Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/openjdk-multiarch-jdk8u
Path: blob/aarch64-shenandoah-jdk8u272-b10/hotspot/src/share/vm/memory/binaryTreeDictionary.cpp
32285 views
1
/*
2
* Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "utilities/macros.hpp"
27
#include "gc_implementation/shared/allocationStats.hpp"
28
#include "memory/binaryTreeDictionary.hpp"
29
#include "memory/freeList.hpp"
30
#include "memory/freeBlockDictionary.hpp"
31
#include "memory/metachunk.hpp"
32
#include "runtime/globals.hpp"
33
#include "utilities/ostream.hpp"
34
#include "utilities/macros.hpp"
35
#include "gc_implementation/shared/spaceDecorator.hpp"
36
#if INCLUDE_ALL_GCS
37
#include "gc_implementation/concurrentMarkSweep/adaptiveFreeList.hpp"
38
#include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
39
#include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
40
#endif // INCLUDE_ALL_GCS
41
42
////////////////////////////////////////////////////////////////////////////////
43
// A binary tree based search structure for free blocks.
44
// This is currently used in the Concurrent Mark&Sweep implementation.
45
////////////////////////////////////////////////////////////////////////////////
46
47
template <class Chunk_t, class FreeList_t>
48
size_t TreeChunk<Chunk_t, FreeList_t>::_min_tree_chunk_size = sizeof(TreeChunk<Chunk_t, FreeList_t>)/HeapWordSize;
49
50
template <class Chunk_t, class FreeList_t>
51
TreeChunk<Chunk_t, FreeList_t>* TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(Chunk_t* fc) {
52
// Do some assertion checking here.
53
return (TreeChunk<Chunk_t, FreeList_t>*) fc;
54
}
55
56
template <class Chunk_t, class FreeList_t>
57
void TreeChunk<Chunk_t, FreeList_t>::verify_tree_chunk_list() const {
58
TreeChunk<Chunk_t, FreeList_t>* nextTC = (TreeChunk<Chunk_t, FreeList_t>*)next();
59
if (prev() != NULL) { // interior list node shouldn'r have tree fields
60
guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
61
embedded_list()->right() == NULL, "should be clear");
62
}
63
if (nextTC != NULL) {
64
guarantee(as_TreeChunk(nextTC->prev()) == this, "broken chain");
65
guarantee(nextTC->size() == size(), "wrong size");
66
nextTC->verify_tree_chunk_list();
67
}
68
}
69
70
template <class Chunk_t, class FreeList_t>
71
TreeList<Chunk_t, FreeList_t>::TreeList() : _parent(NULL),
72
_left(NULL), _right(NULL) {}
73
74
template <class Chunk_t, class FreeList_t>
75
TreeList<Chunk_t, FreeList_t>*
76
TreeList<Chunk_t, FreeList_t>::as_TreeList(TreeChunk<Chunk_t,FreeList_t>* tc) {
77
// This first free chunk in the list will be the tree list.
78
assert((tc->size() >= (TreeChunk<Chunk_t, FreeList_t>::min_size())),
79
"Chunk is too small for a TreeChunk");
80
TreeList<Chunk_t, FreeList_t>* tl = tc->embedded_list();
81
tl->initialize();
82
tc->set_list(tl);
83
tl->set_size(tc->size());
84
tl->link_head(tc);
85
tl->link_tail(tc);
86
tl->set_count(1);
87
assert(tl->parent() == NULL, "Should be clear");
88
return tl;
89
}
90
91
template <class Chunk_t, class FreeList_t>
92
TreeList<Chunk_t, FreeList_t>*
93
TreeList<Chunk_t, FreeList_t>::as_TreeList(HeapWord* addr, size_t size) {
94
TreeChunk<Chunk_t, FreeList_t>* tc = (TreeChunk<Chunk_t, FreeList_t>*) addr;
95
assert((size >= TreeChunk<Chunk_t, FreeList_t>::min_size()),
96
"Chunk is too small for a TreeChunk");
97
// The space will have been mangled initially but
98
// is not remangled when a Chunk_t is returned to the free list
99
// (since it is used to maintain the chunk on the free list).
100
tc->assert_is_mangled();
101
tc->set_size(size);
102
tc->link_prev(NULL);
103
tc->link_next(NULL);
104
TreeList<Chunk_t, FreeList_t>* tl = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
105
return tl;
106
}
107
108
109
#if INCLUDE_ALL_GCS
110
// Specialize for AdaptiveFreeList which tries to avoid
111
// splitting a chunk of a size that is under populated in favor of
112
// an over populated size. The general get_better_list() just returns
113
// the current list.
114
template <>
115
TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >*
116
TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >::get_better_list(
117
BinaryTreeDictionary<FreeChunk, ::AdaptiveFreeList<FreeChunk> >* dictionary) {
118
// A candidate chunk has been found. If it is already under
119
// populated, get a chunk associated with the hint for this
120
// chunk.
121
122
TreeList<FreeChunk, ::AdaptiveFreeList<FreeChunk> >* curTL = this;
123
if (surplus() <= 0) {
124
/* Use the hint to find a size with a surplus, and reset the hint. */
125
TreeList<FreeChunk, ::AdaptiveFreeList<FreeChunk> >* hintTL = this;
126
while (hintTL->hint() != 0) {
127
assert(hintTL->hint() > hintTL->size(),
128
"hint points in the wrong direction");
129
hintTL = dictionary->find_list(hintTL->hint());
130
assert(curTL != hintTL, "Infinite loop");
131
if (hintTL == NULL ||
132
hintTL == curTL /* Should not happen but protect against it */ ) {
133
// No useful hint. Set the hint to NULL and go on.
134
curTL->set_hint(0);
135
break;
136
}
137
assert(hintTL->size() > curTL->size(), "hint is inconsistent");
138
if (hintTL->surplus() > 0) {
139
// The hint led to a list that has a surplus. Use it.
140
// Set the hint for the candidate to an overpopulated
141
// size.
142
curTL->set_hint(hintTL->size());
143
// Change the candidate.
144
curTL = hintTL;
145
break;
146
}
147
}
148
}
149
return curTL;
150
}
151
#endif // INCLUDE_ALL_GCS
152
153
template <class Chunk_t, class FreeList_t>
154
TreeList<Chunk_t, FreeList_t>*
155
TreeList<Chunk_t, FreeList_t>::get_better_list(
156
BinaryTreeDictionary<Chunk_t, FreeList_t>* dictionary) {
157
return this;
158
}
159
160
template <class Chunk_t, class FreeList_t>
161
TreeList<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::remove_chunk_replace_if_needed(TreeChunk<Chunk_t, FreeList_t>* tc) {
162
163
TreeList<Chunk_t, FreeList_t>* retTL = this;
164
Chunk_t* list = head();
165
assert(!list || list != list->next(), "Chunk on list twice");
166
assert(tc != NULL, "Chunk being removed is NULL");
167
assert(parent() == NULL || this == parent()->left() ||
168
this == parent()->right(), "list is inconsistent");
169
assert(tc->is_free(), "Header is not marked correctly");
170
assert(head() == NULL || head()->prev() == NULL, "list invariant");
171
assert(tail() == NULL || tail()->next() == NULL, "list invariant");
172
173
Chunk_t* prevFC = tc->prev();
174
TreeChunk<Chunk_t, FreeList_t>* nextTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(tc->next());
175
assert(list != NULL, "should have at least the target chunk");
176
177
// Is this the first item on the list?
