C_HEAP_OBJ(objname, memflags)\
684
FreeHeap((char*)objname, memflags);
685
686
// for statistics
687
#ifndef PRODUCT
688
class AllocStats : StackObj {
689
julong start_mallocs, start_frees;
690
julong start_malloc_bytes, start_mfree_bytes, start_res_bytes;
691
public:
692
AllocStats();
693
694
julong num_mallocs(); // since creation of receiver
695
julong alloc_bytes();
696
julong num_frees();
697
julong free_bytes();
698
julong resource_bytes();
699
void print();
700
};
701
#endif
702
703
704
//------------------------------ReallocMark---------------------------------
705
// Code which uses REALLOC_RESOURCE_ARRAY should check an associated
706
// ReallocMark, which is declared in the same scope as the reallocated
707
// pointer. Any operation that could __potentially__ cause a reallocation
708
// should check the ReallocMark.
709
class ReallocMark: public StackObj {
710
protected:
711
NOT_PRODUCT(int _nesting;)
712
713
public:
714
ReallocMark() PRODUCT_RETURN;
715
void check() PRODUCT_RETURN;
716
};
717
718
// Helper class to allocate arrays that may become large.
719
// Uses the OS malloc for allocations smaller than ArrayAllocatorMallocLimit
720
// and uses mapped memory for larger allocations.
721
// Most OS mallocs do something similar but Solaris malloc does not revert
722
// to mapped memory for large allocations. By default ArrayAllocatorMallocLimit
723
// is set so that we always use malloc except for Solaris where we set the
724
// limit to get mapped memory.
725
template <class E, MEMFLAGS F>
726
class ArrayAllocator VALUE_OBJ_CLASS_SPEC {
727
char* _addr;
728
bool _use_malloc;
729
size_t _size;
730
bool _free_in_destructor;
731
public:
732
ArrayAllocator(bool free_in_destructor = true) :
733
_addr(NULL), _use_malloc(false), _size(0), _free_in_destructor(free_in_destructor) { }
734
735
~ArrayAllocator() {
736
if (_free_in_destructor) {
737
free();
738
}
739
}
740
741
E* allocate(size_t length);
742
void free();
743
};
744
745
#endif // SHARE_VM_MEMORY_ALLOCATION_HPP
746
747