Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/memory/barrierSet.hpp
32285 views
1
/*
2
* Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#ifndef SHARE_VM_MEMORY_BARRIERSET_HPP
26
#define SHARE_VM_MEMORY_BARRIERSET_HPP
27
28
#include "memory/memRegion.hpp"
29
#include "oops/oopsHierarchy.hpp"
30
31
// This class provides the interface between a barrier implementation and
32
// the rest of the system.
33
34
class BarrierSet: public CHeapObj<mtGC> {
35
friend class VMStructs;
36
public:
37
enum Name {
38
ModRef,
39
CardTableModRef,
40
CardTableExtension,
41
G1SATBCT,
42
G1SATBCTLogging,
43
ShenandoahBarrierSet,
44
Other,
45
Uninit
46
};
47
48
enum Flags {
49
None = 0,
50
TargetUninitialized = 1
51
};
52
protected:
53
int _max_covered_regions;
54
Name _kind;
55
56
public:
57
58
BarrierSet() { _kind = Uninit; }
59
// To get around prohibition on RTTI.
60
BarrierSet::Name kind() { return _kind; }
61
virtual bool is_a(BarrierSet::Name bsn) = 0;
62
63
// These operations indicate what kind of barriers the BarrierSet has.
64
virtual bool has_read_ref_barrier() = 0;
65
virtual bool has_read_prim_barrier() = 0;
66
virtual bool has_write_ref_barrier() = 0;
67
virtual bool has_write_ref_pre_barrier() = 0;
68
virtual bool has_write_prim_barrier() = 0;
69
70
// These functions indicate whether a particular access of the given
71
// kinds requires a barrier.
72
virtual bool read_ref_needs_barrier(void* field) = 0;
73
virtual bool read_prim_needs_barrier(HeapWord* field, size_t bytes) = 0;
74
virtual bool write_prim_needs_barrier(HeapWord* field, size_t bytes,
75
juint val1, juint val2) = 0;
76
77
// The first four operations provide a direct implementation of the
78
// barrier set. An interpreter loop, for example, could call these
79
// directly, as appropriate.
80
81
// Invoke the barrier, if any, necessary when reading the given ref field.
82
virtual void read_ref_field(void* field) = 0;
83
84
// Invoke the barrier, if any, necessary when reading the given primitive
85
// "field" of "bytes" bytes in "obj".
86
virtual void read_prim_field(HeapWord* field, size_t bytes) = 0;
87
88
// Invoke the barrier, if any, necessary when writing "new_val" into the
89
// ref field at "offset" in "obj".
90
// (For efficiency reasons, this operation is specialized for certain
91
// barrier types. Semantically, it should be thought of as a call to the
92
// virtual "_work" function below, which must implement the barrier.)
93
// First the pre-write versions...
94
template <class T> inline void write_ref_field_pre(T* field, oop new_val);
95
private:
96
// Keep this private so as to catch violations at build time.
97
virtual void write_ref_field_pre_work( void* field, oop new_val) { guarantee(false, "Not needed"); };
98
protected:
99
virtual void write_ref_field_pre_work( oop* field, oop new_val) {};
100
virtual void write_ref_field_pre_work(narrowOop* field, oop new_val) {};
101
public:
102
103
// ...then the post-write version.
104
inline void write_ref_field(void* field, oop new_val, bool release = false);
105
protected:
106
virtual void write_ref_field_work(void* field, oop new_val, bool release = false) = 0;
107
public:
108
109
// Invoke the barrier, if any, necessary when writing the "bytes"-byte
110
// value(s) "val1" (and "val2") into the primitive "field".
111
virtual void write_prim_field(HeapWord* field, size_t bytes,
112
juint val1, juint val2) = 0;
113
114
// Operations on arrays, or general regions (e.g., for "clone") may be
115
// optimized by some barriers.
116
117
// The first six operations tell whether such an optimization exists for
118
// the particular barrier.
119
virtual bool has_read_ref_array_opt() = 0;
120
virtual bool has_read_prim_array_opt() = 0;
121
virtual bool has_write_ref_array_pre_opt() { return true; }
122
virtual bool has_write_ref_array_opt() = 0;
123
virtual bool has_write_prim_array_opt() = 0;
124
125
virtual bool has_read_region_opt() = 0;
126
virtual bool has_write_region_opt() = 0;
127
128
// These operations should assert false unless the correponding operation
129
// above returns true. Otherwise, they should perform an appropriate
130
// barrier for an array whose elements are all in the given memory region.
131
virtual void read_ref_array(MemRegion mr) = 0;
132
virtual void read_prim_array(MemRegion mr) = 0;
133
134
// Below length is the # array elements being written
135
virtual void write_ref_array_pre(oop* dst, int length,
136
bool dest_uninitialized = false) {}
137
virtual void write_ref_array_pre(narrowOop* dst, int length,
138
bool dest_uninitialized = false) {}
139
// Below count is the # array elements being written, starting
140
// at the address "start", which may not necessarily be HeapWord-aligned
141
virtual void write_ref_array(HeapWord* start, size_t count);
142
143
// Static versions, suitable for calling from generated code;
144
// count is # array elements being written, starting with "start",
145
// which may not necessarily be HeapWord-aligned.
146
static void static_write_ref_array_pre(HeapWord* start, size_t count);
147
static void static_write_ref_array_post(HeapWord* start, size_t count);
148
149
protected:
150
virtual void write_ref_array_work(MemRegion mr) = 0;
151
public:
152
virtual void write_prim_array(MemRegion mr) = 0;
153
154
virtual void read_region(MemRegion mr) = 0;
155
156
// (For efficiency reasons, this operation is specialized for certain
157
// barrier types. Semantically, it should be thought of as a call to the
158
// virtual "_work" function below, which must implement the barrier.)
159
inline void write_region(MemRegion mr);
160
protected:
161
virtual void write_region_work(MemRegion mr) = 0;
162
public:
163
164
// Some barrier sets create tables whose elements correspond to parts of
165
// the heap; the CardTableModRefBS is an example. Such barrier sets will
166
// normally reserve space for such tables, and commit parts of the table
167
// "covering" parts of the heap that are committed. The constructor is
168
// passed the maximum number of independently committable subregions to
169
// be covered, and the "resize_covoered_region" function allows the
170
// sub-parts of the heap to inform the barrier set of changes of their
171
// sizes.
172
BarrierSet(int max_covered_regions) :
173
_max_covered_regions(max_covered_regions) {}
174
175
// Inform the BarrierSet that the the covered heap region that starts
176
// with "base" has been changed to have the given size (possibly from 0,
177
// for initialization.)
178
virtual void resize_covered_region(MemRegion new_region) = 0;
179
180
// If the barrier set imposes any alignment restrictions on boundaries
181
// within the heap, this function tells whether they are met.
182
virtual bool is_aligned(HeapWord* addr) = 0;
183
184
// Print a description of the memory for the barrier set
185
virtual void print_on(outputStream* st) const = 0;
186
};
187
188
#endif // SHARE_VM_MEMORY_BARRIERSET_HPP
189
190