178
if (tc == list) {
179
// The "getChunk..." functions for a TreeList<Chunk_t, FreeList_t> will not return the
180
// first chunk in the list unless it is the last chunk in the list
181
// because the first chunk is also acting as the tree node.
182
// When coalescing happens, however, the first chunk in the a tree
183
// list can be the start of a free range. Free ranges are removed
184
// from the free lists so that they are not available to be
185
// allocated when the sweeper yields (giving up the free list lock)
186
// to allow mutator activity. If this chunk is the first in the
187
// list and is not the last in the list, do the work to copy the
188
// TreeList<Chunk_t, FreeList_t> from the first chunk to the next chunk and update all
189
// the TreeList<Chunk_t, FreeList_t> pointers in the chunks in the list.
190
if (nextTC == NULL) {
191
assert(prevFC == NULL, "Not last chunk in the list");
192
set_tail(NULL);
193
set_head(NULL);
194
} else {
195
// copy embedded list.
196
nextTC->set_embedded_list(tc->embedded_list());
197
retTL = nextTC->embedded_list();
198
// Fix the pointer to the list in each chunk in the list.
199
// This can be slow for a long list. Consider having
200
// an option that does not allow the first chunk on the
201
// list to be coalesced.
202
for (TreeChunk<Chunk_t, FreeList_t>* curTC = nextTC; curTC != NULL;
203
curTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(curTC->next())) {
204
curTC->set_list(retTL);
205
}
206
// Fix the parent to point to the new TreeList<Chunk_t, FreeList_t>.
207
if (retTL->parent() != NULL) {
208
if (this == retTL->parent()->left()) {
209
retTL->parent()->set_left(retTL);
210
} else {
211
assert(this == retTL->parent()->right(), "Parent is incorrect");
212
retTL->parent()->set_right(retTL);
213
}
214
}
215
// Fix the children's parent pointers to point to the
216
// new list.
217
assert(right() == retTL->right(), "Should have been copied");
218
if (retTL->right() != NULL) {
219
retTL->right()->set_parent(retTL);
220
}
221
assert(left() == retTL->left(), "Should have been copied");
222
if (retTL->left() != NULL) {
223
retTL->left()->set_parent(retTL);
224
}
225
retTL->link_head(nextTC);
226
assert(nextTC->is_free(), "Should be a free chunk");
227
}
228
} else {
229
if (nextTC == NULL) {
230
// Removing chunk at tail of list
231
this->link_tail(prevFC);
232
}
233
// Chunk is interior to the list
234
prevFC->link_after(nextTC);
235
}
236
237
// Below this point the embeded TreeList<Chunk_t, FreeList_t> being used for the
238
// tree node may have changed. Don't use "this"
239
// TreeList<Chunk_t, FreeList_t>*.
240
// chunk should still be a free chunk (bit set in _prev)
241
assert(!retTL->head() || retTL->size() == retTL->head()->size(),
242
"Wrong sized chunk in list");
243
debug_only(
244
tc->link_prev(NULL);
245
tc->link_next(NULL);
246
tc->set_list(NULL);
247
bool prev_found = false;
248
bool next_found = false;
249
for (Chunk_t* curFC = retTL->head();
250
curFC != NULL; curFC = curFC->next()) {
251
assert(curFC != tc, "Chunk is still in list");
252
if (curFC == prevFC) {
253
prev_found = true;
254
}
255
if (curFC == nextTC) {
256
next_found = true;
257
}
258
}
259
assert(prevFC == NULL || prev_found, "Chunk was lost from list");
260
assert(nextTC == NULL || next_found, "Chunk was lost from list");
261
assert(retTL->parent() == NULL ||
262
retTL == retTL->parent()->left() ||
263
retTL == retTL->parent()->right(),
264
"list is inconsistent");
265
)
266
retTL->decrement_count();
267
268
assert(tc->is_free(), "Should still be a free chunk");
269
assert(retTL->head() == NULL || retTL->head()->prev() == NULL,
270
"list invariant");
271
assert(retTL->tail() == NULL || retTL->tail()->next() == NULL,
272
"list invariant");
273
return retTL;
274
}
275
276
template <class Chunk_t, class FreeList_t>
277
void TreeList<Chunk_t, FreeList_t>::return_chunk_at_tail(TreeChunk<Chunk_t, FreeList_t>* chunk) {
278
assert(chunk != NULL, "returning NULL chunk");
279
assert(chunk->list() == this, "list should be set for chunk");
280
assert(tail() != NULL, "The tree list is embedded in the first chunk");
281
// which means that the list can never be empty.
282
assert(!this->verify_chunk_in_free_list(chunk), "Double entry");
283
assert(head() == NULL || head()->prev() == NULL, "list invariant");
284
assert(tail() == NULL || tail()->next() == NULL, "list invariant");
285
286
Chunk_t* fc = tail();
287
fc->link_after(chunk);
288
this->link_tail(chunk);
289
290
assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
291
FreeList_t::increment_count();
292
debug_only(this->increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
293
assert(head() == NULL || head()->prev() == NULL, "list invariant");
294
assert(tail() == NULL || tail()->next() == NULL, "list invariant");
295
}
296
297
// Add this chunk at the head of the list. "At the head of the list"
298
// is defined to be after the chunk pointer to by head(). This is
299
// because the TreeList<Chunk_t, FreeList_t> is embedded in the first TreeChunk<Chunk_t, FreeList_t> in the
300
// list. See the definition of TreeChunk<Chunk_t, FreeList_t>.
301
template <class Chunk_t, class FreeList_t>
302
void TreeList<Chunk_t, FreeList_t>::return_chunk_at_head(TreeChunk<Chunk_t, FreeList_t>* chunk) {
303
assert(chunk->list() == this, "list should be set for chunk");
304
assert(head() != NULL, "The tree list is embedded in the first chunk");
305
assert(chunk != NULL, "returning NULL chunk");
306
assert(!this->verify_chunk_in_free_list(chunk), "Double entry");
307
assert(head() == NULL || head()->prev() == NULL, "list invariant");
308
assert(tail() == NULL || tail()->next() == NULL, "list invariant");
309
310
Chunk_t* fc = head()->next();
311
if (fc != NULL) {
312
chunk->link_after(fc);
313
} else {
314
assert(tail() == NULL, "List is inconsistent");
315
this->link_tail(chunk);
316
}
317
head()->link_after(chunk);
318
assert(!head() || size() == head()->size(), "Wrong sized chunk in list");
319
FreeList_t::increment_count();
320
debug_only(this->increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
321
assert(head() == NULL || head()->prev() == NULL, "list invariant");
322
assert(tail() == NULL || tail()->next() == NULL, "list invariant");
323
}
324
325
template <class Chunk_t, class FreeList_t>
326
void TreeChunk<Chunk_t, FreeList_t>::assert_is_mangled() const {
327
assert((ZapUnusedHeapArea &&
328
SpaceMangler::is_mangled((HeapWord*) Chunk_t::size_addr()) &&
329
SpaceMangler::is_mangled((HeapWord*) Chunk_t::prev_addr()) &&
330
SpaceMangler::is_mangled((HeapWord*) Chunk_t::next_addr())) ||
331
(size() == 0 && prev() == NULL && next() == NULL),
332
"Space should be clear or mangled");
333
}
334
335
template <class Chunk_t, class FreeList_t>
336
TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::head_as_TreeChunk() {
337
assert(head() == NULL || (TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head())->list() == this),
338
"Wrong type of chunk?");
339
return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head());
340
}
341
342
template <class Chunk_t, class FreeList_t>
343
TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::first_available() {
344
assert(head() != NULL, "The head of the list cannot be NULL");
345
Chunk_t* fc = head()->next();
346
TreeChunk<Chunk_t, FreeList_t>* retTC;
347
if (fc == NULL) {
348
retTC = head_as_TreeChunk();
349
} else {
350
retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
351
}
352
assert(retTC->list() == this, "Wrong type of chunk.");
353
return retTC;
354
}
355
356
// Returns the block with the largest heap address amongst
357
// those in the list for this size; potentially slow and expensive,
358
// use with caution!
359
template <class Chunk_t, class FreeList_t>
360
TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::largest_address() {
361
assert(head() != NULL, "The head of the list cannot be NULL");
362
Chunk_t* fc = head()->next();
363
TreeChunk<Chunk_t, FreeList_t>* retTC;
364
if (fc == NULL) {
365
retTC = head_as_TreeChunk();
366
} else {
367
// walk down the list and return the one with the highest
368
// heap address among chunks of this size.
369
Chunk_t* last = fc;
370
while (fc->next() != NULL) {
371
if ((HeapWord*)last < (HeapWord*)fc) {
372
last = fc;
373
}
374
fc = fc->next();
375
}
376
retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(last);
377
}
378
assert(retTC->list() == this, "Wrong type of chunk.");
379
return retTC;
380
}
381
382
template <class Chunk_t, class FreeList_t>
383
BinaryTreeDictionary<Chunk_t, FreeList_t>::BinaryTreeDictionary(MemRegion mr) {
384
assert((mr.byte_size() > min_size()), "minimum chunk size");
385
386
reset(mr);
387
assert(root()->left() == NULL, "reset check failed");
388
assert(root()->right() == NULL, "reset check failed");
389
assert(root()->head()->next() == NULL, "reset check failed");
390
assert(root()->head()->prev() == NULL, "reset check failed");
391
assert(total_size() == root()->size(), "reset check failed");
392
assert(total_free_blocks() == 1, "reset check failed");
393
}
394
395
template <class Chunk_t, class FreeList_t>
396
void BinaryTreeDictionary<Chunk_t, FreeList_t>::inc_total_size(size_t inc) {
397
_total_size = _total_size + inc;
398
}
399
400
template <class Chunk_t, class FreeList_t>
401
void BinaryTreeDictionary<Chunk_t, FreeList_t>::dec_total_size(size_t dec) {
402
_total_size = _total_size - dec;
403
}
404
405
template <class Chunk_t, class FreeList_t>
406
void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(MemRegion mr) {
407
assert((mr.byte_size() > min_size()), "minimum chunk size");
408
set_root(TreeList<Chunk_t, FreeList_t>::as_TreeList(mr.start(), mr.word_size()));
409
set_total_size(mr.word_size());
410
set_total_free_blocks(1);
411
}
412
413
template <class Chunk_t, class FreeList_t>
414
void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(HeapWord* addr, size_t byte_size) {
415
MemRegion mr(addr, heap_word_size(byte_size));
416
reset(mr);
417
}
418
419
template <class Chunk_t, class FreeList_t>
420
void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset() {
421
set_root(NULL);
422
set_total_size(0);
423
set_total_free_blocks(0);
424
}
425
426
// Get a free block of size at least size from tree, or NULL.
427
template <class Chunk_t, class FreeList_t>
428
TreeChunk<Chunk_t, FreeList_t>*
429
BinaryTreeDictionary<Chunk_t, FreeList_t>::get_chunk_from_tree(
430
size_t size,
431
enum FreeBlockDictionary<Chunk_t>::Dither dither)
432
{
433
TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
434
TreeChunk<Chunk_t, FreeList_t>* retTC = NULL;
435
436
assert((size >= min_size()), "minimum chunk size");
437
if (FLSVerifyDictionary) {
438
verify_tree();
439
}
440
// starting at the root, work downwards trying to find match.
441
// Remember the last node of size too great or too small.
442
for (prevTL = curTL = root(); curTL != NULL;) {
443
if (curTL->size() == size) { // exact match
444
break;
445
}
446
prevTL = curTL;
447
if (curTL->size() < size) { // proceed to right sub-tree
448
curTL = curTL->right();
449
} else { // proceed to left sub-tree
450
assert(curTL->size() > size, "size inconsistency");
451
curTL = curTL->left();
452
}
453
}
454
if (curTL == NULL) { // couldn't find exact match
455
456
if (dither == FreeBlockDictionary<Chunk_t>::exactly) return NULL;
457
458
// try and find the next larger size by walking back up the search path
459
for (curTL = prevTL; curTL != NULL;) {
460
if (curTL->size() >= size) break;
461
else curTL = curTL->parent();
462
}
463
assert(curTL == NULL || curTL->count() > 0,
464
"An empty list should not be in the tree");
465
}
466
if (curTL != NULL) {
467
assert(curTL->size() >= size, "size inconsistency");
468
469
curTL = curTL->get_better_list(this);
470
471
retTC = curTL->first_available();
472
assert((retTC != NULL) && (curTL->count() > 0),
473
"A list in the binary tree should not be NULL");
474
assert(retTC->size() >= size,
475
"A chunk of the wrong size was found");
476
remove_chunk_from_tree(retTC);
477
assert(retTC->is_free(), "Header is not marked correctly");
478
}
479
480
if (FLSVerifyDictionary) {
481
verify();
482
}
483
return retTC;
484
}
485
486
template <class Chunk_t, class FreeList_t>
487
TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_list(size_t size) const {
488
TreeList<Chunk_t, FreeList_t>* curTL;
489
for (curTL = root(); curTL != NULL;) {
490
if (curTL->size() == size) { // exact match
491
break;
492
}
493
494
if (curTL->size() < size) { // proceed to right sub-tree
495
curTL = curTL->right();
496
} else { // proceed to left sub-tree
497
assert(curTL->size() > size, "size inconsistency");
498
curTL = curTL->left();
499
}
500
}
501
return curTL;
502
}
503
504
505
template <class Chunk_t, class FreeList_t>
506
bool BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_chunk_in_free_list(Chunk_t* tc) const {
507
size_t size = tc->size();
508
TreeList<Chunk_t, FreeList_t>* tl = find_list(size);
509
if (tl == NULL) {
510
return false;
511
} else {
512
return tl->verify_chunk_in_free_list(tc);
513
}
514
}
515
516
template <class Chunk_t, class FreeList_t>
517
Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_largest_dict() const {
518
TreeList<Chunk_t, FreeList_t> *curTL = root();
519
if (curTL != NULL) {
520
while(curTL->right() != NULL) curTL = curTL->right();
521
return curTL->largest_address();
522
} else {
523
return NULL;
524
}
525
}
526
527
// Remove the current chunk from the tree. If it is not the last
528
// chunk in a list on a tree node, just unlink it.
529
// If it is the last chunk in the list (the next link is NULL),
530
// remove the node and repair the tree.
531
template <class Chunk_t, class FreeList_t>
532
TreeChunk<Chunk_t, FreeList_t>*
533
BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_chunk_from_tree(TreeChunk<Chunk_t, FreeList_t>* tc) {
534
assert(tc != NULL, "Should not call with a NULL chunk");
535
assert(tc->is_free(), "Header is not marked correctly");
536
537
TreeList<Chunk_t, FreeList_t> *newTL, *parentTL;
538
TreeChunk<Chunk_t, FreeList_t>* retTC;
539
TreeList<Chunk_t, FreeList_t>* tl = tc->list();
540
debug_only(
541
bool removing_only_chunk = false;
542
if (tl == _root) {
543
if ((_root->left() == NULL) && (_root->right() == NULL)) {
544
if (_root->count() == 1) {
545
assert(_root->head() == tc, "Should only be this one chunk");
546
removing_only_chunk = true;
547
}
548
}
549
}
550
)
551
assert(tl != NULL, "List should be set");
552
assert(tl->parent() == NULL || tl == tl->parent()->left() ||
553
tl == tl->parent()->right(), "list is inconsistent");
554
555
bool complicated_splice = false;
556
557
retTC = tc;
558
// Removing this chunk can have the side effect of changing the node
559
// (TreeList<Chunk_t, FreeList_t>*) in the tree. If the node is the root, update it.
560
TreeList<Chunk_t, FreeList_t>* replacementTL = tl->remove_chunk_replace_if_needed(tc);
561
assert(tc->is_free(), "Chunk should still be free");
562
assert(replacementTL->parent() == NULL ||
563
replacementTL == replacementTL->parent()->left() ||
564
replacementTL == replacementTL->parent()->right(),
565
"list is inconsistent");
566
if (tl == root()) {
567
assert(replacementTL->parent() == NULL, "Incorrectly replacing root");
568
set_root(replacementTL);
569
}
570
#ifdef ASSERT
571
if (tl != replacementTL) {
572
assert(replacementTL->head() != NULL,
573
"If the tree list was replaced, it should not be a NULL list");
574
TreeList<Chunk_t, FreeList_t>* rhl = replacementTL->head_as_TreeChunk()->list();
575
TreeList<Chunk_t, FreeList_t>* rtl =
576
TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(replacementTL->tail())->list();
577
assert(rhl == replacementTL, "Broken head");
578
assert(rtl == replacementTL, "Broken tail");
579
assert(replacementTL->size() == tc->size(), "Broken size");
580
}
581
#endif
582
583
// Does the tree need to be repaired?
584
if (replacementTL->count() == 0) {
585
assert(replacementTL->head() == NULL &&
586
replacementTL->tail() == NULL, "list count is incorrect");
587
// Find the replacement node for the (soon to be empty) node being removed.
588
// if we have a single (or no) child, splice child in our stead
589
if (replacementTL->left() == NULL) {
590
// left is NULL so pick right. right may also be NULL.
591
newTL = replacementTL->right();
592
debug_only(replacementTL->clear_right();)
593
} else if (replacementTL->right() == NULL) {
594
// right is NULL
595
newTL = replacementTL->left();
596
debug_only(replacementTL->clear_left();)
597
} else { // we have both children, so, by patriarchal convention,
598
// my replacement is least node in right sub-tree
599
complicated_splice = true;
600
newTL = remove_tree_minimum(replacementTL->right());
601
assert(newTL != NULL && newTL->left() == NULL &&
602
newTL->right() == NULL, "sub-tree minimum exists");
603
}
604
// newTL is the replacement for the (soon to be empty) node.
605
// newTL may be NULL.
606
// should verify; we just cleanly excised our replacement
607
if (FLSVerifyDictionary) {
608
verify_tree();
609
}
610
// first make newTL my parent's child
611
if ((parentTL = replacementTL->parent()) == NULL) {
612
// newTL should be root
613
assert(tl == root(), "Incorrectly replacing root");
614
set_root(newTL);
615
if (newTL != NULL) {
616
newTL->clear_parent();
617
}
618
} else if (parentTL->right() == replacementTL) {
619
// replacementTL is a right child
620
parentTL->set_right(newTL);
621
} else { // replacementTL is a left child
622
assert(parentTL->left() == replacementTL, "should be left child");
623
parentTL->set_left(newTL);
624
}
625
debug_only(replacementTL->clear_parent();)
626
if (complicated_splice) { // we need newTL to get replacementTL's
627
// two children
628
assert(newTL != NULL &&
629
newTL->left() == NULL && newTL->right() == NULL,
630
"newTL should not have encumbrances from the past");
631
// we'd like to assert as below:
632
// assert(replacementTL->left() != NULL && replacementTL->right() != NULL,
633
// "else !complicated_splice");
634
// ... however, the above assertion is too strong because we aren't
635
// guaranteed that replacementTL->right() is still NULL.
636
// Recall that we removed
637
// the right sub-tree minimum from replacementTL.
638
// That may well have been its right
639
// child! So we'll just assert half of the above:
640
assert(replacementTL->left() != NULL, "else !complicated_splice");
641
newTL->set_left(replacementTL->left());
642
newTL->set_right(replacementTL->right());
643
debug_only(
644
replacementTL->clear_right();
645
replacementTL->clear_left();
646
)
647
}
648
assert(replacementTL->right() == NULL &&
649
replacementTL->left() == NULL &&
650
replacementTL->parent() == NULL,
651
"delete without encumbrances");
652
}
653
654
assert(total_size() >= retTC->size(), "Incorrect total size");
655
dec_total_size(retTC->size()); // size book-keeping
656
assert(total_free_blocks() > 0, "Incorrect total count");
657
set_total_free_blocks(total_free_blocks() - 1);
658
659
assert(retTC != NULL, "null chunk?");
660
assert(retTC->prev() == NULL && retTC->next() == NULL,
661
"should return without encumbrances");
662
if (FLSVerifyDictionary) {
663
verify_tree();
664
}
665
assert(!removing_only_chunk || _root == NULL, "root should be NULL");
666
return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(retTC);
667
}
668
669
// Remove the leftmost node (lm) in the tree and return it.
670
// If lm has a right child, link it to the left node of
671
// the parent of lm.
672
template <class Chunk_t, class FreeList_t>
673
TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_tree_minimum(TreeList<Chunk_t, FreeList_t>* tl) {
674
assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
675
// locate the subtree minimum by walking down left branches
676
TreeList<Chunk_t, FreeList_t>* curTL = tl;
677
for (; curTL->left() != NULL; curTL = curTL->left());
678
// obviously curTL now has at most one child, a right child
679
if (curTL != root()) { // Should this test just be removed?
680
TreeList<Chunk_t, FreeList_t>* parentTL = curTL->parent();
681
if (parentTL->left() == curTL) { // curTL is a left child
682
parentTL->set_left(curTL->right());
683
} else {
684
// If the list tl has no left child, then curTL may be
685
// the right child of parentTL.
686
assert(parentTL->right() == curTL, "should be a right child");
687
parentTL->set_right(curTL->right());
688
}
689
} else {
690
// The only use of this method would not pass the root of the
691
// tree (as indicated by the assertion above that the tree list
692
// has a parent) but the specification does not explicitly exclude the
693
// passing of the root so accomodate it.
694
set_root(NULL);
695
}
696
debug_only(
697
curTL->clear_parent(); // Test if this needs to be cleared
698
curTL->clear_right(); // recall, above, left child is already null
699
)
700
// we just excised a (non-root) node, we should still verify all tree invariants
701
if (FLSVerifyDictionary) {
702
verify_tree();
703
}
704
return curTL;
705
}
706
707
template <class Chunk_t, class FreeList_t>
708
void BinaryTreeDictionary<Chunk_t, FreeList_t>::insert_chunk_in_tree(Chunk_t* fc) {
709
TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
710
size_t size = fc->size();
711
712
assert((size >= min_size()),
713
err_msg(SIZE_FORMAT " is too small to be a TreeChunk<Chunk_t, FreeList_t> " SIZE_FORMAT,
714
size, min_size()));
715
if (FLSVerifyDictionary) {
716
verify_tree();
717
}
718
719
fc->clear_next();
720
fc->link_prev(NULL);
721
722
// work down from the _root, looking for insertion point
723
for (prevTL = curTL = root(); curTL != NULL;) {
724
if (curTL->size() == size) // exact match
725
break;
726
prevTL = curTL;
727
if (curTL->size() > size) { // follow left branch
728
curTL = curTL->left();
729
} else { // follow right branch
730
assert(curTL->size() < size, "size inconsistency");
731
curTL = curTL->right();
732
}
733
}
734
TreeChunk<Chunk_t, FreeList_t>* tc = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
735
// This chunk is being returned to the binary tree. Its embedded
736
// TreeList<Chunk_t, FreeList_t> should be unused at this point.
737
tc->initialize();
738
if (curTL != NULL) { // exact match
739
tc->set_list(curTL);
740
curTL->return_chunk_at_tail(tc);
741
} else { // need a new node in tree
742
tc->clear_next();
743
tc->link_prev(NULL);
744
TreeList<Chunk_t, FreeList_t>* newTL = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
745
assert(((TreeChunk<Chunk_t, FreeList_t>*)tc)->list() == newTL,
746
"List was not initialized correctly");
747
if (prevTL == NULL) { // we are the only tree node
748
assert(root() == NULL, "control point invariant");
749
set_root(newTL);
750
} else { // insert under prevTL ...
751
if (prevTL->size() < size) { // am right child
752
assert(prevTL->right() == NULL, "control point invariant");
753
prevTL->set_right(newTL);
754
} else { // am left child
755
assert(prevTL->size() > size && prevTL->left() == NULL, "cpt pt inv");
756
prevTL->set_left(newTL);
757
}
758
}
759
}
760
assert(tc->list() != NULL, "Tree list should be set");
761
762
inc_total_size(size);
763
// Method 'total_size_in_tree' walks through the every block in the
764
// tree, so it can cause significant performance loss if there are
765
// many blocks in the tree
766
assert(!FLSVerifyDictionary || total_size_in_tree(root()) == total_size(), "_total_size inconsistency");
767
set_total_free_blocks(total_free_blocks() + 1);
768
if (FLSVerifyDictionary) {
769
verify_tree();
770
}
771
}
772
773
template <class Chunk_t, class FreeList_t>
774
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::max_chunk_size() const {
775
FreeBlockDictionary<Chunk_t>::verify_par_locked();
776
TreeList<Chunk_t, FreeList_t>* tc = root();
777
if (tc == NULL) return 0;
778
for (; tc->right() != NULL; tc = tc->right());
779
return tc->size();
780
}
781
782
template <class Chunk_t, class FreeList_t>
783
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_list_length(TreeList<Chunk_t, FreeList_t>* tl) const {
784
size_t res;
785
res = tl->count();
786
#ifdef ASSERT
787
size_t cnt;
788
Chunk_t* tc = tl->head();
789
for (cnt = 0; tc != NULL; tc = tc->next(), cnt++);
790
assert(res == cnt, "The count is not being maintained correctly");
791
#endif
792
return res;
793
}
794
795
template <class Chunk_t, class FreeList_t>
796
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_size_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
797
if (tl == NULL)
798
return 0;
799
return (tl->size() * total_list_length(tl)) +
800
total_size_in_tree(tl->left()) +
801
total_size_in_tree(tl->right());
802
}
803
804
template <class Chunk_t, class FreeList_t>
805
double BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_of_squared_block_sizes(TreeList<Chunk_t, FreeList_t>* const tl) const {
806
if (tl == NULL) {
807
return 0.0;
808
}
809
double size = (double)(tl->size());
810
double curr = size * size * total_list_length(tl);
811
curr += sum_of_squared_block_sizes(tl->left());
812
curr += sum_of_squared_block_sizes(tl->right());
813
return curr;
814
}
815
816
template <class Chunk_t, class FreeList_t>
817
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_free_blocks_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
818
if (tl == NULL)
819
return 0;
820
return total_list_length(tl) +
821
total_free_blocks_in_tree(tl->left()) +
822
total_free_blocks_in_tree(tl->right());
823
}
824
825
template <class Chunk_t, class FreeList_t>
826
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::num_free_blocks() const {
827
assert(total_free_blocks_in_tree(root()) == total_free_blocks(),
828
"_total_free_blocks inconsistency");
829
return total_free_blocks();
830
}
831
832
template <class Chunk_t, class FreeList_t>
833
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
834
if (tl == NULL)
835
return 0;
836
return 1 + MAX2(tree_height_helper(tl->left()),
837
tree_height_helper(tl->right()));
838
}
839
840
template <class Chunk_t, class FreeList_t>
841
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height() const {
842
return tree_height_helper(root());
843
}
844
845
template <class Chunk_t, class FreeList_t>
846
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
847
if (tl == NULL) {
848
return 0;
849
}
850
return 1 + total_nodes_helper(tl->left()) +
851
total_nodes_helper(tl->right());
852
}
853
854
template <class Chunk_t, class FreeList_t>
855
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
856
return total_nodes_helper(root());
857
}
858
859
template <class Chunk_t, class FreeList_t>
860
void BinaryTreeDictionary<Chunk_t, FreeList_t>::dict_census_update(size_t size, bool split, bool birth){}
861
862
#if INCLUDE_ALL_GCS
863
template <>
864
void AFLBinaryTreeDictionary::dict_census_update(size_t size, bool split, bool birth) {
865
TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >* nd = find_list(size);
866
if (nd) {
867
if (split) {
868
if (birth) {
869
nd->increment_split_births();
870
nd->increment_surplus();
871
} else {
872
nd->increment_split_deaths();
873
nd->decrement_surplus();
874
}
875
} else {
876
if (birth) {
877
nd->increment_coal_births();
878
nd->increment_surplus();
879
} else {
880
nd->increment_coal_deaths();
881
nd->decrement_surplus();
882
}
883
}
884
}
885
// A list for this size may not be found (nd == 0) if
886
// This is a death where the appropriate list is now
887
// empty and has been removed from the list.
888
// This is a birth associated with a LinAB. The chunk
889
// for the LinAB is not in the dictionary.
890
}
891
#endif // INCLUDE_ALL_GCS
892
893
template <class Chunk_t, class FreeList_t>
894
bool BinaryTreeDictionary<Chunk_t, FreeList_t>::coal_dict_over_populated(size_t size) {
895
// For the general type of freelists, encourage coalescing by
896
// returning true.
897
return true;
898
}
899
900
#if INCLUDE_ALL_GCS
901
template <>
902
bool AFLBinaryTreeDictionary::coal_dict_over_populated(size_t size) {
903
if (FLSAlwaysCoalesceLarge) return true;
904
905
TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >* list_of_size = find_list(size);
906
// None of requested size implies overpopulated.
907
return list_of_size == NULL || list_of_size->coal_desired() <= 0 ||
908
list_of_size->count() > list_of_size->coal_desired();
909
}
910
#endif // INCLUDE_ALL_GCS
911
912
// Closures for walking the binary tree.
913
// do_list() walks the free list in a node applying the closure
914
// to each free chunk in the list
915
// do_tree() walks the nodes in the binary tree applying do_list()
916
// to each list at each node.
917
918
template <class Chunk_t, class FreeList_t>
919
class TreeCensusClosure : public StackObj {
920
protected:
921
virtual void do_list(FreeList_t* fl) = 0;
922
public:
923
virtual void do_tree(TreeList<Chunk_t, FreeList_t>* tl) = 0;
924
};
925
926
template <class Chunk_t, class FreeList_t>
927
class AscendTreeCensusClosure : public TreeCensusClosure<Chunk_t, FreeList_t> {
928
public:
929
void do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
930
if (tl != NULL) {
931
do_tree(tl->left());
932
this->do_list(tl);
933
do_tree(tl->right());
934
}
935
}
936
};
937
938
template <class Chunk_t, class FreeList_t>
939
class DescendTreeCensusClosure : public TreeCensusClosure<Chunk_t, FreeList_t> {
940
public:
941
void do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
942
if (tl != NULL) {
943
do_tree(tl->right());
944
this->do_list(tl);
945
do_tree(tl->left());
946
}
947
}
948
};
949
950
// For each list in the tree, calculate the desired, desired
951
// coalesce, count before sweep, and surplus before sweep.
952
template <class Chunk_t, class FreeList_t>
953
class BeginSweepClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
954
double _percentage;
955
float _inter_sweep_current;
956
float _inter_sweep_estimate;
957
float _intra_sweep_estimate;
958
959
public:
960
BeginSweepClosure(double p, float inter_sweep_current,
961
float inter_sweep_estimate,
962
float intra_sweep_estimate) :
963
_percentage(p),
964
_inter_sweep_current(inter_sweep_current),
965
_inter_sweep_estimate(inter_sweep_estimate),
966
_intra_sweep_estimate(intra_sweep_estimate) { }
967
968
void do_list(FreeList<Chunk_t>* fl) {}
969
970
#if INCLUDE_ALL_GCS
971
void do_list(AdaptiveFreeList<Chunk_t>* fl) {
972
double coalSurplusPercent = _percentage;
973
fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate, _intra_sweep_estimate);
974
fl->set_coal_desired((ssize_t)((double)fl->desired() * coalSurplusPercent));
975
fl->set_before_sweep(fl->count());
976
fl->set_bfr_surp(fl->surplus());
977
}
978
#endif // INCLUDE_ALL_GCS
979
};
980
981
// Used to search the tree until a condition is met.
982
// Similar to TreeCensusClosure but searches the
983
// tree and returns promptly when found.
984
985
template <class Chunk_t, class FreeList_t>
986
class TreeSearchClosure : public StackObj {
987
protected:
988
virtual bool do_list(FreeList_t* fl) = 0;
989
public:
990
virtual bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) = 0;
991
};
992
993
#if 0 // Don't need this yet but here for symmetry.
994
template <class Chunk_t, class FreeList_t>
995
class AscendTreeSearchClosure : public TreeSearchClosure<Chunk_t> {
996
public:
997
bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
998
if (tl != NULL) {
999
if (do_tree(tl->left())) return true;
1000
if (do_list(tl)) return true;
1001
if (do_tree(tl->right())) return true;
1002
}
1003
return false;
1004
}
1005
};
1006
#endif
1007
1008
template <class Chunk_t, class FreeList_t>
1009
class DescendTreeSearchClosure : public TreeSearchClosure<Chunk_t, FreeList_t> {
1010
public:
1011
bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
1012
if (tl != NULL) {
1013
if (do_tree(tl->right())) return true;
1014
if (this->do_list(tl)) return true;
1015
if (do_tree(tl->left())) return true;
1016
}
1017
return false;
1018
}
1019
};
1020
1021
// Searches the tree for a chunk that ends at the
1022
// specified address.
1023
template <class Chunk_t, class FreeList_t>
1024
class EndTreeSearchClosure : public DescendTreeSearchClosure<Chunk_t, FreeList_t> {
1025
HeapWord* _target;
1026
Chunk_t* _found;
1027
1028
public:
1029
EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {}
1030
bool do_list(FreeList_t* fl) {
1031
Chunk_t* item = fl->head();
1032
while (item != NULL) {
1033
if (item->end() == (uintptr_t*) _target) {
1034
_found = item;
1035
return true;
1036
}
1037
item = item->next();
1038
}
1039
return false;
1040
}
1041
Chunk_t* found() { return _found; }
1042
};
1043
1044
template <class Chunk_t, class FreeList_t>
1045
Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_chunk_ends_at(HeapWord* target) const {
1046
EndTreeSearchClosure<Chunk_t, FreeList_t> etsc(target);
1047
bool found_target = etsc.do_tree(root());
1048
assert(found_target || etsc.found() == NULL, "Consistency check");
1049
assert(!found_target || etsc.found() != NULL, "Consistency check");
1050
return etsc.found();
1051
}
1052
1053
template <class Chunk_t, class FreeList_t>
1054
void BinaryTreeDictionary<Chunk_t, FreeList_t>::begin_sweep_dict_census(double coalSurplusPercent,
1055
float inter_sweep_current, float inter_sweep_estimate, float intra_sweep_estimate) {
1056
BeginSweepClosure<Chunk_t, FreeList_t> bsc(coalSurplusPercent, inter_sweep_current,
1057
inter_sweep_estimate,
1058
intra_sweep_estimate);
1059
bsc.do_tree(root());
1060
}
1061
1062
// Closures and methods for calculating total bytes returned to the
1063
// free lists in the tree.
1064
#ifndef PRODUCT
1065
template <class Chunk_t, class FreeList_t>
1066
class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1067
public:
1068
void do_list(FreeList_t* fl) {
1069
fl->set_returned_bytes(0);
1070
}
1071
};
1072
1073
template <class Chunk_t, class FreeList_t>
1074
void BinaryTreeDictionary<Chunk_t, FreeList_t>::initialize_dict_returned_bytes() {
1075
InitializeDictReturnedBytesClosure<Chunk_t, FreeList_t> idrb;
1076
idrb.do_tree(root());
1077
}
1078
1079
template <class Chunk_t, class FreeList_t>
1080
class ReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1081
size_t _dict_returned_bytes;
1082
public:
1083
ReturnedBytesClosure() { _dict_returned_bytes = 0; }
1084
void do_list(FreeList_t* fl) {
1085
_dict_returned_bytes += fl->returned_bytes();
1086
}
1087
size_t dict_returned_bytes() { return _dict_returned_bytes; }
1088
};
1089
1090
template <class Chunk_t, class FreeList_t>
1091
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_dict_returned_bytes() {
1092
ReturnedBytesClosure<Chunk_t, FreeList_t> rbc;
1093
rbc.do_tree(root());
1094
1095
return rbc.dict_returned_bytes();
1096
}
1097
1098
// Count the number of entries in the tree.
1099
template <class Chunk_t, class FreeList_t>
1100
class treeCountClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> {
1101
public:
1102
uint count;
1103
treeCountClosure(uint c) { count = c; }
1104
void do_list(FreeList_t* fl) {
1105
count++;
1106
}
1107
};
1108
1109
template <class Chunk_t, class FreeList_t>
1110
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_count() {
1111
treeCountClosure<Chunk_t, FreeList_t> ctc(0);
1112
ctc.do_tree(root());
1113
return ctc.count;
1114
}
1115
#endif // PRODUCT
1116
1117
// Calculate surpluses for the lists in the tree.
1118
template <class Chunk_t, class FreeList_t>
1119
class setTreeSurplusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1120
double percentage;
1121
public:
1122
setTreeSurplusClosure(double v) { percentage = v; }
1123
void do_list(FreeList<Chunk_t>* fl) {}
1124
1125
#if INCLUDE_ALL_GCS
1126
void do_list(AdaptiveFreeList<Chunk_t>* fl) {
1127
double splitSurplusPercent = percentage;
1128
fl->set_surplus(fl->count() -
1129
(ssize_t)((double)fl->desired() * splitSurplusPercent));
1130
}
1131
#endif // INCLUDE_ALL_GCS
1132
};
1133
1134
template <class Chunk_t, class FreeList_t>
1135
void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_tree_surplus(double splitSurplusPercent) {
1136
setTreeSurplusClosure<Chunk_t, FreeList_t> sts(splitSurplusPercent);
1137
sts.do_tree(root());
1138
}
1139
1140
// Set hints for the lists in the tree.
1141
template <class Chunk_t, class FreeList_t>
1142
class setTreeHintsClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> {
1143
size_t hint;
1144
public:
1145
setTreeHintsClosure(size_t v) { hint = v; }
1146
void do_list(FreeList<Chunk_t>* fl) {}
1147
1148
#if INCLUDE_ALL_GCS
1149
void do_list(AdaptiveFreeList<Chunk_t>* fl) {
1150
fl->set_hint(hint);
1151
assert(fl->hint() == 0 || fl->hint() > fl->size(),
1152
"Current hint is inconsistent");
1153
if (fl->surplus() > 0) {
1154
hint = fl->size();
1155
}
1156
}
1157
#endif // INCLUDE_ALL_GCS
1158
};
1159
1160
template <class Chunk_t, class FreeList_t>
1161
void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_tree_hints(void) {
1162
setTreeHintsClosure<Chunk_t, FreeList_t> sth(0);
1163
sth.do_tree(root());
1164
}
1165
1166
// Save count before previous sweep and splits and coalesces.
1167
template <class Chunk_t, class FreeList_t>
1168
class clearTreeCensusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1169
void do_list(FreeList<Chunk_t>* fl) {}
1170
1171
#if INCLUDE_ALL_GCS
1172
void do_list(AdaptiveFreeList<Chunk_t>* fl) {
1173
fl->set_prev_sweep(fl->count());
1174
fl->set_coal_births(0);
1175
fl->set_coal_deaths(0);
1176
fl->set_split_births(0);
1177
fl->set_split_deaths(0);
1178
}
1179
#endif // INCLUDE_ALL_GCS
1180
};
1181
1182
template <class Chunk_t, class FreeList_t>
1183
void BinaryTreeDictionary<Chunk_t, FreeList_t>::clear_tree_census(void) {
1184
clearTreeCensusClosure<Chunk_t, FreeList_t> ctc;
1185
ctc.do_tree(root());
1186
}
1187
1188
// Do reporting and post sweep clean up.
1189
template <class Chunk_t, class FreeList_t>
1190
void BinaryTreeDictionary<Chunk_t, FreeList_t>::end_sweep_dict_census(double splitSurplusPercent) {
1191
// Does walking the tree 3 times hurt?
1192
set_tree_surplus(splitSurplusPercent);
1193
set_tree_hints();
1194
if (PrintGC && Verbose) {
1195
report_statistics();
1196
}
1197
clear_tree_census();
1198
}
1199
1200
// Print summary statistics
1201
template <class Chunk_t, class FreeList_t>
1202
void BinaryTreeDictionary<Chunk_t, FreeList_t>::report_statistics() const {
1203
FreeBlockDictionary<Chunk_t>::verify_par_locked();
1204
gclog_or_tty->print("Statistics for BinaryTreeDictionary:\n"
1205
"------------------------------------\n");
1206
size_t total_size = total_chunk_size(debug_only(NULL));
1207
size_t free_blocks = num_free_blocks();
1208
gclog_or_tty->print("Total Free Space: " SIZE_FORMAT "\n", total_size);
1209
gclog_or_tty->print("Max Chunk Size: " SIZE_FORMAT "\n", max_chunk_size());
1210
gclog_or_tty->print("Number of Blocks: " SIZE_FORMAT "\n", free_blocks);
1211
if (free_blocks > 0) {
1212
gclog_or_tty->print("Av. Block Size: " SIZE_FORMAT "\n", total_size/free_blocks);
1213
}
1214
gclog_or_tty->print("Tree Height: " SIZE_FORMAT "\n", tree_height());
1215
}
1216
1217
// Print census information - counts, births, deaths, etc.
1218
// for each list in the tree. Also print some summary
1219
// information.
1220
template <class Chunk_t, class FreeList_t>
1221
class PrintTreeCensusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1222
int _print_line;
1223
size_t _total_free;
1224
FreeList_t _total;
1225
1226
public:
1227
PrintTreeCensusClosure() {
1228
_print_line = 0;
1229
_total_free = 0;
1230
}
1231
FreeList_t* total() { return &_total; }
1232
size_t total_free() { return _total_free; }
1233
void do_list(FreeList<Chunk_t>* fl) {
1234
if (++_print_line >= 40) {
1235
FreeList_t::print_labels_on(gclog_or_tty, "size");
1236
_print_line = 0;
1237
}
1238
fl->print_on(gclog_or_tty);
1239
_total_free += fl->count() * fl->size() ;
1240
total()->set_count( total()->count() + fl->count() );
1241
}
1242
1243
#if INCLUDE_ALL_GCS
1244
void do_list(AdaptiveFreeList<Chunk_t>* fl) {
1245
if (++_print_line >= 40) {
1246
FreeList_t::print_labels_on(gclog_or_tty, "size");
1247
_print_line = 0;
1248
}
1249
fl->print_on(gclog_or_tty);
1250
_total_free += fl->count() * fl->size() ;
1251
total()->set_count( total()->count() + fl->count() );
1252
total()->set_bfr_surp( total()->bfr_surp() + fl->bfr_surp() );
1253
total()->set_surplus( total()->split_deaths() + fl->surplus() );
1254
total()->set_desired( total()->desired() + fl->desired() );
1255
total()->set_prev_sweep( total()->prev_sweep() + fl->prev_sweep() );
1256
total()->set_before_sweep(total()->before_sweep() + fl->before_sweep());
1257
total()->set_coal_births( total()->coal_births() + fl->coal_births() );
1258
total()->set_coal_deaths( total()->coal_deaths() + fl->coal_deaths() );
1259
total()->set_split_births(total()->split_births() + fl->split_births());
1260
total()->set_split_deaths(total()->split_deaths() + fl->split_deaths());
1261
}
1262
#endif // INCLUDE_ALL_GCS
1263
};
1264
1265
template <class Chunk_t, class FreeList_t>
1266
void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_dict_census(void) const {
1267
1268
gclog_or_tty->print("\nBinaryTree\n");
1269
FreeList_t::print_labels_on(gclog_or_tty, "size");
1270
PrintTreeCensusClosure<Chunk_t, FreeList_t> ptc;
1271
ptc.do_tree(root());
1272
1273
FreeList_t* total = ptc.total();
1274
FreeList_t::print_labels_on(gclog_or_tty, " ");
1275
}
1276
1277
#if INCLUDE_ALL_GCS
1278
template <>
1279
void AFLBinaryTreeDictionary::print_dict_census(void) const {
1280
1281
gclog_or_tty->print("\nBinaryTree\n");
1282
AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
1283
PrintTreeCensusClosure<FreeChunk, AdaptiveFreeList<FreeChunk> > ptc;
1284
ptc.do_tree(root());
1285
1286
AdaptiveFreeList<FreeChunk>* total = ptc.total();
1287
AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, " ");
1288
total->print_on(gclog_or_tty, "TOTAL\t");
1289
gclog_or_tty->print(
1290
"total_free(words): " SIZE_FORMAT_W(16)
1291
" growth: %8.5f deficit: %8.5f\n",
1292
ptc.total_free(),
1293
(double)(total->split_births() + total->coal_births()
1294
- total->split_deaths() - total->coal_deaths())
1295
/(total->prev_sweep() != 0 ? (double)total->prev_sweep() : 1.0),
1296
(double)(total->desired() - total->count())
1297
/(total->desired() != 0 ? (double)total->desired() : 1.0));
1298
}
1299
#endif // INCLUDE_ALL_GCS
1300
1301
template <class Chunk_t, class FreeList_t>
1302
class PrintFreeListsClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1303
outputStream* _st;
1304
int _print_line;
1305
1306
public:
1307
PrintFreeListsClosure(outputStream* st) {
1308
_st = st;
1309
_print_line = 0;
1310
}
1311
void do_list(FreeList_t* fl) {
1312
if (++_print_line >= 40) {
1313
FreeList_t::print_labels_on(_st, "size");
1314
_print_line = 0;
1315
}
1316
fl->print_on(gclog_or_tty);
1317
size_t sz = fl->size();
1318
for (Chunk_t* fc = fl->head(); fc != NULL;
1319
fc = fc->next()) {
1320
_st->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ") %s",
1321
p2i(fc), p2i((HeapWord*)fc + sz),
1322
fc->cantCoalesce() ? "\t CC" : "");
1323
}
1324
}
1325
};
1326
1327
template <class Chunk_t, class FreeList_t>
1328
void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_free_lists(outputStream* st) const {
1329
1330
FreeList_t::print_labels_on(st, "size");
1331
PrintFreeListsClosure<Chunk_t, FreeList_t> pflc(st);
1332
pflc.do_tree(root());
1333
}
1334
1335
// Verify the following tree invariants:
1336
// . _root has no parent
1337
// . parent and child point to each other
1338
// . each node's key correctly related to that of its child(ren)
1339
template <class Chunk_t, class FreeList_t>
1340
void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree() const {
1341
guarantee(root() == NULL || total_free_blocks() == 0 ||
1342
total_size() != 0, "_total_size should't be 0?");
1343
guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
1344
verify_tree_helper(root());
1345
}
1346
1347
template <class Chunk_t, class FreeList_t>
1348
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_prev_free_ptrs(TreeList<Chunk_t, FreeList_t>* tl) {
1349
size_t ct = 0;
1350
for (Chunk_t* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
1351
ct++;
1352
assert(curFC->prev() == NULL || curFC->prev()->is_free(),
1353
"Chunk should be free");
1354
}
1355
return ct;
1356
}
1357
1358
// Note: this helper is recursive rather than iterative, so use with
1359
// caution on very deep trees; and watch out for stack overflow errors;
1360
// In general, to be used only for debugging.
1361
template <class Chunk_t, class FreeList_t>
1362
void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
1363
if (tl == NULL)
1364
return;
1365
guarantee(tl->size() != 0, "A list must has a size");
1366
guarantee(tl->left() == NULL || tl->left()->parent() == tl,
1367
"parent<-/->left");
1368
guarantee(tl->right() == NULL || tl->right()->parent() == tl,
1369
"parent<-/->right");;
1370
guarantee(tl->left() == NULL || tl->left()->size() < tl->size(),
1371
"parent !> left");
1372
guarantee(tl->right() == NULL || tl->right()->size() > tl->size(),
1373
"parent !< left");
1374
guarantee(tl->head() == NULL || tl->head()->is_free(), "!Free");
1375
guarantee(tl->head() == NULL || tl->head_as_TreeChunk()->list() == tl,
1376
"list inconsistency");
1377
guarantee(tl->count() > 0 || (tl->head() == NULL && tl->tail() == NULL),
1378
"list count is inconsistent");
1379
guarantee(tl->count() > 1 || tl->head() == tl->tail(),
1380
"list is incorrectly constructed");
1381
size_t count = verify_prev_free_ptrs(tl);
1382
guarantee(count == (size_t)tl->count(), "Node count is incorrect");
1383
if (tl->head() != NULL) {
1384
tl->head_as_TreeChunk()->verify_tree_chunk_list();
1385
}
1386
verify_tree_helper(tl->left());
1387
verify_tree_helper(tl->right());
1388
}
1389
1390
template <class Chunk_t, class FreeList_t>
1391
void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify() const {
1392
verify_tree();
1393
guarantee(total_size() == total_size_in_tree(root()), "Total Size inconsistency");
1394
}
1395
1396
template class TreeList<Metablock, FreeList<Metablock> >;
1397
template class BinaryTreeDictionary<Metablock, FreeList<Metablock> >;
1398
template class TreeChunk<Metablock, FreeList<Metablock> >;
1399
1400
template class TreeList<Metachunk, FreeList<Metachunk> >;
1401
template class BinaryTreeDictionary<Metachunk, FreeList<Metachunk> >;
1402
template class TreeChunk<Metachunk, FreeList<Metachunk> >;
1403
1404
1405
#if INCLUDE_ALL_GCS
1406
// Explicitly instantiate these types for FreeChunk.
1407
template class TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >;
1408
template class BinaryTreeDictionary<FreeChunk, AdaptiveFreeList<FreeChunk> >;
1409
template class TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >;
1410
1411
#endif // INCLUDE_ALL_GCS
1412
1413